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Abstract Spectral unmixing is an important task for remotely sensed hyper-

spectral data exploitation. The spectral signatures collected in natural environ-

ments are invariably a mixture of the pure signatures of the various materials

found within the spatial extent of the ground instantaneous field view of the

imaging instrument. Spectral unmixing aims at inferring such pure spectral

signatures, called endmembers, and the material fractions, called fractional

abundances, at each pixel of the scene. In this chapter, we provide an overview of

existing techniques for spectral unmixing and endmember extraction, with par-

ticular attention paid to recent advances in the field such as the incorporation of

spatial information into the endmember searching process, or the use of nonlinear

mixture models for fractional abundance characterization. In order to substantiate

the methods presented throughout the chapter, highly representative hyperspectral

scenes obtained by different imaging spectrometers are used to provide a quan-

titative and comparative algorithm assessment. To address the computational

requirements introduced by hyperspectral imaging algorithms, the chapter also
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includes a parallel processing example in which the performance of a spectral

unmixing chain (made up of spatial–spectral endmember extraction followed by

linear spectral unmixing) is accelerated by taking advantage of a low-cost com-

modity graphics co-processor (GPU). Combined, these parts are intended to pro-

vide a snapshot of recent developments in endmember extraction and spectral

unmixing, and also to offer a thoughtful perspective on future potentials and

emerging challenges in designing and implementing efficient hyperspectral

imaging algorithms.

Keywords Hyperspectral imaging � Spectral unmixing � Endmember extraction �
Neural networks � Intelligent training � Parallel processing � GPUs

1 Introduction

Spectral mixture analysis (also called spectral unmixing) has been an alluring

exploitation goal from the earliest days of hyperspectral imaging [1] to our days [2,

3]. No matter the spatial resolution, the spectral signatures collected in natural

environments are invariably a mixture of the signatures of the various materials

found within the spatial extent of the ground instantaneous field view of the

imaging instrument [4]. For instance, it is likely that the pixel collected over a

vegetation area in Fig. 1 actually comprises a mixture of vegetation and soil. In

this case, the measured spectrum may be decomposed into a combination of pure

spectral signatures of soil and vegetation, weighted by areal coefficients that

indicate the proportion of eachmacroscopically pure signature in themixed pixel [5].

Fig. 1 The mixture problem in remotely sensed hyperspectral data analysis
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The availability of hyperspectral imagers with a number of spectral bands that

exceeds the number of spectral mixture components [6] has allowed to cast the

unmixing problem in terms of an over-determined system of equations in which,

given a set of pure spectral signatures (called endmembers) the actual unmixing to

determine apparent pixel abundance fractions can be defined in terms of a

numerical inversion process [7].

A standard technique for spectral mixture analysis is linear spectral unmixing

[8, 9], which assumes that the collected spectra at the spectrometer can be

expressed in the form of a linear combination of endmembers weighted by their

corresponding abundances. It should be noted that the linear mixture model

assumes minimal secondary reflections and/or multiple scattering effects in the

data collection procedure, and hence the measured spectra can be expressed as a

linear combination of the spectral signatures of materials present in the mixed

pixel (see Fig. 2a). Although the linear model has practical advantages such as

ease of implementation and flexibility in different applications [10], nonlinear

spectral unmixing may best characterize the resultant mixed spectra for certain

endmember distributions, such as those in which the endmember components are

randomly distributed throughout the field of view of the instrument [11, 12].

In those cases, the mixed spectra collected at the imaging instrument is better

described by assuming that part of the source radiation is multiply scattered before

being collected at the sensor (see Fig. 2b).

In this chapter, we provide an overview of existing techniques for spectral

unmixing and endmember extraction, covering advances in both the linear and

nonlinear mixture model, and with particular attention paid to recent advances in

the field. The chapter is organized as follows. In Sect. 2, the chapter first focuses

on the linear mixture model, introducing the formulation of the mixture problem

under this model and further describing several classic approaches for endmember

extraction (using different concepts) and linear spectral unmixing models

(unconstrained, partially constrained and fully constrained). This section also

covers recent developments in the linear mixture model by means of the incor-

poration of spatial information into the process of automatically extracting spectral

endmembers from the image data, and further analyzes the impact of spatial

information in the subsequent unmixing process. Section 3 addresses the nonlinear

Fig. 2 Linear versus nonlinear mixture models: single versus multiple scattering
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mixture model by means of neural network-based techniques aimed at learning the

complexity of nonlinear mixtures by means of automatic training sample selection

algorithms which are used in the framework of a supervised learning procedure to

characterize other mixed signatures in the input data. Section 4 presents a quan-

titative and comparative assessment of the different techniques for spectral

unmixing presented in this chapter (linear and nonlinear), using hyperspectral data

sets obtained by different instruments, such as the Airborne Visible Infra-Red

Imaging Spectrometer (AVIRIS), operated by NASA/JPL, and the Digital Air-

borne (DAIS 7915) and Reflective Optics System (ROSIS) imaging spectrometers,

operated by DLR in Germany. Section 5 presents an implementation case study in

which a spectral unmixing chain made up of a spatial–spectral endmember

extraction algorithm followed by a linear (unconstrained) fractional abundance

estimation technique are implemented in parallel using commodity graphics pro-

cessing units (GPU). Finally, Sect. 6 concludes with some remarks and hints at

plausible future research avenues.

2 Linear Spectral Unmixing

2.1 Problem Formulation

Let us assume that a remotely sensed hyperspectral scene with n bands is denoted

by I, in which the pixel at the discrete spatial coordinates (i, j) of the scene is

represented by a vector Xði; jÞ ¼ ½x1ði; jÞ; x2ði; jÞ; . . .; xnði; jÞ� 2 <n
; where <

denotes the set of real numbers in which the pixel’s spectral response xk(i, j) at

sensor channels k = 1, ..., n is included. Under the linear mixture model

assumption, each pixel vector in the original scene can be modeled using the

following expression:

Xði; jÞ ¼
Xp

z¼1

Uzði; jÞ � Ez þ nði; jÞ; ð1Þ

where Ez denotes the spectral response of endmember z, Uz(i, j) is a scalar value

designating the fractional abundance of the endmember z at the pixel X(i, j), p is

the total number of endmembers, and n(i, j) is a noise vector. Two physical

constrains are generally imposed into the model described in (1), these are the

abundance non-negativity constraint (ANC), i.e., Uz(i,j) C 0, and the abundance

sum-to-one constraint (ASC), i.e.,
Pp

z¼1 Uzði; jÞ ¼ 1 [8]. The solution of the fully

constrained linear spectral mixture problem described in (1) relies on two major

requirements:

1. A successful estimation of how many endmembers, p, are present in the input

hyperspectral scene I, and
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2. The correct determination of a set E = {Ez }z=1
p of endmembers and their

correspondent abundance fractions U(i, j) = {Uz(i, j) }z=1
p at each pixel X(i, j).

