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 In the real world of engineering problems, in order to reduce optimization costs in physical 
processes, running simulation experiments in the format of computer codes have been conducted. 
It is desired to improve the validity of simulation-optimization results by attending the source of 
variability in the model’s output(s). Uncertainty can increase complexity and computational costs 
in Designing and Analyzing of Computer Experiments (DACE). In this state-of the art review 
paper, a systematic qualitative and quantitative review is implemented among Metamodel Based 
Robust Simulation Optimization (MBRSO) for black-box and expensive simulation models 
under uncertainty. This context is focused on the management of uncertainty, particularly based 
on the Taguchi worldview on robust design and robust optimization methods in the class of dual 
response methodology when simulation optimization can be handled by surrogates. At the end, 
while both trends and gaps in the research field are highlighted, some suggestions for future 
research are directed. 
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1. Introduction 

Nowadays, developing processes in an engineering world is strongly associated with computer 
simulations. These computer codes can collect appropriate information about characteristics of 
engineering problems before actually running the process. Computer simulations can help a rapid 
investigation of various alternative designs to decrease the required time to improve the system. In 
addition, most numerical analyses for engineering problems make a well-suited use of mathematical 
programming. Clearly, a Simulation-Optimization (SO) becomes necessary to find more interest and 
popularity than other optimization methods, in order to the complexity of many real world optimization 
problems in way of mathematical formulation analyzing (Dellino et al., 2014). The main goals of 
simulation can be defined as two, first what-if study of model or sensitivity analysis, and second is 
optimization and validation of model (van Beers & Kleijnen, 2003). The essential benefit of simulation 
is its ability to cover complex processes, either deterministic or random while eliminating mathematical 
sophistication (Figueira & Almada-Lobo, 2014).  
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In general, SO techniques are classified into model-based and metamodel-based (Mohammad Nezhad 
& Mahlooji, 2013; Viana et al., 2014). In the model-based, the simulation running is not expensive and 
model output can be used directly in optimization. Many large scales and detailed simulation models 
in the complex system particularly under uncertainty may be expensive to run in terms of time-
consuming, computational cost, and resources. Moreover, to address such a challenge, metamodels 
need to be derived via combing by robust design optimization.  

The trend of publications on the topic of  “simulation optimization” in both Web of Science and 
SCOPUS databases are confirming the interest on the search term, see Fig.1. On the other hand, an 
internet search by using a popular web browser “Google Scholar” returns over 40,300 pages, which 
mainly containing scientific and technical articles, research reports, conference publications, and 
academic manuscript.  

In this paper, we follow to review the latest developments in Metamodel-Based Simulation 
Optimization (MBSO) and in wider scope, Metamodel-Based Robust Simulation Optimization 
(MBRSO) when simulation affected from uncertainty in model’s parameters. MBRSO is applied in the 
complex simulation model under uncertainty when simulation running is expensive in terms of 
computational time and/or cost, therefore the just limited number of simulation running is possible.  

The rest of this review is organized as follows. Section 2 covers quantitative analysis and also illustrates 
the survey method while highlight the method of gathering and reviewing articles. In section 3, 
qualitative analysis is provided including the relevant basic approaches and methodologies around the 
MBRSO. Section 4 discusses remarkable research findings and provides the main recommendations 
which are extracted throughout reviewing the literature. The paper is concluded in section 5 with 
summarizing important research tips. 

2. Quantitative analysis on metamodel based simulation optimization 

SciVal offers quick, easy access to the research performance of 8,500 research institutions and 220 
nations around the world (see "About SciVal" in Elsevier 20171). Visualization of Elsevier’s SCOPUS 
data for the selected search terms “Visibility” and “Citations” is provided by SciVal. Being the largest 
abstract and reference database, SCOPUS provides citation dataset of research literature and quality 
web sources (Aghaei Chadegani et al., 2013). Fig. 2 shows the publications trend on “Metamodel” and 
“simulation optimization” impact 1996 to date (12 September 2017) . The number of publication on 
the topic has increased from one publication in the year 2006 to 65 publications in 2016. In order to 
forecast the trend of scholarly outputs in following years, we fit polynomial regression over data in 

                                                            
1 . Elsevier. (2017). About SciVal.   Retrieved from https://www.elsevier.com/solutions/scival 

(a) 

Fig. 1. The trend of publications with topic of “simulation optimization” in  (a) the Web of 
Science databases (source: WoS, Data retrieved on August 2017), and (b) SCOPUS 
(source: Scopus, Data retrieved August 2017). 

