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I. Introduction. The notion of complexity, from both practical and theoreti-
cal standpoints, seems destined to be a major theme of research in both 
computer science and mathematics. As digital computers evolve, we find 
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10 EDWARD W. PACKEL AND HENRYK WOZNIAKOWSKI 

ourselves revising and refining our ideas about what it means to solve a 
problem and what problems can be effectively solved. One might expect the 
seemingly endless increases in computational speed and memory size to 
diminish the urgency of such computational matters, but the opposite seems to 
be the case. Humankind, ever inquisitive and acquisitive, apparently reacts to 
such technological breakthroughs by asking questions such as "What new 
problems do we need to solve?", "Can we solve even larger instances of the 
problem?", and "Can we improve the accuracy of computed solutions?" 

As a consequence, mathematics (and theoretical computer science) has been 
enriched by an important, vigorous, and relatively new subject area, that of 
computational complexity. Instead of viewing a problem in terms of finding 
and analyzing a particular algorithm to solve it, computational complexity 
addresses the inherent computational characteristics of the general problem (as 
a function of its "size" or the "error" of computed solutions). One seeks upper 
bounds (which emerge from looking at specific algorithms) and the often more 
important and difficult lower bounds on the complexity of problems. 

While the early emphasis in computational complexity is commonly associ-
ated with discrete problems (for example, traveling salesperson, bin packing, 
and primality testing), there is also substantial literature starting with the work 
of Sard [1949], Nikolskij [1950], and Kiefer [1953] on the complexity of 
continuous problems (see Traub and Wozniakowski [1980, pp. 278-280] for a 
brief history). More recently there has been considerable interest among 
mathematicians in the complexity of continuous problems, sparked by the 
work of Shub and Smale [1985, 1986a] and especially Smale [1985], which 
contains extensive references to other such work. 

Many problems arising in the mathematical sciences have the characteristic 
that information relevant to their solution is either partial or contaminated. 
For example, since a digital computer can only manipulate a finite set of 
numbers, any problem whose domain of possible problem elements is infinite-
dimensional will of necessity have only partial information. For most problems 
with partial or contaminated information only approximate solutions are 
possible. Given the ubiquity of problems for which information is either not 
fully available, imprecise due to computational limitations, or purposely dis-
carded to expedite a simplified solution, a general approach to treating 
approximate solution of such problems is clearly desirable. 

The issues raised in the preceding paragraphs provide motivation for infor-
mation-based complexity, an expanding research area concerned with the intrin-
sic difficulty of approximately solving problems based upon information that 
is partial, contaminated, and priced. In this article we present a mathematically 
oriented introduction to information-based complexity and a review of some of 
its current research results and directions. Our selection of topics will not be 
fully representative, relegating many important applications and technical 
details to bibliographic references. Instead we stress aspects of the theory that 
will highlight its elegance and its unifying connections with modern analysis. 
To drop a few names, we shall encounter problems and techniques from 
functional analysis, numerical analysis, approximation theory, measure theory, 
probability theory, statistics, and partial differential equations. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



INFORMATION-BASED COMPLEXITY 11 

Our primarily theoretical approach will first discuss the worst case setting. 
This will be followed by a more elaborate treatment of average case complex-
ity, an increasingly important focus of recent work on problems with either 
partial or complete information. The presentation has been organized to 
highlight what we regard as the major theorems of the subject. Interspersed 
throughout the paper and in the concluding section we also Hst ten open 
problems from information-based complexity that we think will be of interest 
to mathematicians. 

For more details and references relating to work in information-based 
complexity up to 1980, see Traub and Wozniakowski [1980], and also Micchelli 
and Rivlin [1977], where a similar point of view is presented. A framework 
more general than the one we develop here can be found in Traub, Wasilkow-
ski, and Wozniakowski [1983]. A recent survey of the field with somewhat less 
emphasis on mathematical abstraction and more on applications and examples 
is offered in Wozniakowski [1986a]. 

II. Worst case setting. Three concepts provide the foundation for developing 
and applying techniques of information-based complexity: a problem formu-
lation, specification of the information, and a model of computation. Each 
concept has several options or variations, leading to a variety of settings in 
which problems can be modeled and results developed. We direct our efforts in 
this part to the traditional worst case setting. 

A. Problem formulation, information, and model of computation. The problem 
formulation states what we want to approximate, for which problem elements 
we seek this approximation, and what error criterion we plan to use. Formaliz-
ing these ideas, let F be a set and let G be a normed linear space over the 
scalar field K, where K = U or K = C. The problem we would ideally like to 
solve is given by a mapping S:F -> G, which we call the solution operator. 
Given e > 0, we wish to compute for each ƒ e F an e-approximation x( ƒ ) in G 
for S(f). In the worst case setting we simply require that x(f) satisfy 
||5( ƒ ) - x( ƒ )|| < e for each problem element ƒ. 

In order to approximate S( ƒ ) we need to know something about ƒ. A basic 
assumption of information-based complexity is that we do not have full 
knowledge of a given problem element ƒ. Formally, knowledge about ƒ is 
obtained by computations of the form L( ƒ ), where L : F -> H for some set H. 
The allowable information for a problem is given by specifying a collection A 
from which information operations L may be chosen. Generally, for each 
problem element ƒ, only a finite number of operations L from A may be used 
to supply information L( ƒ ) on ƒ. The number of such operations is, of course, 
crucial to complexity considerations. 

If, for each ƒ in F, we use the same n operations from A, the resulting 
information operator N = [Lx,..., Ln] is called nonadaptive information of 
cardinality n. Along with its obvious simplicity, such information would be 
natural and efficient for use in parallel processing. The more general class of 
adaptive information allows the specific choice of operations from A and the 
number n( ƒ ) of such operations to vary with ƒ. This means that the choice of 
Lt may adaptively depend on the previously computed values Lx(f), 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 EDWARD W. PACKEL AND HENRYK WOZNIAKOWSKI 

L2(f)> • • • > A - i ( / ) • I n t n i s c a s e t n e information operator is defined for each ƒ 
in F by 

JV( ƒ ) = [Lx( ƒ ), L2( ƒ ; * ) , . . . , Ln ( / )( ƒ ; * , . . . , yn{f)^)], 

where ^ = L ^ / ) , # = £,,.(ƒ; yl9...9 y^) for i = 2 ,3 , . . . , «(ƒ) - 1, and 
L;(B; >^i,..., ^,-_i) ^ A for every /. The number n( ƒ ) of evaluations is de-
termined by yv y2,— For a precise definition of n(f) see Wasilkowski 
[1986]. 

Any analysis of complexity requires a model of computation which specifies 
what operations are permitted and how much each operation "costs." We use 
what is referred to as the real number model of computation. Thus we assume 
that 

• Infinite-precision real numbers are used. 
• Each information operation costs c units. 
• Arithmetic operations (such as addition and scalar multiplication in G), 

comparisons, and evaluation of elementary functions are performed exactly 
and cost one unit each. 

While this model is clearly oversimplified, we use it here to avoid being 
sidetracked by such admittedly important issues as round-off, machine 
specificity, and numerical stability. More general and realistic models of 
computation are certainly desirable for future work in information-based 
complexity, but we say no more about these here. 

B. An integration example. To illustrate some of the above ideas we consider 
the problem of approximating the integral ƒ/ f(t) dt, where ƒ is chosen from a 
suitably defined class F of smooth functions. Assuming the existence of a 
subroutine that computes ƒ(/) for any t e [a, b], we want to approximate the 
above integral with minimal cost. Formally we have: 

PROBLEM FORMULATION. The solution operator S : F -» U is defined by 

s(f)=(bf(t)dt. 
Ja 

For each ƒ e F we wish to compute an e-approximation. In this case we seek a 
real number x(f) such that 

1/ 
bf(t)dt~x(f) < e. 

INFORMATION. Information operations are taken from the class A of func-
tion evaluations. Thus for any ƒ e F and any t e [a, b] we can compute f(t). 

MODEL OF COMPUTATION. Each function evaluation costs c, c > 0. Arith-
metic operations, comparisons, and elementary function evaluations can be 
performed at a cost of one unit each and with infinite precision (real number 
model of computation). 