In order to address the first requirement, a successful technique in the literature

has been the virtual dimensionality (VD) [13]. The VD concept formulates the

issue of whether a distinct signature is present or not in each of the spectral bands

as a binary hypothesis testing problem, where a so-called Neyman-Pearson

detector is generated to serve as a decision-maker based on a prescribed PF (i.e.,

false alarm probability). In light of this interpretation, the issue of determining an

appropriate value for p is further simplified and reduced to setting a specific value

of PF. As will be shown in experiments, a suitable empirical choice is PF = 10-3

or PF = 10-4, where the method used in this work to estimate the VD is the one

developed by Harsanyi, Farrand and Chang [13] (referred to as HFC method) later

modified by including a noise whitening process as preprocessing to remove the

second-order statistical correlation. The purpose is that signal sources can be

decorrelated from the noise to achieve better signal detection. The resulting

method will be referred to as the noise-whitened HFC (NWHFC). The second

requirement for successful implementation of the linear mixture model (avail-

ability of endmember extraction and abundance estimation techniques) will be

addressed in the following subsections.

2.2 Endmember Extraction

Over the last decade, several algorithms have been developed for automatic or

semi-automatic extraction of spectral endmembers [9]. Classic techniques include

the pixel purity index (PPI) [14], N-FINDR [15–17], iterative error analysis (IEA)

[18], optical real-time adaptive spectral identification system (ORASIS) [19],

convex cone analysis (CCA) [20], vertex component analysis (VCA) [21], and an

orthogonal subspace projection (OSP) technique in [22]. Other advanced tech-

niques for endmember extraction have been recently proposed [23–29], but none

of them considers spatial adjacency. However, one of the distinguishing properties

of hyperspectral data is the multivariate information coupled with a two-dimen-

sional (pictorial) representation amenable to image interpretation. Subsequently,

most endmember extraction algorithms listed above could benefit from an inte-

grated framework in which both the spectral information and the spatial

arrangement of pixel vectors are taken into account. An example of this situation is

given in Fig. 3, in which a hyperspectral data cube collected over an urban area

(high spatial correlation) is modified by randomly permuting the spatial coordi-

nates (i, j) of the pixel vectors, thus removing the spatial correlation. In both

scenes, the application of a spectral-based endmember extraction method would

yield the same analysis results while it is clear that a spatial–spectral technique

could incorporate the spatial information present in the original scene into the

endmember searching process.
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To the best of our knowledge, only a few attempts exist in the literature aimed

at including the spatial information in the process of extracting spectral end-

members. Extended morphological operations [30] have been used as a baseline to

develop an automatic morphological endmember extraction (AMEE) algorithm

[31] for spatial–spectral endmember extraction. Also, spatial averaging of spec-

trally similar endmember candidates found via singular value decomposition

(SVD) was used in the development of the spatial spectral endmember extraction

(SSEE) algorithm [32]. Recently, a spatial preprocessing (SPP) algorithm [33] has

been proposed which estimates, for each pixel vector in the scene, a spatially

derived factor that is used to weight the importance of the spectral information

associated to each pixel in terms of its spatial context. The SPP is intended as a

preprocessing module that can be used in combination with an existing spectral-

based endmember extraction algorithm.

In the following, we describe in more detail three selected spectral-based

algorithms (N-FINDR, OSP, VCA) and three spatial–spectral endmember

extraction algorithms (AMEE, SSEE, SPP) that will be used in our comparison in

this chapter. The reasons for our selection are: (1) these algorithms are repre-

sentative of the class of convex geometry-based and spatial processing-based

techniques which have been successful in endmember extraction; (2) they are fully

automated; (3) they always produce the same final results for the same input

parameters (for the N-FINDR, there is a random initialization step that also con-

ditions the final output); and (4) the number of endmembers to be extracted, p, is

an input parameter for all algorithms, while the AMEE, SSE and SPP have

additional input parameters related with the definition of spatial context around

each pixel in the scene.

2.2.1 N-FINDR

This algorithm looks for the set of pixels with the largest possible volume by

inflating a simplex inside the data. The procedure begins with a random initial

selection of pixels (see Fig. 4a). Every pixel in the image must be evaluated in

order to refine the estimate of endmembers, looking for the set of pixels that

maximizes the volume of the simplex defined by selected endmembers.

Fig. 3 Example illustrating

the importance of spatial

information in hyperspectral

analysis
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The corresponding volume is calculated for every pixel in each endmember

position by replacing that endmember and finding the resulting volume. If the

replacement results in a an increase of volume, the pixel replaces the endmember.

This procedure is repeated until there are no more endmember replacements (see

Fig. 4b). The mathematical definition of the volume of a simplex formed by a set

of endmember candidates is proportional to the determinant of the set augmented

by a row of ones. The determinant is only defined in the case where the number of

features is p - 1, p being the number of desired endmembers [34]. Since in

hyperspectral data typically n �p, a transformation that reduces the dimension-

ality of the input data, is required. In this study, the principal component transform

(PCT) has been used [35, 36], although another widely used alternative that

decorrelates the noise in the data is the maximum noise fraction (MNF) [37]. As a

final comment, it has been observed that different random initializations of N-

FINDR may produce different final solutions. Thus, our N-FINDR algorithm was

implemented in iterative fashion, so that each sequential run was initialized with

the previous algorithm solution, until the algorithm converges to a simplex volume

that cannot be further maximized. Our experiments show that, in practice, this

approach allows the algorithm to converge in a few iterations only.

2.2.2 Orthogonal Subspace Projection (OSP)

This algorithm starts by selecting the pixel vector with maximum length in the

scene as the first endmember. Then, it looks for the pixel vector with the maximum

absolute projection in the space orthogonal to the space linearly spanned by the

initial pixel, and labels that pixel as the second endmember. A third endmember is

found by applying an orthogonal subspace projector to the original image [22],

where the signature that has the maximum orthogonal projection in the space

Fig. 4 Graphical interpretation of the N-FINDR algorithm in a three-dimensional space. a N-

FINDR initialized randomly (p=4); b final volume estimation by N-FINDR
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orthogonal to the space linearly spanned by the first two endmembers. This pro-

cedure is repeated until the desired number of endmembers, p, is found [38].

2.2.3 Vertex Component Analysis (VCA)

This algorithm also makes use of the concept of orthogonal subspace projections.

However, as opposed to the OSP algorithm described above, the VCA exploits the

fact that the endmembers are the vertices of a simplex, and that the affine trans-

formation of a simplex is also a simplex [21]. As a result, VCA models the data

using a positive cone, whose projection onto a properly chosen hyperplane is

another simplex whose vertices are the final endmembers. After projecting the data

onto the selected hyperplane, the VCA projects all image pixels to a random

direction and uses the pixel with the largest projection as the first endmember. The

other endmembers are identified in sequence by iteratively projecting the data onto

a direction orthogonal to the subspace spanned by the endmembers already

determined. The new endmember is then selected as the pixel corresponding to the

extreme projection, and the procedure is repeated until a set of p endmembers is

found [21]. In our experiments with VCA, we select the corresponding pixel

original spectra as the VCA solution, not the noise-smoothed solution produced by

the original algorithm. In practice, our approach is expected to slightly reduce the

performance of VCA for low signal-to-noise (SNR) ratios, but we also believe that

this decision allows a fair comparison of VCA to N-FINDR and OSP, which do not

incorporate such noise reduction stage.