(b) 
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when  is year and  is the number of annual documents. In the last six years 659 papers were published, 
receiving over 10,503 views, 2,465 citations, 147 international collaborations, and 1.36 Field-Weighted 
Citation Impact (FWCI). The FWCI is a measure of citation impact that normalizes for differences in 
citation activity by subject field, article type, and publication year (Jang & Kim, 2014). The world’s 
average for FWCI is indexed at 1.00, as such, values above 1.00 indicate an above average citation 
impact. Specifically, a citation impact of 1.36 indicates 36% of the citations are above the average 
citations in this same filed.  

 

Fig. 2. Trend of publications on “Metamodel and simulation optimization” impact (data from 1996 
to date) 

 

Fig. 3. The top 50 key-phrases by relevance in the past five years papers (656 publication) 

The top 50 key-phrases by relevance for the past five years publications (656 publication) is shown in 
Fig. 3. Notably, the phrases “optimization” are the most repeated keyword.  The highlighted importance 
of the key phrases of “interpolation”, “computer simulation”, and global optimization” are obvious. In 
addition, the phrase of “design of experiments”, “multi-objective optimization”, and “uncertainty 
analysis” among the most repeated keywords in recent publications which gained growing attentions. 
The trends of publications and the top 50 key-phrases have proven the importance of current research 
on in scholarly publications. Therefore, there is an interest to find alternative ways to improve research 
on simulation optimization, such as combining design of experiments by evolutionary algorithms like 
expected improvement methodology which today become to be interested among academic research 
world, for instance see (Havinga et al., 2017; Zhang et al., 2017). According to associated obtained 
data from SciVal among search on metamodel and simulation optimization, the top ten countries, 
authors, and journals which ranked based on views count (views source: Scopus data up to 31 Jul 2017) 
are respectively sketched in Table 1, Table 2 and Table 3.  
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Table 1 
Top ten high view counts countries in field MBSO. 
No Country Views Count Scholarly Output FWCI 
1 United States 2166 154 1.63 
2 China 1837 145 1.04 
3 France 927 58 1.52 
4 Italy 907 39 3.66 
5 Iran 629 30 1.19 
6 United Kingdom 549 31 2.63 
7 Germany 487 42 1.02 
8 Netherlands 480 21 2.09 
9 South Korea 422 22 1.02 
10 Canada 353 22 0.81 

 

Table 2  
Top ten high view counts authors in field MBSO. 

No Author Affiliation 
Views 
Count 

Scholarly 
Output 

FWCI 

1 Kleijnen, Jack P.C. Tilburg University 205 7 4.34 

2 Toropov, Vassili V. University of Leeds 193 7 7.83 
3 Sudret, Bruno ETH Zurich 179 5 4.76 
4 Wen, Guilin Hunan University 176 9 2.15 
5 van den Boogaard, A. H. University of Twente 170 5 1.15 
6 Wiebenga, J. H. Materials Innovation Institute 170 5 1.15 
7 Yin, Hanfeng Hunan University 167 8 2.33 
8 Qing, Qixiang Hunan University 158 5 3.83 

9 Shao, Xinyu 
Huazhong University of Science and 
Technology 

129 9 2.17 

10 Jiang, Ping Nanjing Agricultural University 122 6 2.07 

 

Table 3  
Top ten high view counts journals in field MBSO. 