Anticipating a forthcoming general definition, we let comp(8) denote the 
minimal cost of computing e-approximations x(f) for the "worst" ƒ e F. In 
addition to obtaining a value for comp(e), we would naturally like to know at 
what points ƒ should be evaluated and how these values should be combined 
to compute an e-approximation x( ƒ ). In other words (and again anticipating 
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definitions from a subsequent section), we would like optimal information and 
an optimal algorithm for the problem at hand. 

We mention here the results for one particular class F consisting of periodic 
functions on the interval [0,2IT] whose (r - l)st derivatives are absolutely 
continuous and whose rth derivatives are bounded by 1 in the L°° norm. 
Based on results of Bakhvalov [1971] and Motornyj [1973] it turns out that 
comp(e) = ( c + l)f (2irKr/e)] + ae, where Kr is the Favard constant, 

71 i=o (2/ + 1) 

and ae = -1 or 0. 
Thus, for the domain F specified above, we know comp(e) to within the cost 

of one arithmetic operation. Letting n = | (27rKr/e) |, an optimal e-complex-
ity algorithm for estimating the desired integral is given by the composite 
midpoint rule: 

*</>=ïi/(^). 
Consequently, values of ƒ at « "equally spaced" points turn out to be optimal 
e-complexity information. 

We stress that these results depend strongly on the periodicity of functions 
in the class F. For other specifications of the problem domain F, a variety of 
different and more complex formulas are required for optimality (see Traub 
and Wozniakowski [1980], which cites about 100 papers giving optimal for-
mulas and complexity results for various classes F in the worst case setting). 
We return to a variant of this example when we consider the average case 
setting. 

C. The radius and diameter of information. Returning to the general case, let 
a problem be specified by a solution operator S:F -> G and let N be an 
information operator on F supplying information N( ƒ ) for each ƒ in F. For 
any such ƒ let y = N( ƒ ) and consider the set S(N~l(y)) in the normed linear 
space G. Using the natural definition of the radius of a subset A of G, 
rad(v4) = inîx^Gs\vç>aç;A\\x — a\\, we define the worst case radius of informa-
tion for the problem S with information N by 

r(N) = sup {md(s(N~l(y)))}. 
y^N(F) 

We now assume for what follows that the infimum in computing 
rad(S(N~l(y))) is always attained. Then rad(5'(A^"1(j))) is the radius of the 
smallest ball in G containing the set of solutions to elements indistinguishable 
from ƒ using the information operator N. Thus r(N), which plays a crucial 
role in information-based complexity, gives the intrinsic worst case error or 
uncertainty present in solving the problem specified by S with information N. 
In terms of the idea of an e-approximation introduced earher, it is immediate 
that an e-approximation using the information operator JV can be found for 
every ƒ e F if and only if TV is such that r(N) < e. 
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14 EDWARD W. PACKEL AND HENRYK WOZNIAKOWSKI 

Another useful way to measure intrinsic uncertainty of a problem and its 
information operator N is the diameter of information, d(N), defined by 
d(N)= supy<=N(F){di2im(S(N~1(y)))}, using the standard definition of the 
diameter of a subset in a normed linear space. Certain results in the theory are 
more easily developed in terms of the diameter, which is not generally twice the 
radius, but can easily be shown to satisfy r(N) < d(N) < 2r(N). 

D. Algorithms, complexity, and optimality. Given a problem S:F -> G with 
information operator N on F, an (idealized) algorithm is a function $:N(F) 
-> G. Thus for each ƒ e F, $ uses what we know about ƒ to approximate 
S( ƒ ) via <£>( iV( ƒ )). The worst case error for 0 is then defined by 

e(*,AO = sup||S(/)-*(M/))ll-

From the definition of r(N) given above, we immediately obtain: 

THEOREM 1. r(N) = inf{e(<I>, N): & an algorithm using information N}. 

Thus the radius of information gives us a sharp lower bound on the error 
obtained in approximating £ by any algorithm using the given information. It 
is natural, then, to define O to be an optimal error algorithm for the problem S 
with information N if e(0, N) = r(N). 

Given an algorithm 0 and a model of computation, it is just a matter of 
bookkeeping to determine the cost of 4>. Given ƒ e F, let cost(N,f) denote 
the information cost of computing N(f). Recalling that c gives the cost of each 
information operation L involved in computing N( ƒ ) and letting n( ƒ ) denote 
the number of such operations, we have cost(N,f) > cn(f). In the nonadap-
tive case equality holds; for adaptive information there will be additional cost 
for the selection of the Lt and, in general, cost(N,f)> cn(f). To use a 
specific algorithm $ on y = N( ƒ ) there will be a combinatory cost, cost(<ï>, y), 
of computing 4>(y). Using our model of computation, cost($, y) = k, where /: 
is the number of combinatory operations required. The worst case cost of an 
algorithm 4> using information TV can now be defined by 

cost(0, N) = sup {cost(AT, ƒ) + cost($, N(f))}. 

We are now ready to define our fundamental notion of complexity in the 
worst case setting. Given an error tolerance e ^ 0 for a problem S:F -> G, we 
define the e-complexity as the minimal cost of computing an e-approximation, 

comp(e) = inf{cost(^>,iV):0, N such that e($,N) < e) . 

An information operator N and an algorithm O using iV for which the above 
infimum is obtained are defined to be optimal e-complexity information and an 
optimal e-complexity algorithm, respectively. Since e is regarded as fixed, we 
generally omit "e-complexity" in future reference to these ideas. 

With the exception of our admittedly specialized model of computation, the 
definition of complexity given above is very general, and intentionally so. It 
makes no ad hoc assumptions or restrictions on the kinds of information and 
algorithms that can compete for the designation of optimal. While this general-
ity may be questioned on practical grounds, it makes any theoretical results we 
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obtain that much stronger. The definition can be applied with e = 0 if an exact 
solution is called for. 

Given a problem which can be modeled in the framework we have described, 
a major focus of "applied" information-based complexity is to find its e-com-
plexity together with optimal information and an optimal algorithm. In this 
article we shall be more concerned with general results of the theory rather 
than application to particular problems. 

III. Linear problems in a worst case setting. We now define and develop 
results for the important class of linear problems. While this narrows our scope 
significantly, problems of integration, linear differential and integral equations, 
approximation, and interpolation are linear, as are many problems stemming 
from linear models in a variety of fields. 

A. Definition and a basic lemma. To define a linear problem we require that: 
• The problem domain F is a convex balanced subset of a linear space Fl 

over K. When convenient we shall assume that F is generated by a linear 
restriction operator T:F1 -» X where X is a normed linear space and F = {ƒ 
e Fx : y7/Il < 1}. The requirement that the convex balanced set F is generated 
by T is not a serious loss of generality (see Traub and Wozniakowski [1980, p. 
32]). 

• The solution operator is defined by a linear operator S : Fx -> G. Note that 
while we are only really interested in problem elements from F, it is convenient 
to be able to work within the linear space Fv 

• The collection A of allowable information operations must be a subset of 
the space of linear junctionals L:F -> K. 

To illustrate the above ideas, we note that our integration example from Part 
II concerning integration of periodic functions is a linear problem. The domain 
F is the convex balanced set generated by the linear restriction operator T 
defined by Tf = f{r\ The linearity of the integral ensures that the solution 
operator S is linear. And the linear functional L providing information come 
from the collection A of function evaluations (each fixed t £ [0, lir] provides 
L , e A defined by Lt(f) =ƒ(/)). 

The following basic result highlights the importance of the kernel of the 
information operator for linear problems with nonadaptive information. 

LEMMA 1. Given a linear problem defined by a linear operator S:Fl-+ G, a 
nonadaptive linear information operator N:FX -> Kn, and a linear restriction 
operator T: Fx -> Xfor which F = { ƒ e FX\ \\T(f)\\ < 1}, then 

(a) r(N) < oo => ker(A) n ker(T) ç ker(S). 
(b) d(N) = 2suph(£ker(N)nF{\\S(h)\\}. 

PROOF, (a) If there exists h in ker(A) n ker(7) with S(h) # 0, then 
ah e ker(A) n F for all a e K. It follows that ^(A^XO) is unbounded in G 
and hence has infinite radius. 