2.2.4 Automatic Morphological Endmember Extraction (AMEE)

The automatic morphological endmember extraction (AMEE) [31] algorithm runs

on the full data cube with no dimensional reduction, and begins by searching

spatial neighborhoods around each pixel vector X(i, j) in the image for the most

spectrally pure and mostly highly mixed pixel. This task is performed by using

extended mathematical morphology operators [30] of dilation and erosion, which

are graphically illustrated on Fig. 5. Here, dilation selects the most spectrally pure

pixel in a local neighborhood around each pixel vector X(i, j), while erosion

selects the most highly mixed pixel in the same neighborhood. Each spectrally

pure pixel is then assigned an eccentricity value, which is calculated as the spectral

angle distance (SAD) [5, 10] between the most spectrally pure and mostly highly

mixed pixel for each given spatial neighborhood. This process is repeated

iteratively for larger spatial neighborhoods up to a maximum size that is pre-

determined. At each iteration the eccentricity values of the selected pixels are

updated. The final endmember set is obtained by applying a threshold to the

resulting greyscale eccentricity image, which results in a large set of endmember

candidates. The final endmembers are extracted after applying the OSP method to
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the set of candidates in order to derive a final set of spectrally distinct endmembers

{ Ez }z=1
p , where p is an input parameter to the OSP algorithm.

2.2.5 Spatial Spectral Endmember Extraction (SSEE)

The spatial–spectral endmember extraction tool (SSEE) uses spatial constraints to

improve the relative spectral contrast of endmember spectra that have minimal

unique spectral information, thus improving the potential for these subtle, yet

potentially important endmembers, to be selected. With SSEE, the spatial char-

acteristics of image pixels are used to increase the relative spectral contrast

between spectrally similar, but spatially independent endmembers. The SSEE

algorithm searches an image with a local search window centered around each

pixel vector X(i, j) and comprises four steps [32]. First, the singular value

decomposition (SVD) transform is applied to determine a set of eigenvectors that

describe most of the spectral variance in the window or partition (see Fig. 6).

Second, the entire image data are projected onto the previously extracted eigen-

vectors to determine a set of candidate endmember pixels (see Fig. 7).

Fig. 5 Toy example

illustrating extended

morphological operations of

dilation and erosion

Fig. 6 First step of the SSEE algorithm. a Original data. b Subset data after spatial partitioning.

c Set of representative SVD vectors used to describe spectral variance. This scene is reproduced

from the one originally presented in [32]
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Then, spatial constraints are used to combine and average spectrally similar

candidate endmember pixels by testing, for each candidate pixel vector, which

other pixel vectors are sufficiently similar in spectral sense (see Fig. 8). Instead of

using a manual procedure as recommended by the authors in [32], we have used

the OSP technique in order to derive a final set of spectrally distinct endmembers

{Ez }z=1
p , where p is an input parameter to the OSP algorithm.

Fig. 7 Second step of the SSEE algorithm. a Original data. b Spectral distribution in two-

dimensional space. c Projection of data onto eigenvectors. d Set of candidate pixels. This scene is

reproduced from the one originally presented in [32]

Fig. 8 Third step of the SSEE algorithm. a Set of candidate pixels. b Updated candidate pixels

after including pixels which are spectrally similar to those in the original set. c Spatial averaging

process of candidate endmember pixels using a sliding window centered on each candidate.

d First iteration of spatial–spectral averaging. Averaged pixels shown as thick lines, with original

pixels shown as thinner lines. e Second iteration of spatial–spectral averaging. f Continued

iterations compress endmembers into clusters with negligible variance. This scene is reproduced

from the one originally presented in [32]
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2.2.6 Spatial Pre-Processing (SPP)

The SPP [33] serves as a preprocessing module which can be combined with

existing spectral-based algorithms such as the N-FINDR, OSP and VCA. The

method estimates, for each input pixel vector, a scalar factor which is intimately

related to the spatial similarity between the pixel and its spatial neighbors, and

then uses this scalar factor to spatially weight the spectral information associated

to the pixel. A simple geometric interpretation of the scalar factor is illustrated in

Fig. 9, given as a toy example in which only two spectral bands of an input

hyperspectral scene are represented against each other for visualization purposes.

The idea behind the SPP is to center each spectral feature in the data cloud around

its mean value, and then shift each feature straight towards the centroid of the data

cloud (denoted by O0 in Fig. 9). The shift is proportional to a similarity measure

calculated using both the spatial neighborhood around the pixel under consider-

ation and the spectral information associated to the pixel, but without averaging

the spectral signature of the pixel. The correction is performed so that pixels

located in spatially homogenous areas (such as the pixel vector labeled as ‘1’ in

Fig. 9) are expected to have a smaller displacement with regards to their original

location in the data cloud than pure pixels surrounded by spectrally distinct sub-

stances (e.g., the pixel vectors labeled as ‘2’ and ‘3’ in Fig. 9).

Resulting from the above operation, a modified simplex is formed, using not

only spectral but also spatial information. It should be noted that the vertices of the

modified simplex are more likely to be pure pixels located in spatially homoge-

nous areas. Although the proposed method is expected to privilege homogeneous

areas for the selection of endmembers, no pixel is excluded from the competitive

Fig. 9 Geometric

interpretation of the SPP

method for spatial

preprocessing prior to

endmember extraction. This

scene is reproduced from the

one originally presented in

[33]
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endmember extraction process that follows the preprocessing. As it can be inferred

from Fig. 9, the proposed method is also expected to be robust in the presence of

outliers. It is important to notice that the modified simplex in Fig. 9 is mainly

intended to serve as a guide for a subsequent competitive endmember extraction

process, conducted using a user-defined algorithm. However, such modified sim-

plex is not intended to replace the simplex in the input hyperspectral scene. To

achieve this, the spatial coordinates of the endmembers extracted from the pre-

processed image are retained, but the spectral signatures associated to those spatial

coordinates are obtained from the original hyperspectral scene.

2.3 Unconstrained Versus Constrained Linear Spectral Unmixing

Once a set of endmembers E = {Ez }z=1
p have been extracted, their correspondent

abundance fractions U(i, j) = { Uz(i, j) }z=1
p in a specific pixel vector X(i, j) of the

scene can be estimated (in least squares sense) by the following unconstrained

expression [10]:

ÛUCði; jÞ ¼ ðET
EÞ�1

E
T
Xði; jÞ: ð2Þ

However, it should be noted that the fractional abundance estimations obtained by

means of Eq. 2 do not satisfy the ASC and ANC constraints. Imposing the ASC

constraint results in the following optimization problem:

minUði;jÞ2D Xði; jÞ � Uði; jÞ � Eð ÞT Xði; jÞ � Uði; jÞ � Eð Þ
� �

;

subject to: D ¼ Uði; jÞ?
Xp

z¼1

Uzði; jÞ ¼ 1

( )

:
ð3Þ

Similarly, imposing the ANC constraint results in the following optimization

problem:

minUði; jÞ2D Xði; jÞ � Uði; jÞ � Eð ÞT Xði; jÞ � Uði; jÞ � Eð Þ
� �

;

subject to: D ¼ Uði; jÞ?Uzði; jÞ� 0 for all 1� z� p
n o

:
ð4Þ

As indicated in [13], a non-negative constrained least squares (NCLS) algorithm

can be used to obtain a solution to the ANC-constrained problem described in

Eq. 4 in iterative fashion [39]. In order to take care of the ASC constraint, a new

endmember signature matrix, denoted by E0, and a modified version of the pixel

vector X(i, j), denoted by X0(i, j), are introduced as follows:

E
0 ¼

dM

1
T

� �

;U0ði; jÞ ¼
dUði; jÞ

1

� �

; ð5Þ
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where 1 ¼ ð1; 1; . . .; 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

p

ÞT and d controls the impact of the ASC constraint. Using

the two expressions in (5), a fully constrained estimate can be directly obtained

from the NCLS algorithm by replacing E and U(i, j) used in the NCLS algorithm

with E0 and U0(i, j). Hereinafter, we will refer to the fully constrained (i.e. ASC-

constrained and ANC-constrained) linear spectral unmixing model by the acronym

FCLSU.

