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Recent developments in computational modelling

of nucleation in phase transformations
Lei Zhang1, Weiqing Ren2,3, Amit Samanta4 and Qiang Du5

Nucleation is one of the most common physical phenomena in physical, chemical, biological and materials sciences. Owing to the
complex multiscale nature of various nucleation events and the difficulties in their direct experimental observation, development of
effective computational methods and modeling approaches has become very important and is bringing new light to the study of
this challenging subject. Our discussions in this manuscript provide a sampler of some newly developed numerical algorithms that
are widely applicable to many nucleation and phase transformation problems. We first describe some recent progress on the
design of efficient numerical methods for computing saddle points and minimum energy paths, and then illustrate their
applications to the study of nucleation events associated with several different physical systems.

npj Computational Materials (2016) 2, 16003; doi:10.1038/npjcompumats.2016.3; published online 8 April 2016

INTRODUCTION

The recent call of Materials Genome Initiative (MGI) exemplifies
the use of computational modelling in new materials design.1 One
of the most effective ingredients to design materials with certain
desired properties is through the control of their phase
transformations and microstructure evolution. These processes
often start with the nucleation of nanoscale new-phase particles,
followed by growth and particle impingement or coarsening.
Generically, nucleation of a new phase requires overcoming a

minimum thermodynamic barrier, which leads to a saddle point
configuration along the minimum energy path on the energy
landscape. Being a rare event, nucleation is difficult to observe
directly in physical experiments as a critical nucleus typically
appears transiently at very fast time scales. Therefore, there have
been many theoretical studies of the nucleation event. Early
classical nucleation theories mainly study phase changes in fluids,
e.g., nucleation of a liquid droplet from a vapour phase. The
thermodynamic properties of a nucleus are assumed to be the
same as in the corresponding bulk. Consequently, the size of a
critical nucleus is determined as a result of bulk free-energy
reduction and interfacial energy increase, r� ¼ - 2γ=ΔGν where γ

is the interfacial energy per unit area between a nucleus and the
parent matrix and ΔGν is the free-energy-driving force per unit
volume. The nucleation rate then depends on the height of the
critical energy barrier ΔE*, i.e., I= I0 exp(−ΔE*/kBT) with the
pre-exponential factor I0 calculated from fundamental statistical
approaches, kB and T being the Boltzmann’s constant and the
absolute temperature, respectively. However, nucleation process
in general phase transformation problems is much more
challenging to characterise due to the possible complex geometry
and structure of critical nuclei. Therefore, much computational
effort has been called for to study the nucleation events in various
applications.2–9 Being a saddle point of the free energy, the critical
nucleus satisfies the Euler–Lagrange equation of the energy.

However, solving the Euler–Lagrange equation directly or classical
optimisation methods are inefficient for this problem due to the
unstable nature of the saddle point. Our goal here is to provide a
review of some relatively new progress in this direction to the
computational materials science community.
This review is by no means a comprehensive treatment of

nucleation modelling and transition state search. We refer to10–12

for other excellent reviews on the subject. In preparing for this
article, over a hundred papers on the topic were researched, about
half of them are included as references. The main objective of this
paper is to provide a sampler of some relatively new progress on
the development of numerical algorithms that are applicable to
general nucleation and phase transformation problems. Our
discussions are focused on a few approaches developed in the
past decade, and our reviews of the literature are narrowed to
those highly relevant works. This serves as our particular search
criterion.
We organise the review by describing some developments of

algorithmic works first, followed by illustrations of their applica-
tions to nucleation events in various material systems. On the
algorithmic side, we first introduce some recent developments of
methods for finding saddle points and minimum energy paths.
One of the popular approaches is the class of surface walking
methods. These methods locate the saddle point starting from an
initial state. Here we mainly consider methods based on the dimer
method,13,14 the gentlest ascent method such as the recent works
on the gentlest ascent dynamics15–18 and the shrinking dimer
dynamics.19 Another approach is categorised as path-finding
methods that are to compute the minimum energy path (MEP).
Some of the representative methods include the nudged elastic
band (NEB) method20,21 and the string method22–27 with the latter
being a focus of our discussion for this type of approaches. For
complex and rough energy landscapes, we review some methods
that can be used to compute either the transition tubes28–30 or the
mean free-energy path in the space of collective variables.31,32
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To illustrate how the numerical methods can be utilised in the
nucleation studies, we present their applications to the nucleation
processes in three different systems. In the first application,
we consider solid-state phase transformation, and present
predicted morphologies of critical nuclei with long-range elastic
interactions.8,33,34 In the second example, we consider the search
of transition pathways in micromagnetics, and show the applica-
tion of the string method in the study of thermally activated
switching and the energy landscape of submicron-sized
magnetic elements.3 The last example is on the solid melting
problem, as an illustration of nucleation in solid-fluid phase
transition, the multiple barrier-crossing events within the solid
basin are discussed, which reveal the importance of nonlocal
behaviour.5