No Country 
Views 
Count 

Scholarly 
Output 

FWCI 

1 Structural and Multidisciplinary Optimization 448 23 1.49 

2 
53rd AIAA/ASME/ASCE/AHS/ASC Structures, 
Structural Dynamics and Materials Conference 2012 

332 4 0.77 

3 Advances in Intelligent Systems and Computing 274 6 7.63 
4 WIT Transactions on Engineering Sciences 240 2 0 
5 Advanced Materials Research 239 3 0 
6 European Journal of Operational Research 217 4 4.3 
7 International Journal of Impact Engineering 202 4 2.77 
8 Engineering Optimization 198 10 1.22 
9 Renewable Energy 196 2 1.69 
10 Expert Systems with Applications 195 5 3.02 

2.1. Instruction of current research 

In the current systematic literature review, the search strategy was as follow s. Some common electronic 
databases (Scopus indexed) were applied in search processes such as Science Direct, IEEE Xplore, 
Springer Link, etc. Different keywords and their combinations were used to search the relevant 
resources in literature from mentioned electronic databases. The SCOPUS databases cover almost two 
times more than the Web of Science journals (Aghaei Chadegani et al., 2013). Therefore, the SCOPUS 
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database was selected as a reference for academic documents source. Table 4 illustrates the number of 
document results from Scopus by employing some relevant keywords with conjunction ‘AND’. The 
search was conducted on each article title, abstract, and keywords. There are a different number of SO 
methods that discussion about most of them is beyond of this context. Instead, we focus on simulation-
optimization under uncertainty by employing metamodels and robust optimization.  

Table 4  
Number of document results based on combination of different keywords (Scopus database). 
ID Keyword Combination of keywords with conjunction ‘AND’ 
1 Simulation √ √ √ √ √ √ √ √ √ 
2 Optimization √ √ √ √ √ √ √ √ √ 
3 Metamodel √ √ √       
4 Response surface    √ √ √    
5 Kriging       √ √ √ 
6 Uncertainty  √   √   √  
7 Robust design   √   √   √ 
Total results 512 86 29 2,710 279 94 1,124 208 42 
Results in range of 2000 - 2017  493 86 29 2,523 270 89 1,106 205 42 

Particular metamodels concentrated are polynomial regression methodology (also called Response 
Surface Method (RSM)) and Kriging surrogate model. In general, the whole findings were filtered 
based on three factors, i) selecting articles which are associated to interesting our topic (polynomial 
regression, Kriging, robust design, and SO), ii) recent articles are preferred (all articles were published 
after 2000, when around 60% of them were published between 2010-Spetember 2017, iii) number of 
citations are attended. Notably, there are a different number of papers and electronic resources related 
to the topic, but we just filtered resources which can cover basic knowledge around simulation-
optimization via robust design integrating metamodels. So, remarkable findings are concluded into 5 
books (Del Castillo, 2007; Dellino & Meloni, 2015; Fang et al., 2006; Kleijnen, 2015; Myers et al., 
2016), 3 Ph.D thesis (Dellino, 2008; Jurecka, 2007; Rutten, 2015), and 60 articles (16 review papers 
and 41 research papers and 3 chapters). Table 5 shows the identifier of articles while are sorted based 
on publishing year. Note that the citations were counted from Scopus leading up to April 2017. In this 
context, articles were reviewed based on seeking in methodology and scope of applicability, while 
focused on methods, techniques, and approaches which employed to achieve their relevant goal(s). 

3. Qualitative analysis on MBRSO 

The black-box and also computationally expensive simulation models are often found in engineering 
and science disciplines. Expensive simulation running and expensive analysis of processes are often 
considered black-box function. In general surrogate models treat the simulation model as a black-box 
model (Beers & Kleijnen, 2004; Kleijnen, 2005; Shan & Wang, 2010). In fact, many simulation-
optimization approaches solely depend on such input-output data in investigating of optimal input 
settings, while in the black box feature, the simulation just permits the evaluation of the objective and 
constraint for a specific input (Amaran et al., 2016). Moreover, methodologies which are mentioned in 
this paper can be applied in the class of black-box problems, since it does not need to identify expression 
or internal structure of the system, and just analyzing output with given list of inputs. Investigating in 
literature particularly in recent years has been confirmed that application of metamodels in SO is more 
interested than other methods due to increasing complexity in real systems while they need to be 
approximated by cheaper methods. In this context, all studies which were investigated among 
reviewing of literature, are focused on SO techniques via surrogate models. This paper covered more 
the stochastic simulation-optimization hybrid metamodels (e.g. polynomial regression and Kriging). It 
is notable that all topics which are explained in continue, are presented to show recent methodological 
development in analyzing, optimizing and improving complex systems under uncertainty through their 
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relevant simulation models by employing some main statistical and mathematical techniques (e.g. 
robust design optimization and surrogate models as two basic methodologies). 

