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ABSTRACT

New methods are presented for estimating univari­

ate and bivariate Bezier distributions. A likelihood

ratio test is used to estimate the number of control

points for a univariate Bezier distribution fitted to

sample data. To estimate the control points of a bi­

variate Bezier distribution with fixed marginals based

on either sample data or subjective information about

the joint dependency structure, a linear-programming

approach is formulated. These methods are imple­

mented in the Windows-based software system called

PRIME-PRobabilistic Input Modeling Environment.

Several examples illustrate the application of these

estimation procedures.

1 INTRODUCTION

One of the central problems in the design and con­

struction of stochastic simulation experiments is the

selection of valid input models-that is, probability

distributions that accurately mimic the behavior of

the random input processes driving the system. In

many applications, it is critical not only to capture

the shape of the n1arginal distribution of each major

input random variable but also to accurately repre­

sent the stochastic dependencies between those vari­

ates.

Although many practitioners appreciate the need

for valid models of multivariate simulation inputs,

they lack effective and widely available tools for build­

ing such input models. Stanfield et al. (1996) de­

veloped a technique for fitting a multivariate dis­

tribution when the correlation matrix and the first

four moments for each marginal distribution have

been specified or estimated by the user. Because

the fitted joint distribution is built from univariate

marginals belonging to the Johnson translation sys­

tem (Johnson 1949a; Swain, Venkatraman, and Wil­

son 1988), the multivariate input-modeling technique

James R. Wilson

Department of Industrial Engineering

North Carolina State University

Raleigh, NC 27695-7906, U.S.A.

of Stanfield et al. has substantial flexibility. Unfortu­

nately, the fitted joint distribution does not belong to

the multivariate Johnson translation system (Johnson

1949b, Johnson 1987); llloreover, the corresponding

conditional distributions do not belong to the John­

son system-and this lack of "closure" makes it im­

possible to obtain convenient closed-form expressions

for the conditional distributions that naturally arise

in some applications.

Other approaches to multivariate input modeling

can be based on TES (Transform-Expand-Sample)

processes (J agerman and Melamed 1992a, 1992b;

Melamed, Hill, and Goldsman 1992) and ARTA (Au­

toRegressive To Anything) processes (Cario and Nel­

son 1996). Both methodologies enable the user to

specify the autocorrelation function out to an arbi­

trary lag for a univariate stochastic process with a

user-specified marginal distribution, but ARTA pro­

cesses seem to be substantially easier to use. Unfor­

tunately the conditional distributions associated with

TES and ARTA processes do not appear to possess

any advantages in analytical or numerical tractabil­

ity when compared to multivariate processes based

on the Johnson translation system.

In this paper we extend the input-modeling

methodology of Wagner and Wilson (1993, 1994,

1995, 1996) for representing continuous univariate

and bivariate populations using Bezier distributions.

The remainder of this paper is organized as follows.

In Section 2 we summarize the main properties of

univariate and bivariate Bezier distributions, and we

establish some basic notation that is used through­

out the paper. In Section 3 we develop a likelihood

ratio test to estimate the number of control points

(that is, the number of parameters) for a univari­

ate Bezier distribution fitted to sample data. To

estimate a configuration of control points for a bi­

variate Bezier distribution with fixed marginals that

will yield a desired covariance structure based either

on sample data or subjective information, in Sec-
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t\vo-dimensional Bezier surface in three-dimensional

Euclidean space is given parametrically as

for all t x , t y E [0,1], where x, y, and z are the

(n x + 1) x (n y + 1) matrices of the X-, Y-, and z­

coordinates of the given control points {qi,j}' As in

(1) and elsewhere in this paper, we will suppress the

dependence of Bezier functions like Q(t I , t y ) on the

parameters n I , ny, x, y, and z \vhen no confusion

can arise froll1 this simplification.