3 Nonlinear Spectral Unmixing

3.1 Problem Formulation

Under the nonlinear mixture model assumption, each pixel vector in the original

scene can be modeled using the following expression:

Xði; jÞ ¼ f E;Uði; jÞð Þ þ nði; jÞ; ð6Þ

where f is an unknown nonlinear function that defines the interaction between

E and U(i, j). Various learning-from-data techniques have been proposed in the

literature to estimate f. In particular, artificial neural networks have demonstrated

great potential to decompose mixed pixels due to their inherent capacity to

approximate complex functions [40]. Although many neural network architectures

exist, for decomposition of mixed pixels in terms of nonlinear relationships mostly

feed-forward networks of various layers, such as the multi-layer perceptron

(MLP), have been used [12, 41, 42]. It has been shown in the literature that MLP-

based neural models, when trained accordingly, generally outperform other non-

linear models such as regression trees or fuzzy classifiers [43].

A variety of issues have been investigated in order to evaluate the impact of

training in mixed pixel classification accuracy, including the size and location of

training sites, and the composition of training sets, but most of the attention has

been paid to the issue of training set size, i.e., the number of training samples

required for the learning stage [44]. Sometimes the smallness of a training set

represents a major problem [45]. This is especially apparent for analyses using

hyperspectral sensor data, where the requirement of large volumes of training sites

is a serious limitation [46]. Even if the endmembers participating in mixtures in a

certain area are known, proportions of these endmembers on a per-pixel basis are

difficult to be estimated a priori. Therefore, one of the most challenging aspects in

the design of neural network-based techniques for spectral mixture analysis is to

reduce the need for very large training sets. Studies have investigated a range of

issues [47], including the use of feature selection and feature extraction methods to

reduce the dimensionality of the input data [48], the use of unlabeled and semi-

labeled samples [46], the accommodation of spatial dependence in the data to
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define an efficient sampling design [32], or the use of statistics derived on other

locations [49]. Our speculation is that the problem of mixed pixel interpretation

demands intelligent training sample selection algorithms, able to seek for the most

informative training samples, thus optimizing the compromise between estimation

accuracy (to be maximized) and ground-truth knowledge (to be minimized).

A second issue that has not received attention in neural network-based mixed

pixel analysis has to do with initial model conditions. For instance, the MLP neural

network is typically trained using the error back-propagation algorithm [40]. It is a

supervised technique of training with three phases. In the first one, an initial vector

is presented to the network, which leads to the activation of the network as a

whole. The second phase computes an error between the output vector and a vector

of desired values for each output unit, and propagates it successively back through

the network. The last phase computes the changes for the connection weights,

which are randomly generated in the beginning. According to algorithm design, a

good and effective learning algorithm should not depend on initial conditions,

which can only affect the algorithm convergence rate, but should not alter the final

results. The matter of fact is that this is generally not true in learning algorithms

used for neural networks, where the choice of initial weights determines which

minimum the algorithm will converge to [11]. In order for a mixture model to be

effective, initial values must be representative and cannot be arbitrary.

In this section, we develop a combined linear/nonlinear mixture model which

assumes that most of the mixed spectra in the data can be modeled via a combi-

nation of single and multiple scattering effects. The abundance fractions of end-

member substances are first estimated via a linear mixture model and used to

establish the initial condition, including the initial weight matrix. Such an initial

estimation is then refined using an MLP neural network, coupled with unsuper-

vised algorithms for intelligent selection of training samples from the available

data. One of our main reasons to select an MLP neural network for demonstration

is that this architecture has been often claimed to be sensitive to network archi-

tecture parameters, such as the arrangement and number of neurons in the different

layers [41]. In our experience, however, a very simple MLP network configuration

can produce stable results when initialized and trained accordingly, a fact that

leads us to believe that both initialization and training can indeed be more

important than the choice of a specific network architecture in mixture analysis

applications.

3.2 Neural Network-Based Spectral Unmixing

Figure 10 shows a schematic block diagram of the proposed neural network-based

unmixing architecture. The first step consists of an estimation of the number of

endmembers, p, in the input data. For this purpose, in this work we use the VD

concept [13]. Then, the model is initialized via a fully constrained linear mixture

model based on automatic endmember extraction. Finally, the model is refined by
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a supervised MLP neural network. The latter step is supported by an unsupervised

algorithm for intelligent selection of training samples (both pure and mixed) from

the data in order to estimate the final endmember fractional abundances. The

number of neurons at the input layer of the MLP architecture equals the number of

spectral endmembers found in the initialization stage. The input patterns to the

input layer are vectors of endmember fractional abundances for each sample

vector X(i, j), first estimated by FCLSU. The second layer is the hidden layer, and

the third layer is the output layer. The number of neurons at the output layer, p,

equals the number of estimated endmembers. It should be noted that the number of

hidden neurons in the MLP architecture can be fine-tuned depending on the

problem under consideration [40]. However, in this work we are mainly interested

in exploring training mechanisms and their implications, without particular

emphasis on careful adjustment of neural network configuration parameters.

Subsequently, finding optimal parameters for the hidden layer is beyond our scope.

Based on previous results in the literature and our own experimentation, we have

considered one hidden layer only, with the number of neurons empirically set to

the square root of the product of the number of input features and information

classes, a configuration that has been shown to be successful for MLP-based mixed

pixel characterization in previous work [43].

At this point, it is worth noting that most available neural models for multi-

dimensional data analysis in the literature assume that the neuron count at the input

layer equals the dimension of the input vectors, i.e., each neuron in the input layer

is associated with one of the n spectral bands in which a pixel’s reflectance

spectrum is measured. However, the above configuration may easily suffer from

limited training samples in hyperspectral analyses, where training data are often of

limited quantity relative to input space dimensionality [36]. This leads any induced

classifier to potentially feature a poor generalization capability, an effect known as

the Hughes effect or curse of the dimensionality. Numerous analyses have been

Fig. 10 Neural network-based spectral unmixing architecture
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undertaken founded on the desire to reduce the dimensionality of the input data

prior to the analysis. In order to overcome the limitations above, in this work we

adopt a simple, yet natural approach to represent an n-dimensional pixel vector as

a p-dimensional vector of endmember fractional abundances at the pixel. This

strategy allows for a reduction in the number of network connections without

losing the information that is crucial for spectral unmixing applications. It should

be noted that the issue of how to select the most informative training data (in terms

of mixing knowledge) is of great importance for the success of the nonlinear

learning stage. In the following subsection, we develop an unsupervised algorithm

which selects training samples based on the mixture information they contain, thus

allowing us to accommodate the information provided by mixed pixels into the

learning process.

3.3 Automatic Selection and Labeling of Training Samples

The quality of training has a significant effect on mixed pixel characterization

using neural networks [44]. Conventional approaches for selection of training

samples often perform this task randomly, or by choosing the samples located in

exemplar regions of each class only, while atypical cases are often removed or

down-weighted in training set refinement operations. Such exemplar training

patterns are located near the central core of the class in feature space. However, a

key concern in the context of mixed pixel interpretation is how to identify and

characterize the response of sites that lie away from the class core, and near to the

decision boundaries commonly used in conventional, pure pixel classification.

