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Recent Developments in Machine Learning for

Energy Systems Reliability Management
Laurine Duchesne, Efthymios Karangelos, Member, IEEE, and Louis Wehenkel

Abstract—This paper reviews recent works applying machine
learning techniques in the context of energy systems reliability
assessment and control. We showcase both the progress achieved
to date as well as the important future directions for further
research, while providing an adequate background in the fields
of reliability management and of machine learning. The objective
is to foster the synergy between these two fields and speed up
the practical adoption of machine learning techniques for energy
systems reliability management. We focus on bulk electric power
systems and use them as an example, but we argue that the
methods, tools, etc. can be extended to other similar systems, such
as distribution systems, micro-grids, and multi-energy systems.

Index Terms—Machine learning, reliability, electric power
systems, security assessment, security control.

I. INTRODUCTION

A
RTIFICIAL INTELLIGENCE (AI) emerged as a re-

search subfield of computer science in the near aftermath

of the second world-war, and started to expand towards

software engineering in the 1970’s. Recently, AI and more

specifically Machine Learning (ML) has become a ‘must-

have’ technology and a very active research field addressing

complicated ethical and theoretical questions. This recent

boom is facilitated by the continuous growth in the availabil-

ity of computational power and advanced sensing and data

communication infrastructures.

ELECTRIC POWER SYSTEMS (EPS) emerged during

the early twentieth century, became soon ubiquitous,

and progressively more and more computerised since the

1970’s. Recently, EPS started to undergo a revolution, in

order to respond to societal and environmental challenges;

renewable energy sources, micro-grids, power electronics, and

globalisation are indeed changing their game. The changes

characterising such revolution are pushing the existing ana-

lytical methods for power system reliability assessment and

control to their limits.

The first proposals for applying ML to EPS dynamic

security assessment and control (a part of EPS reliability

management) were already published during the 1970’s and

1980’s [1]. In spite of a significant number of academic

publications since then, only a few real-world applications

have been reported. This should be contrasted by the very

significant practical impact of control, simulation, optimisa-

tion, and estimation theories on EPS engineering, and in

particular on their reliability management. Recently, research

on the application of ML to EPS reliability management has
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experienced a very vivid revival. This is hopefully not only

explained by the trendy behaviour of the research community

and funding agencies, but rather by the fact that new ideas and

techniques are available and liable to increase the potential for

real-world impact.

This paper seeks to foster the synergy between the electric

power and energy systems and machine learning communities

and enable further work both by industry and academia, in

order to speed up the practical adoption of machine learning

techniques for energy systems reliability management. To

do so, we analyse the recent machine learning applications

for electric power system reliability management over the

past 5 years. We focus on showcasing both the progress

achieved to date as well as the important future directions

for further research. In order to address audiences from both

communities, we briefly provide an adequate background in

the fields of reliability management and of machine learning.

Finally, while we focus here on the electrical power systems,

we also discuss how the progress with the use of machine

learning applications in this field can be the blueprint for

applying machine learning in the broader context of other

energy systems, such as distribution systems, micro-grids, and

multi-energy systems.

The rest of this paper is organised as follows: sections

II and III synthetically present the required background in

reliability management and in machine learning; section IV

provides statistics about the publications of ML applied to EPS

reliability management since the year 2000, while sections

V, VI and VII review published works over the last 5 years.

Section VIII discusses open problems and directions for future

work in the context of distribution systems, micro-grids and

multi-energy systems reliability management.

II. RELIABILITY MANAGEMENT BASICS

In this section we introduce electric power systems relia-

bility management, to set the background for sections IV-VI,

in the interest of readers outside the electric power systems

community. In particular, we introduce the decisions, time

horizons and uncertainties related to reliability management,

the differences between security and adequacy, as well as

between static and dynamic security, and finally the functions

of reliability assessment and reliability control and the current

challenges to tackle these tasks.

A. Types of decisions, time horizons & uncertainties

In general terms, (electric power) system reliability ex-

presses a level of confidence in providing a continuous supply
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(of electricity) to the system end-users. Reliability manage-

ment concerns taking decisions to ensure that, in spite of

uncertainties, the system reliability shall be suitable over some

specified future time horizon.

With a long-term perspective (indicatively, 10-30 years

in advance), the main decision is to define the additional

infrastructure investments needed to keep the future system

reliable enough. Next, in a mid-term context (typically 1-

5 years ahead in time), the prevailing question is how to

maintain the functionality of the existing system through

repairs and/or replacements of its individual components. Last,

but certainly not the least, short-term operation planning (a

few months to a few hours ahead) and real-time operation

jointly aim at deciding how to optimally deliver electricity

from the producers to the end-users while enabling equipment

maintenance and infrastructure building activities.

Various types of uncertainties and various spaces of can-

didate decisions challenge all these complex and large-scale

decision making problems. Better uncertainty modelling, en-

hanced probabilistic and/or robust decision making frame-

works, and more effective algorithms for optimal decision

making under uncertainties are therefore main directions of

R&D in electric power systems reliability management.

B. Adequacy & security

From a functional standpoint, power system reliability can

be sub-divided into adequacy and security [3], respectively

defined as,

Adequacy – the ability to supply with high enough probability

the end-users at all times, taking into account outages of

system components;

Security – the ability to withstand sudden disturbances such

as electric short circuits or nonanticipated loss of system

components without major service interruptions.

A reliable power system thus exhibits both (i) redundancy

to adequately supply the load demand even when some of

its components remain unavailable, and (ii) plasticity to se-

curely ride-through sudden, unanticipated disturbances and/or

disconnections of some of its components.

Adequacy emphasises on the system dimensioning to ac-

commodate the variability and stochasticity of the end-user

demand, while also taking into account the (random) un-

availabilities of system components. Typically, (in)adequacy

is evaluated over a period of time, ranging from a few months

to many years, and expressed by indicators such as loss of load

probability or expected energy not supplied [3]. It may also

be quantified in terms of the socio-economic impact of service

interruptions to the system end-users, through indicators such

as the expected cost of energy not supplied. Explicit adequacy

criteria are commonly used in long-term planning applications

adopted by many system operators [4].

Security complements adequacy by focusing on the opera-

tion of the system while it undergoes state transitions initiated

by unexpected exogenous disturbances and is canalised by

various preventive or corrective control actions (cf. “The

adaptive reliability control system” of T. Dy Liacco [5]). The

diagram shown in Fig. 1, originally introduced in [2] based on

a simpler version already given in [5], depicts the transitions

among power system states from the security perspective.

Security assessment aims at determining at which security

level the system is currently residing, whereas security control

aims at deciding control actions to move towards a more

secure state. The vast domain of security (assessment and/or

control) is further decomposed into dynamic and static security

(assessment and/or control).

Dynamic security characterises the ability of the system

to complete the transition from the pre-disturbance operating

state to a post-disturbance stable equilibrium state. Here, three

main physical phenomena are at (inter)play, giving rise to

respective classes of (in)stability, namely rotor-angle, voltage

and frequency (in)stabilities [6]. We refer the reader to the

textbook of Kundur [7] for an explanation of the physical and

mathematical modeling properties of these phenomena.

Rotor-angle stability concerns the equilibrium between the

mechanical (input) and electromagnetic (output) torque of

synchronous generators, keeping all machines of an intercon-

nected power system rotating at a common angular speed. It

is further classified into small-signal and transient rotor-angle

stability, according to the magnitude of the studied distur-

bances. Transient rotor-angle stability concerns the ability to

sustain large disturbances such as short-circuits followed by

the disconnection of one or more transmission lines, whereas

small-signal stability concerns the ability to absorb stochastic

variations of demand and generation. The physics of both

concern relatively fast dynamics ranging over a few seconds

following a disturbance.

Voltage stability refers to the ability of the power system

to avoid an uncontrollable deterioration of the voltage level

at its buses. At the extreme, voltage collapse is the situation

wherein the system bus voltages reduce to unacceptably low

levels. The behaviour of electrical loads and tap-changing

voltage transformers restoring the consumed power after a

disturbance is the main phenomenon potentially driving the

system to voltage collapse. The dynamics of these phenomena
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are typically slower than those concerning rotor-angle stability,

and they may range over several minutes.

Frequency stability concerns the ability of the system to

contain the frequency deviations caused by large mismatches

between generation and demand resulting for example from

the loss of large generators or fast variations of the load.

Frequency stability is an issue of major concern under islanded

operation, following some event that results in splitting the

interconnected power system into disconnected under-/over-

generated sub-parts. In systems with low electromechanical

inertia, such as systems with predominantly photovoltaic and

inverter-connected wind-power generation systems, frequency

(in)stability is likely to become a major problem. While loss of

synchronism typically takes at most a few seconds, frequency

instability may take up to a few minutes to develop, and its

study thus requires the modeling of slower processes such as

boiler dynamics and load recovery mechanisms.

Finally, static security characterises the viability (typically

over a period of 5 − 60 minutes) of the steady-state reached

by the system following a contingency (i.e. a sudden line,

transformer or generator outage). The main physical aspect of

interest is compliance with the permanent capabilities of the

system components (e.g. current carrying or electric isolation

capabilities). Static Security Assessment (SSA) can be carried

out by using a Power Flow (PF) solver to calculate a post-

contingency state for each element of a set of contingencies.