tion 4 we present a fitting procedure that is formu­

lated as a linear-programming problem. These meth­

ods are implemented in the Windows-based software

system called PRIME-PRobabilistic. Input Modeling

Environment. A public-domain version of PRIME is

available upon request; and in Section 5 an appli­

cation of PRIME illustrates the effectiveness of these

distribution-fitting techniques. Finally in Section 6

we summarize the main contributions of this work

and we make recommendations for future research. '

2 OVERVIEW OF BEZIER

DISTRIBUTIONS

2.1 Definition of Bezier Curves

n x n y

L L Bnx,i(t x )Bny,j(t y ) qi,j

i=O )=0

(3)

A Bezier curve of degree n with control points {Pi ==
(Xi,Zi)T: i = 0,1, .. . ,n} is given parametrically by

2.3 Univariate Bezier Distributions

for t E [0, 1], where x == (XO, Xl, ... , xn)T and

z == (zo, Zl, ... , zn)T respectively denote the vectors

of x- and z-coordinates of the control points {Pi}, and

where the blending function B n ,i (t) is the Bernstein

polynomial

n

P(t) = P(t; n, x, z) = L Bn,i(t) Pi

i=O

(1 )

In this subsection we SUll1111arize briefly some key

properties of univariate Bezier distributions. For a

detailed developIl1ent of these properties, see \IVagner

and \Yilson (1993. 1996). Given a continuous ran­

dom variable J\ \\'ith bounded support [x*, x*] and

unkno\vn cun1ulative distribution function (c.d.£.)

Fx (-), we can approximate Fx(-) arbitrarily closely

by a Bezier curve of the form (1) with sufficiently high

degree n, where

for all t E [0, 1]. If FxC) is given parametrically by

(4), then the corresponding probability density func­

tion (p.dJ.) fx(-) is given parametrically by x(t) in

(4) together with

n

x(t) LBn,i(i) Xi

i=O
(4)n

Fx[x(t)] LBn,i(t) Zi

i=O

(2)

for t E [0, 1] and i = 0,1, ... , n. (Throughout this

paper, all vectors will be column vectors unless oth­

erwise stated; and the roman superscript T will de­

note the transpose of a vector or matrix so that each

control point is understood to be a column vector.

Moreover, we will use the simpler the notation P(t)

in (1) when no confusion can arise from this usage.)

In the definition (1) of the Bezier curve, we note

that the control points act like "magnets"; and the

"magnetic attraction" exerted on the Bezier curve

{P(t) : t E [0, 1]} by the ith control point Pi is

strongest at the value t = i/n for the parameter t

so that the corresponding point P(t) on the curve

is "in the vicinity" of Pi' If the weight (magnetic at­

traction) of a control point is 1, then the Bezier curve

is forced to pass through that control point exactly

(Farin 1990).

2.2 Definition of Bezier Surfaces

n-l

L Bn-l,i(t)~Zi

fx[.r(t)] = -~=--.,;;...._Ol-----

L Bn-l,i(t)~.ri
i=O

for all t E [0, 1], where

~ I ~ . i _== X.....i+l - .....r. i } ~or,\. I' i = 0, 1, ... , n - 1.
u ... z = ",z+l - "'z

(5)

(6)

If selected control points are represented by the

column vectors {qi,j == (Xi,j, Yi,j, Zi,j)T : i =
0,1, ... , n x ; j = 0,1, ... , n y }, then the corresponding

In Wagner and Wilson (1993, 1996), we present sev­

eral applications of the Bezier family of univariate

distributions for modeling simulation inputs.
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2.4 Bivariate Bezier Distributions

In this subsection we summarize briefly some key

properties of bivariate Bezier distributions. For a de­

tailed development of these properties, see Wagner

and Wilson (1994, 1995). If ( ..l, y")T is a continu­

ous random vector with bounded support [x*, x*] x

[y*, y*], unknown c.d.f. Fxy(-, '), and unknown p.d.f.