COMPUTING SADDLE POINTS AND TRANSITION PATHS

The classical transition state theory gives a sufficiently accurate
description of the transition process for systems with smooth
energy landscapes.35,36 For such systems, the transition state is a
saddle point with the lowest energy that connects two
neighbouring local minima. Here we focus on the numerical
algorithms for computing saddle points and MEPs in systems with
smooth potential energy. Generally speaking, there are two
distinct classes of numerical methods: (1) surface walking methods
for finding saddle points starting from a single state; and (2) path-
finding methods for computing MEPs, which involve two end
states. In this subsection, we illustrate the ideas behind these
approaches via some recently developed methods.

Finding saddle points/surface walking methods

Several surface walking methods have been developed to locate
saddle points. An important character of such methods is to
perform a systematic search for a saddle point starting from a
given initial state, without knowing the final states. Here we focus
on a special class of surface walking methods, the so-called
minimum mode following methods, where only the lowest
eigenvalue and the corresponding eigenvector of the Hessian
are calculated and subsequently used together with the energy
gradient (often referred as the force) to locate the saddle point.
The representative methods include the dimer method,13,14 the
gentlest ascent method/dynamics,15–17 and the shrinking dimer
dynamics.19,37 Besides the minimum mode following methods,
there are some other surface walking methods as well, such as the
eigenvector-following method,38 the minimax method,39,40 the
activation-relaxation technique,41–43 the step and slide method,44

to name a few.

The gentlest ascent method/dynamics. The gentlest ascent
method was first developed by Crippen and Scheraga15 as a
numerical algorithm to search the transition path from a local
minimum to a neighbouring minimum via an intervening saddle
point on an energy surface. Later, E and Zhou16 reformulated the
gentlest ascent method as a dynamical system and proposed the
gentlest ascent dynamics (GAD).
Consider a system with N degrees of freedom (DOF)

contained in a vector xAℝ
N , the GAD refers to the following

dynamic system

_x ¼ -∇VðxÞ þ 2ð∇V ;vÞðv;vÞ v;

_v ¼ -∇
2VðxÞv þ ðv;∇2VvÞ

ðv;vÞ v;

(

ð1Þ

where ∇V is the gradient of the potential energy V, ∇2V is the
Hessian of V, and ( � , � ) denotes the standard inner product. The
second equation in Equation (1) determines the orientation vector
v to be the eigenvector that corresponds to the smallest
eigenvalue of ∇2V, which is used in the first equation in Equation

(1) as an ascent direction to find the saddle point. The stable fixed
points of this dynamical system were proved to be the index-1
saddle points in ref. 16. The GAD has also be applied to non-
gradient systems.

The dimer method. A dimer system consists of two nearby points
x1 and x2 separated by a small distance, that is, with a small dimer
length l ¼ :x1 - x2:. The dimer orientation is given by a unit
vector v so that x1–x2= lv. The (rotating) center of the dimer is
usually taken as the midpoint of the dimer, i.e., xc ¼

x1
2 þ x2

2 . The
dimer method developed by Henkelman and Jonsson13

uses only first-order derivatives of the energy to calculate the
forces F1 and F2 on the two end points of the dimer.
The dimer method proceeds by alternately performing the

rotation and translation steps. The rotation step is to find the
lowest eigenmode at the center of the dimer. This is done by a
single rotation towards the configuration which minimises the
dimer energy with its center fixed. In practice, a conjugate
gradient algorithm is used to choose the plane of rotation,
whereas the minimisation of the force on the dimer within the
plane is carried out by using the modified Newton method. In the
translation step, the potential force is first modified so that its
component along the dimer is reversed. Then the dimer is
translated using the modified force with either the steepest
descent algorithm or the conjugate gradient method.
Much effort has been made to improve the dimer method. In

ref. 14, it was argued that the method is more effective when the
rotation step is proceeded until convergence, compared with
using a single rotation after every translation step. More recently,
in the work of Gould, Ortner and Packwood,45 a preconditioner
technique is used in the dimer iteration and a line search
technique is applied for finding the step size to achieve better
efficiency and convergence. A recent attempt was made in ref. 46
to unify various techniques for accelerating the dimer methods
though most of the approaches discussed there do not share
superlinear convergence property. In contrast, an interesting
development was given by Kastner and Sherwood in ref. 47, which
used the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm for the dimer translation to greatly improve
the convergence of the dimer method. Moreover, the numbers
of gradient calculations per dimer iteration are reduced
through an extrapolation of the gradients during repeated dimer
rotations.