Table 1  
Identifiers of articles (“Rev.” means review paper, “Res.” means research paper, and “Cha.” means 
chapter). 
ID Type Reference Citation  ID Type Reference Citation

R1 Rev. (Simpson et al., 2001) 990  R31 Res. (Kleijnen, 2010) 3 
R2 Res. (Simpson et al., 2001) 529  R32 Res. (Wiebenga et al., 2012) 17 
R3 Rev. (Jin et al., 2001) 804  R33 Res. (Chang et al., 2013) 4 
R4 Res. (Abspoel et al., 2001) 10  R34 Res. (Kleijnen & van Beers, 2013) 5 
R5 Res. (Kleijnen & Gaury, 2003) 35  R35 Res. (Zhang et al., 2013) 7 
R6 Res. (Truong & Azadivar, 2003) 29  R36 Res. (Dellino et al., 2012) 26 
R7 Res. (Wang, 2003) 207  R37 Res. (Dellino et al., 2014) 1 
R8 Rev. (Jin et al., 2003) 173  R38 Res. (Zhang et al., 2014) 11 
R9 Rev. (Chen et al., 2003) 29  R39 Res. (Uddameri et al., 2014) 3 
R10 Res. (van Beers & Kleijnen, 2003) 100  R40 Res. (Cozad et al., 2014) 29 
R11 Res. (Lehman et al., 2004) 20  R41 Rev. (Viana et al., 2014) 69 
R12 Rev. (Beers & Kleijnen, 2004) 49  R42 Rev. (Figueira & Almada-Lobo, 2014) 31 
R13 Res. (Kleijnen & Beers, 2004) 118  R43 Cha. (Dellino et al., 2015) 0 
R14 Rev. (Kleijnen, Jack P. C., 2005) 154  R44 Rev. (Jalali & Van Nieuwenhuyse, 2015) 6 
R15 Cha. (Barton & Meckesheimer, 2006) 103  R45 Res. (Taflanidis & Medina, 2015) 0 
R16 Res. (Williams et al., 2006) 31  R46 Res. (Kamiński, 2015) 2 
R17 Rev. (Wang & Shan, 2007) 685  R47 Res. (Sreekanth et al., 2016) 4 
R18 Res. (Jurecka et al., 2007) 13  R48 Rev. (Amaran et al., 2016) 1 
R19 Res. (Stinstra & den Hertog, 2008) 23  R49 Res. (Li et al., 2016) 2 
R20 Res. (Wim et al., 2008) 43  R50 Res. (Han & Yong Tan, 2016) 0 
R21 Res. (Dellino et al., 2009) 21  R51 Rev. (Haftka et al., 2016) 3 
R22 Rev. (Kleijnen, 2009b) 331  R52 Res. (Leotardi et al., 2016) 0 
R23 Res. (Steenackers et al., 2009) 11  R53 Res. (Sathishkumar & Venkateswaran, 2016) 0 
R24 Cha. (Kleijnen, 2009a) 3  R54 Res. (Moghaddam & Mahlooji, 2016) 0 
R25 Res. (Dellino et al., 2009) 25  R55 Res. (Javed et al., 2016) 0 
R26 Res. (Dellino et al., 2010) 43  R56 Rev. (Kleijnen, 2017) 1 
R27 Res. (Dellino et al., 2010b) 3  R57 Res. (Khoshnevisan et al., 2017) 0 
R28 Res. (Dellino et al., 2010a) 1  R58 Res. (Zhou et al., 2017) 0 
R29 Res. (Kuhnt & Steinberg, 2010) 6  R59 Res. (Havinga et al., 2017) 0 
R30 Rev. (Li et al., 2010) 44  R60 Res. (Zhang, 2017) 0 

 