(b) Given any y in N(F) and gl9 g2 in F with N(g1) = N(g2) = y, set 
h = {gx — g 2) /2 and note that h G ker(A) n F since F is balanced and 
convex. Thus, | |5(g l) - S(g2)\\ = 2\\S(h)\\ < 2sup, e k e r („ ) n F{| |S( /0 | |} . Tak-
ing the supremum first over gv g2 e N x(y) and then over y G iV(F), we get 
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16 EDWARD W. PACKEL AND HENRYK WOZNIAKOWSKI 

d(N) < 2supAeker (^ )nF{||5'(/i) | |}. The reverse inequality follows by noting 
that for any h e ker(Af) Pi F we also have -h e ker(N) n F, so that 2||5(A)|| 
= \\S(h) - S(~h)\\ < d(N). 

Since problems with infinite radius of information are of no great interest to 
us (there will always be infinite error yet every algorithm is optimal), we 
henceforth assume r(N) < oo. Thanks to (a) of the Lemma, we will then 
always have ker(AT) n ker(r) ç ker(S). 

B. Adaptive vs. nonadaptive information. It is not surprising that for general 
problems adaptive information can be significantly more powerful than non-
adaptive information. For instance, finding a root for continuous functions on 
a closed interval [a, b] (with oppositely signed values at the endpoints) by the 
well-known adaptive bisection algorithm yields a radius of information propor-
tional to 1/2W, where n is the number of function evaluations (i.e., the 
cardinality of the information on ƒ). The best nonadaptive methods give a 
radius proportional to 1/n. This problem is studied in full generaUty in 
Sikorski [1982]. 

It is both significant and surprising that for linear problems in the worst 
case setting, adaption is not substantially more powerful than nonadaption. 
Indeed, let Na be a linear adaptive information operator. For any ƒ in F we 
then have 

Na( ƒ ) = [ ^ ( ƒ ), L2(f; yt),..., Ln(f)(ƒ; ylt..., y^.,)], 

where each £,-(•; yl9..., y^i) is a linear functional from A. Define a corre-
sponding nonadaptive information operator Afnon by setting 

^ V n o n ( / ) = [ L 1 ( / ) , L 2 ( / ; 0 ) , . . . ) L „ ( 0 ) ( / ; 0 , 0 , . . . , 0 ) ] , 

where n (0) is the cardinality of Na applied to the problem element 0. Note that 
jynon «s i m e a r a n c | nonadaptive since the linear functionals defining it are 
independent of problem elements ƒ. 

THEOREM 2. For any linear problem in the worst case setting we have 
(a) d(Nnon) < d(Na) 
(b) r(Nnon) < 2r(Na). 

PROOF, (a) We use Lemma 1 and the fact that ker(Afnon) = kcr(Na) to 
obtain 

d(Nnon) = 2sup{||S(A)||:A e ker(iVnon) n F) 

= 2sup{||S(/z)||:/ï eker(Na)nF) 

= diam(s[(Aru)_1(0) n F]) < sup (dmm(S[(NaY\y) n F])\ 

= d(Na). 

(b) This follows from (a) and the fact that r(N) < d(N) < 2r(N) for any 
information operator N. 
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The first version of this theorem was proved by Bakhvalov [1971] for the 
case where the solution operator is a linear functional and the information N 
is of fixed cardinality n = «(ƒ). For a general solution operator and fixed 
cardinality see Gal and Micchelli [1980] and Traub and Wozniakowski [1980]. 
The general case is due to Wasilkowski [1986a], who also provides results in the 
average case setting. 

The theorem tells us that, in the worst case, the far more general structure of 
adaptive information cannot decrease the uncertainty by more than a factor of 
two as compared to nonadaptive information of the same cardinality. We note 
that (b) can be strengthened to r(Nnon) = r(Na) in cases where the radius of 
information is half of its diameter. While the radius and diameter do not 
always have this relationship, no linear problem (and information) has been 
found for which the adaptive radius is less than the nonadaptive radius. 

OPEN PROBLEM 1. Prove that r(Na) = r(Nnon) for all Hnear problems or 
find a linear problem with r(Na) < r(Nnon). 

With the above as justification, we restrict ourselves to nonadaptive informa-
tion for the duration of our discussion of linear problems in the worst case 
setting. 

C. The existence of linear optimal error algorithms. Given a linear problem 
S:F -> G with nonadaptive information defined by N:F -» Kn with TV = 
[Lv ...,Ln], it is natural to consider linear algorithms for approximating S. 
Accordingly, we require a linear algorithm $ : K n -> G to have the form 

*(*(ƒ)) = t £,•(/)&, Si e G. 

Since the g- are independent of ƒ, they can be precomputed. Thus, in addition 
to their simplicity and ease of implementation, linear algorithms have combi-
natory cost proportional to n (n scalar multiplications and n — 1 additions in 
G). 

Having indicated that Hnear algorithms have pleasing properties as far as 
cost is concerned, we now consider the important matter of whether a linear 
problem will always have an optimal error algorithm which is linear—i.e., 
given S and N linear, does there exist a linear <J> such that e($, N) = r(N)l 
This question has an interesting history, beginning with the observation that 
numerous linear problems of practical importance turn out to have linear 
optimal error algorithms (see Traub and Wozniakowski [1980] for specifics). 
Below we outline some of the positive and negative results (for the worst case 
setting) that have recently been obtained (see Packel [1986b] for more detail). 

THEOREM 3. Given F convex and balanced, N linear, and S:Fl —> K a linear 
functional, then there exists a linear optimal error algorithm. 

PROOF. The real (K = U) case is due to Smolyak [1965] and the complex 
case to Osipenko [1976]. The proof for M uses the convexity of F and a 
separating hyperplane theorem to produce a linear optimal algorithm. The real 
case is extended by MicchelH and Rivlin [1977] to the case of "perturbed" 
information (N(f) is only known to within a certain error bound). This is 
done by creating a corresponding problem with "exact" information. 
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THEOREM 4. Let F = {f ^ Fl:\\T(f)\\ ^1} be generated by a linear restric-
tion operator T:F1-*H where H is a Hilbert space and let T(ker(N)) be closed 
in H. Then a linear problem determined by S and N on F has a linear optimal 
error algorithm. 

PROOF. Micchelli and Rivlin [1977] treats the special case where T is the 
identity operator. In Traub and Wozniakowski [1980, Chapter 4] the general 
result is presented. The argument uses the fact that a closed convex set in 
Hilbert space has a unique element of smallest norm and makes heavy use of 
orthogonality arguments. The resulting Hnear optimal error algorithm turns out 
to be a spline algorithm and bears witness to the close connection between the 
notion of optimal error algorithms and the theory of approximation by splines 
(see Atteia [1965], Holmes [1972]). 

Any hope of a fully general result was laid to rest by Micchelli in 1978. His 
example (which can be found in Traub and Wozniakowski [1980, p. 60]) 
provides a linear problem from IR3 to U 2 endowed with the l4 norm for which 
no optimal linear error algorithm exists. Somewhat simpler counterexamples 
are presented in Packel [1986a] and Packel [1986b]. 

In each of the examples referred to in the above paragraph it turns out that 
there exists a hnear algorithm O whose error is not appreciably larger than the 
radius of information, i.e., e(3>, N)/r(N) < 2. This suggests the following 
question: "Does there exist a constant d (hopefully "close" to 1) such that 

int{e(Q9N)/r(N): $ linear on N(F)} < d 
for every linear problem?" Werschulz and Wozniakowski [1986] answers this 
question in the negative by exhibiting a class of linear problems whose radii 
r(N) are finite but for which the error of any linear algorithm is infinite. 
Furthermore, the information N can be chosen to make r(N) arbitrarily small. 
As an added bonus, a special case of these linear problems (and the example 
which motivated the discovery of the class of counterexamples) is the inversion 
of a finite Laplace transform, a problem arising in remote sensing (see Twomey 
[1977]). 

Thus there are linear problems whose best Hnear algorithms do very badly, 
and such problems are not merely artificial constructs. The now questionable 
intuition that general Hnear problems ought to have Hnear optimal error 
algorithms can be partially resurrected by allowing an extended codomain for 
the solution operator (and its approximating algorithms). In what follows we 
use the notation B(X) to denote the bounded, scalar-valued functions on a 
topological space X. 