Therefore, border [47] (or, equivalently, mixed) training samples may be useful to

refine a set of fractional abundance estimations obtained by using only spectrally

pure training samples.

In this section, we describe a new technique for automatic selection and

labeling of training samples from the input hyperspectral data. The proposed

technique, called mixed training algorithm (MTA), first uses Winter’s N-FINDR

algorithm [15] as an approach to automatically label spectrally pure training

samples (endmembers) without prior knowledge. Then, it iteratively seeks for the

most highly mixed pixels in the input data set by following a procedure which

behaves in an opposite way as N-FINDR and other convex geometry-based end-

member extraction methods [9], i.e. it automatically selects and labels highly

mixed training samples. Different sets of training samples, obtained by the MTA

discussed in this section, will be used in the following section to investigate the

impact of the composition of the training set on the characterization of mixed

pixels. The MTA can be summarized by the following steps:

1. Compute Cp ¼ ð1=pÞ
Pp

z¼1 Ez; i.e., the centroid of the simplex defined by the

set of spectral endmembers E = {Ez }
p
z=1 produced for the input hyperspectral

scene by an endmember extraction algorithm such as N-FINDR.
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2. At iteration j C 1, calculate a point-wise spectral distance between each pixel

vector X(i, j) in the input hyperspectral data and Cp, and mark the pixel vector

which provides the lowest distance value (i.e., the most spectrally similar to Cp)

as a new training sample Tj.

3. Remove the pixel previously selected as a training sample from the input

hyperspectral scene and apply a spectral screening algorithm to identify the

pixel vectors with associated spectral signatures within a small spectral angle h

from any of the previously selected training samples, removing those samples

from the input data as well.

4. Repeat from step 2 until a final set of kmixed labeled training samples {Tj }j=1
k is

generated from the input hyperspectral scene.

It should be noted that the MTA algorithm was implemented using various

spectral similarity measures [5, 10], such as the SAD or the spectral information

divergence (SID). In all cases, the results obtained were very similar. As a result,

this paper only reports experiments based on using SAD for demonstration

purposes.

4 Experimental Results

In this section we present two experiments focused on evaluating the endmember

extraction and spectral unmixing techniques discussed throughout the chapter.

In our first experiment, we focus on a mineral mapping application and further

discuss the role of endmember extraction and the use of spatial information for

linear spectral unmixing purposes, using AVIRIS image data collected over the

Cuprite mining district in Nevada. In our second experiment, we provide a com-

parison of linear versus nonlinear spectral unmixing techniques in the context of a

real agriculture and farming application in the region of Extremadura, Spain, using

hyperspectral data sets collected by the DAIS 7915 and the ROSIS imaging

spectrometers operating simultaneously at multiple resolutions.

4.1 First Experiment: AVIRIS Hyperspectral Data

In this experiment we use the well-known AVIRIS Cuprite data set, available

online in reflectance units1 after atmospheric correction. This scene has been

widely used to validate the performance of endmember extraction algorithms. The

portion used in experiments corresponds to a 350 9 350-pixel subset of the sector

labeled as f970619t01p02_r02_sc03.a.rfl in the online data. The scene (displayed

in Fig. 11a) comprises 224 spectral bands between 0.4 and 2.5 lm, with full width

1 http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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at half maximum of 10 nm and spatial resolution of 20 m per pixel. Prior to the

analysis, several bands were removed due to water absorption and low SNR in

those bands, leaving a total of 192 reflectance channels to be used in the experi-

ments. The Cuprite site is well understood mineralogically [50, 51], and has

several exposed minerals of interest included in a spectral library compiled by the

U.S. Geological Survey (USGS).2 A few selected spectra from the USGS library,

corresponding to several highly representative minerals in the Cuprite mining

district (see Fig. 11b), are used in this work to substantiate endmember signature

purity.

Two different metrics have been used to compare the performance of end-

member extraction and spectral unmixing algorithms in the AVIRIS Cuprite scene.

The first metric is the SAD between each extracted endmember and the set of

available USGS ground-truth spectral signatures. For the sake of clarity, we

remind that the SAD between two pixel vectors X(i, j) and X(r, s) can be simply

defined as follows:

SADðXði; jÞ;Xðr; sÞÞ ¼ cos
�1 Xði; jÞ � Xðr; sÞ

kXði; jÞkkXðr; sÞk
: ð7Þ

It should be noted that SAD is given by the spectral angle formed by n-dimen-

sional vectors (in radians). As a result, low SAD scores mean high spectral sim-

ilarity between the compared vectors. This spectral similarity measure is invariant

in the multiplication of X(i, j) and X(r, s) by constants and, consequently, is

invariant before unknown multiplicative scalings that may arise due to differences

in illumination and angular orientation [5]. The SAD metric allows us to identify

the USGS signature which is most similar to each endmember automatically

Fig. 11 a AVIRIS Cuprite data cube. b USGS spectral signatures of five representative minerals

in the Cuprite mining district

2 http://speclab.cr.usgs.gov/spectral-lib.htm
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extracted from the scene by observing the minimum SAD distance reported for

such endmember across the entire set of USGS signatures. The second metric is

based on the assumption that a set of high-quality endmembers (and their corre-

sponding FCLSU-estimated abundance fractions) may allow reconstruction of the

original hyperspectral scene (by means of Eq. 1) with higher precision than a set of

low-quality endmembers.

A second metric employed to evaluate the goodness of the reconstruction is the

RMSE between the original and the reconstructed hyperspectral scene, which can

be defined as follows. Let us assume that I(O) is the original hyperspectral scene,

and that I(R) is a reconstructed version of I(O), obtained using Eq. 1 with a set of

endmembers, automatically derived by a certain algorithm from the original scene,

and their corresponding FCLSU-estimated fractional abundances. Let us also

assume that the pixel vector at spatial coordinates (i, j) in the original hyper-

spectral scene is given by X(O)(i, j) = [x1
(O)(i, j), x2

(O)(i, j), ..., xn
(O)(i, j)], while the

corresponding pixel vector at the same spatial coordinates in the reconstructed

hyperspectral scene is given by X(R)(i, j) = [x1
(R)(i, j), x2

(R)(i, j), ..., xn
(R)(i, j)]. With

the above notation in mind, the RMSE between the original and the reconstructed

hyperspectral scenes is calculated as follows:

RMSEðIðOÞ; IðRÞÞ ¼
1

s� l

Xs

i¼1

Xl

j¼1

1

n

Xn

k¼1

½x
ðOÞ
k ði; jÞ � x

ðRÞ
k ði; jÞ�2

 !1=2

: ð8Þ

Table 1 tabulates the SAD scores (in degrees) obtained after comparing the

USGS library spectra of five highly representative minerals in the Cuprite mining

district (alunite, buddingtonite, calcite, kaolinite and muscovite) with the corre-

sponding endmembers extracted by different algorithms from the AVIRIS Cuprite

scene. In all cases, the input parameters of the different endmember extraction

methods tested have been carefully optimized so that the best performance for

each method is reported. The smaller the SAD values across the five minerals in

Table 1, the better the results. It should be noted that Table 1 only displays the

smallest SAD scores of all endmembers with respect to each USGS signature for

each algorithm. For reference, the mean SAD values across all five USGS

Table 1 SAD-based spectral similarity scores (in degrees) between the USGS mineral spectra

and their corresponding endmember pixels produced by several endmember extraction algorithms