In current practice the so-called “N-1” contingency set is most

often used: it is the set of disturbances corresponding to single-

component trippings (“N” denotes the total number of such

components). On the other hand, the Optimal Power Flow

(OPF) problem may be solved in order to determine least cost

decisions making a steady state viable.

C. Reliability assessment vs reliability control

Managing the aforementioned aspects to ensure the re-

liable supply of electricity is in practice achieved through

the functions of reliability assessment and reliability control.

Reliability assessment concerns evaluating the security and

adequacy metrics necessary to assess whether the system

reliability level is acceptable with respect to a certain reliability

criterion. It can be performed ex-ante to determine whether

taking a certain candidate decision suffices to achieve the

reliable operation of the system over a future horizon, or ex-

post to evaluate the effect of already taken decisions over some

past operational period. Reliability control concerns finding

the decisions so as to ensure that the system will comply

with a certain reliability criterion, and while optimising a

socio-economic objective [8]. The formalisation of reliability

assessment and control problems, as well as the challenges for

tackling these, depend on the precise reliability management

context of interest.

Starting from the shortest horizon, in the context of real-time

operation, the salient feature is the lack of computational time

to simulate the behaviour of the system in the time-domain,

re-evaluate the static operability of the system vs credible

contingencies and search for appropriate remedial actions. It

is thus necessary to rely on security rules prepared off-line

to classify the system dynamic security, while monitoring

its operation and its compliance with static security limits.

Similarly, emergency controls need to be implemented as soon

as possible to contain the unwanted deterioration of the system

state before it escalates, and thus can only be triggered on

the basis of pre-defined strategies. The challenge is therefore

to design simple yet robust assessment rules and closed-loop

control strategies, while also taking into account the reliability

of protection, control and communications infrastructures.

In the short-term operation planning context, reliability

management is further complicated by the need to take into

account (i) the uncertainty on the potential pre-disturbance

operating state of the system and the temporal evolution

thereof, and, (ii) the future remedial actions to be implemented

as per the respective real-time operation strategies. Analytical

methods, such as time-domain simulations for dynamic secu-

rity, power flow and optimal power flow for static security and

adequacy are the primary tools for reliability assessment. The

approach boils down to using such tools over a representative

sample of potential operating conditions, to compute estimates

of the respective metrics. The challenge is of course related

to the size of the sample needed to reach acceptable accuracy.

The Security Constrained Optimal Power Flow (SCOPF) is the

fundamental statement expressing the operation planning reli-

ability control problem, focusing mostly on static security [9]–

[11]. Different variants of this problem are cast under different

assumptions to fit specific operation planning questions (e.g.

from the linear, so-called Direct Current or DC approxima-

tions employed in market-based generation dispatching to the

optimisation of preventive/corrective actions under the non-

linear Alternating Current or AC power flow model). Further

from the dimensionality issues associated with injection (i.e.

load and generation) uncertainties, a key issue here is how

to effectively integrate dynamic security limitations in the

framework of such problem.

Taking the mid-term asset management perspective, the cen-

tral question for reliability assessment concerns the criticality

of a certain asset for the power system functionality, with

emphasis on the adequacy and static security aspects. Answer-

ing this question entails essentially simulating the operation

of the system with and without the asset in question, using

again power flow and optimal power flow methods in a Monte

Carlo style approach. Reliability control seeks to identify

which assets to maintain and when to do so. Component-

based reliability rules, triggering maintenance activities by age,

condition, maintenance frequency etc. are useful in practice

to answer the former question, taking into account the large

number of system components. The problem of maintenance

scheduling includes logistical considerations on top of the crit-

icality of assets for the network functionality. Such logistical

considerations reduce the (theoretically large) set of potential

maintenance schedules in a calendar year, to a smaller subset

of alternative moments per component in question. Still, the

scheduling question implies a large-scale stochastic mixed-

integer programming problem and the typical approach is to

use heuristics for finding a suitable moment for each prioritised

maintenance activity, while minimising the impact on reliable

operation.
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Finally, given the vast uncertainties in a long-term horizon,

reliability management can only be achieved by a recursive ap-

proach integrating assessment and control. The first step entails

identifying the needs of the future power system, employing

both adequacy/static security tools in Monte Carlo simulations

as well as dynamic security consideration to frame potential

future reliability problems. Exhaustive search is far from

being an option here and the challenge is to combine micro-

and macro- assumptions to generate manageable subsets of

future operational conditions. Based on identified problems,

expert knowledge as well as considerations on project timeline

feasibility, public acceptability, etc. are employed to arrive

at a small, manageable subset of potential solutions to the

identified needs. These solutions then need to be re-assessed

over a new set of realisations from the uncertainty models

while the final choice requires detailed study of both the static

and the dynamic behaviour of the resulting grid, as well as

socio-economic analysis with a view on electricity markets

and on the impact on the natural environment.

III. MACHINE LEARNING CONCEPTS

Machine learning exploits data gathered from observations

or experiments on a system to automatically build models

predicting or explaining the behaviour of the system, or

decision rules to interact in an appropriate way with it. In

this section we introduce the basic concepts of this field, to

serve as the background for sections IV-VI, in the interest of

readers outside the machine learning community. In particular,

we introduce the different types of machine learning problems

with a focus on supervised learning, feature selection and

engineering, how to choose a method, and how to assess the

accuracy of a model.

A. Different types of machine learning problems

To introduce the main types of machine learning problems,

we will use the probabilistic/statistical formalisation and ter-

minology and restrict to the so-called batch-mode setting. We

refer the interested reader to more general textbooks for further

information [12]–[14].

1) Supervised learning (SL): Given a sample {(xi, yi)}ni=1

of input-output pairs, a (batch-mode) supervised learning algo-

rithm aims at automatically building a model ŷ(x) to compute

approximations of outputs as a function of inputs.

The standard probabilistic formalisation of supervised learn-

ing considers x ∈ X and y ∈ Y as two (vectors of) random

variables drawn from some (joint) probability distribution Px,y

over X×Y , a real-valued loss function ℓ defined over Y ×Y ,

and a hypothesis space H of “predictors” (i.e. functions from

X to Y ), and measures the inaccuracy (named the expected

loss, or average loss, or risk) of a predictor h ∈ H by

L(h) = E{ℓ(y, h(x))} =

∫
X×Y

ℓ(y, h(x))dPx,y. (1)

Denoting by (X × Y )∗ the set
⋃∞

n=1
(X × Y )n of all finite

size samples, a (deterministic) supervised learning algorithm

A can thus formally be stated as a mapping

A : (X × Y )∗ → H (2)

from (X×Y )∗ into a hypothesis space H. Statistical learning

theory studies the properties of such algorithms, in particular

how well they behave in terms of loss L when the sample size

n increases [12].

Since SL is the most common type of machine learning

problem treated in reliability management, we describe in

more details the characteristics of SL in section III-B.

Methods: Methods like decision trees, neural networks,

linear regression, nearest neighbor, support vector machines

etc. belong to this category.

Power system example: A first example application is

the assessment of system stability after the occurence of a

disturbance [15]. In that case, the target output y typically

can take two values, stable or unstable, and the inputs x

could be real-time measurements of voltage at each bus and

power flow in each branch of the system. The problem then

amounts to building a model ŷ(x) that predicts, based on the

measurements, if the system is stable or unstable.

2) Reinforcement learning (RL): Given a sample of n

trajectories of a system

{(xi
τi
, diτi , r

i
τi
, xi

τi+1, . . . , d
i
τi+hi−1, r

i
τi+hi−1, x

i
τi+hi

)}ni=1,

batch-mode reinforcement learning aims at deriving an approx-

imation of an optimal decision strategy d̂∗(x, t) maximising

system performance in terms of a cumulated index (named

reward) over a certain horizon T , defined by

R =

T−1∑
t=0

γtrt, (3)

where γ ∈ (0, 1] is a discount factor. In this framework, xt

denotes the state of a dynamic system at time t, dt is the

control decision applied at time t, and rt is an instantaneous

reward signal [14].

From a theoretical point of view, reinforcement learning

can be formalised within the stochastic dynamic programming

framework. In particular, supposing that the system obeys to

time invariant dynamics

xt+1 = f(xt, dt, wt), (4)

where wt is a memoryless and time invariant random process

and obtains a bounded time invariant reward signal

rt = r(xt, dt, wt), (5)

over an infinite horizon (T → ∞), one can show that the

two following (Bellman) equations define an optimal decision

strategy

Q(x, d) = E{r(x, d, w) + γmax
d′

Q(f(x, d, w), d′)}, (6)

d∗(x) = argmax
d

Q(x, d). (7)

Reinforcement learning can thus be tackled by developing

algorithms to solve these equations approximately when the

sole information available is provided by a sample of system

trajectories. The theoretical questions that have been studied

in this context concern the statement of conditions on the

sampling process and on the learning algorithm ensuring

convergence to an optimal policy in asymptotic conditions (i.e.

when n → ∞).
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Methods: Methods such as Q-learning, State-Action-

Reward-State-Action (SARSA), and more recently Deep Q

Network (DQN) belong to this category.