The shrinking dimer dynamics. The shrinking dimer dynamics
(SDD) was proposed by Zhang and Du in ref. 19 to find the index-1
saddle points based on the original dimer method.13 It follows a
dynamic system as

μ1 _xα ¼ ðI - 2vvT Þðð1 - αÞF1 þ αF2Þ;

μ2 _v ¼ ðI - vvT ÞðF1 - F2Þ
l

;

μ3
_l ¼ -∇EdimerðlÞ;

8

<

:

ð2Þ

where μ1, μ2, μ3 are nonnegative relaxation constants, and α is a
constant parameter between 0 and 1, which determines the
rotating center of the dimer.
The first two equations of SDD in Equation (2) represent the

translation step and the rotation step, respectively, which are
essentially same with the classical dimer method. The operator
(I–2vvT) is the Householder mirror reflection that reverses the
component of the force along v. The operator (I–vvT) is a
projection that makes v of unit length. Instead of using a fixed
small dimer length in the classical dimer method, the third
equation of SDD in Equation (2) follows a gradient flow of the
energy function Edimer(l), which is generally taken as a mono-
tonically increasing function in l such that it allows the shrinking of
the dimer length over time by forcing it to approach zero at the
steady state.
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The dynamic system (Equation (2)) is similar to Equation (1), but
avoids the calculation of the second-order derivatives by requiring
only the evaluation of the natural forces. Rigorous analysis for
both the continuous dynamic system and its time discretisation
were carried out in ref. 19 to demonstrate the linear stability and
convergence, in particular, the importance of shrinking the dimer
length for the guaranteed convergence.
In terms of numerical schemes, the SDD employs either explicit

or modified Euler method to obtain the linear convergence
in ref. 19. In ref. 37, a constrained SDD has been proposed as an
variant of SDD to handle the saddle point search on a constrained
manifold. The use of preconditioner has also been alluded to in
refs 37,48 but without implementation. To accelerate the
convergence and further improve the efficient of the dimer
method, the optimisation-based shrinking dimer (OSD) method
was recently proposed by Zhang et al. in ref. 49 as the generalised
formulation of SDD. The OSD method translates the rotation and
translation steps of the dimer in Equation (2) to the corresponding
optimisation problems such that the efficient optimisation
methods can be naturally employed to substantially speed up
the computation of saddle points. In ref. 49, the Barzilai–Borwein
gradient method was used as an implementation of OSD and
showed a superlinear convergence.

Finding minimum energy path

In the case when the object of interest is the most probable
transition path between metastable states of the smooth potential
energy, it is known that for overdamped Langevin dynamics the
most probable path for the transition is the MEP, which is the path
in the configuration space such that the potential force is parallel
to the tangents along the path, i.e.,

ð∇VÞ?ðφÞ :¼ ∇V - ð∇V ; τ̂Þτ̂ ¼ 0; ð3Þ

where τ̂ is the unit tangent vector to the curve. Several numerical
methods have been developed for finding MEPs. Below we
review two popular ones, the (zero temperature) string
method24,25,50 and the nudged elastic band method,20,21,51 for
computing the MEPs. Once the MEP is found, the transition
states can be identified from the maxima of the energy along
the MEP.

The (zero-temperature) string method. The string method was first
proposed by E et al. in ref. 24, and it proceeds by evolving a string
in the configuration space by using the steepest descent
dynamics. Let φðα; tÞ denote the string at the time t with
parameterisation αA 0; 1½ �, then the string evolves according to

_φ ¼ -∇VðφÞ þ λτ̂; 0<α<1; ð4Þ

where λ is the Lagrange multiplier to impose the equal arc-length
constraint, and τ ¼ φ0= φ0j j is the unit tangent vector to the string.
Here we use _φ and φ0 to denote the temporal and spatial
derivatives, respectively. The above evolution equation is supple-
mented with the boundary conditions:

φð0;tÞ ¼ xa; φð1;tÞ ¼ xb; ð5Þ

where xa and xb are the two minima of the potential energy V(x).
In the numerical implementation, the discretised string is

composed of a number of images fφi tð Þ; i ¼ 0; 1; � � � ;Ng, where
φi tð Þ ¼ φ i=N; tð Þ. Equation (4) is solved using a time-splitting
scheme, and the string method iterates the following two steps:

String evolution updates the images on the string over some time
interval Δt according to the potential force:

_φ i ¼ -∇VðφiÞ; i ¼ 1; 2; � � � ;N - 1: ð6Þ

This equation can be integrated by any ODE solver, e.g., the Euler
method, or Runge–Kutta methods.