3.1. Simulation-optimization (SO)  

The process of investigating the best value of input variables among all possibilities in a simulation 
model is Simulation-Optimization (SO), also known as an optimization via simulation or simulation-
based optimization. The objective of SO is to obtain the optimum value for output while minimizing 
the resource spent. Kleijnen (2015) have described simulation model as a dynamic or static model that 
could be solved by means of experimentation. Generally, there are two types of simulation models. The 
first type is a physical model which describes model’s characterization in a smaller dimension (for 
example, miniature airplane in a wind tunnel). The second type is a mathematical model which usually 
coded into computer programs. The term dynamic illustrates parameters of the model which are 
variated over time while in the static model the time does not play an important role. The simulation 
model often is studied by a mathematical model. The system behavior is evaluated by running the 
simulation model for a fixed period of time. Generally, a study in simulation techniques can be 
concentrated into two main parts, first simulation modeling, and second simulation-optimization (see 
Fig. 4).  With optimization strategy, the feedback on the process is provided by the output of simulation 
model (Carson & Maria, 1997). In the modeling part, the method can be used to identify process 
components and select them to design simulation model (Banks et al., 2010; Neelamkavil, 1987). The 
SO can be attracted the attention of many researchers in improving practical engineering problems via 
different methods. Azadivar (1999) has compared some common SO methods included gradient based 
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search methods, stochastic approximation methods, sample path optimization, response surface 
methodology, and heuristic search methods.  

 

Figueira and Almada-Lobo (2014) have reviewed recent development on SO and classified latest 
approaches based on four key aspects, simulation purpose, hierarchical structure, search scheme and 
search method. Other recent studies over SO methods can be found in two books (Dellino & Meloni, 
2015; Kleijnen, 2015) and four review papers (Barton, 1992; Carson & Maria, 1997; Li et al., 2010; 
Simpson, Poplinski et al., 2001). In general, SO models can be divided into two types of stochastic and 
deterministic models (Fig. 5 ).  

 

 

 

 

 

 

 

 

 

 

In deterministic models, a response of model lacks random error, or in another mean, repeated runs for 
the same design of input parameters, the same result for the response can be gain from the model. 
Examples of the deterministic simulation are models of airplanes, automobiles, TV sets, and computer 
chips applied in Computer Aided Engineering (CAE) and Computer Aided Design (CAD) at Boeing, 
General Motors, Philips, etc.(Kleijnen, 2009b). On the other hand, the output in stochastic or random 
simulation usually follows some probability distribution which may vary around its space. So, running 
simulation for the same input combination gives different outputs. Examples are models of logistic and 
telecommunication systems (Kleijnen, 2009b). This noisy condition of output also enhances 
optimization challenge, while it becomes harder to distinguish the best set of input variables, and their 
validity in deterministic approaches are lost.  In SO usually we cannot distinguish the exact 
(deterministic) solution for the black-box system, so we look for the mean and the variance obtained 
from the sampling points (Amaran et al., 2016). Polynomial regression can sufficiently support both 
deterministic and random simulation, but Kriging has hardly been used in stochastic simulation (van 
Beers & Kleijnen, 2003). In other classification, Amaran et al. (2016) have categorized SO algorithms 
based on local or global optimal solution (Fig. 6). Barton and Meckesheimer (2006) have classified SO 
approaches depending on the nature of design variables types. Design variables in simulation models 
can be either continues and discrete, (see Fig. 7).   Continues variables can take any real value within a 
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given range which is imposed by constraints. In most engineering problems, during the optimization 
process with approximation methods (metamodels), the discrete patterns of input variables are 
neglected and all variables can vary continuously due to solving continues patterns easier. Moreover, 
based on the optimum design in the continuous feature, the values which inherently are discrete exist, 
and can be adjusted to the nearest feasible discrete value (Jurecka, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1 Applications of simulation-optimization 

Various types of problems in engineering design and management have been developed by application 
of different methods in SO (e.g. production, transportation and logistics, energy management, finance, 
engineering, and applied sciences). In a real case study, (Kleijnen, 1993) has applied SO methods in 
production planning to report practical decision support system in the Dutch company. In (Jin et al., 
2001) the application of different metamodels have been studied (e.g. polynomial regression, 
multivariate adaptive regression splines, radial basis functions, and kriging) over 14 test SO problems 
in engineering design based on noisy or smooth behavior. In the other work by Kleijnen and Gaury 
(2003), four different techniques were combined: simulation, optimization, uncertainty analysis, and 
bootstrapping through implementing in a real case study in production control. The appropriate review 
study which addressed some applications of SO in sub-communities in machine learning problems, 
discrete event systems such as queues, operations, and networks, manufacturing, medicine and biology, 

 

Fig. 6. Simulation optimization strategies based on locally and globally solution. 
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•Gradient-based Method
•Direct Search
•Model-based Methods

Local Optimally

•Ranking and Selection
•Metaheuristics
•Global Surrogate Approximation
•Lipschitzian optimization

Global Optimally

 Fig. 7. Simulation optimization strategies based on nature of design variables. 
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engineering, computer science, electronics, transportation, and logistics have been done by Amaran et 
al. (2016).  