fxyC, '), then we can approximate Fxy(-,·) arbitrar­

ily closely with an appropriate Bezier surface of the

form (3) that has sufficiently large values of n x and

n y (Farin 1990), where

x(t x ) == L Bnx ,i (t x ) Xi for all t x E [0, 1], (7)

i=O

n y

y(ty ) == L Bny,j(t y) Yj for all t y E [0, 1], (8)

j=O

and

n x n y

Fxy[x(tx ), y(t y )] == LLBnx,i(tx)Bny,j(iY)::i,j (9)

i=O j=O

2.5 Estimating Bezier Distributions

Using PRIME

PRIME is a graphical Windows-based software system

that is used to construct both univariate and bivariate

Bezier distributions. PRIME is designed to be easy

and intuitive to use. The construction of a Bezier

distribution is performed through the actions of the

mouse, and several options are conveniently available

through menu selections. To manipulate a c.d.f., the

user may move any of the control points by clicking on

a chosen control point and then dragging that control

point to the desired location by moving the mouse.

Control points are represented as small black squares,

and each control point is given a label corresponding

to its index i in Equation (4). The user may also

add or delete control points via the mouse and the

keyboard. Any movement, addition or deletion of

a control point causes the displayed distribution to

be updated (nearly) instantaneously so that the user

gets immediate feedback on the effects of editing that

distribution. See Wagner and Wilson (1993, 1994,

1995, 1996) for more information on PRIME.

3 ESTIMATING THE NUMBER OF

CONTROL POINTS

X(I) ~ X(2) ~ ... ~ XCm)

are the order statistics for the sample {..lj}. Thus the

optimal value of the likelihood function £n (x, z IX)

for the given sample X is Ln(in, Zn IX).

A likelihood ratio test is used to estimate the num­

ber of control points of a univariate Bezier distri­

bution. If the random sample X == {..Yj : j ==
1, ... , m} has been taken from a univariate Bezier

p.d.f. fxC; n, x, z) that is given parametrically by (.5)

with a known value of n, then the maximum likeli­

hood estimates in, Zn of the x- and z-coordinates of

the control points {Pi : i == 0, ... , n} in (1) are ob­

tained by solving the following nonlinear optimization

problem:

for all tx,t y E [0,1]. In Wagner and Wilson (1994,

1995) we describe special properties of the x, y, and

z matrices that are required to ensure the validity of

the parametric representation (7)-(9) of a bivariate

probability distribution.

To represent the control points for each nlarginal

distribution of Fxy(-, '), we observe that the {Xi}

in (7) and the {Yj} in (8) respectively serve as the

x- and y-coordinates of the control points for the

nlarginal c.d.f.'s FxC) and Fy (-). We reserve the
(X) .

symbols {::i : 1. == 0,1, ... , n x } to denote the ::-

coordinates of the control points of Fx ( .); and we re-
(Y) .

serve the symbols {::j : J == 0,1, ... , n y } to denote

the z-coordinates of the control points of Fy (.).

If Fxy (., .) is given parametrically by Equations

(7)-(9), then the corresponding bivariate density

function Ixy C, .) is given parametrically by x(t x ) in

(7) and y(t y ) in (8) together with

Ixy [x(t x ), y(t y )] == (10)

nx-lny-l

L L Bnx-l,i(tx)Bny-l,j(ty) iliilj::i,j
i=O j=O

[
nx-I ] [n y - 1 ]L Bnr-1,i(tx) D.Xi L Bny-1,j(ty ) D.Yj

z=O )=0

for all t x , t y E [0, 1], where

ilj Zi,j == Zi,j +1 - ::i,j }

D.iD.jZi,j = Zi+l,j+l - Zi,j+l - Zi+l,j + Zi,j (11)

for i == 0,1, ... , n x - 1 and j == 0,1, ... , n y - 1.

mIn.
Z,Z

s. t.

where

m

£n(x, zlX) == IT fx(X j ; n, x, z)

j=1

Ix [x(t); n, x, z] > 0 for t E (0, 1)