String reparametrisation is applied to redistribute the images
along the string using linear or cubic spline interpolation
according to equal arc-length parameterisation.

The string method is a simple but an effective technique for
finding MEPs. It only requires an ODE solver and an interpolation
scheme, thus it is easy to implement and can be readily
incorporated into any existing code as long as the force evaluation
is provided.
In the case that the exact locations of the minima xa and/or xb

are unknown beforehand, the two end points can be computed
on-the-fly by following the relaxation dynamics as the string
evolves towards the MEP, i.e.,

_φ0 ¼ -∇Vðφ0Þ; _φN ¼ -∇VðφNÞ: ð7Þ

At the steady state, the end points converge to the minima xa and
xb, as long as they initially lie in the basins of attraction of these
minima, respectively.
In ref. 26, the dynamics of the final point φN is modified so that

it converges to a saddle point. This can be used for saddle point
search. Specifically, the dynamics of φN follows the modified
potential force

_φN ¼ -∇VðφNÞ þ 2ð∇VðφNÞ; τ̂NÞτ̂N; ð8Þ

where τ̂N is the unit tangent vector to the string at φN . In Equation
(8), the component of the potential force in the direction along
the string is reversed. This makes φN climb uphill towards a
saddle point.
In practice, an initial string is constructed in the basin of the

initial state, e.g., the linear interpolation of the initial state and its
small perturbation. Then following the dynamics in Equations (4)
and (8), the final state converges to a saddle point, and the string
converges to the MEP connecting the initial state and the
saddle point.
The string method can also be generalised to compute the

mean free-energy path (MFEP) in collective variable spaces. This
will be discussed later in this review.

The nudged elastic band method. The NEB method is another
approach to compute MEPs. It connects two minima xa and xb by a
chain of states, then evolves this chain by using a combination of
the potential force and a spring force:

_x i ¼ - ∇VðxiÞð Þ? þ ðFsi Uτ̂iÞτ̂i ; i ¼ 1; � � � ;N - 1; ð9Þ

where - ð∇VÞ? ¼ -∇V þ ð∇V ; τ̂Þτ̂ denotes the projection
of the potential force in the hyperplane perpendicular to the
chain, F i

s ¼ kðxiþ1 - 2xi þ xi - 1Þ=Δα is the spring force with
Δα ¼ 1=N and k40 being a parameter, and τ̂i denotes the unit
tangent vector along the chain at xi.
The NEB is an improvement upon the elastic band method.52–54

The elastic band method, which evolves the chain using the total
spring forces, fails to converge to the MEP as the spring force
tends to make the chain straight, which leads to corner-cutting.
The NEB overcomes this difficulty by using only the normal
component of the potential force and the tangential component
of the spring force.
Compared with the string method, which evolves a

curve with intrinsic arc-length parameterisation, the NEB uses a
spring force to connect the states along the chain. This
requires the prescription of an additional parameter k. The value
of k controls the strength of the spring force: if it is too large,
then the dynamics in Equation (9) becomes stiff, which may limit
the time step; on the other hand, a small k leads to weak spring
force then the states may not be evenly distributed along
the chain.
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COMPLEX ENERGY LANDSCAPES

The concept of transition states and MEPs become inappropriate
when the energy landscape is rough with many saddle points, and
most of these saddle points have potential-energy barriers that
are less then or comparable to the strength of the noise, thus do
not act as barriers for the transition. In this case, one approach is
to compute the so-called transition tubes. The transition tube
carries most of the current of the transition in the configuration
space. The other way is to consider the free-energy surface (FES)
instead of potential energy surface. One first selects a set of
collective variables, then computes the transition state or the
MFEP in the space of these collective variables. The FES is typically
much more smooth than the potential energy surface. Below we
review these two approaches.