Algorithm Alunite Buddigntonite Calcite Kaolinite Muscovite Mean

N-FINDR 9.96� 7.71� 12.08� 13.27� 5.24� 9.65�

OSP 4.81� 4.16� 9.62� 11.14� 5.41� 7.03�

VCA 10.73� 9.04� 6.36� 14.05� 5.41� 9.12�

AMEE 4.81� 4.21� 9.54� 8.74� 4.61� 6.38�

SSEE 4.81� 4.16� 8.48� 11.14� 4.62� 6.64�

SPP+N-FINDR 12.81� 8.33� 9.83� 10.43� 5.28� 9.34�

SPP+OSP 4.95� 4.16� 9.96� 10.90� 4.62� 6.92�

SPP+VCA 12.42� 4.04� 9.37� 7.87� 6.18� 7.98�
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signatures is also reported. In all cases, the number of endmembers to be extracted

was set to p = 14 after using the VD concept in [10]. Table 1 reveals that the

AMEE provides very good results (all SAD scores below 10�), with the SSEE and

the SPP+OSP being the algorithms that can provide comparable—but slightly

worst—results. Table 1 also reveals that, in this real example, spatial prepro-

cessing generally improves the signature purity of the endmembers extracted by

spectral-based algorithms.

On the other hand, Fig. 12 graphically represents the per-pixel root mean square

error (RMSE) obtained after reconstructing the AVIRIS Cuprite scene using

p = 14 endmembers extracted by different methods. It can be seen that the

methods using spatial preprocessing (SPP+OSP, SPP+N-FINDR, SPP+VCA)

improve their respective spectral-based versions in terms of the quality of image

reconstruction, while both AMEE and SSEE also provide lower reconstruction

errors than OSP, N-FINDR and VCA. These results suggest the advantages of

incorporating spatial information into the automatic extraction of image end-

members from the viewpoint of obtaining more spatially representative spectral

signatures which can be used to describe other mixed signatures in the scene.

4.2 Second Experiment: DAIS 7915 and ROSIS

Hyperspectral Data

In this section, a set of scenes collected over a so-called Dehesa semi-arid

ecosystem (formed by quercus ilex or cork-oak trees, soil and pasture) is used as a

case study to illustrate the applicability of nonlinear neural network-based

N-FINDR(5.90) OSP(9.18) VCA(9.22) AMEE(5.44)

SSEE(5.53) SPP+N-FINDR(5.44) SPP+OSP(4.81) SPP+VCA(6.43)

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

Fig. 12 RMSE reconstruction errors (in percentage) for various endmember extraction

algorithms after reconstructing the AVIRIS Cuprite scene
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unmixing to a real problem. In the Iberian Peninsula, Dehesa systems are used for

a combination of livestock, forest and agriculture activity [52]. The outputs of

these systems include meat, milk, wool, charcoal, cork bark and grain. Around 12–

18% of the area is harvested on a yearly basis. The crops are used for animal feed

or for cash cropping, depending on the rainfall of the area. Determination of

fractional land-cover using remote sensing techniques may allow for a better

monitoring of natural resources in Dehesa agro-ecosystems. Our choice of this

type of landscape for evaluating spectral unmixing techniques was made on sev-

eral accounts. The first one is the availability of hyperspectral image data sets with

accurate geo-registration for a real Dehesa test site in Caceres, SW Spain, col-

lected simultaneously in July 2001 by two instruments operating at multiple spatial

resolutions: DAIS 7915 and ROSIS, operated by the German Aerospace Agency

(DLR). A second major reason is the simplicity of the Dehesa landscape, which

greatly facilitates the collection of reliable field data for model validation

purposes. It is also important to emphasize that the scenes were collected in

summertime, so atmospheric interferers were greatly minimized. Before describ-

ing our experiments, we first provide a comprehensive description of the data sets

used and ground-truth activities in the study area.

4.2.1 Data Description

The data used in this study consisted of two main components: image data and field

measurements of land-cover fractions, collected at the time of image data acqui-

sition. The image data is formed by a ROSIS scene collected at high spatial reso-

lution, with 1.2-m pixels, and its corresponding DAIS 7915 scene, collected at low

spatial resolution with 6-m pixels. The spectral range from 504 to 864 nm was

selected for experiments, not only because it is adequate for analyzing the spectral

properties of the landscape under study, but also because this spectral range is well

covered by the two considered sensors through narrow spectral bands. Figure 13

shows the full flightline of the ROSIS scene, which comprises a Dehesa area located

between the facilities of University of Extremadura in Cáceres (leftmost part of the

flightline) and Guadiloba water reservoir at the center of the flightline. Figure 14a

shows the Dehesa test site selected for experiments, which corresponds to a highly

representative Dehesa area that contains several cork-oak trees (appearing as dark

spots) and several pasture (gray) areas on a bare soil (white) background. Several

field techniques were applied to obtain reliable estimates of the fractional land

cover for each DAIS 7915 pixel in the considered Dehesa test site:

1. First, the ROSIS image was roughly classified into the three land-cover com-

ponents above using a maximum-likelihood supervised classification approach

based on image-derived spectral endmembers, where Fig. 14b shows the three

endmembers used for mapping that were derived using the AMEE algorithm.

Our assumption was that the pixels in the ROSIS image were sufficiently small

to become spectrally simple to analyze.
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2. Then, the classified ROSIS image was registered with the DAIS 7915 image

using a ground control point-based method with sub-pixel accuracy [53].

3. The classification map was then associated with the DAIS 7915 image to

provide an initial estimation of land cover classes for each pixel at the DAIS

7915 image scale. For that purpose, a 6 9 6-m grid was overlaid on the

1.2 9 1.2-m classification map derived from the ROSIS scene, where the

geographic coordinates of each pixel center point were used to validate the

registration with sub-pixel precision.

4. Next, fractional abundances were calculated within each 6 9 6-m grid as the

proportion or ROSIS pixels labeled as cork-oak tree, pasture and soil located

within that grid, respectively.

5. Most importantly, the abundance maps at the ROSIS level were thoroughly

refined using field measurements (see Fig. 15a) before obtaining the final

Fig. 13 Flightline of a ROSIS hyperspectral scene collected over a Dehesa area in Cáceres,

Spain

Fig. 14 a Spectral band (584 nm) of a ROSIS Dehesa subset selected for experiments.

b Endmember signatures of soil, pasture and cork-oak tree extracted by the AMEE algorithm,

where scaled reflectance values are multiplied by a constant factor
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proportions. Several approaches were developed to refine the initial

estimations:

• Fractional land cover data were collected on the ground at more than thirty

evenly distributed field sites within the test area. These sites were delineated

during the field visit as polygons, using high-precision GPS coordinates (see

Fig. 15b).

• Land cover fractions were estimated at each site using a combination of

various techniques. For instance, field spectra were collected for several areas

using an ASD FieldSpec Pro spectro-radiometer. Of particular interest were

field measurements collected on top of tree crowns (Fig. 15c), which allowed

us to model different levels of tree crown transparency.

• On the other hand, the early growth stage of pasture during the summer season

allowed us to perform ground estimations of pasture abundance in selected

sites of known dimensions, using pasture harvest procedures supported by

visual inspection and laboratory analyses.