THEOREM 5. Given a linear problem S:F -> G, there exists 
(i) A compact Hausdorff space X such that G is isometrically isomorphic to a 

subspace of B(X). 
(ii) A linear optimal error algorithm 0 : N(F) -> B(X) satisfying 

\\*(N(f))-A(S(f))\\*ir(N) 

for all f in F, where A(S(F)) denotes the isometric image ofS(f) in B(X). 

PROOF. See Packel [1986a] for details. Part (i) follows immediately from a 
standard corollary to the Banach-Alaoglu theorem stating that any normed 
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linear space is isometrically isomorphic to a subspace of some C(X), the 
bounded continuous functions on X. In our case X is the unit ball in the 
conjugate space of G endowed with the weak* topology and the isometric 
action is provided by the Gelfand map which imbeds G in its second conjugate 
space. The optimal error algorithm promised in part (ii) is obtained by 
applying Theorem 3 for each fixed x e l and showing that the linear 
algorithm that results when x is varied is bounded on X for each N(f). 
Rather than having its value restricted to G, this algorithm takes on values in 
the vastly larger space B(X) containing a copy of G as a subspace. 

Thus there is a real but highly impractical sense in which linear problems do 
have linear optimal error algorithms. We believe the full story has yet to unfold 
on this general topic. 

OPEN PROBLEM 2. Prove that, perhaps with additional conditions on S, 
linear optimal error algorithms can be found with range restricted to the space 
C(X). 

OPEN PROBLEM 3. Without allowing extended codomain, find some more 
general conditions than those of Theorem 3 and 4 under which linear problems 
must have linear optimal error algorithms. 

D. e-complexity and optimal information for linear problems. With Theorem 2 
as our justification, we consider linear problems with nonadaptive information 
N = [L 1 ? . . . , L J , where the Lt are chosen from a class A of linear functionals 
on F. For information of a fixed cardinality «, we would like to choose N to 
minimize both the cost of an algorithm using N and the radius of information 
for N. Under our real number model of computation (and assuming each 
linear functional evaluation has constant cost), the cost of a linear algorithm 
depends only on n. Accordingly, we concentrate on minimizing r(N). 

For each fixed positive integer «, define the nth minimal radius of informa-
tion r(n) = r(N*) by 

r(n) = ud{r(N):N=[Ll,...,Ln],LimA). 

An information operator N*, should one exist, for which the infimum is 
attained is called nth optimal error information. Such information will ensure a 
minimum intrinsic error r(n) for the given solution operator and fixed 
cardinality of information n. 

To illustrate the above we consider a linear problem S:Fl->G where G is a 
Hubert space. Let the problem domain F Q F1 be generated by a bijective 
restriction operator T:F1 -> H, where H is also a Hubert space (the setting 
could be generalized somewhat, but we opt for simplicity here). Let A be the 
class of all linear functionals on Fl and assume that the positive operator 
A.H^H defined by A = (ST~x)*ST~l is a compact operator. Letting \ t 

and xt denote the Zth eigenvalue-orthonormal eigenvector pair for A {Axt = 
A/*,.) ordered so that Xx > X2 > • • • , the following pleasing result emerges. 

THEOREM 6. In the above Hubert space setting, nth optimal information is 
given by N*(f) = [(7/, xx), (7/ , x 2 ) , . . . , (Tf, xn)]. The unique optimal error 
algorithm using this information is given by 

$opt(W)) = £(Tf,xt)ST-\t 
i=\ 
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with error given by 

e(<t>°P\Nn*) = r(n) = ft^;. 

PROOF. The full development for a more general result along these lines can 
be found in Traub and Wozniakowski [1980]. The key to the argument in our 
case is to expand Tf as its "Fourier series," Tf= HfLl(Tf,xi)xi and to 
observe that 

00 

Sf - 4> o p , (^*( / ) ) = ST-'Tf - <D°P'(JV„*(/)) = I (Tf,Xi)ST-\. 
i = n + l 

By standard orthogonality arguments and the ordering of the A,, it follows that 
N* minimizes the norm of the above quantity. Furthermore, the worst case ƒ 
is given by ƒ = T~lxn + l, yielding a squared error of (ST~1xn+1, ST~1xn+l) = 
(Axn±l,xn + l) = Xn+1(xn+l,xn + l) = A„ + 1 . We note further that, thanks to 
the compactness of A, the errors approach 0 as the cardinality of information 
n increases. As indicated in the "proof of Theorem 4 the optimal error 
algorithm is an approximation by splines, a lovely connection with the theory 
of splines which we briefly elaborate upon in Part V. 

Returning to the matter of e-eomplexity for general linear problems, we will 
keep our error within e by using n th optimal error information Nn* with 

n = m(e) = min{cardinality of N : r(N) < e) . 

From this we conclude that it is necessary to compute at least m(e) evalua-
tions, each with cost c, in order to compute an e-approximation. Thus 
comp(e) > cm(e). If, on the other hand, there exists an optimal error algorithm 
$ using nth optimal information N* whose combinatory cost is dominated by 
information cost (i.e., e(0, N*) = r(Nn*) and 

cost(^,iVn*(/))«cost(7Vn*,/)), 

then comp(e) « cm(e). This holds if there exists a linear optimal error algo-
rithm using Â „*. Indeed, in this case we have comp(e) < (c + 2)m(e) — 1. In 
the common situation where c :» 1, we then get comp(e) ~ cm(e). 

For the linear problems mentioned in §C that do not have linear optimal 
error algorithms, one can find nonlinear optimal error algorithms whose 
combinatory cost is essentially less than the information cost whenever c » 1. 
Thus comp(e) ~ cm{e) also holds for such linear problems. We believe that 
this is true in general and propose the following open problem. 

OPEN PROBLEM 4. For the general linear problem (or significant subclasses 
thereof) and for c ^> 1, prove that comp(e) ~ cm(e). 

In the Hubert space example just considered it follows that m(e) = 
min{n : /Â"w + 1 < e}. We can thus conclude that the information A^(e) and the 
algorithm Oopt from the example are almost optimal, with comp(e) « 
cost(<I>opt, N*(e)) « cm(e). By choosing the operators S and T so that Xt goes 
to zero arbitrarily slowly, we can make m(e) blow up arbitrarily fast as e 
approaches zero. Thus there exist linear problems with arbitrarily large com-
plexity. It can further be shown that there are no "gaps" in the complexity 
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functions (Traub and Wozniakowski [1980, Chapter 5]) in the sense that for 
any increasing function g one can find a linear problem for which comp(e) « 
cg(l/e) for small positive e. This provides an interesting contrast with the 
theory of recursively computable functions, where complexity gaps are known 
to occur (Borodin [1972]). 

IV. Average case setting. We now take a view which requires more optimism 
(the worst is not expected) and more prior knowledge (a probability distribu-
tion on problem elements can be assumed). In the average case setting we 
replace worst case error and cost by corresponding average case formulations. 
We sidestep significant practical issues dealing with the appropriateness of an 
average case model and how a specific probability distribution might be 
obtained for a problem. We note from the references below, however, that an 
average case approach to algorithmic analysis has gained considerable atten-
tion in theoretical computer science and is attracting increasing attention from 
mathematicians as well. The reader will find our treatment of this material, 
much of which is very recent, to be somewhat more technical and detailed than 
the worst case development. 

A. Historical summary. Many important discrete and continuous problems 
defined on finite-dimensional spaces have been analyzed "on the average." 
These problems have been studied assuming complete information and atomic 
or weighted Lebesgue measure. A partial list of papers include Karp [1976, 
1979, 1980], Karp and Luby [1983, 1985], and Rabin [1976, 1983, 1986] for 
discrete problems; Blum and Shub [1986] for the evaluation of rational 
functions; Renegar [1984], Shub and Smale [1985, 1986a], and Smale [1981, 
1985] for polynomial zero finding; and Adler and Megiddo [1985], Adler, 
Karp, and Shamir [1983], and Smale [1983a, 1983b, 1985] for linear program-
ming. 

As far as we know, the first paper dealing with the average case in what can 
be regarded as an information-based setting is due to Suldin [1959,1960], who 
studied the integration problem for the class of continuous functions equipped 
with the classical Wiener measure. Larkin, in a series of pioneering papers 
commencing with Larkin [1972], studied the approximation of linear problems 
using a Gaussian measure. Both Suldin and Larkin restricted themselves to 
linear algorithms using nonadaptive information. 