Computing transition tubes

The transition tube is defined by considering the committor
function and the current of reaction trajectories. The committor
function specifies, at each point of the configuration space, the
probability that the reaction or transition will succeed if the
system is initiated at that point. The isosurfaces of the committor
function, called the iso-committor surfaces, foliate the space
between the metastable states under consideration. Assume the
reaction current is localised in the configuration space, then it
intersects with the isocommittor surfaces in one or a few isolated
regions. The collection of these regions form one or a few tubes,
which are called transition tubes (Figure 1).28–30

Under the assumptions that the transition tube is thin
compared with the local radius of the curvature of the centerline
and the isocommittor surfaces can be approximated by hyper-
planes within the transition tube, it was shown that the centerline
of the transition tube, which is defined as

φðαÞ ¼ xh iPα �

R

Pα
xe - βVdσðxÞ

R

Pα
e - βVdσðxÞ

; ð10Þ

is normal to the isocommittor surfaces, i.e.,

n̂ðαÞJφ0ðαÞ; ð11Þ

where the centerline φ is parameterised by α (e.g., the arc length),
φ0ðαÞ is the tangent vector to the centerline, and n̂ is the normal
vector of the hyperplanes.
The finite-temperature string method is an iterative procedure

to solve Equations (10) and (11).30,55,56 Let φn denote the
centerline of the tube at the nth step, the new configuration of
the centerline is computed following two steps:

Expectation step: sample on the hyperplanes perpendicular to the
current configuration of the centerline and compute the center of
mass xh iPα on each hyperplane.
Relaxation step: evolve the centerline to the new configuration
according to

φnþ1 ¼ φn þ Δt xh iPα -φ
n

� �

: ð12Þ

In practice, each image is evolved according to Equation (12),
followed by a reparameterisation step using interpolation as in the
zero-temperature string method. The centerline of mass xh iPα can
be estimated using constrained simulations in the hyper-
planes30,55 or Voronoi cells.56 At convergence, the Voronoi cells
also have the remarkable property that they form a centroidal
Voronoi tessellation or CVT—a concept introduced in ref. 57.

Exploring the free-energy surface

We consider the case when the transition of interest can be
described by the collective variables ξ xð Þ ¼ ðξ1 xð Þ; � � � ; ξd xð ÞÞ.
These collective variables correspond to the slow manifold along
which the transition occurs, therefore, the dimension of the
collective variable space is usually much smaller than the total
DOF in the system. The free energy associated with ξðxÞ is
given by

FðzÞ ¼ - kBT ln
1

Z

Z

RN
e - βVðxÞ

Y

d

i¼1

δðξ iðxÞ - ziÞdx

 !

; ð13Þ

where z= (z1,⋯,zd) are the coordinates in the collective variable
space, β ¼ 1=kBT , and Z is the partition function. On the FES, the
metastable and transition states are given by the local minima of F
(z) and the saddle points between them, respectively. The path of
maximum likelihood for the transition follows the MFEP,31 which
satisfies

MðφÞ∇FðφÞð Þ? ¼ 0; ð14Þ

where (⋯)? denotes the projection on the hyperplane perpendi-
cular to the path φ, and M is an d× d tensor whose entries are
given by

MijðzÞ ¼
1

Z
eβFðzÞ

Z

RN

X

N

k¼1

∂ξ iðxÞ

∂xk

∂ξ jðxÞ

∂xk
e - βVðxÞ ð15Þ

´ δðz1 - ξ1ðxÞÞ � � � δðzd - ξdðxÞÞdx: ð16Þ

If one is interested in the transition between two metastable states
za and zb, then Equation (14) is supplemented with the boundary
conditions such that the path φ connects the two minima.

−8 −4 0 4 8

−6

−2

2

6

Figure 1. Example of the rough energy landscape (a) and the transition tube (b) identified by the string method. Figure modified from ref. 55.
Permission has been granted by the publisher to use the original figures.
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The numerical techniques in ‘Finding saddle points/surface
walking methods’ and ‘Finding minimum energy path’ can be
readily used to compute the saddle points and the MFEP
on the FES. For example, the MFEP can be computed using the
zero-temperature string method by evolving a string φðαÞ
according to

γ _φðα; tÞ ¼ -Mðφðα; tÞÞ∇Fðφðα; tÞÞ þ λðα; tÞτ̂; ð17Þ

where the boundary conditions φ 0; tð Þ ¼ za and φ 1; tð Þ ¼ zb. At
the steady state, the string converges to the MFEP with the
prescribed parameterisation.
In the above algorithm or the methods for computing the

saddle points, one needs to compute the mean force −∇F.
When the dimension of the free-energy space is low, e.g.,
d= 2 or 3, one can first construct the free-energy function, for
example, using a variational reconstruction scheme as in the
single sweep method.5,58 The method follows two steps:
(a) first a sufficiently long temperature-accelerated molecular
dynamics (TAMD)/adiabatic free-energy dynamics (AFED)
trajectory is obtained and a set of centers in the space of the
collective variables and; (b) the free energy is expressed as a
superposition of Gaussian radial basis functions (RBFs)
placed at these centers. The optimal values of the coefficients
of the RBFs are obtained by optimising the cost function, which
is the standard mean-squared error in the gradient of the free
energy.
The reconstruction of the FES is only possible when the the

number of collective variables is small. When the number is large,
the mean force can be computed on the fly without the
requirement of a globally explicit form of the free-energy
function a priori. This can be done by averaging over long
trajectories with the collective variables fixed at their current
locations.31 Alternatively, one may couple the microscopic
dynamics with the evolution of the string simultaneously.32