Power system example: A possible application of rein-

forcement learning in power systems is emergency control,

where an RL algorithm could take a sequence of actions dt
when the system is in an emergency state in order to come

back to a normal state, as in [16]. Other examples can be

found in [17].

3) Unsupervised learning (UL): Given a sample of obser-

vations {zi}ni=1 obtained from a certain sampling distribution

Pz over a space Z, the objective of unsupervised learning

is essentially to determine an approximation of the sampling

distribution. In the most interesting case, Z is a product space

Z1 × · · · × Zp defined by p discrete or continuous random

variables, and the main objective of unsupervised learning is to

identify the relations among these latter, such as (conditional)

independence relations or colinearity relations, as well as the

parameters of their distributions.

Methods: Earlier work in this field concerned clustering

(for instance with the k-means algorithm), Principal Compo-

nent Analysis (PCA) and hidden Markov models. More recent

research topics, still very active today, concern independent

component analysis as well as the very rich field of graphical

probabilistic models, such as Bayesian belief networks [13].

Power system example: In the context of powers systems

reliability, unsupervised learning can be used for segmenting

automatically large scale power grids into coherent zones to

ease the management of the grid for control room operators

[18].

4) Semi-supervised learning: Semi-supervised learning

concerns a situation where the dataset is composed of a

labelled sample {(xi, yi)}ni=1 drawn from a joint distribution

Px,y and a second (unlabelled) sample {(xj)}n
′

j=1 drawn from

the corresponding marginal distribution Px. Semi-supervised

learning algorithms aim at exploiting both samples together to

find a predictor h that is hopefully more accurate than what

could be produced by a supervised learning algorithm using

only the labelled sample.

These types of methods are useful when it is relatively

‘easy’ to collect unlabelled data but relatively ‘difficult’ to

obtain labelled data.

Methods: Methods based on self-training, tri-training

and other algorithms such as semi-supervised support vector

machines belong to this category.

Power system example: In the context of dynamic secu-

rity assessment, one could use time-consuming simulations to

label as stable or unstable only a part of a database, and then

use semi-supervised learning to exploit the whole database in

order to build a classifier, as in [19].

B. Characteristics of supervised learning algorithms

In supervised learning a first main distinction concerns the

nature of the output space. When Y is a finite set of ‘class

labels’ one talks about classification problems (e.g. stable vs

unstable), while when Y is embedded in the set of real num-

bers (respectively in a finite dimensional euclidean space) one

talks about regression (respectively multiple-regression) prob-

lems (e.g. stability margin). But, beyond these two standard

types of supervised learning problems, there are many other

ones, as many as one can imagine output spaces structured in

some meaningful way.

Once an output space Y is defined, one can further refine

the nature of the problem by defining a particular loss function

ℓ(y, y′) over Y × Y . For example, for classification problems

one often uses the so-called 0/1-loss, which is defined by

ℓ(y, y′) = 1(y 6= y′) and counts the number of misclassifi-

cations, whereas for regression problems one often uses the

square-loss (y − y′)2. Once the loss function ℓ is defined, it

means that one targets the so-called “Bayes” model, which is

defined in a point-wise way by

hB(x) = arg min
y′∈Y

∫
Y

ℓ(y, y′)dPy|x, (8)

and is among all functions h of x the one minimising the

average loss L(h), defined as in (1). For example, in the case

of regression problems and with the square-loss, hB(x) is

identical to the conditional expectation of y given x, whereas

using the absolute loss |y − y′| would instead yield the

conditional median.

The next step in defining a supervised learning algorithm

consists of choosing a hypothesis space of functions H. As far

as loss minimisation is concerned, this space should ideally

contain the (problem-specific) Bayes model or at least models

sufficiently close to it in terms of the chosen loss function.

Given a choice of H, the empirical risk minimisation prin-

ciple then reduces supervised learning to solving the following

minimisation problem:

A({(xi, yi)}ni=1) = arg min
h′∈H

n∑
i=1

ℓ(h′(xi), yi). (9)

One can show that if H is ‘sufficiently’ small, it produces

models whose loss L converges towards minh∈H L(h), when

the sample size n increases, and that it converges faster if H
is of smaller ‘size’. As far as accuracy is concerned, the SL

algorithm should thus use an as small as possible hypothesis

space containing good enough approximations of hB .

Nevertheless, in addition to accuracy, computational com-

plexity of learning algorithms is often a concern. Indeed,

solving an empirical loss minimisation problem may require

huge computational resources if the hypothesis space is very

complex and the sample size n is very large.

Finally, beyond making ‘low loss’ predictions, the goal

of a machine learning application is often to help human

experts to understand the main features of the problem at

hand. Therefore, interpretability of the output of the machine

learning algorithm is another often highly desired feature.

C. Feature selection and feature engineering

When considering a particular application of machine learn-

ing, the raw datasets that are available are typically recorded

values of a large number of low-level individual variables

zj , some of which could be either inputs xj , outputs yk, or

decisions dl of some supervised and/or reinforcement learning

problem of interest.
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Often, it is suspected that some (or even a majority) of

these variables are actually irrelevant for the resolution of

some particular prediction or optimal control task. In other

applications, one would like to find a minimal subset of input

variables to be used by a supervised or reinforcement learning

method, so as to facilitate the practical application of the

resulting predictor or control policy without sacrificing too

much in terms of accuracy.

Thus, the machine learning field has developed various

methods for selecting “optimal” subsets of input variables

(feature selection) and for computing useful functions of the

original variables (feature extraction), based on the informa-

tion provided in a dataset [20].

D. Practical choice of a supervised learning method

The different supervised learning algorithms available today

(see [12], [13]), yield different compromizes between inter-

pretability, computational efficiency, and accuracy.

The choice of the most suitable algorithm is thus highly

application dependent, for several reasons: (i) the application

determines which one of these three criteria is the most

important one in practice; (ii) the application determines the

data-generating mechanism and loss function, hence the Bayes

model hB and thus how well different hypothesis spaces allow

to approximate this ideal target predictor; (iii) the application

domain conditions the size of the possibly available datasets,

impacting both accuracy and computational efficiency of most

algorithms, but in different ways.

This situation means that, typically, the one who is faced

with a particular application will try out a (more or less large)

subset of machine learning algorithms, analyse their behaviour

and results, and select the one which seems to fit in the best

way the need of the considered application. This “trial and

error” type of approach is the price to pay for the very broad

scope of machine learning applications.

E. Overfitting and honest model assessment

Because the empirical risk minimisation chooses models

to minimise the average loss over the learning sample, this

empirical risk is in practice strongly biased in an optimistic

way. It means that even if the selected predictor works very

well on the learning sample, there is no guarantee that it will

work well also on an independent test sample drawn from the

same distribution.

In order to assess the accuracy in an honest way, various

approaches have been developed and studied, such as the

“hold-out” method which keeps part of the data as a test

sample and uses only the rest of them to apply the learning

algorithm, or the k-fold cross-validation approach, which uses

the data in a more effective way at the price of higher

computational requirements [12].

Often, the cross-validation approach is also used in order to

select among several algorithms the one more suited to a par-

ticular dataset, or to adapt some algorithm’s “meta-parameters”

(e.g. number of hidden neurons, training epochs, strength of

weight decay penalisation), or even to help identifying a subset

of relevant input features. If this is the case, then a nested

model assessment approach is needed in order to honestly

assess the accuracy of the finally produced predictor [12].

IV. PUBLICATION STATISTICS SINCE 2000

In this section, we survey recent contributions to the field

of machine learning for electric power systems reliability. We

found (via Google Scholar and Scopus)1 366 papers in this

subject field that were published between January 2000 and

October 2019; their yearly counts are shown in Figure 2, which

clearly shows a strong growth over the last 5 years.
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Figure 3 shows the statistics of these papers in terms of

the different types of reliability management problems they

address. We observe that more than 50% of them address the

problem of dynamic security assessment. On the other hand,

1We used the following keywords to gather these papers: i. power system,
reliability, security, stability, learning; ii. power system, reliability, security,
stability, assessment, control, learning; iii. power system, reliability, security,
stability, assessment, control, learning, neural network, ANN, support vector,
SVM, nearest neighbours, decision tree, random forest. The retrieved papers
were analysed one by one to eliminate irrelevant ones from the statistics.
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we have observed a recent growth of the number of papers

applying machine learning to power flow and optimal power

flow computations (which are classified into the SSA and SSC

categories respectively).

Another interesting analysis is the type of machine learning

protocol exploited in our set of papers. Figure 4 shows the

number of papers using supervised learning, unsupervised

learning and reinforcement learning. It is clear that supervised

learning is by far the most popular type of machine learning

protocol used in these reliability management applications.

In the following two sections, we present in more details

how the different reliability management problems are ad-

dressed in the literature with a machine learning approach. We

first present papers exploiting machine learning for dynamic

security assessment, as well as (dynamic) emergency and

preventive control, since they constitute the largest part of our

survey. Then we present how machine learning was applied

for static security assessment and control, and to speed up

optimal power flow and power flow computations. We focus

this literature survey on the last 5 years. Table I presents an

overview of the works discussed in the next two sections,

classified in terms of the respective power system reliability

management application (i.e. transient, voltage, frequency or

small-signal stability, dynamic and static security).