 

Table 6 
Application of SO (surrogate-based) in different engineering design and management problems 
ID Application  ID Application 

R2 Aerospace engineering (design of an aerospike 
nozzle). 

 R33 Semiconductor wafer fabrication system 

R3 14 test problems in engineering design based on 
noisy or smooth behavior. 

 R34 Discrete-event simulation (M/M/1) 

R4 Production Planning (Four station production 
flow line) 

 R35 Wind farm power generation, product platform planning 
(for universal electric motors), three-pane window heat 
transfer, onshore wind farm cost estimation 

R5 Production Planning (Kanban system)  R36 Inventory Management 

R6 Supply Chain Management  R38 Nonpoint source pollution control 

R7 Beam design problem  R39 Groundwater management (groundwater joint planning 
process) 

R8 The two-bar structure  R40 Thermodynamics (modeling of steam density as a function 
of heat duty in a flash drum modeled) 

R9 Electrical engineering, chemical engineering, 
mechanical engineering, and dynamic 
programming 

 R42 manufacturing system (job shop consisting of four 
machines and three buffers (or queues), 

R10 A single server queueing, M/M/1 hyperbola,  R43 Inventory Management 

R15 Network routing example  R44 Inventory management 

R16 Flyer plate experiments  R45 Skyhook dampers for the suspension of a half-car 
nonlinear model driving on a rough road. 

R17 Review different application of simulation 
optimization in engineering design and 
management. 

 R46 Schelling’s segregation model 

R18 10-bar truss under varying loads  R47 Groundwater management (injection bore field design 
problem) 

R19 Design of two parts of the TV tube  R49 Production planning in manufacturing system (a scaled-
down semiconductor wafer fabrication system) 

R20 Expected steady-state waiting time of the 
M/M/1 queuing model, and the mean costs of a 
terminating (s, S) inventory simulation 

 R50 Design of a chemical cyclone, Manufacturing processes 

R21 Inventory Management  R52 Steady two-way coupled hydro-elastic system, Racing 
sailboat keel fin 

R23 A slat track, structural component of an aircraft 
wing 

 R53 (s,S) inventory policy 

R24 Supply-chain management  R54 Well-known EOQ problem, the multi-item newsvendor 
problem 

R25 Compressed Natural Gas (CNG) engines  R55 Compressor impellers for mass-market turbochargers are 

R26 Inventory Management  R57 Soldier pile tieback anchor supported excavation in sandy 
and gravelly site 

R28 Inventory Management  R58 Nonlinear Programming, pressure vessel design 

R30 Job shop simulation problem  R59 Metal forming processes, strip bending process 

R32 Metal forming processes  R60 Skyhook control for the suspension of a half car model, 
The dampers for a building exposed to earthquake 
excitation 
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Recently, a work based on metamodel and Monte Carlo simulation method have been done by Li et al. 
(2016) applied in production planning of manufacturing system and compared with other approaches 
(e.g. mathematical programming). The application of robust design hybrid metamodeling in 
management science and engineering problems has been reviewed by Parnianifard et al. (2018). The 
application of SO in inventory management has been significantly interested in different studies such 
as Dellino et al. (2015, 2010a) and review papers (Jalali & Van Nieuwenhuyse, 2015; Kleijnen, 2017). 
However, in this context among a review of the literature, the application of SO methods in different 
types of engineering design and management problems were considered and the results were 
represented in Table 6. Notable, we just targeted SO methods based on surrogates and robust design 
optimization in black–box and expensive simulation models under uncertainty. For such cases, 
computer experiments are conducted as the main supplementary of metamodel based robust simulation 
optimization.  