Zo =°
::n = 1

xo < -'Y(I)

X n > "YCm )

, (12)
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Next we consider the hypothesis that the sanlple

X was actually taken from a Bezier distribution with

one additional control point-that is, with a total

of n +2 control points rather than the n + 1 con­

trol points postulated in (12). For a hy pothesized

Bezier p.dJ. fx('; n+ 1, x, z) involving one additional

control point, let Xn+l and Zn+l respectively denote

the maximum likelihood estimators of the x- and z­

coordinates of the corresponding control points; and

let £ntl (int1 I Znt1 1X ) denote the corresponding

maximum value of the likelihood function. Using the

matrix representation of Bezier curves of degree n

and n +1, we can show that any nth degree Bezier

curve can be represented as an (n + 1)st degree Bezier

curve whose control-point coordinates are subject to

two linear constraints (see §4.6 of Farin 1990). Thus

under the null hypothesis that n is the true degree

of the underlying Bezier distribution fronl which the

sample X was taken, Theorem 4.4.4 of Sertling (1980)

ensures that the likelihood ratio test statistic asynlp­

totically has a chi-square distribution with two de­

grees of freedom as the sample size m grows large:

2[£ntl (Xn+l1 Zn t1 1X)-£n(inlZnIX)]

~ X2 (2). (13)
m-oo

We exploit (13) to assess the importance of suc­

cessive increments of the likelihood function as the

number of control points is repeatedly incremented

by one. The final estimate of the number of control

points for the Bezier distribution fitted to the sanl­

pIe X is determined to be the smallest value of n for

which the difference on the left-hand side of (13) is not

significant at a prespecified level of significance. The

corresponding vectors xnand zn respectively provide

the final estimates of the x- and z-coordinates for the

fitted Bezier c.d.f.

4 ESTIMATING BIVARIATE

BEZIER DISTRIBUTIONS

A detailed derivation of the covariance between two

Bezier variates ~ \ and l,r is given in Flanigan (1993)

and Wagner and Wilson (1995). For completeness, we

summarize the final result. The covariance between

J"'( and Y, Cov(X, yr), is

where

for i = 0,1, ... , n x and

(16)

for j = 0, 1, ... 1 n y . Notice that the covariance de­

fined by (14)-( 16) depends on the coordinates of the

control points {qi,j : i =0, 1" .. , n x ; = 0, 1, ... , n y }.

If we are given a target covariance C that has

been elicited fronl experts or has been estinlated fronl

sanlple data and if we have previously estilnated the

Inarginals so that all of the following quantities have

fixed values

{
JX) {}(X) . . - 0 1 }x'· "1. - , , •• • ,nx

I''''z ' Z

and

{
(Y) (Y) " - }

y {} . . )-O,I, ... ,ny ,
J 1 J ' J

then \ve can match the value C as closely as possible

by minimizing the absolute deviation

as a 1inear fu nct ion of the {z i j : ·i = 1, ... , nx-I; j =

1, . , . , n y -I} subject to linear c o n ~ t r a i n t s that e n s ~ r e

a valid joint distribution. In partIcular the follOWIng

linear programnling problem must be solved:

Wagner and Wilson (1994, 1995) present a nlethod­

ology for estimation of bivariate Bezier distributions.

This technique requires fitting each marginal distribu­

tion separately; then the user must enlploy trial and

error in manipulating the control points either for the

joint p.d.f. or for selected conditional distributions in

order to match the joint dependency structure be­

tween the two components of the target randonl vec­

tor (X, y)T. This trial-and-error approach, however,

is extremely difficult to perform in practice; and this

difficulty motivated the development of the bivariate

fitting procedure given in this section.

nlinimize
w1 , W 2; all Z I,J :

I < i < n x - 1

I ~ j ~ n y - 1

WI + lV'~

(17)

(18)
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subject to by the final fitted b i v ~ r i a t e Bezier distribution, but

the target covariance C will be matched as closely as

is nlathematically possible.