V. WORKS ON ML FOR DSA & DSC SINCE 2015

Dynamic security is a particularly suitable application for

machine learning, given the need for fast assessment and

control and the computational burden inherent to classical

approaches such as time-domain simulations. Figure 5 shows

the four steps generally followed to exploit machine learning

in this context. We discuss them one-by-one hereafter.

A. Database building

The first step to apply machine learning for security assess-

ment and control is the database building. In most papers, due

to lack of historical data availability, simulations are used to

generate a security database. Another advantage of simulation

is that it allows to sample operating points defining well

the security boundary, which is typically not the case with

historical data, for which most operating points are stable [21].

The database generation is then usually done offline, given the

extensive simulation cost to build it, while the application of

the resulting model trained on the dataset can be done offline

or online, depending on the application and the context.

TABLE I
MAIN SECURITY PROBLEMS ADDRESSED WITH A MACHINE LEARNING

APPROACH AND CORRESPONDING REFERENCES

Security problems addressed References

Transient stability

[15], [16], [19], [22], [27]–[29],
[32], [34], [35], [37], [38], [41],

[43], [45], [47], [49]–[52],
[54]–[56], [63], [64], [67]–[73],
[75], [76], [81]–[83], [85]–[88],

[90], [92], [93], [98], [102], [105],
[107], [113], [115]–[117]

Voltage stability

[26], [30], [39], [40], [42], [44],
[46], [48], [53], [60], [65], [66],

[78], [79], [89], [91], [97], [100],
[103], [108]–[110], [114], [123]

Small-signal stability
[21], [22], [61], [62], [74], [120],

[121]

Frequency stability [80], [84], [104], [106], [112]

Dynamic security
[25], [31], [33], [36], [57]–[59],

[77], [94], [95], [99], [101], [118],
[119], [122]

Static security
[18], [23], [24], [74], [96], [111],

[120], [121], [124]–[175]

In order to generate a database based on simulations, the

first step is to generate representative operating states of the

system. The main uncertainties in power systems relate to

load patterns, topology configuration and generation. It is

impossible to sample all operating conditions and therefore

Monte-Carlo simulations are used in most papers, but other

techniques to sample from a multi-dimensional distribution

are possible, such as the latin hypercube sampling [22].

In DSA and DSC applications, the input-features of the

database often come from Phasor Measurement Units (PMU),

which are devices allowing to monitor the power system state

in real-time. They measure synchronously voltage phasors

at buses where they are located and current phasors in the

branches connected to these buses.

The target output of the database depends on the task. Most

studies build classifiers to predict the stability status of the

system, considering either transient, small-signal, voltage or

frequency stability. Others are more interested in quantifying

the distance to instability, by exploiting regressors to predict

for instance the security margin, the voltage stability index, the

so-called Critical Clearing Time (CCT), i.e. the maximum time

available to clear a disturbance before the system becomes

unstable, etc. Finally, for control purposes, some predict

directly which decisions, such as generation re-dispatch, to

Model 

learning
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building

Data 
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Model 

validation & 

maintaining

Simulations
Real data collection

Feature engineering
(Feature selection, 

Feature extraction)

Class imbalance
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Emergency DSC
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Adaptation to system changes
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Fig. 5. Usual steps followed to exploit machine learning in DSA & DSC
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apply. These outputs are usually obtained with time-domain

simulations of the power system.

The quality and representativity of the database has a major

impact on the effectiveness of the ML approach. For instance,

for a database based on simulation, if the representation

of the problem is too simple, this could lead to a learnt

model with very good performance on data generated with

the same distribution as the database but bad performance

when it is used in practice, in a real situation. Furthermore,

the input variables must allow one to discriminate well the

target output(s). If it is not the case, the problem may be

hard to learn and one may overfit noise, which could lead to

difficulties to obtain an efficient model. The database must

also be large enough for the model to be able to capture all

the subtleties of the studied problem, in order to obtain high

generalisation performances. Another important aspect for the

person exploiting the database is to know the hypotheses used

to generate it, if this is a database based on simulations, and to

know the data collection process, if if it is based on real-life

data. In general, when the quality and/or representativity of

the database is insufficient, the learnt models cannot be used

to perform security assessment and/or control in practice.

Recently, given the importance of the database genera-

tion step, papers focusing mainly on building more effective

databases for machine learning-based security assessment and

control were published [21], [23], [24]. In [23], the authors

propose an approach using Vine-Copulas to generate more

representative states of power systems. They show on a test-

case that the security classifier built with this approach is

superior to the one build with data obtained from a classical

approach. Thams et al. exploit in [21] convex relaxation

techniques and complex network theory to discard large parts

of the input space and thus focus on the regions closer to the

security boundary. In order to build a database representing

well the security boundary, they use a ‘Directed Walks’ algo-

rithm to identify the security boundary. Finally, [24] proposes

a method to generate datasets to characterise the security

boundary which cover equally the secure and insecure regions.

In particular, they introduce infeasibility certificates based on

separating hyperplanes to identify, for large portions of the

input space, the infeasible region.

Furthermore, to help dealing with a massive amount of data,

in [25], the authors propose a distributed computing platform

for data sampling, feature selection, knowledge discovery and

online security analysis.

B. Data pre-processing

Once a dataset is built, the data can be processed before

being fed to a learning algorithm. This step may in some cases

be mandatory. Processing the data can improve the quality

of the predictions of learning algorithms, increase training

speed and transform data in more meaningful representation

to facilitate model training. In this section, we distinguish

feature engineering and class imbalance management. Table II

provides an overview of the main data pre-processing methods

used for DSA and DSC discussed below.

TABLE II
MAIN DATA PRE-PROCESSING METHODS USED FOR DSA & DSC OVER

THE LAST FIVE YEARS AND CORRESPONDING REFERENCES

Methods References

Feature

engineering

Feature

selection

Filter methods [22], [26]–[36]

Wrapper methods [34], [35], [37]

Genetic algorithms [38], [39]

Tree-based
algorithms

[40]–[43]

Feature

extraction

PCA and variants [44]–[46]

Fisher’s linear
discriminant

[47]

Shapelets for time
series

[48]

Deep learning
auto-encoders

[49]–[52]

Class

imbalance

Oversampling [24], [53], [54]

Cost-sensitive
learning

[53], [55]

Ensemble methods
[41], [45], [56],

[57]

1) Feature engineering: Given the large number of features

necessary to fully describe the state of a power system and

the need for fast algorithms, feature selection techniques are

proposed in many papers. Too many features can lead to exces-

sive training time and, if many features are not relevant, could

decrease the performance of the learnt model. In the machine

learning literature, several techniques have been proposed to

reduce the number of features. In power systems applications,

the ‘Relief’ method, which is is a filter-based method, has been

used alone [22], [26], or combined with a PCA to reduce even

more the number of features [27], [28]. Variants of this method

such as ‘Relief-F’ have also been used [29]–[33], mostly to

improve the predictions of randomised learning algorithms

such as extreme learning machines.

Combining both filter and wrapper methods for feature

selection, Zhou et al. [34] use the improved ‘Relief-Wrapper’

algorithm to select a subset of features and in [35], the authors

propose a hybrid filter-wrapper feature selection algorithm

using the ‘Relief-F’ method to find top weighted features

and then the Sequential Floating Forward Selection method

to select the most relevant set. In [37] a backward feature

selection approach is used, on the other hand.

Genetic Algorithms (GAs) can also be used to select fea-

tures. In [38], the authors use Particle Swarm Optimization

(PSO) based feature selection. Packets of features are drawn

randomly with PSO and the selected packet is the one max-

imising the mean of the standard deviations of the packet. In

[39], the authors first apply a mutual information criterion to

remove less significant features from the dataset and then use

a multi-objective biogeography-based optimisation program to

keep the most relevant ones.

In [36], the authors use the symmetrical uncertainty to

reduce the number of features and improve the performance

of the algorithm. It consists in computing correlation between

pairs of features based on entropy and mutual information, to

keep relevant features and remove redundancy.

Another method for feature selection is based on tree-based
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learning algorithms. These algorithms allow to evaluate the

importance of each feature for predicting the target output.

Feature importances are by-products of the tree-based algo-

rithm and can be used to identify the most important features,

such as in [40]–[43]. This can also give insight about the

power system dynamic security assessment problem under

consideration.

Feature selection algorithms allow to select the most rel-

evant features. Another field of feature engineering is the

feature extraction field. It consists in transforming the data to

represent it in a more meaningful way, facilitating the learning.

Generally, it also reduces the dimensionality of data. PCA and

its variants are often used as a feature extraction tool [44]–

[46], as well as Fisher’s linear discriminant [47] and shapelets

for time series [48] but recently, an approach based on deep

learning auto-encoders was proposed [49]–[52].

Furthermore, feature selection can help to find the most

useful PMUs in a network, e.g. the least number and best

locations of PMUs for a given DSA application [37], [42].