3.2. Uncertainty management in SO via robust design optimization  

In practice, most engineering problems have been affected by different sources of variations. One of 
the main challenges of SO is to address uncertainty in the model, by a variety of approaches, such as 
robust optimization, stochastic programming, random dynamic programming, and fuzzy programming. 
Uncertainty is undeniable which affect on the accuracy of simulation results while making variability 
on them. Under uncertain condition, robust SO allows us to define the optimal set point for input 
variables while keeping the output as more close as possible to ideal point, also with at least variation. 
Robust design approaches try to make processes insensitive to uncertainty as sources of variation by 
investigating qualified levels of design input factors. The source of variation in output can be divided 
into two main types, first is the variation due to variability in environmental (uncontrollable or noise) 
variables (Park & Antony, 2008; Phadke, 1989), and second is the fluctuating of input (design) 
variables in their tolerance range (Anderson et al., 2015; Myers et al., 2016).  

Table 7  
Applied different strategies in literature for management of uncertainty. 
ID Uncertainty management strategy  ID Uncertainty management strategy 
R1 Taguchi Approach  R32 Dual response 
R4 Stochastic programming  R36 Taguchi Approach, Crossed Arrays 
R5 Scenario Cases (combination of non-controllable 

input values), risk analysis (RA) and Monte Carlo 
 R38 Two-stage robust optimization 

R8 Dual response methodology  R39 Fuzzy Logic 
R9 Taguchi robust design  R43 Taguchi Approach-Crossed Arrays 
R11 Minimax approach  R44 Mean-variance trade-off approach (Taguchi, Dual 

Response Surface), Worst Case. 
R12 Cross-validation, Parametric bootstrapping, 

distribution free bootstrapping.
 R45 Probability logic approach 

R13 jackknifed variance  R47 Stochastic Optimization 
R16 Calibration of simulation model, trade-offs among 

parameters 
 R48 Squared Loss Function 

R17 Robust Design  R50 Expected quality loss 
R18 Taguchi quality loss, Minimax principle, Bayes 

principle, 
 R51 Expected Improvement (EI) 

R19 Robust counterpart methodology  R52 Stochastic programming 
R21 Crossed array-Combined Array  R53 Uncertainty on parameters distribution 
R23 Robust design (dual response surface)  R54 Minimax problem, Chance constraint definition 
R24 Signal to Noise Ratio  R55 Stochastic optimization algorithm 
R26 Taguchi Approach-Crossed Arrays  R56 Taguchi worldview 
R27 Taguchi Approach-Crossed Arrays  R57 Robust geotechnical design 
R28 Taguchi Approach-Crossed Arrays  R58 Robust optimization based on the reverse model 

(RMRO), Genetic Algorithms 

R30 Robustness is defined as the standard deviation of 
one method’s error values across different problems.

 R59 Leave-One-Out Cross-Validation 

R31 Taguchi robust optimization  R60 Stochastic approach 
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Robust design optimization is an engineering methodology to improve the performance of a model by 
minimizing the effects of variation without eliminating the causes since they are too difficult or too 
expensive to control. Robust simulation-optimization is about solving simulation model with uncertain 
data in a computationally tractable way. The main goal of robustness strategy is to investigate the best 
level of input factors setting for obtaining desirable output goal which is insensitive to the changeability 
of uncertain parameters. Tabl 7 illustrates different number of strategies which have been done in 
reviewed literature through the management of uncertainty in SO. Most of the times, in robust design 
approach the output goal is to gain the minimum distance of mean with target point and with at least 
variance, simultaneously. The main attention behind overall viewpoint via robust design method for 
design and development processes and products is concentrated on three aspects: 

i. At least sensitivity to uncontrollable environmental conditions and robustness to any source of 
variation. 

ii. Minimization of variability in product or process characteristics 

iii. Minimizing deviance between the performance of product or process and its relevant target point. 