Specifically, each image along the string is coupled with two
independent microscopic systems, denoted by x(1) and x(2),
respectively, where the first system is for the computation of M
and the second system is for the computation of the mean force
−∇F. These systems evolve by molecular dynamics or the
Langevin dynamics at the temperature T in the extended
potential

Uκðx;φðα; tÞÞ ¼ VðxÞ þ
1

2
κ ξðxÞ -φðα; tÞj j2: ð18Þ

The second term in the extended potential is to constrain the
system at the current location of the string, so that dynamics of
the microscopic systems are slaved to the evolution of the string.
The tensor M and the mean force −∇F are computed from the
instantaneous configurations of x(1) and x(2):

Mij �
X

N

k¼1

∂ξ i

∂xk
ðxð1ÞÞ

∂ξ j

∂xk
ðxð1ÞÞ; ð19Þ

∇F � - κðξðxð2ÞÞ -φðα; tÞÞ: ð20Þ

To ensure the microscopic systems to have enough time to
equilibrate before the string move significantly, the dynamics of
the string in Equation (17) is slowed down by taking γ1 in
Equation (17).32

APPLICATIONS IN MATERIALS SCIENCE

Nucleation in solid-state phase transformations

Following the seminal work by Cahn and Hilliard,59 the phase field
(diffuse interface) model has been successfully employed to
investigate nucleation and microstructure evolution in phase
transformations.60 In the diffuse interface description, a set of
conserved field variables c1,c2,...,cm and non-conserved field

variables η1,η2,...ηn are often used to describe the compositional/
structural domains and the interfaces, and the total free energy of
an inhomogeneous microstructure system is formulated as

Etotal ¼

Z

½
X

m

i¼1

αið∇ciÞ
2 þ

X

3

i¼1

X

3

j¼1

X

n

k¼1

βij∇iηk∇jηk ð21Þ

þ f ðc1; c2; :::;cm; η1; η2; :::ηnÞ�dx

þ

Z Z

Gðx - x0; c!; η!Þdxdx0;
ð22Þ

where the gradient coefficient αi and βij can be used to reflect the
interfacial energy anisotropy and the function f corresponds to the
local free-energy density. The last integral in the above equation
represents a nonlocal term that includes a general long-range
interaction such as elastic interactions in solids.
In solid-state phase transformations, the local free-energy

function f is often described by a polynomial of order parameters
with a conventional Landau-type of expansion, for instance, a
simple double-well potential,

f ðηÞ ¼
η4

4
-

η2

2
þ λ

η3 - 3η

4
; ð23Þ

with two energy wells at η=±1 and λ determines the well depth
difference.
Furthermore, the lattice mismatch between solid phases and

domains are accommodated by elastic displacements, so the
computation of the long-range elastic energy is needed. For the
case that the elastic modulus is anisotropic but homogeneous, the
microscopic elasticity theory of Khachaturyan61 is often used in
phase field simulation and the total elastic energy of a
microstructure can be given by

Eelastic ¼
1

2

Z

Ω

Cijkl ϵ
el
ij ϵelkldx; ð24Þ

where the elastic strain ϵ
el is the difference between the total

strain and stress-free strain as stress-free strain does not
contribute to the total elastic energy.
Examples of predicted critical profiles in the presence of long-

range elastic energy for a cubic crystal are shown in Figure 2a. By
combining the diffuse-interface approach with the minimax
technique,39 it demonstrated that the elastic interactions can
markedly change the critical nucleus morphology, thus revealing
the fascinating possibility of nuclei with non-convex shapes,
together with the phenomenon of shape-bifurcation and the
formation of critical nuclei whose symmetry is lower than both the
new phase and the original parent matrix.8,33,62

For the conserved solid field with profile c= c(x), a combination
of diffuse-interface description and a constrained string method23

is able to predict both the critical nucleus and equilibrium
precipitate morphologies simultaneously (Figure 2b).34 Using the
cubic to cubic or cubic to tetragonal transformation as examples,
simulations showed that the morphology of a critical nucleus can
be markedly different from the equilibrium one due to the elastic
energy contributions.34,63