There is also an interesting stream of work in the statistical literature dealing 
with the approximation of linear functionals defined on function spaces. 
Linear algorithms are primarily studied and information, assumed to be 
nonadaptive, consists of function and derivative evaluations. In such cases, full 
knowledge of a measure on the problem elements is not needed. It is enough to 
know the mean and correlation operator of the measure. A partial list of 
references includes Kimeldorf and Wahba [1970a, 1970b], Sacks and Ylvisaker 
[1970], Wahba [1971, 1978], and Ylvisaker [1975]. Relations between Bayesian 
statistics and average case information-based complexity are explored in 
Kadane and Wasilkowski [1985]. 

The average case setting with adaptive linear information and unrestricted 
classes of algorithms is currently under intense investigation. Parts IV and V of 
this paper are devoted to an exposition of selected recent results. 
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B. Basic formulation. As before we want to approximate S(f) for problem 
elements ƒ chosen from a set F. The first issue faced in developing an average 
case model is that of assuming a probability measure /x on the set F. Using 
statistical language, we interpret /x as an a priori measure. It represents our 
belief about the distribution of problem elements ƒ. Assuming that the solution 
operator S.F -> G is measurable, the probability measure v = \iS~l is an a 
priori measure of solution elements Sf. Both JU, and v represent distributions 
which are known before any information about problem elements ƒ has been 
computed. 

If F is a subset of /c-dimensional Euclidean space U k, a natural choice for JLI 
is a weighted Lebesgue measure, fi(A) = fA p(f)df, where A is a Borel subset 
of R *. Here p:Uk ^> U+is a, density function. 

Since many problems encountered in information-based complexity are 
defined on subsets of infinite-dimensional spaces, the choice of /x is generally 
not so obvious. Indeed, there exist no Lebesgue-type measures on infinite-
dimensional spaces. In considering " infinite-dimensional" measures for such 
problems we propose that (at least theoretically) Wiener measures and, more 
generally, Gaussian measures serve as good candidates for the average case 
setting. 

Assuming that a probability measure ju on F has been chosen, we proceed 
as follows. Let N be an information operator as defined in §A of Part II and 
let <3> : N(F) -» G be an algorithm using N. The average error of $ is defined 
by 

e^^,N)=l[fF\\S(f)-HN(f))flj,(df)]i , 

where p e [1, oo). Here we assume that <É> is chosen so that the above 
integrand is measurable. We also assume that 

f \\S(F)\\Pv(df)<X. 

The average cost of 0 is given by 

costave(<D,7V) = {ƒ [cost(7V,/) + cost(*, #(ƒ))]'/*(</ƒ) 

where, as defined earlier, cost(Af, ƒ ) is the information cost of computing N(f) 
and cost (<É>, N(f)) is the combinatory cost of computing 0(7V( ƒ )). 

Given e > 0, the average e-complexity can now be defined as 

compave(e) = inf{costave(<ï>, JV) :0 ,# such that eâve(<fr,N) < e}. 

Thus the average e-complexity is the minimal average cost of computing 
approximations whose average error does not exceed e. A survey of recent 
results for the average case setting can be found in Wasilkowski [1985]. 

C. Average radius of information. Our definition of the average radius of 
information will follow that of Wasilkowski [1983]. Given a problem element ƒ 
and its computed information y = N(f), we again concentrate on SN~1(y), 
the set of indistinguishable solution elements with respect to a given solu-
tion operator S:F -> G. In the worst case setting it was natural to define the 

*/ V 
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(worst case) radius of a subset A of the normed space G by rad(^4) = 
infxGGsupaG/4 | |x - a\\. For the average case setting we would like to replace 
the maximal distance of \\x — a\\ by its average value. Assuming for the 
moment that an appropriate probability measure vA is available on A, the 
average radius of A is defined by 

radave(^) = inf ( /* ||JC - afvA(da) 

It is evident that radave(^4) < rad(^). 
With the set SN~l(y) playing the role of A, what measure should be chosen 

to represent the distribution of solution elements from SN~1(y)l Clearly this 
measure must depend on the a priori measure JU, over F, on the information 
operator N, and on the value y = N( ƒ ). To get such a measure we assume that 
N is a measurable mapping. Then /x1 = fiN'1 is well defined and is a 
probability measure on the Borel sets of N(F). For a measurable set A ç N(F), 
\ix(A) gives the probability that information N takes values from A. 

We now assume that there exists a unique (modulo sets of JU1 measure zero) 
family of conditional probability measures ti2(M\y) defined on Borel sets of F 
such that 

(i) l*2{
N~l(y)\y) = 1 for almost all ƒ e N(F). 

(ii) n2(B\M) is /^-measurable for any Borel set B of F. 

(iii) n(B)= ( ii2(B\y)i)il{dy) V Borel sets B of F. 
JN(F) 

Such a family JU2 will exist, for instance, if F is a measurable subset of a 
separable Banach space (see Parthasarathy [1967, p. 147]). 

Property (i) requires that /x2(B| y) be concentrated on the set N~\y) of 
problem elements yielding the same information. Property (ii) ensures that the 
integral in (iii) is well defined. The essence of (iii) is that for any measurable 
function h:F -> IR + we have 

ƒ h(f)»(df) = ƒ If h(f)H{df\y))»i(dy). 

Thus, we can first integrate over elements that share the same information and 
then over all information values y. 

We are now ready to define the measure ^(B|^) for the set SN~\y). For 
each measurable set C of G, let 

»(C\y) = li2(S-1(C)\y). 

As a result of (i), v(C \ y) = n2(S-\C) n ^ ( . y ) | y) and p(SN~l(y) \y)=l. 
Thus, *>(• | y) is a probability measure on SN~1(y). 

Using statistical language, we may say that the measure v(M\y) is an a 
posteriori measure that represents our belief about the distribution of solution 
elements which are indistinguishable after the information y = N( f ) has been 
computed. 

A / y 
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The average radius of SN~1(y) can now be defined using v by 

radm(SN-l(y))= inf if \\x - a\f v(da\y)\ . 
x^G {JSN-\y) ) 

The (global) average radius of information is then defined as the average value 
of radave(S7V-1) with respect to the measure fxv Thus, 

( \l/p 

r™(N) = f radave(^-^))V(^) • 
\JN(F) ) 

It follows immediately that rave(7V) < r(N). 
We now show that the average radius of information is a sharp lower bound 

on the average error of any algorithm using N. Indeed, from (iii) the error of 
an algorithm 3> can be expressed as 

[e™(9,N)]>=f If ||S/-*(^)ir/i2(4ri^))/ii(*). 
JN(F) \JN-\y) J 

Changing variables via a = Sf, we get 

[e™($,N)]p= ƒ If \\a-^(y)\\P
V(da\y)\lil(dy) 

> ƒ ( inf ƒ \\a-xrv{da\y))iil{dy) 
JN{F) \x^G JSN~\y) ) 

= f rad^SN-^y^dy) 
JN(F) 

= [rm(N)]p. 

The single inequality above suggests that to construct an optimal error 
algorithm $ we should define <È>(.y) for each y G N(F) as follows. Choose 
<&(y) = x where x e G enables the infimum to be attained: 

(I) ƒ \\a-Hy)\fv{da\y)= inf ƒ \\a - x\(v(da\y). 

If the infimum cannot be attained, $( >0 should be chosen so that a value that 
is "close" to the infimum results. We have thus proved the following theorem, 
first presented in Wasilkowski [1983]. 

THEOREM 7. The average radius of information is a sharp lower bound on the 
average error of any algorithm: 

rave(N) = inf { eave(<I>, N) : $ any algorithm using N }. 

Thus we can find an average case e-approximation based on N if and only if 
rayc(N) < e (modulo a technical assumption that the infimum is attained). 