2) Class imbalance: In most databases, the proportion of

stable observations is much larger than the proportion of

unstable ones. This is due to the high reliability of power

systems. However, this imbalance between classes can degrade

the quality of the learnt models, that could be biased toward

the majority class. The problem is particularly important, given

that unstable events must be detected to guarantee the relia-

bility of the system. To overcome this issue, several solutions

have been proposed in the literature, such as oversampling

the minority class [24], [53], [54], undersampling the majority

class, exploiting a cost-sensitive learning [53], [55] and using

ensemble methods [41], [45], [56], [57].

Oversampling is usually preferred to undersampling, to

avoid loss of information. The Synthetic Minority Oversam-

pling Technique (SMOTE) adds new observations of the

minority class by interpolating linearly data points between

adjacent observations of the minority class. A variant of

the SMOTE technique is used in [53], combined with cost-

sensitive learning to compensate for class imbalance. Cost-

sensitive learning consists in using different costs for different

classes during learning, in order to, for instance, avoid as much

as possible misclassifying unstable samples. Using another ap-

proach, suitable because of their data representation as images,

Hou et al. artificially increase the number of samples of the

minority class by using a multi-window sliding recognition

method [54]. The database generation method proposed by

Venzke et al. in [24] allows to generate balanced dataset

between secure and insecure labels.

Ensemble methods can also help for class imbalance prob-

lems. For instance, in [56] the authors exploit the diverse

extreme learning machine algorithm to determine transient sta-

bility. They show that adding diversity can improve accuracy

in case of the class imbalance problem. Another example is

the use of bagging and, instead of sampling uniformly in the

training set, sampling to obtain balanced subsets of training

set [45]. Finally, it is possible to use an Adaboost ensemble

method, which adapts itself to class imbalance [57], or a

‘Weighted Random Forest’, that gives more weight to the

unstable observations when learning [41].

Reference [55] uses an ad hoc loss to avoid instability

detection while [53] uses distinct costs for stable and unstable

observations while learning, in order to minimise the misclas-

sification of unstable samples.

C. Learning a model

Many learning algorithms have been tested to build models

for DSA & DSC. Most of the time, training is done of-

fline but the model is sometimes updated online. Recently,

given the success of deep (neural networks) learning, several

papers have proposed to use this technique. However, other

learning algorithms such as decision trees and Support Vector

Machines (SVMs) are still exploited. Ensemble methods are

also proposed in the literature to improve performances. In

this section, we present how ML algorithms are exploited for

dynamic security by considering first security assessment, then

emergency control and finally preventive control.

1) Security assessment : DSA applications are particularly

suitable to apply machine learning techniques and many papers

exploiting ML to improve DSA were found over the last five

years. Table III provides an overview of the main machine

learning algorithms used for DSA. The acronyms that appear

in the table are defined in the discussion below.

Since many learning algorithms exist, all with their advan-

tages and disadvantages, comparing several algorithms with

your dataset is the best way to know which algorithm is more

suitable for your application. In [28], a decision tree model

is compared to SVMs and neural networks for transient sta-

bility assessment. The same algorithms are compared in [58],

but this time considering also the random forest algorithm.

Reference [85] compares decision trees, SVMs, core vector

machines and naive Bayes models while [91] compares several

ensemble methods (XGBoost, Bagging, Random Forest, and

AdaBoost) with Naive Bayes, k Nearest Neighbor (kNN) and

decision trees, this time for voltage stability assessment. In

[59], the authors propose an automated multi-model approach

for online security assessment. In [60], several learning algo-

rithms such as random forests, Kohonen networks and hybrid

neural networks were tested to predict the security status,

considering several labels such as normal, alarm, serious alarm

and emergency. Note that, depending on the application, the

most suitable algorithms may change.

TABLE III
SUPERVISED LEARNING ALGORITHMS USED FOR DSA IN THE LAST FIVE

YEARS AND CORRESPONDING REFERENCES

Algorithms References

Neural Networks

FFNN [22], [28], [58]–[69]

CNN [49], [54], [55], [70]–[74]

ELM
[19], [29]–[33], [35], [56],

[59], [75]–[80]

RNN [37], [81]–[84]

Support Vector Machines (SVM)
[15], [28], [39], [50], [51],

[57]–[59], [85]–[90]

Tree-based methods

Decision trees
[28], [36], [42], [44], [48],
[58], [59], [85], [91]–[96]

Ensemble
[27], [40], [41], [43],

[58]–[60], [91], [97]–[101]

k Nearest Neighbor (kNN) [45], [91]
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Recently, due to the success of deep neural networks in other

applications, many researchers tackled the dynamic security

assessment problem with such an approach. Classical Feed-

Forward Neural Networks (FFNNs) are used as classifiers to

predict the small-signal stability [61], oscillatory stability [62]

or transient stability [63]; or as regressors to predict the CCT

or damping ratio [22], the CCT and final value of rotor angle

after a fault [64], the load stability margin [65] or a voltage

stability index [66]. In [67], a MapReduce algorithm is used

to parallelise the learning of several networks and predict both

stability status and the transient stability index. In [68], when

the prediction is not credible, time-domain simulations are

used to improve the efficiency and in [69], in the context of

pre-fault assessment, contingencies are first clustered and then

a multi-label neural network is learnt per cluster, to predict the

stability status after the occurrence of each contingency in the

cluster.

Reference [46] proposes to use deep belief neural networks

for voltage stability and another ensemble of neural networks

with random weights to predict first if there will be a voltage

collapse and then, if no voltage collapse is detected, the

transient voltage severity index [26]. Another neural network

approach is the Extreme Learning Machine (ELM) algorithm.

It is fast to train, and thus can be easily updated during

operation. In the literature, ensembles of ELMs are used

mostly for stability classification [19], [29], [32], [35], [56],

[75], [76], or combined with random vector functional links

[31], [33], [77]. It was also used for regression, to predict load

stability margins [78], the fault-induced voltage recovery [30],

[79], and maximum frequency deviation and time [80].

Convolutional Neural Networks (CNNs) have also been

used, in particular for transient stability assessment [49], [54],

[55], [70]–[73]. Reference [74] proposes to represent the

power system state as a (3-channel) image to take advantage

of the convolutional neural network algorithm for small-signal

stability. In [70], a twin convolutional SVM network is used

while in [72] a hierarchical self-adaptive method, with one

CNN per type of features, determines the stability of the

system. In [73], a cascade of CNNs works with time-domain

simulation to improve efficiency for pre-fault assessment. Time

domain simulations are performed one cycle at a time and are

used as inputs of the CNN. If the prediction of the CNN is

credible, time-domain simulations are stopped.

Recently, Recurrent Neural Networks (RNNs) were also

proposed, because of their ability to consider temporal cor-

relations, either with Long Short-Term Memory (LSTM) units

[37], [81], [82] or Gated Recurrent Units (GRU) [83], [84].

More classical algorithms are however still exploited in the

literature. For instance, SVM methods are used for transient

stability [50], [51], [86]–[88] or voltage stability [39], [89].

SVMs are easier to train than neural network models and they

can be used to predict the stability status of the power system

(stable or unstable) or a voltage stability margin index [89].

The parameters of the SVM can be optimised with a grid

search algorithm or particle swarm optimisation [88], [89]. In

order to increase the accuracy of the assessment, in [87], two

SVM models are used, an aggressive and a conservative one.

This allows to predict a third class, called the grey region,
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Fig. 6. Number of papers addressing power system dynamic security
assessment problems per machine learning algorithms

when both models disagree, to indicate when the assessment

is uncertain. Ensembles of SVMs [57], [90] or variants of

the SVM such as core vector machines [15] have also been

proposed to increase the accuracy of the classification.

Tree-based methods are still popular in the power system

literature. A huge advantage of them is their interpretability,

which is important in reliability management. Single Decision

Trees (DTs) are used to predict the stability status of the

system [36], [42], [44], [48], [92]–[94]. In [94], the authors ex-

plore a trade-off between predictive accuracy and interpretabil-

ity. To improve accuracy, ensembles of decision trees such as

Adaboost [27], [97], XGboost [43] and Random Forests [40],

[41], [98]–[101] are proposed. In [101], uncertain predictions

are checked with time-domain simulations. In the European

project iTesla, decision trees are used for online security

assessment. The platform developed within this project for

online static and dynamic security assessment is presented in

[95], [96].

The simple kNN algorithm is used in [45] with bagging to

predict transient stability. Logistic regression, after a stacked

denoising auto-encoder is used in [52] to predict post-fault

stability status. Less common approaches have also been

proposed, such as unsupervised learning with PCA [102] and

semi-supervised learning when few observations are labelled

[19]. In the latter, the ‘Tri-training’ algorithm is used, which

consists in training three models with a small subset of labelled

data and then adding an unlabelled sample to the training set

of a classifier only if the two other classifiers agree.

Figure 6 summarises the number of papers per learning

algorithm for DSA. One can notice that neural network

algorithms have been very popular in the last five years.

2) Emergency control: Instead of predicting the stability

state of the system, data-driven models can be used to choose

an emergency control decision, or to give insight about the

best corrective control actions for the actual situation. Table

IV provides an overview of the publications about dynamic

security emergency control according to the main machine

learning approach used.