The general framework of diffuse interface model has been
greatly extended to investigate complex nucleation phenomena,
such as heterogenous nucleation,48,64,65 homogeneous/hetero-
genous crystal nucleation66–68 and nucleation dynamics.69–72 In
particular, to investigate the nucleation and growth kinetics in real
alloys, the thermodynamic properties of critical nuclei with the
chemical free energy and interfacial energy can be assessed from
thermodynamic calculation and atomistic simulation, and then
efficient numerical method of computing saddle points can be
applied to quantitatively predict the critical nucleus, nucleation
energy barriers and growth kinetics.73
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Transition pathways in micromagnetics

Submicron-sized magnetic elements have found a wide range of
applications in science and technology, particularly as storage
devices. As the elements get smaller, the effect of thermal noise
and the issue of data retention time become a concern. In ref. 3,
the string method was applied to study thermally activated
switching and the energy landscape of submicron-sized magnetic
elements. The free energy of the system is modelled by the
Landau–Lifshitz functional:

F½M� ¼
1

2

Z

Ω

Cex

M2
s

∇Mj j2 þ ϕ
M

Ms

� �� �

dx ð25Þ

-

1

2

Z

Ω

2μ0HeUM dx þ
μ0
2

Z

R3
∇Uj j2dx; ð26Þ

where M is the magnetisation distribution normalised so that
Mj j ¼ 1; is the domain occupied by the element, Cex ∇Mj j2=Ms

2

is the exchange interaction energy the the spins, ϕ M=Msð Þ is the
energy due to material anisotropy, - 2μ0HeUM is the energy due
to the external applied field. The last term is the energy due to the
field induced by the magnetisation distribution inside the
material. This induced field −∇U can be computed by solving

ΔU ¼
∇UM; in ;
0; outside ;

�

ð27Þ

with the jump conditions

U½ � ¼ 0;
∂U

∂ν

� 	

¼ -MUν; ð28Þ

at the boundary of the element. In the above conditions, [ � ]
denotes the jump across the boundary, and the vector ν is the
outward unit normal on the boundary of .
The string method was used to compute the MEPs and analyse

the energy landscape of the Landau–Lifshitz free energy. It is
found that the switching proceeds by two generic scenarios:
Domain-wall propagation and reconnection followed by edge

domain switching, or vortex nucleation at the boundary followed
by vortex propagation through the element. These two pathways
are shown in Figure 3. The second pathway is preferred for thicker
films, whereas the first is preferred for thin films.

Nucleation in solid–liquid phase transition

Atomic processes associated with complex systems often exhibit a
variety of time scales. The origins of this disparity in time scales
can often be traced to the spatial scale associated with different
process. Localised processes involve small subsets of the total
degrees of freedom (DOF) of the system while collective processes
involve large number of DOF; the latter typically occur at a slower
rate. However, when collective processes are initiated through a
series of one or more localised events, then the processes are
inherently multiscale in nature. An important example of type of
physical process is the melting of a solid.5,74–78

As a model system, copper is used to study the melting of a
solid. The interatomic interactions were modelled using the
embedded atom method potential for Cu developed by Mishin
et al.79 To efficiently explore the relevant parts of the configura-
tion space and study the microscopic mechanisms of melting, the
AFED,80–82 a recently developed exploration technique, was used.
Techniques like the AFED and the TAMD82,83 exploit the adiabatic
time scale separation between the evolution of the atomic DOF
and the collective variables (CVs) by assigning fictitious masses to
the CVs that are much larger than the atomic masses, and at the
same time, maintaining the CVs at a temperature much higher
than the physical temperature. We have used the volume (V) of
the system and the Steinhardt orientation order parameters
Q4, Q6 as the collective variables. The volume of the system
captures the changes in the density, whereas the orientation order
parameters capture the changes in the symmetry of the atomic
structure.
The dynamic sampling of the FES in AFED/TAMD schemes is

obtained by using the equations of motions obtained from the
potential-energy surface Uκðx; zÞ that spans over an extended
space of atomic and coarse-grained DOF. The TAMD scheme