D. Optimal error algorithms. In the previous section the conceptual construc-
tion of an optimal error algorithm was given. We now specialize this construc-
tion by assuming additional structure on the problem domain F and/or its 
codomain G. For simplicity we take p = 2 in the definition of the average 
error of an algorithm. 
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Assume that G is a Hubert space over M with inner product denoted by 
( • , • ) . We define the mean element my e G of an a posteriori measure 
*>(• | y) by noting that 

(m x) = f (x,a)v(da\y) 
JSN-1(y) 

defines a bounded linear functional on G and hence a unique element my ^ G. 
Recalling equation (I) above (with p = 2) and expanding \\a - x\\2 = 
(a — x,a — x), we obtain 

ƒ \\a-x\\2v(da\y)= f \\a(v(da\y) - 2{my, x) + \\x\\2 

JSN~l(y) JSN-\y) 

ƒ llM^ij)-KU2 + | 
JSN-\y) 

It follows by inspection that a minimum (with respect t o i ) results precisely 
when x = my, so $>(y) = my minimizes the average error. Thus, choosing the 
mean of the a posteriori measure *>(B|^) defines an optimal error algorithm. 
This approach was used by Wasilkowski [1983] to prove the following theorem. 

THEOREM 8. Let S :F' -> G with G a Hubert space. Let [i be a probability 
measure on F with respect to which S and the information N are measurable. Let 
\L2be a family of conditional probability measures satisfying (i)-(iii) above. Then 
an optimal error algorithm $ is provided by defining, for each y e N(F\ 
$>(y) = m where my is the mean of the conditional probability measure v(M\y) 
obtained from \x2 by v(C | y ) = ti2(S~1(C) | y ): 

(m x) = f (x,a)v(da\y). 
JSN~l(y) 

In general it is hard to compute the mean m of an a posteriori measure. 
However, if F is a separable Banach space equipped with a Gaussian measure 
jit, the mean m^ can be obtained in a relatively simple way. Since an essential 
role in the average case setting is played by Gaussian measures, we briefly 
recall their definition and some key properties (see Kuo [1975], Skorohod 
[1974], and Vakhania [1981]). 

In the case where F = Uk, ^-dimensional Euclidean space, a measure ju is 
Gaussian if, for any Borel set A of Uk, 

(27rdetCj 7 2 J A 

where m^ e Uk and C^ is a k by k positive definite matrix. 
Now let F be a separable Banach space and JU, a probability measure on F. 

Then \x is Gaussian iff JUL"1 is a one-dimensional Gaussian measure for every 
continuous linear functional L G F * . 

Gaussian measures can also be defined by using their characteristic func-
tional. The characteristic functional ty : F * -> C of a probability measure fi 
on the Borel sets of F is defined by 

JF 

= /=T. 
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A measure /x will be Gaussian if and only if its characteristic functional is of 
the form 

%(L) = exp(iZ.(m„) - \L{C,L)) 

for some linear operator CM:F* -> F and some m^ e F. The element m^ is 
called the mean element of JU, and is defined by the property 

L(mil)= fFL(F)fL(df) V i e f * . 

The operator C^ is called the correlation operator of /x and is defined by the 
property 

L ^ C ^ ) = ƒ L ^ / - I H „ ) I 2 ( / - m > ( # ) V L ^ e f*. 
•'F 

It can be checked that the correlation operator C^ is symmetric (Ll(CflL2) = 
L 2 ( c ^ L i ) VLi> L2 G ^* ) and nonnegative definite (L(C^L) ^ O V L G F*). If 
F is a separable Hilbert space then Ĉ  is fully characterized by being symmet-
ric, nonnegative definite, and having a finite trace. For separable Banach 
spaces the complete characterization of correlation operators for Gaussian 
measures remains open. 

E. An integration example for the average case. To illustrate the above ideas, 
we build upon the example introduced in Part II, §B. This time we take as our 
domain F the class CQ[0, 1] of real-valued functions on [0,1] that are r times 
continuously differentiable with / ( 0 (0) = 0, i = 1,2,..., r. We give Qi[0,l] 
the sup norm. The solution operator S is defined by S( f ) = JQ f(t) dt. 

For the measure underlying an average case analysis we let JU be the Wiener 
measure applied to rth derivatives, 

fi(A) = w ( { / ( r ) : / G y l } ) , ^ a Borel subset of Co
r[0,l], 

where w is the standard Wiener measure (a special case of a Gaussian 
measure) on C[0,1]. We seek an e-approximation using function evaluations ( ƒ 
and its first r derivatives) as our set A of allowable information operations. 
Based on results to be stated subsequently (Wasilkowski [1986a]), we may 
restrict ourselves to nonadaptive information 

N(f) = [/(/1),...,/ww,...,/(g,..,/M'f)]. 
where 0 < tx < t2 < • • • < tp < 1, kt < r, and n = card(A) = kx + • • • +kp 

are fixed. 
Results for this linear problem (see Lee and Wasilkowski [1986]) yield an 

estimate* rave(A) = Q(n~(r+l)) with this bound achievable from information 
consisting of equally spaced function evaluations: 

K(f) = [ƒ ( ! / (» + l ) ) , / ( 2 / ( « + 1 ) ) , . . . , ƒ (« / (« + 1))]. 

*We say g(n) = Q(h(n)) if there exist positive constants c and C with ch(n) < g(n) for 
n > C. By g(n) = ©(/*(>)) we mean g(n) = Q(h(n)) and h{n) = ti(g(n)), i.e., there exist 
positive constants cx,c2, and C with q/2(n) < g(n) < c2h(n) for n > C. An analogous definition 
applies when the parameter e -> 0 replaces n -> oo. 
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Furthermore, an optimal error algorithm for this information is the /A-spline 
algorithm O defined by ®(Nn(f))=So(Nn(f)), where o is the natural 
spline of degree 2r 4- 1. Finally, an estimate for the average e-complexity is 
compave(e) = ©((l/e)1 / ( r + 1 )). Thus we know the average complexity up to a 
constant. 

V. Linear problems in an average case setting. Continuing our quest for an 
optimal error algorithm, we now assume that the solution operator S:F -> G 
is linear and continuous with F a separable Banach space and G a separable 
Hilbert space. Let /x be a Gaussian measure defined on the Borel sets of F and 
let Ĉ  be its correlation operator. We assume, without loss of generality, that 
the mean element of /x is zero. Then the a priori measure v = \iS~l on G is also 
Gaussian with mean zero and correlation operator CV:G* -» G satisfying 
QL^SiC^LS^VLtG*. 

A. Radius of information and an optimal error algorithm. Given nonadaptive 
information N(f) = [Lx(ƒ),..., Ln(f )] with L; e i7*, we may assume with 
no loss of generality that the Lt are orthonormalized so that L^C^Lf) = StJ. 
Then (Lee and Wasilkowski [1986]) /xx = [iN~l is a Gaussian measure defined 
on the Borel sets of R" with mean zero and the identity as its correlation 
operator (matrix). Thus, 

Vi(A) = , ,n/ij *EJ-1 ' ' /2<M*2 ' * * dtn. 

The conditional measure ju2(* | y) on F whose existence was asserted earlier 
is also Gaussian with mean 

n 

7 - 1 

Furthermore, its correlation operator is independent of y and is given by 
C^N'-F* ""* JF, where 

c,,AL) = CM) ~ t L(CÀLJ))CÀLJ)
 VL G F*-

7 = 1 

Note that C^N{Lt) = 0 Vi and that LiC^L,)) = 0V/=> C^N(L) = C^(L). 
Thus the computed information y = N(f) changes the measure /x by shifting 
the mean element from zero to m^ and by modifying the correlation operator 
from C^ into 0 in the linear subspace span[L l5 . . . , LJ . 

The a posteriori measure p(M\y) defined by v(C\y) = n2(S~\C\y)) is 
defined on the Borel sets of the Hilbert space G. It is Gaussian with mean 
my = Sm^2 and has correlation operator Cv N(L) = S{C^ N(LS)) VL e G*. 
From Theorem 8 it follows that the algorithm 

*(y) = t yjSc^Lj) 
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is an optimal error algorithm since it is the mean of the a posteriori distribu-
tion. The algorithm $ can be expressed in the form $(y) = So(y% where 
o:N(F) -> F has two key properties: 

(i) N(o(y)) = y (o interpolates data). 
(ii) Among interpolants satisfying (i), a has minimal norm with respect to a 

certain norm depending on p (a is a p-spline). 
For this reason $ is referred to as a p-spline algorithm (see Wasilkowski and 

Wozniakowski [1982]). 
More generally, Lee and Wasilkowski [1986] establish the optimality of 0 

assuming only that G is a linear space (not necessarily normed), that S is 
linear (not necessarily continuous), and for a general error criterion (including 
the one we have discussed with an arbitrary p e [1, OO)). 