Reinforcement learning [16], [103], [104] or adaptive dy-

namic programming [105], [106] are used to improve voltage,

frequency or transient stability. Supervised learning techniques

can also be used. For instance, in [47], the authors train

a decision tree classifier to evaluate transient stability and

thanks to the Fisher linear discriminant, they evaluate the

sensitivity of each generator and load to stability and then
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TABLE IV
ML PROTOCOLS AND SL ALGORITHMS USED FOR DYNAMIC SECURITY

EMERGENCY CONTROL OVER THE LAST FIVE YEARS

Methods References

Reinforcement learning [16], [103], [104]

Adaptive programming [105], [106]

Unsupervised learning [107]

Tree-based algorithms [47], [108]–[110]

Neural networks [111]–[113]

define emergency control actions accordingly. In [111], the

authors use a neural network to assess the generators that need

to be re-dispatched and the loads that need to be shed.

In [107], patterns of unstable dynamic behaviour in the

dataset are identified with an unsupervised learning technique

and then a classifier is used to determine in which pattern the

actual situation falls. This indicates which generators may lose

synchronism to help for emergency control decisions.

In [108], an ensemble of decision trees is used to assess and

control voltage stability. There is one decision tree per possible

combination of control action status (1 or 0, depending if they

are used or not), indicating which control combinations lead

to a secure system. The control actions combination chosen is

the one leading to a secure action with a minimum number of

control devices used. This approach is also used in [109], but

there is first identification of voltage control areas, to reduce

control candidates.

In [112], the authors propose to control a hybrid energy

storage system for load-frequency control. They design an

adaptive control based on a neural network, the design of

which being facilitated by a Hammerstein-type neural network

to identify the storage system. In [110], the authors use

a proximity driven streaming random forest algorithm with

L-index as indices for voltage stability. The algorithm can

determine corrective and/or preventive control actions, such

as additional reactive power injections, and localise critical

nodes, where the system is close to a stability loss.

In the context of transient stability, in [113] a neural

network is used to estimate the gain for a static synchronous

compensator auxiliary controller, that needs to be adjusted

according to the system operation point to obtain the desired

CCT. The gain computation is heavy and thus a neural network

model is proposed to reduce the computational burden.

3) Preventive control: Several approaches have been pro-

posed in the literature for preventive control regarding dynamic

security. Table V provides an overview of the publications

about dynamic security preventive control according to the

main machine learning approach used.

The first approach consists in using machine learning to

predict the preventive control scheme. For instance, in [114],

the authors propose to use multi-objective reinforcement learn-

ing for short-term voltage stability, in order to minimise both

voltage deviation and control action cost.

The second approach consists in identifying candidate con-

trol actions for preventive control. In [115], the authors pro-

pose a preventive control scheme by rescheduling generating

units. First, they assess the transient stability of the system

TABLE V
ML PROTOCOLS AND SL ALGORITHMS USED FOR DYNAMIC SECURITY

PREVENTIVE CONTROL OVER THE LAST FIVE YEARS

Methods References

Reinforcement learning [114]

SVM [34], [38], [115]

Neural networks [116]

Tree-based methods [117]–[121]

Linear models [122]

with a hybrid method based on a SVM model and time-domain

simulation. Then, if the system is unstable, they compute from

the SVM model the sensitivity of each generator to a transient

stability assessment index (derived from the SVM model) to

rank the generators and select the ones that are more effective

for improving the stability. In [38] the authors exploit SVMs

for determining the coherency of generating machines in the

context of transient stability. The purpose is to rank generators

according to their vulnerability, based on a transient stability

index, to facilitate preventive control (rescheduling of gener-

ation). Finally, in [32], the authors use the Relief-F feature

selection method to identify critical generators modifying the

security status of the operating condition. These generators are

then considered as candidate control variables for preventive

control. A bit different, but still to help preventive control,

Mokhayeri et al. propose a method based on decision trees

for detecting the apparition of islands [117].

Another main approach, quite recent, consists in building

models of dynamic security assessment and then extracting

security rules from these models that can be embedded in op-

timisation problems, to define control actions considering dy-

namic security. Indeed, classifiers built with machine learning

contain knowledge about stable and unstable regions. Cremer

et al. exploit decision trees to embed the rules determining the

output of the classifier in a decision-making problem (i.e. an

OPF) [118]. This allows to compute control decisions consid-

ering the stability boundary. In their paper, the authors present

the challenges of this approach, which are the computational

complexity to build the database and the accuracy of the

such sample-derived rules. This approach is further developed

in [119], where learnt condition-specific safety margins are

proposed to be incorporated in a decision-making program.

These margins allow, according to the authors, to improve the

risk/cost balance. An ensemble of decision trees (Adaboost)

is used to perform probabilistic security control.

In [120], the authors propose to build with machine learning

line flow constraints to be incorporated in a market clearing

program (under the form of a SCOPF) to improve both small-

signal stability and steady-state security. They use a decision

tree-based classifier to extract knowledge. The decision trees

rules consist in conditional line transfer limits, that can be

embedded in the SCOPF in order for the operator to take

decisions already in line with the small-signal stability margin.

An extension of this work to solve an AC-SCOPF instead of a

DC-SCOPF is proposed in [121], while still incorporating N-

1 security and small-signal stability with decision tree-learnt

rules. In [116], the authors are solving an OPF considering
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transient stability constraints. An artificial neural network

approximating the CCT of a fault is embedded in the OPF

formulation. This guarantees that the preventive decisions will

be such that the CCT of all considered faults is greater than a

defined minimum value. A bit different but still embedding

a machine learnt model in an optimisation program, the

authors of [34] build a two-stage SVM model to determine

the transient stability region that is embedded in a decision-

making program to determine preventive control actions. The

final transient stability-constrained OPF being non linear and

non convex, the authors propose to solve it with particle

swarm optimisation. Finally, in [122], the authors propose to

automatically learn operating rules for a stability constrained

system.

D. Validating and maintaining a machine learnt model

In this section, we present first how researchers in relia-

bility management proposed to deal with the frequent system

changes in a power system and then what can be done when

data is missing or erroneous.

1) Dealing with system changes: System changes such as

topology changes are common in power systems but they

can impact the quality of prediction of the machine learnt

models. To overcome this issue, several papers propose to

regularly retrain or update the model with new data acqui-

sition. Regarding neural network models, in [65], the model

is updated with misclassified samples when a certain number

of errors occurred. Online sequential ELM models were also

proposed, as in [32], [80], because they are fast to train

and can be updated regularly. Another approach is to use a

recurrent neural network. In [83], an online monitoring system,

consisting in a stacked GRU based recurrent neural network, is

shown to be able to adapt to topology change. Concerning tree-

based methods, Yang et al. update decision trees in real-time

using an online boosting method [108], while [97] presents

a very fast decision tree system based on Hoeffding trees

to quickly update online an Adaboost ensemble of decision

trees. Furthermore, Tomin et al. propose the proximity driven

streaming random forest algorithm that can independently and

adaptively change the model [110].

Another solution proposed in the literature is active learning

[71], [123]. For instance, in [123], the authors propose an

active learning solution that consists in updating the model

with real samples when the model prediction is not consistent

with the actual system condition. More specifically, they train

and update the model with data for which the prediction

contradicts with the actual stability state of the system.

2) Missing or erroneous data: During online assessment or

control, when exploiting PMU data, many events can occur

such as PMU malfunctioning, time delays, communication

loss, noise in the measurements and loss of data packets.

Therefore, it is important to develop models able to deal with

these missing data or erroneous measures. When erroneous

measure are outliers, they can be detected, for example by

using the Z-score algorithm [65]. Concerning missing data or

detected erroneous measures, it is possible to estimate their

values, either by interpolation techniques such as polynomial

curve fitting technique [65] or by using machine learning

techniques such as an ensemble of extreme learning machines

and random vector functional links [33] or the emerging deep

learning technique called Generative Adversarial Networks

(GAN) [77]. Instead of replacing missing data with estima-

tions, some authors try to build a model robust to incomplete

measurements by extending the training database with samples

containing incomplete measurements [86].

VI. RECENT WORKS IN SSA & SSC

The methodology to exploit machine learning for static

security assessment and control is similar to the one used

for dynamic security, although the input variables and target

outputs vary in function of the application. Therefore, we

directly present how ML is applied to solve the different static

security assessment and control problems. We organised this

section considering the power system tool that is considered

to be replaced or enhanced with machine learning techniques.

In particular, we consider power flow computation, optimal

power flow solving, and unit commitment optimisation.

A. Prediction of power flows

Table VI sets out the main target outputs of the ML methods

used in the context of static security assessment, to replace

or enhance power flow computations, the exploited learning

algorithms, as well as their corresponding references.