_ ~n. I-I ~ ~ y - I [ ~ ' ~ ' 1 J ~ X ) 1 J ( . Y ) ] Zi .
L...,. i =1 L...,.J =1 Z) Z-1 ) - 1 ,) 5 EXAMPLES

To illustrate the application of the likelihood ra­

tio test (13) and the covariance-matching procedure

based on (18)-(21), we consider a sample data set

consisting of m == 672 bivariate observations that

were generated in a simulation-based forestry study.

Figures 1 and 2 depict the empirical and fitted

nlarginal distributions for .J\ and Y, respectively. Ta­

ble 1 displays the sample statistics for each marginal

distribution together with the corresponding popula­

tion characteristics for the marginal Bezier distribu­

tions that were fitted using PRIME.

The histogram in Figure 1 clearly reveals that the

distribution of the first coordinate X has two modes;

and in our experience some manual intervention be­

yond routine application of the likelihood ratio test

(13) is often required to obtain adequate fits to multi­

modal data sets. The fitted c.d.f. in Figure 1 was ob­

tained by using PRIME to position 11 control points

interactively so that n x == 10. An alternative ap­

proach is to automatically obtain a bimodal Bezier

p. d J. via the likelihood ratio procedure (13). Using

this approach, we had to start the test procedure with

11 control points; and with a significance level of 20%

for each iteration, the likelihood ratio test procedure

yielded a final estimate of 13 control points whose as­

sociated c.d.r. and p.d.f. closely resemble their coun­

terparts in Figure 1. On a 66 Mhz 80486-based mi­

crocomputer running Windows 3.1, four iterations of

the likelihood ratio test procedure (13) starting with

11 control points (n x == 10) and stopping with 13

control points (n x == 12) required 4.6 minutes of exe­

cution tinle for this univariate data set. Note that the

execution time reported here is for a nonoptimized,

debugger-enabled version of PRIME rather than a pro­

duction version of the software; and substantially bet­

ter execution times are expected for the final produc­

tion version of the software.

Because the histogram in Figure 2 strongly sug­

gests a unimodal distribution for the second coordi­

nate Y, we applied the likelihood ratio test (13) start­

ing with three control points (so that n y == 2 initially)

and using a 20% significance level for each iteration of

the test procedure. Figure 2 also displays the final fit­

ted c.d.f. and p.d.f. with 6 control points (so that the

final estimate is n y == 5). On a 66 Mhz 80486-based

microcomputer running Windows 3.1, five iterations

of the likelihood ratio test procedure (13) starting

with 3 control points (n y == 2) and stopping with 6

(21 )

(20)

(19)

Zi+1,j+1 - Zi,j+1 - Zi+1,j + Zi,j ~ 0

(}') (Y)

Zn I - 1 ,j +1 - :::n I - 1 ,j :S Zj +1 - Zj

i=1

as well as

j=1

(X) (Y)
Zn -1 n - 1 > :::n -1 + Zn -1 - 1

I ,y - I Y

ZI,j+l - ZI,j ~ 0

(X)
ZI,n y-1 :S Z1

for i == 1, ... , n x - 2 and j == 1, ... , n y - 2; and finally

for i == 1, ... , TlI-I and j == 1, ... , Tl Y - 1. In

this fornlulation WI and W2 respectively represent

the positive and negative parts of the estimation er­

ror as defined in (19); the constraints in (20) ensure

that the joint density Ixy (-, .) is positive; and fi­

nally (21) represents the standard nonnegativity con­

straints. Notice that in (19), the first and second
. (X) (Y) (X)ftt)(Y)

dIfferences ~ i z i , ~ j : : : j ,and ~ i ~ j 1 J i - I U j _ 1 are

defined in the same way as the analogous quantities

~ i X i , ~ j Y j , and ~ i ~ j : : : i , j in (6) and (11).