Continuing the Hubert space development, we summarize and push ahead 
by stating the following theorem. 

THEOREM 9. Let S:F -> G be linear and continuous, with F a separable 
Banach space and G a separable Hilbert space. Let ju be a Gaussian measure on 
F with mean element zero. Let N = [L1? . . . , L J be nonadaptive information, 
where the L(. G F * are orthonormalized as indicated above. Then with correlation 
operators C , Cv, and Cv N as defined above, 

(a) An optimal error algorithm is given by 

*O0= tyjSC^Lj). 

(b) The radius of information is given by 

[r™(N)]2 = t race(Q^) - trace(Q) - £ ^(C^f. 

PROOF. See Papageorgiou and Wasilkowski [1986]. 
The result of part (b) can be interpreted as follows. Before any computation 

has been done (via N) we only know the a priori measure v and the best 
approximation to elements g = Sf is zero (the mean of v) with average error 
[trace(Q)]1/2. Formally this corresponds to the zero information operator 
whose average radius is given by rave(0) = [trace(C„)]1/2. Thus, trace(Q) 
measures the a priori uncertainty when only the formulation of the problem is 
known. After the computation of y = N( f ), the best approximation is the 
mean of the a posteriori measure v(M\y); and the trace of its correlation 
operator measures the a posteriori uncertainty râye(N) = [trace(Q ^)] 1 / 2 . The 
quantity T,"==l\\S(CfXLj)\\2, the difference between these two trace values, 
depends on the solution operator S, the a priori measure \x (through its 
correlation operator), and the information operator N. The larger this dif-
ference is, the better the information provided by N. Under the assumptions of 
Theorem 9 the optimal error algorithm is linear. It would be nice to extend 
Theorem 9 to more general spaces and measures. 

OPEN PROBLEM 5. Find general conditions on the spaces F and G and on 
the measure JU under which there exists a linear optimal error algorithm in the 
average case. 
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B. Adaptive vs. nonadaptive information in the average case. In surveying the 
question of whether adaption is more powerful than nonadaption for linear 
problems in an average case setting, we encounter a small surprise. While 
generally paralleling the results of the worst case, average case results are, in a 
sense, even stronger. We assume that the solution operator S : F -> G is linear 
and that F is a separable Banach space equipped with a probability measure \x. 
We make no assumptions on G other than that it be a normed linear space. 

Let Na be adaptive information with fixed cardinality n (n(f) = n V / e F ) . 
Thus, 

^ ( / ) = [ L 1 ( / ) , L 2 ( / ; ^ 1 ) , . . . , L W ( / ; ^ , . . . , ^ _ 1 ) ] , 

where y. = L,(ƒ; yl9..., yt_x\ £,.(•; yl9..., yt-X) e F* and L,(ƒ;•) is mea-
surable. For given adaptive information Na we define nonadaptive informa-
tion by fixing all values yt via y* = [^f, j>2*,..., .)>„*_ J G IR""1. We then 
define 

Nyr»(f)=[L1(f),L2(f;yl*),...,Ln(f;y1*,y2*,...,y^l)}. 

Such information is indeed nonadaptive, has the same cardinality as Na, and is 
structurally simpler and easier to implement than Na. 

The following general result holds under a variety of assumptions on F, on 
its measure JU, and on G. 

THEOREM 10. Given adaptive information Na with fixed cardinality there exists 
a vector y * such that 

r™(N™n) < r*ye(Na). 

Thus, in terms of intrinsic error as defined by the radius of information, adaption 
does not help in the average case. 

PROOF. This result was proved by Traub, Wasilkowski, and Wozniakowski 
[1984] when F and G are finite-dimensional Hubert spaces and /x is an 
elliptically contoured measure, and by Wasilkowski and Wozniakowski [1984a] 
when F and G are separable Hubert spaces and JU is orthogonally invariant. 
With no conditions on G (other than that it be a linear space), the result was 
extended by Wasilkowski [1986b] to a separable Hubert space F with a 
Gaussian measure; and by Lee and Wasilkowski [1986] to a separable Banach 
space F with a Gaussian measure. 

With information of varying cardinality, Wasilkowski [1986a] shows that, 
while adaptive information can be more powerful, there are reasonable hy-
potheses under which adaption does not help. Furthermore, even in the general 
case, there exists equally powerful "nonadaptive" information provided we 
allow its cardinality n( ƒ ) to have one of two values. 

C. Average case ^-complexity and optimal information for linear problems. 
Throughout this section let S:F -> G be linear and continuous, with F a 
separable Banach space and G a separable Hubert space. Let N = 
[Ll9 L2,..., Ln] be nonadaptive information where the Lt can be chosen from 
the collection A of allowable continuous linear functionals. How should they 
be chosen to minimize the average radius of information? 
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[/•avWf= ƒ 

We assume that /A is a Gaussian measure on F with mean zero and 
correlation operator C . Without loss of generality, we further assume that 
LjiC^Lj)) = 8;j for any particular N that we are working with. Then the 
optimal error algorithm results from §A yield that the average radius of 
information is given by 

I n I I 2 

\Sf- E LjirtSC^LMl ii(df). 
I 7 = 1 II 

We wish to find continuous linear functionals Lj that minimize the average 
radius. 

Following Papageorgiou and Wasilkowski [1986], let Yl, Y l , . . . >̂e a n ortho-
normal basis for G (if dim(G) < oo set yt = 0 for / > dim(G)) chosen so that 

sp*n[s(CllL1),...,S(Cl>Ln)] ç span[ Y l , . . . , Y J . 

Letting Cv be the correlation operator of the measure v = ixS'1 and recalling 
that Cv is nonnegative definite and has finite trace, we have 

OO 00 

[r™{N)]2> I ƒ (sf,yj)
2n(df)= z <<;?,•, Y,> 

7 = « 4-1 F 7 = «4-1 
n 

= trace(C„)- E (Qy^Y,-). 
7 = 1 

Let Y/* be orthonormal eigenvectors for C„, C„Y/* = A/Y/*, with XJ. > X /+1 

(X, = 0 if / > dim(G)). It is known (see, for example, Marcus and Mine [1964, 
Chapter 2]) that 

E <C,y,,Y,>< E <QYAÏ*>= E A,. 
7 = 1 7 = 1 7 = 1 

The above paragraph immediately gives ràve(N) > [Lf=n+l\j]
1/2. This 

bound is sharp for A = F* (i.e., if all continuous linear functionals can be 
computed). Indeed, let k = sup{i:Xt > 0} and let m = min{k,n). Then 
X, > 0 for /' < m. Define information N* = [LJ, . . . , L*], where L*(f) = 
( 1 / fcXSf, Y*> for / = 1,2,..., m. Then 

LT{C,LJ) = —î—^ ƒ' <sf9yrxsf9y;Mdf) = ^<QYi.,v> = v 

From Lf(C^LJ) = 5/y- and from the definition of Lf, we have 

jr(s{c^f),y,*) = 8lj. 

Since the Y/* are orthonormal, SiC^L*) = JXyY*. Thus from part (b) of 
Theorem 9 we obtain rave(/Vw*) = [E5<Lm+1Xy]

1/2. We then have: 

THEOREM 11. In the above setting, N* is the nth optimal information and the 
optimal error algorithm using N* takes the form 

* o p t K*(/) )= i(Sf,yj*)y; 
7 = 1 

with error given by e($op\ N*) = r(N*) = [L°°=n + l\j]
1/2. 
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Note that <ï>opt is the truncated Fourier series of the solution element Sf 
with respect to the orthonormal basis consisting of eigenvectors of the corre-
lation operator Cv. 

We illustrate Theorem 11 by the multivariate approximation problem studied 
by Papageorgiou and Wasilkowski [1986]. Let f.D = [0,1]^ -> IR be a func-
tion of d variables. By f^^-^d) w e m e an /• partial derivatives of ƒ with 
respect to xj9 j = 1,2,..., d. 

Let F be the Banach space of functions for which /(r 'r '••• , r) is continuous 
and /(,i',2'---*,rf)(/) = 0 for all /• < r and any t with at least one zero compo-
nent. The space F is equipped with the norm ||/| | = sup / eZ) | /

( r ' r '"" r )(OI and 
with the classical Wiener measure placed on rth derivatives. 