After following the above-mentioned sequence of steps, we obtained a set of

approximate fractional abundance labels for each pixel vector in the DAIS 7915

image. Despite our effort to conduct a reliable ground estimation of fractional

land-cover in the considered semi-arid environment, absolute accuracy is not

claimed. We must emphasize, however, that the combined use of imagery data at

different resolutions, sub-pixel ground control-based image registration, and

extensive field work including high-precision GPS field work, spectral sample data

collection and expert knowledge, represents a novel contribution in the area of

spectral mixture analysis validation, in particular, for Dehesa-type ecosystems.

4.2.2 Fractional Abundance Estimation Results

In order to evaluate the accuracy of linear mixture modeling in the considered

application, Fig. 16 shows the scatterplots of measured versus FCLSU-estimated

fractional abundances for the three considered land-cover materials in the DAIS

7915 (low spatial resolution) image data set, where the diagonal represents perfect

match and the two flanking lines represent plus/minus 20% error bound. Here, the

Fig. 15 Ground measurements in the area of study. a Spectral sample collection using an ASD

FieldSpec Pro spectroradiometer. b High-precision GPS geographic delimitation. c Field spectral

measurements at different altitudes
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three spectral endmembers were derived using the AMEE algorithm, which

incorporates spatial information into the endmember extraction process.

As expected, the flatness of the test site largely removed topographic influences in

the remotely sensed response of soil areas. As a result, most linear predictions for

the soil endmember fall within the 20% error bound (see Fig. 16a). On the other

hand, the multiple scattering within the pasture and cork-oak tree canopies (and

from the underlying surface in the latter case) complicated the spectral mixing in

nonlinear fashion, which resulted in a generally higher number of estimations

lying outside the error bound, as illustrated in Fig. 16b, c. Also, the RMSE scores

in abundance estimation for the soil (11.9%), pasture (15.3%) and cork-oak tree

(16.9%) were all above 10% estimation error in percentage, which suggested that

linear mixture modeling was not flexible enough to accommodate the full range of

spectral variability throughout the landscape.

In order to characterize the Dehesa ecosystem structure better than linear

models do, we hypothesized that intelligently selected training data might be

required to better characterize nonlinear mixing effects. For this purpose, we

applied the MTA algorithm to automatically locate highly descriptive training sites

Fig. 16 Abundance estimations of cork-oak tree (a), pasture (b) and soil (c) by the fully

constrained linear mixture model from the DAIS 7915 image

Fig. 17 Abundance estimations of cork-oak tree (a), pasture (b) and soil (c) by the MLP-based

mixture model (trained using MTA) from the DAIS 7915 image
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in the DAIS 7915 scene and then used the obtained samples (and the ground-truth

information associated to those samples) to train the proposed MLP-based neural

network. Figure 17 shows the scatter plots of measured versus predicted fractional

abundances for soil, pasture and cork-oak tree by the proposed MLP-based model,

trained with the three endmembers derived by AMEE (see Fig. 14b) plus 40

additional training samples selected by MTA, which represent less than 1% of the

total number of pixels in the DAIS 7915 scene. These samples were excluded from

the testing set made up of all remaining pixels in the scene. From Fig. 17, it is

clear that the utilization of intelligently selected training samples resulted in fewer

points outside the two 20% difference lines, most notably, for both pasture and

cork-oak abundance estimates. The pattern of the scatter plots obtained for the soil

predictions (see Fig. 17a) was similar (in particular, when the soil abundance was

high). Most importantly, the RMSE scores in abundance estimation were signifi-

cantly reduced (with regards to the experiment using FCLSU) for the soil (6.1%),

pasture (4%) and cork-oak tree (6.3%). These results confirm our intuition that

nonlinear effects in Dehesa landscapes mainly result from multiple scattering

effects in vegetation canopies.

Before concluding the chapter it is worth noting that, although abundance

sum-to-one and abundance non-negativity constraints were not imposed in our

proposed MLP-based learning stage, negative and/or unrealistic abundance esti-

mations (which usually indicate a bad fit of the model and reveal inappropriate

endmember/training data selection) were very rarely found in our experiments.

Summarizing, the experimental validation carried out in this section indicated that

the intelligent incorporation of mixed training samples can enable a more accurate

representation of nonlinearly mixed signatures. It was apparent from experimental

results that the proposed neural network-based model was able to generate

abundance estimates that were close to abundance values measured in the field,

using only a few intelligently generated training samples. The need for mixed

training data does, however, require detailed knowledge on abundance fractions

for the considered training sites. In practice, these data are likely to be derived

from imagery acquired at a finer spatial resolution than the imagery to be classi-

fied, e.g., using data sets acquired by sensors operating simultaneously at multiple

spatial resolutions as it is the case of the DAIS 7915 and ROSIS instruments

considered in this experiment. Such multi-resolution studies may also incorporate

prior knowledge or ancilliary information, which can be used to help target the

location of training sites, and to focus training site selection activities on regions

likely to contain the most informative training samples.

5 Parallel Implementation Case Study

The endmember extraction and spectral unmixing techniques introduced in pre-

vious sections of this chapter introduce new processing challenges, in particular,

for very high-dimensional data sets [54]. From a computational perspective, these
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algorithms can be extremely time consuming when applied to real hyperspectral

data sets such as the AVIRIS scene in Fig. 11a, with 137 MB in size, or the ROSIS

scene in Fig. 13, with about 1 GB of size for the full flightline. At the same time,

these techniques exhibit inherent parallelism at multiple levels [55]: across pixel

vectors (coarse grained pixel-level parallelism), across spectral information (fine

grained spectral-level parallelism), and even across tasks (task-level parallelism).

As a result, they map nicely to massively parallel systems such as clusters of

computers or heterogeneous networks of workstations [56]. Unfortunately, these

systems are expensive and difficult to adapt to on-board data processing scenarios,

in which low-weight and low-power integrated components are mandatory to

reduce mission payload [57].

An exciting recent development in the field of commodity computing is the

emergence of programmable graphics processing units (GPUs) [58, 59], mainly

due to the advent of video-game industry. The speed of graphics hardware doubles

approximately every six months, which is much faster than the improving rate of

the CPU. The ever-growing computational requirements introduced by hyper-

spectral imaging applications can benefit from this kind of commodity hardware

and take advantage of the compact size and relatively low cost of these units,

which make them appealing for on-board data processing at much lower costs than

those introduced by other hardware devices such as clusters. In the following, we

develop a GPU-based implementation of a spectral unmixing chain made up of

spatial–spectral endmember extraction using the AMEE algorithm followed by

unconstrained linear spectral unmixing (LSU). The chain was implemented using

NVidiaTM CUDA,3 a collection of extensions to the C programming language and

a runtime library. CUDA’s functionality primarily allows a developer to write C

functions to be executed on the GPU. CUDA also includes memory management

and execution configuration, so that a developer can control the number of GPU

processors and threads that are to be invoked during a function’s execution. GPU-

based algorithms developed in CUDA are constructed by chaining so-called

kernels, which take one or more streams as inputs and produce one or more

streams as outputs.

The first issue that needs to be addressed when porting a hyperspectral imaging

algorithm to a GPU is how to map a hyperspectral image onto the GPU memory.