Some papers studied the possibility to replace the power

flow computation by a proxy, for a faster static security

assessment. For instance, [124] uses a deep neural network

to estimate power flows very quickly. The authors propose

to exploit it to help operators in the control room to choose

remedial actions such as network topology modification after

a contingency. Improving their previous work, they introduced

guided dropout to enable the estimation of flows for a range

of power system topologies [125]. The guided dropout method

uses some neurons that are only activated if the corresponding

TABLE VI
MAIN ML APPROACHES FOR POWER FLOWS PROBLEMS OVER THE LAST

FIVE YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References

Power

flows

Neural networks [124]–[129]

SVM [130]

(Composite)

Security indices

Neural networks [131]–[133]

LASSO [134]

Security

status

Tree-based methods [135]–[140]

SVM [141], [142]

Security

margin

Neural networks [143], [144]

SVM [145]

Tree-based methods [146]

Critical

areas

Unsupervised learning [18], [147]

Neural networks [148]

SVM [149]

Transmission

reliability margin
Neural networks [150]

Total

transfer capability
Neural networks [151]
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line/breaker is disconnected, and the authors show that with

this approach, a proxy trained with only N-1 events can

generalise to N-2 events. This proxy is fast, and can be used to

rank (double) contingencies and estimate the risk of a grid state

[126], [127]. Finally, using historical data, a new type of neural

networks for predicting line flows in case of topology change

is presented in [128], where the authors introduce the Latent

Encoding of Atypical Perturbation (LEAP net) architecture, so

as to further improve the generalisation to unseen topologies.

Another proposal to predict line flows is to use SVMs with

linear kernels [130]. The proxy of power flows is used in

the context of designing a reserve policy, for better reserve

scheduling and allocation. In [129], a proxy of load flow

computation is built with an adaptive neuro-fuzzy inference

system to predict the voltage magnitude at all buses.

Load flow computations are also used to evaluate security

indices, indicating violation of transmission constraints, or

to evaluate composite security indices, indicating violation

of both bus voltage and power line transmission constraints.

Computing these indices can help the operator to rank the

considered contingencies according to their severity. In [131],

an artificial neural network is used to predict a security

index for each considered contingency. In [132], Radial Basis

Function neural networks are used to predict the composite

security index directly without computing load flows for each

contingency, in order to rank the contingencies. Features are

selected based on a Single Ranking and Correlation Coefficient

approach. In [133], the authors propose a neural network

trained with PSO, while, in [134], they use a LASSO (Least

Absolute Shrinkage and Selection Operator) method.

On the other hand, some papers assess the static security of

the system with security labels. For instance [135] uses deci-

sion trees and random forests for static security assessment.

[139] uses a deep auto-encoder to extract features and proposes

an objective-based loss function to learn the auto-encoder,

in such a way that it minimises the misclassification of

unstable observations. Multiway decision trees were exploited

in [140] to determine if the system is secure or insecure

while considering system topology. Furthermore, Stratified

Random Sampling was used to obtain the same proportion

of secure and insecure labels. In [141], the authors exploit

the SVM approach to classify contingencies as secure, alarm

or insecure and in [136], the authors test four decision tree

algorithms to classify the N-1 contingencies as secure or

insecure. Both papers also apply a sequential search algorithm

for feature selection. Finally, in [142] the authors propose

several Adaboost classifiers with SVMs as weak learners to

evaluate the static security state of the system and then evaluate

in case of insecure state the type of condition violation.

Feature selection is performed based on class separability and

correlation coefficient indices, while the class imbalance is

corrected using a SMOTE method.

In the context of static voltage stability assessment, several

load flows may be run to determine the voltage collapse

point and thus the voltage stability margin. In this context,

Fan et al. [152] propose a feature selection method based on

the maximum relevance minimum redundancy algorithm. The

authors repeat this procedure several times, starting with a

different feature each time, to obtain an ensemble of different

subsets of features. Then they perform curve fitting for each

subset in order to infer a relation between the features and

the voltage stability margin and they average the results to

obtain one prediction. In [137], the authors use PMU data for

online voltage stability assessment and deal with the problem

of frequent model update. Frequently updating the learning

model is useful to take system changes into account but it

can take time. To tackle this issue, the authors propose a

random forest algorithm, where only part of the decision trees

are updated each time instead of the whole model. They

use a weighted majority vote for the final prediction. They

also perform variable selection based on variable importances,

a by-product of random forest algorithms. Reference [145]

exploits the SVM learning algorithm (with a GA to optimise

the parameters of the SVM) to estimate the stability margin for

a given contingency. The final purpose is to estimate the static

voltage security risk. Reference [143] uses a neural network to

predict a unified voltage stability indicator and [144] exploits

a Radial Basis Function network to estimate a probabilistic

insecurity index. Finally, in [146], the authors compare two

feature selection methods, Relief-f and participation factor, to

predict the static voltage security margin with a decision tree.

They show that both methods are equivalent.

In [138], a hybrid approach of random forests and tree

boosting is used for the steady-state security analysis. They

consider four classes, normal, alarm, emergency correctable

and emergency non correctable.

Machine learning approaches can also be used for detec-

tion of critical areas. In [148], deep learning is used for

the detection of security weak spots using spatio-temporal

and meteorological data. In [147], the authors exploit the

unsupervised learning algorithm called k-means to identify

voltage stability critical areas, while in [149] SVMs are used to

detect these weak areas and then assess the voltage stability of

each area. Reference [18] proposes to exploit an unsupervised

learning technique to segment a power system into zones,

helping the operators managing the grid.

Finally, to help security assessment, [150] uses neural

networks to estimate the transmission reliability margin. On

the other hand, [151] proposes a method to predict total

transfer capability (available amount of power that can be

transferred on the tie-lines), which is an ensemble model with

adaptive hierarchical GA-based neural networks. A hybrid

feature selection based on Maximal Information Coefficient

(MIC) and nonparametric independence screening is used. The

maximal information method is used to reduce redundancy

between features by computing the MIC between two features

and eliminating one of them if the MIC value is greater than a

given threshold. Then the nonparametric independence screen-

ing evaluates the correlation between each resting feature and

the target output, to keep the ones with the highest correlation.

B. Prediction of optimal power flow features and outcomes

A more recent application scope of machine learning for

reliability management is to help out in solving OPF prob-

lems. OPF is extensively used by the operators for operation
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TABLE VII
MAIN ML APPROACHES TO SOLVE OPF PROBLEMS OVER THE LAST FIVE

YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References

Decisions
Neural networks [153]–[155]

Tree-based methods [156], [157]

Related

costs

Several

algorithms
[158]–[160]

LOL

status
Neural networks [161], [162]

Features

of the OPF

Neural networks [163], [164]

Statistical learning [165], [166]

Linear regression [167]

planning, to find optimal decisions considering physical and

operational constraints. They are also solved repeatedly during

operation. However these problems are non linear and non

convex and generally large-scale. Furthermore, close to real-

time, they must be solved within a short period of time,

considering the uncertainties (e.g. demand and renewable gen-

eration). Solving OPF problems is thus still a computational

challenge, that has been recently addressed with the help of

machine learning techniques. In the literature, some papers

approach this problem by directly predicting the decisions or

related costs of an OPF while others try to learn features of

the OPF, in order to enhance its solving. To summarise the

different approaches and the exploited learning algorithms, the

references discussed below are sorted in Table VII.

Most papers predicting directly the outputs of an OPF

predict the decisions given by the program, which are usually

generator setpoints (generator active power and voltage magni-

tude). For instance, in [156], the authors predict the generation

dispatch, using random forest models. More recently, several

papers proposed to exploit Deep Learning (DL) for this pur-

pose. Pan et al. [153] use deep learning to predict the decision

of a DC-OPF while in [154], [155] the authors predict the

decision of an AC-OPF. In all these papers a post-processing

method ensuring the feasibility of the solution is described. In

[153], if the predicted solution is not feasible, the authors solve

an optimisation problem to find the feasible solution closest

to the predicted one. In [155], the output of the DL model is

constrained with a sigmoid function to adhere to active power

generation and voltage magnitude constraints and a power flow

problem is then solved based on the predictions. Finally, in

[154], the authors take advantage of previous optimal power

flow solutions computed at previous time steps as well as a

dual Lagrangian method to improve the solution and enforce

physical and operational constraints.

Rather than predicting the decisions obtained from an OPF,

some papers [158]–[160] are interested in the (optimal) cost of

operation related to the decisions. In these three papers, several

learning algorithms are tested and compared to predict the cost

of real-time operation obtained from an AC-OPF [158] and a

DC-SCOPF with N-1 security contraints [159], [160].

Another application of OPF is determining if the demand

could be met at all buses for given operating conditions.

Coupled with Monte-Carlo simulations to generate many op-

erating states, it can help assess reliability of the system with

reliability indices such as Loss Of Load Probability (LOLP).

In [161], [162], the authors use an RBF neural network to

predict if the demand is met at all buses. This allows them

to estimate LOLP indices without solving an OPF problem

for each state, accelerating the reliability assessment of the

system.

With a different approach, Baker proposes to learn the

outputs of an AC-OPF problem with a random forest but,

instead of directly using the predictions of the learnt model,

she proposes to exploit the predictions as a warm-start point

of the AC-OPF [157]. The author shows on some test systems

that it leads to a faster convergence time compared to other

warm-start methods.

To reduce the computational burden related to the OPF

solving, some papers [157], [163]–[167] propose to exploit

machine learning to reduce the search space of the OPF

problem and thus accelerate the resolution. In [165] and

[166], the authors propose a method to solve a stochastic DC-

OPF, considering uncertainties. This DC-OPF must be solved

within a short time period and one proposed approach is to

pre-define an ensemble control policy, before the realisation

of uncertainties. Then, in real-time, one has to find with

exhaustive search the optimal control policy for the realisation

of uncertainties, instead of solving the full OPF in real-time.