Let G = L2(D) and let the solution operator S be given by the embedding 
Sf = ƒ. The eigenvalues Xt of the measure v = /x£_1 are given by 

The eigenvectors yi are the solutions of the differential equation 

X ^ ( r + V + 2 , . . . , r + 2 ) ( J C ) _ ( - l ) ^ / ( x ) = 0 

with zero boundary conditions. The radius of information for N* is given by 

y/ï7TT[<ïïd(d-l)\]r+1 " /2 

The problem of optimal information in the average case setting becomes 
technically much more difficult if A is a proper subset of F*. In many 
practically important cases the only Hnear functional that can be computed 
are function evaluations. For example, let F be a space of scalar or multi-
variate functions ƒ defined on a domain ti ç IR .̂ Then L e A i f L ( / ) = / ( / ) 
for some t e Q. Some interesting work on optimal choice of evaluation points 
(called the optimal design problem in the statistical literature) can be found in 
Ylvisaker [1975] and Wahba [1971]. We thus propose: 

OPEN PROBLEM 6. For the general Hnear problem (or significant subclasses 
thereof) find «th optimal information consisting of function evaluations. The 
case of multivariate functions seems especially interesting. 

Assuming now that A = F * and investigating e-complexity we must con-
sider e-approximations using information operators N for which rawe(N) < e. 
Using the result of Theorem 10 (adaption does not help), we can restrict 
ourselves to nonadaptive information N. Proceeding in parallel fashion to 
what we did in the worst case, let 

m(e) = min{cardinahty of N : r*vc(N) < e). 

From the results just developed above for rave(N ), we then have 

m(e) = mmln: £ ^ . / ^ e /> 
I j=n+l ) 
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where the Xj are the eigenvalues of the correlation operator Cv for the measure 
v = ixS~l. By applying the algorithm Oopt described above to the m(e)th 
optimal information N*(e) we conclude that 

cm(e) < compave(e) < (c + 2)m(e) - 1. 
Here c is the cost of a single continuous linear functional evaluation and we 
assume that each addition and scalar multiplication in G costs unity. If 
combinatory cost is dominated by information cost (c » 1), we obtain 
compave(e) « cm(e). We conclude that the information N*(e) and the algo-
rithm Oopt are almost optimal. As in the worst case, it can be shown that the 
average e-complexity can go to infinity arbitrarily fast for any £ > 0. Thus 
linear problems can also be intractable in the average case setting. 

As in the worst case setting, we believe that for many linear problems the 
e-complexity is approximately proportional to the e-cardinality number m(e). 

OPEN PROBLEM 7. Obtain general conditions on the spaces F and G, the 
linear operator S, the measure /A, and the class of allowable linear functionals 
A such that comp(e) « cm(e). 

VI. Concluding comments. We have concentrated on worst case and average 
case settings for treating error and cost, as embodied in the definitions of 
radius of information, £-complexity, and algorithm optimaHty. A variety of 
other settings are possible—we briefly mention two of them here. In a 
probabilistic setting we relax the worst case requirement that the error be at 
most e for all problem elements in the domain F. Instead we work with a 
probability measure on F and a parameter 8 e [0,1] and we require that the 
error be at most e for a set of elements of measure at least 1 — 8. The cost in 
such a setting can be defined as in either our worst or average case treatments 
and either with or without concern about sets of measure < 8. The reader is 
referred to Wasilkowski [1986a, 1986b], Lee and Wasilkowski [1986], and 
Wozniakowski [1986b] for some of the initial work in this new setting. 

Another setting is motivated by the fact that it may be very difficult to 
determine the optimal information operator N * of a given cardinality n and 
even if it is found we may have r(S,N*)= oo. In such cases one may be able 
to fix ƒ e F and approximate S(f) by a convergent sequence of algorithm 
values. For obvious reasons this approach is referred to as the asymptotic 
setting. See Trojan [1984] and Wasilkowski and Wozniakowski [1984b] for the 
first general treatment of the asymptotic setting. Earlier Traub [1961, 1964] 
studied the asymptotic setting for the solution of nonlinear equations. This was 
the first work which utiHzed information-centered arguments in complexity 
theory. 

If, in conjunction with the various options for settings, we allow for different 
choices of error criteria such as absolute (the one we have used), relative, and 
normahzed, we obtain a small combinatorial explosion of possible settings for 
information-based complexity (see Wozniakowski [1986c] for analysis of in-
tegration with respect to some of these possible settings). To complicate 
matters further, it may sometimes be appropriate to work in mixed settings 
where, for instance, error might be measured in the worst case and cost in the 
average case. 
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Our focus has been on theoretical aspects of information-based complexity. 
Much interesting work is also being done to relate the theory to more applied 
branches of mathematics. We cite a few examples in the paragraphs that 
follow. 

For a survey of some results on approximate solution of linear partial 
differential and integral equations in the worst case setting see Werschulz 
[1985a]. To state one particular, Werschulz [1985b] considers the elliptic 
boundary value problem Lu = ƒ where L is a fixed linear elliptic operator and 
ƒ belongs to the unit ball in an appropriately chosen Sobolev norm. Note that 
this is an example of a linear problem since solution values depend linearly on 
ƒ. Werschulz [1982a, 1982b] gives necessary and sufficient conditions under 
which the finite element method is optimal. 

We believe it is important to generalize this work by allowing the elliptic 
operator to vary, for instance, as a function of coefficients in the elliptic form. 
Then it is natural to assume partial information on L as well as on ƒ. The 
problem then becomes nonlinear. 

OPEN PROBLEM 8. Find or estimate the e-complexity of the above nonlinear 
elliptic boundary value problem in the worst case or average case setting. 

The following nonlinear constrained optimization problem is treated in 
Nemirovsky and Yudin [1983]: let B be a subset of a real Banach space, let E 
be a class of continuous real-valued functions on B, and let 

F= {(fo,A,---, fm):fj ^ E îorj = 0,1,...,m). 

The solution operator S : F -> U is defined for ƒ = (f0,fi,..-,fm)by 

S(f) = mî{f0(x):x G Gmdfj(x) < Ofory = 1,2,..., m). 

Given e > 0, sharp estimates are given on the number m(e) of function 
evaluations of ƒ and ƒ ' required to find S( ƒ ) within e. Thus, if B is convex 
and E consists of convex functions, m(e) = 0(ln(l/e)); while if B is compact 
of dimension d and E consists of r times continuously differentiable functions 
(not necessarily convex), m(e) = 0((e - 1)^ / r) . Nemirovsky and Yudin do not 
study combinatory cost and hence only obtain lower bounds on the e-complex-
ity of this problem. 

OPEN PROBLEM 9. Find or estimate the e-complexity for the above nonlinear 
optimization problems. 

As our final applied example we mention the problem of solving the 
nonlinear equation f(x) = 0. This nonlinear problem is the subject of many 
papers in the worst case and asymptotic settings. A recent survey can be found 
in Sikorski [1985]. It would clearly be of interest to analyze this problem in an 
average case setting. Some significant results in this direction have been 
obtained by Smale [1985] and Shub and Smale [1985,1986a, and 1986b] under 
the assumption that ƒ is a polynomial of known degree. If, however, ƒ is 
merely assumed to be a smooth function, the average case analysis remains to 
be done. The choice of an a priori measure is by no means obvious. 

OPEN PROBLEM 10. Develop general results on the solution of nonlinear 
equations in the average case setting. 
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With regard to future directions for work in information-based complexity, 
we mention several general areas. As indicated above, many settings, both pure 
and mixed, have yet to be seriously explored. Likewise, little has been done 
with models of computation other than the real number model to which we 
have restricted ourselves. Finally, we mention the realistic possibility that the 
problem domain F may not be precisely specifiable (thus, for instance, we may 
not know exactly how many times functions in a given class are differentiable). 
The challenge of finding algorithms that work well for problems from a variety 
of possible domains is picturesquely called the "fat F" problem. See Motornyj 
[1973] and Werschulz [1982a, 1982b] for some specialized results on this 
problem. 

We have tried to highlight some of the interesting mathematics that has 
come into play in information-based complexity. A number of subject and 
application areas are clearly providing fruitful connections with the general 
theory. We believe, and our short Hst of open problems is one testimony to 
this, that information-based complexity offers much to interest and challenge 
mathematicians working in a variety of fields. 
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