Since the size of hyperspectral images usually exceeds the capacity of such

memory, we split them into multiple spatial-domain partitions [56] made up of

entire pixel vectors (see Fig.18), i.e., each spatial-domain partition incorporates all

the spectral information on a localized spatial region and is composed of spatially

adjacent pixel vectors. Once the hyperspectral image has been allocated onto the

GPU memory, a set of kernels are applied to perform the desired operations. In our

case, the kernels needed to implement the AMEE algorithm for endmember

extraction followed by LSU for linear spectral unmixing can be summarized as

follows:

3 http://www.nvidia.com/object/cuda_home.html
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• Cumulative distance. For each pixel vector, this kernel accumulates the SAD

with all the neighboring pixels in order to complete a core operation in the

AMEE endmember extraction algorithm. It is based on a single-pass kernel that

computes the SAD between two pixel vectors using the inner products and

norms produced by the previous kernel. Finally, the kernel calculates, for each

pixel vector, the cumulative spectral angle between the pixel and all its

neighbors.

• Max/min finding. Extended morphological erosion and dilation used by the

AMEE algorithm are implemented at this stage through a kernel that applies

minimum and maximum reductions. This kernel uses as inputs the cumulative

values generated in the previous stage and produces a stream containing (for

each pixel) the relative coordinates of the neighboring pixels with maximum and

minimum cumulative distance.

• Eccentricity update. This kernel updates the morphological eccentricity scores

using the maximum/minimum and point-wise distance streams. A comple-

mentary kernel applies a threshold to select a set of final AMEE-derived end-

members at the end of the process.

• Spectral unmixing. Finally, this kernel uses as inputs the final endmembers

selected in the previous stage and produces a set of endmember fractional

abundances for each pixel using the unconstrained inversion process in Eq. 2.

The proposed endmember extraction algorithm has been implemented using the

Intel C/C++ compiler. The system used in experiments is based on an Intel Core 2

Quad Q6600 CPU running at 2.4 GHz and with 4 GB of RAM. The computer is

equipped with an NVidiaTM GeForce 8800 GTX with 16 multiprocessors, each

composed of eight SIMD processors operating at 1,350 Mhz. Each multiprocessor

has 8,192 registers, a 16 KB parallel data cache of fast shared memory, and access

to 768 MB of global memory. The GPU architecture is graphically illustrated in

Fig. 19. The hyperspectral data set used in our experiments is the AVIRIS Cuprite

scene.

Fig. 18 Spatial-domain decomposition for parallelization of hyperspectral imaging algorithms
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Table 2 shows the execution times and speedups measured for the GPU-based

implementations of the AMEE and unconstrained LSU algorithms compared to

their execution in the quad-core CPU of the system in which the GPU was inte-

grated. The speedup achieved by the GPU implementation of the AMEE algorithm

over its respective CPU implementations is close to 25. It should be noted that the

speedup achieved for the GPU implementation of AMEE was independent of the

structuring element size (the results displayed in Table 2 correspond to a structuring

element of 5 9 5 pixels in size which appropriate for endmember extraction from

the AVIRIS Cuprite scene, but similar speedups were achieved with other struc-

turing element sizes). On the other hand, Table 2 indicates that the speedup

achieved for the parallel implementation of the LSU stage was lower. This is mainly

due to the fact that the serial version of LSU is only takes around 5 s to be completed

in the quad-core CPU, and it is more difficult to achieve significant speedups in this

case since the communication time needed to transfer the data from the CPU to the

GPU is more relevant in this case when compared to the total time to finalize the

computations in the GPU. As a result, the ratio of computations to communications

is smaller for the parallel version of LSU than for the parallel version of AMEE,

which has an effect on the achieved speedup. Despite these observations, it can be

seen from Table 2 that the considered AVIRIS data cube could be processed in

parallel by a full unmixing chain made up of spatial–spectral endmember extraction

followed by linear spectral unmixing in just 2.975 s. This response is not strictly in

real-time since the cross-track line scan time in AVIRIS, a push-broom instrument,

is quite fast (8.3 ms to collect 512 full pixel vectors), which introduces the need to

process the considered scene (350 9 350 pixels) in 1.985 s to fully achieve real-

time performance. However, we believe that the achieved (near) real-time response

time would be relevant in many application domains. Further developments will be

Fig. 19 Architecture of the NVidiaTM GeForce 8800 GTX graphics card used in experiments

Table 2 Processing time

(seconds) and speedups for

the dual-core CPU and GPU

implementations

Algorithm Processing

time (CPU)

Processing

time (GPU)

Speedup

AMEE 42.797 1.678 25.504

LSU 4.953 1.297 3.818
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pursued in future work in order to approximate real-time performance for on-board

data exploitation.

6 Conclusions and Future Research

Endmember extraction is the process of selecting a collection of pure signature

spectra of the materials present in a remotely sensed hyperspectral scene. These

pure signatures are then used to decompose the scene into abundance fractions by

means of a spectral unmixing algorithm. Most techniques available in the end-

member extraction literature rely on exploiting the spectral properties of the data

alone. As a result, the search for endmembers in a scene is conducted by treating

the data as a collection of spectral measurements with no spatial arrangement. In

this chapter, we have discussed the role of spatial information in the search for

spectral endmembers and further demonstrated via experimental results, using

AVIRIS hyperspectral data collected in the framework of a mineral mapping

application, that the linear mixture model can benefit from the integration of

spatial and spectral information in the task of selecting endmembers. An inves-

tigation on the use of the considered spatial–spectral endmember extraction

algorithms in conjunction with source separation techniques, such as those

described in [60], is a topic deserving future research in this context.

When complex mixtures are present in hyperspectral scenes, nonlinear mixture

models may best characterize the resultant mixed spectra for certain endmember

distributions. In order to address this issue, we have developed a nonlinear, neural

network-based mixture model which is initialized using linear spectral unmixing

concepts. The proposed approach is trained with highly representative training sets

which can accurately explain the complex nature of the data using only a few

training samples. Our study reveals that the most informative training samples for

nonlinear mixture characterization are the most highly mixed signatures in the

input data set. This observation is in contrast with the overall approach in linear

spectral unmixing in which only the purest spectral signatures are used to char-

acterize and decompose spectral mixtures. Critically, if the regions expected to

contain the most highly informative training samples for spectral mixture mod-

eling can be identified in advance, then it is possible to direct the training data

acquisition procedures to these regions, and thus reduce the number of required

training sites without loss of prediction accuracy. This issue is of particular

importance in real applications based on the use of airborne/satellite images, in

which the acquisition of large training sets is generally very costly in terms of time

and finance. To illustrate the concepts above, we have conducted experiments

using a set of real hyperspectral images, collected at different altitudes by the

DAIS 7915 and ROSIS imaging spectrometers in the framework of an agriculture

and farming application in the region of Extremadura, Spain. Although the

reported results are promising, it would be also useful to explore in future work the

behaviour of spatial–spectral methods in cases where the linear mixture model
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assumption is no longer valid to describe the mixing systematics of the observed

materials, thus conducting a more detailed evaluation of linear versus nonlinear

mixture models in different application domains.

Finally, in order to address the extremely high computational requirements

introduced by endmember extraction and spectral unmixing applications, this

chapter has also presented a parallel implementation case study in which an

unmixing chain made up of spatial–spectral endmember extraction followed by

unconstrained linear spectral unmixing has been implemented on a specialized

graphics processor (GPU). Our experimental results indicate that a low-weight and

low-power specialized hardware device such as a GPU has the potential to bridge

the gap towards real-time analysis of high dimensional data. This kind of spe-

cialized, on-board processing devices are essential to reduce mission payload and

obtain analysis results quickly enough for practical use in real applications. Further

experimentation will additional hyperspectral scenes will be pursued in future

work in order to approximate real-time performance of endmember extraction and

spectral unmixing applications for on-board data exploitation.
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