The linear progranlnling problem (18)-(21) must

be solved to complete the estimation of a bivariate

Bezier distribution. This problem consists of (n x ­

2)( n y - 2) + 2( Tl x - 2) + 2( n y - 2) +4 == n x n y structural

constraints involving (n x - 1)(Tl y - 1) + 2 == n x ny ­

n x - Tl y + 3 decision variables. Thus it follows that

the target covariance Cmay not be exactly achieved
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Prime - SPRBIM4X.VAR PDF

file Edit Fit Windows Qptions

Help

t(x) axis...

f(x)
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0.096

0.064
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-1.0 3.3

Figure 1: Fitted and Empirical Marginal Distributions of J\ for Sanlple Data Set
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0.800
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0.600

0.400
0.014

0.200
0.007

0.000 0.000

-41.0 -21.1 -1.2 18.7 38.6 58.5 -41.0 -21.1 -1.2 18.7 38.6 58.5

Figure 2: Fitted and Empirical Marginal Distributions of Y for Sample Data Set
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Table 1:

"vagner and Wilson

Fitted vs. Empirical l\Iarginal Distributions of Sample Data Set

Characteristic

Mean

Standard Deviation

Skewness

Kurtosis

Minill1um

Maximum

Fitted

S.2:30

3.227

0.997

4.162

-0.323

19.824

..\ },r

Empirical Fitted Empirical

5.310 6.117 6.097

3.314 14.210 13.781

0.845 0.2S2 0.155

3.54S 3.259 3.276

0.000 -37.678 -36.000

19.500 55.000 54.000

control points (n y = 5) required about 49 seconds of

execution time for this univariate data set.

Starting fron1 the fitted ll1arginal distributions de­

scribed above with n x = 10 and n y = .5, we applied

the covariance-matching procedure (18 )-(21) to the

entire bivariate data set. The sample covariance and

correlation for this data set were

respectively; and the corresponding values for the fit­

ted bivariate Bezier distribution were

The resulting bivariate density is displayed in Fig­

ure 3. Clearly the fitted bivariate p.d.f. is also bi­

modal. On a 66 Mhz 80486-based ll1icrocomputer

running Windows 3.1, solution of the linear prograll1­

ll1ing problem (18)-(21) required about 3 seconds of

execution till1e.

6 CONCLUSIONS AND

RECOMMENDATIONS

The likelihood ratio test (13) provides a means for

automatic determination of an appropriate number

of control points in fitting a univariate Bezier dis­

tribution to sample data. However in our com­

putational experience, the log-likelihood function

£n (x, z IX) corresponding to a univariate Bezier

c.d.f. Fx (.; n, x, z) is often extremely flat in the

neighborhood of the exact maximum likelihood es­

till1ates. From the standpoint of visual closeness be­

tween the empirical c.d.f. FxC) and the fitted c.d.f.

Fx(-; n, in, %n), we have consistently obtained bet­

ter fits with PRIME by using the methods of least

squares or minimull1 L 1 norm estill1ation rather than

the ll1ethod of maximum likelihood to calculate the

parameter estimates Xn , zn used in each stage of the

test procedure (13). With this modification, the like­

lihood ratio test (13) yields excellent fits to many

types of sample data with 4 control points (n == 3) so

that effectively the fitted univariate Bezier distribu­

tion frequently has 6 parameters.

The covariance-ll1atching procedure based on (18)­

(21) often yields excellent fits to the joint depen­

dency structure exhibited by bivariate sample data

sets, but there is no guarantee that the target covari­

ance or correlation between the two components of

the random vector (..Y, yr)T will be achieved even ap­

proximately. It appears that a relaxation of the sys­

tem (20) of constraints may sometimes be required

to match a given target covariance; but in such cases

it is unclear how to ensure that the fitted bivariate

Bezier c.d.f. has a legitimate p.d.f. Although further

investigation of this issue is required, the general ap­

proach outlined in Section 4 of this paper promises

to yield highly effective methods for fitting bivariate

Bezier distributions to sample data or subjective in­

formation.
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