Non-conserved solid field

Conserved solid field

Elastic energy increasing

Index of imagesIndex of imagesIndex of images

Figure 2. Critical nuclei with increasing of elastic energy in non-conserved solid field (a) and conserved solid field (b). Figure reproduced from
refs 33,34. Permission has been granted by the publisher to use the original figures.
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within the isobaric–isothermal conditions was used to sample the
FES of Cu at different physical temperatures.82 From these
sampling trajectories, a set of CVs zkf gmk¼0 , was selected to
reconstruct the Gibbs FES. The mean forces fkf gmk¼0 on these CVs
were obtained from an average of the instantaneous forces on
these CVs along the sampling trajectories.
The reconstruction of the FES, using the knowledge of the mean

forces at the set of CVs selected above, is essentially an inverse
problem. The free-energy was expressed as a superposition of
Gaussian RBFs placed at the chosen centers:58

F zð Þ ¼
X

m

k¼1

akϕσ z - zkj j2

 �

; ð29Þ

where | � | is the L2 norm, ϕσ rð Þ ¼ e - r=2σ
2
and σ is the width of the

Gaussian RBFs. The optimal values of the coefficients ak were
obtained by optimising the following cost function

Er ¼
1

m

X

m

k¼1

∇F zkð Þ þ fkÞj j2 þ λ aj j2: ð30Þ

Here, λ is a regularisation parameter and λ aj j2 is a smoothness
constraint introduced to stabilise the solution. From a statistical
point of view, a proper handling of noisy data entails proper
training as well as testing of the fitting model. To this end,
multifold cross validation is used for model validation.85

The FES of Copper calculated close to the melting temperature,
shown in Figure 4, illustrates the multitude of barriers that a
system has to overcome to travel from the solid super-basin to the
liquid basin. Some of the barriers inside the solid basin are
associated with the formation of isolated point defects and are on
the order of 1–5 eV. In contrast, the barriers to cross from these
isolated point defect states to metastable states corresponding to
extended defects like defect cluster, are on the order of 20 eV. The
barrier to melting, on the other hand, is on the order of 120 eV.
This disparity in the Gibbs free-energy barriers results in time scale
disparities between the processes. In addition, the presence
of a large number of metastable states inside the solid basin
suggests that contrary to the tenets of the classical nucleation
theory melting is not a simple, single thermally activated barrier
crossing event but involves multiple thermally activated transition
events.5

SUMMARY AND OUTLOOK

Nucleation is a complex multiscale problem. Recent development
of new numerical algorithms and modelling approaches on MEP
calculation and saddle point search as well as transition path
theory have brought new light to this challenging subject. The
computational methods reviewed in ‘Computing saddle points
and transition paths’ and ‘Complex energy landscapes’ are generic
methods. We classify them according to the different purposes
they serve, such as saddle point search, computing MEPs/MFEPs
or transition tubes. Subject to the properties and structures of the
problems, one is free to use different methods to study the same
nucleation event. The examples in ‘Applications in materials
science’ provided some illustrative applications of these new
approaches.
There are naturally many other relevant and important issues

that are not addressed here. For example, it is an interesting
subject to see how global optimisation techniques may be
adopted to efficiently identify saddle points with a low and/or
minimum energy barrier. For complex models in high dimensions,
it is worthwhile to mention the importance of data analysis
techniques to our understanding of such systems. As it is difficult

Q
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Figure 4. The free-energy surface of copper close to the melting
temperature as a function of the collective variables—volume and
Steinhardt orientation order parameter. The presence of multiple
locally stable states illustrates that melting is a complex thermally
activated transition event. Figure reproduced from ref. 5. Permission
has been granted by the publisher to use the original figures.

Figure 3. Two generic pathways (MEPs) (a) and (b) followed by the magnetisation during the switching of submicron-sized ferromagnetic
elements. The figures show the successive minima and saddle points. The colour code represents the in-plane components of the magnetisation:
blue= right, red= left, yellow=up, green=down. Figure modified from ref. 24. Permission has been granted by the publisher to use the original
figures.
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to a priori predict the relevant order parameters, one may
combine FES exploration techniques in conjunction with dimen-
sion reduction techniques like diffusion maps84 to obtain
quantitative information about the relevant low-dimensional
manifolds.
Furthermore, metastable states, saddle points, obtained from

GAD or SDD or dimer like methods, in the space of collective
variables, can be used to construct a weighted graph that is
representative of the transition events taking place in a system.
Such a network can have its own trapping regions, critical saddles
and so on. One may also explore how to utilise the information
encoded in such a network to conduct multiscale dynamic
simulation of microstructure evolution that involves fast nuclea-
tion and slow coarsening processes. Preliminary studies along this
direction can be found in ref. 71 These are only a few examples of
the wide spectrum of multiscale analysis that is possible from the
huge trove of that is obtained from saddle-point/MEP search and
FES sampling schemes presented here.
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