To define the ensemble control policy, one can search for all

the bases (i.e. the sets of active constraints, which are all

satisfied with equality for a given solution) of the DC-OPF,

given the distribution of uncertainties, and then to each set

associate an affine policy. When a scenario is realised, one

can look for the set of active constraints corresponding to

this scenario and then apply the corresponding affine policy.

In order to find an ensemble control policy more efficiently,

[165] proposes to leverage statistical learning to identify the

most important sets of active constraints of the real-time DC-

OPF, given the distribution of uncertainties; the most important

sets being the ones with a higher probability to be optimal

for the OPF. By computing affine control policies for only a

subset of bases, the authors reduce the computational burden

in real-time, allowing to solve these parametric programs more

efficiently online.

Following these works, Deka et al. [164] exploit neural

networks to learn a mapping between realised uncertainties

and the corresponding optimal set of active constraints, al-

lowing to enhance even more the computational efficiency of

the approach. The problem is tackled differently by Ardakani

and Bouffard in [163]. Instead of predicting the set of active

constraints, they propose to predict with an artificial neural

network the set of umbrella constraints, which corresponds to

the set with the minimum number of constraints such that if

one constraint is removed, the set of feasible solutions of the

original OPF problem is modified. Solving the OPF with only

the umbrella set of constraints may reduce significantly the

solution time of the OPF. Finally, Mezghani et al. propose

a different approach to deal with short-term uncertainties

when solving OPF. They use the scenario-based approach,

where power flows equations are solved for a number of

scenarios sampled from the distribution of uncertainties and
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TABLE VIII
MAIN ML APPROACHES TO SOLVE UNIT COMMITMENT (UC) PROBLEMS

OVER THE LAST FIVE YEARS AND CORRESPONDING REFERENCES

Predicted quantities Algorithms References

Decisions

kNN [168], [169]

Reinforcement
learning

[170]–[174]

Features

of the UC
kNN [175]

they propose to exploit machine learning to reduce the number

of scenarios needed to solve the problem while keeping an

accurate uncertainty quantification [167].

C. Unit commitment prediction

The unit commitment problem consists in deciding in ad-

vance which generating units should be on or off for the

time horizon considered. Accelerating the solution of a unit

commitment problem is useful, especially in applications for

which a large number of unit commitment problems must be

solved. In order to summarise this section, Table VIII presents

the ML approaches used for solving the unit commitment

problem as well as the corresponding references.

For instance, in [168], the authors need to quickly evaluate

the outcome of short-term operation, for a long-term planning

purpose. They propose to use kNN as a proxy of short-term

operation and thus the predicted unit commitment schedule is

the schedule in the learning database with operating conditions

closest to the one evaluated. This proxy can be exploited for

maintenance scheduling, by using short-term operation proxies

to quickly evaluate the impact of a maintenance decision on

power system operation [169]. Managing the grid at different

time scales is a complex task. To reduce the computational

burden when considering different time scales for decision-

making (for instance day-ahead and real-time), Dalal et al.

exploit the reinforcement learning approach [170].

The approach for solving OPF can also be applied for unit

commitment problems. For instance, in [175], the authors pro-

pose to reduce the dimensional complexity of a transmission-

constrained unit commitment problem by learning the con-

gestion status of transmission lines and disregarding lines that

will not become congested; i.e. removing redundant or inactive

constraints. The learning algorithm chosen is also the kNN.

Finally, the unit commitment problem can also be addressed

with a reinforcement learning approach. In [171], the authors

exploit reinforcement learning to choose a unit commitment

and economic dispatch in a hierarchical way, while minimising

operation cost or CO2 emissions; and in [172] the unit com-

mitment problem is modelled as a Markov decision process.

The unit commitment problem can also be defined as a multi-

objective problem, for example to both minimise operating

costs and maximise system reliability [173] or minimise both

operation costs and wind curtailment [174]. To solve this

difficult problem, both papers exploit reinforcement learning

coupled with particle swarm optimisation.

VII. OTHER RELATED APPLICATIONS

In this section, we want to shortly point to three other areas

of application where machine learning has been proposed as a

tool, and which are related to power system reliability manage-

ment. For each category, we briefly explain the nature of the

application and its relation with reliability management, and

then point to some recent survey/review or tutorial publications

discussing machine learning in the context of the topic.

Fault detection, classification and localisation applications

consist respectively in detecting, identifying and localising

faults or disturbances in a power system. These methods

can help to improve significantly the reliability of power

systems by allowing faster and/or more selective reactions in

the context of protections, emergency and corrective control.

Over the years, several machine learning approaches have been

proposed in the scientific literature to address these problems,

and we refer the interested reader to [176], [177] for an

overview of recent literature on this subject.

Power system operation relies heavily on the availability in

the control centre of an accurate and timely characterisation of

the system state. State estimation refers to a set of methods and

algorithms exploiting real measurements and event recordings

to build up such a characterisation in real-time, in a way that

is robust to noise, gross errors, modelling uncertainty and

telecommunication delays and errors. The resolution of this

problem can be enhanced by leveraging machine learning. In

particular, in the context of active distribution systems man-

agement this may be useful, since in this area state estimation

is not yet a well established technology. We refer the reader

to [178], [179] for further information about ongoing works

in these directions.

Finally, load or renewable energy production forecasting

is an extremely important and multifaced class of problems

that becomes more and more important for suitable decision

making in operation and operation planning of electric power

systems. Many ML methods have been proposed to improve

the quality and the scope of the point forecasts of individual

quantities, to model spatio-temporal dependencies, and to

provide ensemble forecasts [180]–[182].

VIII. DISCUSSION

In this paper, we reviewed recent works tackling electric

power systems reliability assessment and control problems

with various machine learning techniques. Indeed, a large in-

crease in the number of publications in that particular field was

observed recently. Although most papers deal with reliability

assessment, more and more papers propose new applications

for reliability control, such as solving OPF problems with the

help of supervised learning or using reinforcement learning

for the design of closed loop control schemes.

However, despite the great potential of these techniques,

some challenges still must be faced before machine learning

becomes common practice for reliability assessment and con-

trol in the electric power system industry. We detail hereafter

some challenges that we believe should be addressed by further

research and development activities.
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A first challenge concerns the acceptance of these new

methods by the human users (operators and planners) in

the industry. The traditional approaches used in practice for

reliability management are model-based and take explicitly

into account well-known physical laws. Given the practical

consequences of a failure in assessment or control, moving

towards a data-driven approach is difficult. There is definitely

a need to convince the field experts that these methods

are actually efficient and reliable. First, approaches using

machine learning should be used in parallel with the more

traditional approaches, to allow the human experts to assess

their accuracy and usability; subsequently both approaches

could be used in symbiosis, where traditional approaches

would only be applied when the machine learnt predictors

are not confident enough in their predictions. Furthermore,

we believe that anyhow interpretability of the machine-learnt

models is something that could not be neglected in future

research. Another challenge comes with the fact that electric

power systems are constantly changing. Therefore, ensuring

the adaptability and proposing ways to maintain over time

the quality of the machine-learnt models used for assessment

and control is also a requirement for the practical acceptance

of machine learning applications to reliability management of

electric power systems.

With the rise of data-driven methods, vulnerability of

machine learnt models against man-crafted adversarial data

must also be considered [183] and techniques to detect these

adversarial examples should be developed. More broadly, an

important aspect not to be neglected is the study of guarantees

on the performances of machine learning algorithms, in par-

ticular to avoid unexpected or harmful behaviour [184]. This

is necessary for system operators to trust new proposals of

machine learning for reliability management.

Beyond these current practical challenges discussed here-

above, we also see many interesting future research directions

in the field of machine learning for reliability management of

large scale systems of systems such as electric power systems.

As a first direction for future research, we believe that

reliability databases and evaluation protocols should be built

and made publicly available. It would allow to more easily

compare the various methods proposed in the literature and

would help researchers in that field to advance more rapidly.

Similarly, data shared by the industrial system operators would

also help the research community, but other types of problems

such as privacy, safety, and commercial sensitivity, are major

obstacles for letting this happen in a near future.

Another direction of research, quite new, that we expect

to be more developed in a recent future, is the use of

machine learnt models, that are called proxies, to model the

behaviour of other parts of the overall multi-energy system.

These can be smaller subsystems or other large-scale systems

interacting with the managed one, such as distribution grids,

other interconnected transmission systems, gas transportation

systems, electric vehicle charging infrastructures, district heat-

ing systems, etc. One can also consider the integration of

different time scales for sequential decision-making, and then

use for instance proxies modelling the real-time operation in

order to enhance the decision making process in short-term

operation planning, or proxies of post-contingency behaviour

of emergency control systems to be exploited in the context

of preventive mode dynamic security assessment.

To conclude, we think that the proposed methods are of

great potential to improve reliability assessment and control

and we expect more and more applications, both in research

and in industry, to be developed while exploiting machine

learning techniques. Finally, we believe that the methods

mentioned and the identified challenges and future directions

of research are relevant for many other large scale systems

and infrastructures, even beyond energy systems, such as

distribution grids, micro-grids and multi-energy systems.
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