3.2.1 Robust optimization in the class of dual response 

The dual response surface approach has been successfully applied in robust process optimization. Jalali 
and Van Nieuwenhuyse (2015) have reviewed some methods of robust design optimization in the class 
of dual response which applied in simulation optimization, and concluded that the dual response surface 
approach is more attended among other techniques in that subject. This model has employed two 
metamodels separately for the process mean and another for the process variance. By combining both 
types of factors in process included design and noise (uncertain) variables, we can approximate the 
	 ,  as a function of design factors  and uncertain factors	 . Due to the stochastic nature of 
the simulation model, repeated runs of the simulation model with the same combination of input 
variables, lead to different outputs. Typically, as the training set to improve the metamodel, the average 
magnitude of repeated runs can be used (Li et al., 2010). If the stochastic simulation models is followed, 
each input combination , 1,2, … ,  is repeated  times ( 1,2, . . . , ), while in random 
simulation  is the number of uncertainty scenarios.  If , , ⋯ ,  is the -dimensional vector 
with the simulation’s output, then the mean and variance of each input combination can be computed 
by: 

∑
													 1,2, … ,  (1)

∑
1

		 										 1,2, … ,  (2)

Note that in deterministic simulation models, In Eq. (1) and Eq. (2) we have 1, for more 
information intereste readers can see (Dellino et al., 2015; Kleijnen, 2009b, 2015). For both Eq.(1) and 
Eq. (2) we assume that all scenario of uncertainties have the same probability, else based on probability 
of uncertainty in a model, equations for computing mean and variance can be rewritten as below: 

. 							 , 					 1,2, … ,  (3)

	 . 	 . 1,2, … ,  (4)
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where  denotes the probability of  scenario of uncertainty. Furthermore, there are different 
optimization approaches available on dual response methodology where some of them are referenced 
in (Ardakani & Noorossana, 2008; Beyer & Sendhoff, 2007; Nha et al., 2013; Yanikoglu et al., 2016), 
so here just for instance some most common robust optimization methods in class of dual response 
surface are mentioned: 

Bi-objective model (Chen et al., 1999): 

:				 		 ∗ , ∗  (5)

MSE (expected loss) model (Del Castillo & Montgomery, 1993; Phadke, 1989): 

:			 	 	  (6)

Relaxing the “mean at target” constraint (Yanikoglu et al., 2016): 

:			 	 . .		  (7)

Weighted metric method (Ardakani & Noorossana, 2008; Ardakani et al., 2009): 

:	 	
	

1  (8)

where	0 1, and  , 0 ∞  denotes the importance of deviation for each objective 
function from its relevant utopia. The quantity  illustrates the importance of the mean compared to 
the standard deviation. 

Relaxing the “variance at target“(Lehman et al., 2004): 

:			 			 . .		  (9)

The standard deviation of the goal output (Dellino et al., 2015): 

:			 			 . .		  (10)

When the probability distribution of noise (uncertain) parameters are unknown but historical data are 
available, some methods such as -divergence approach can be used to find the estimation of 
probability distribution (Moghaddam & Mahlooji, 2016). Attending the probability of occurrence of 
uncertain parameters guide to tighter uncertainty set and less conservative robust solution. Yanikoglu 
et al. (2016) have suggested robust optimization in the class of dual response for such a problem when 
the probability distribution of uncertain parameters is unknown, but historical data are available: 

	 	 				 . .						 , ∀ , ∀  (11)

where  represents the unknown true probability distribution of uncertain parameter	 , and 
denotes a family of distribution that is obtained from old data ( divergence measure). Fig. 8 
summarizes the strategies on facing with unknown probability of uncertain parameters.  
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3.3. Designing of computer experiments 

In this context, we focus on experiments via computers in simulation terms. Recently, the acronym of 
Design and Analysis of Simulation Experiments (DASE) has been introduced which is inspired of the 
common acronym in deterministic simulation as Design and Analysis of Computer Experiments 
(DACE) (Kleijnen, 2015). In practice, most simulation models have many combinations of input factors 
to run which may lead to time consuming and expensive patterns, e.g. the model with 7 input factors 
and 10 levels per each input requires 107 combinations. In addition, in an uncertain environment, the 
analyzing of uncertain (noise) factors needs extra computational efforts. Furthermore, if we wish to 
analyze all combinations to investigate the best set of input factors, then we need extremely long 
simulation runs unless the appropriate sampling methods are successfully used. As to the number of 
sample points to produce an accurate response surface model, using 1.5  to 2.5  sample points have 
been recommended in literature, see, (Giunta et al., 1994; Simpson, Mauery et al., 2001) when  is 
number of coefficients that need to be estimated.  

Table 8 
Different strategies of DOE for SO in literature. 
DOE Strategy Article ID 
Monte-Carlo method, Random R10, R49, R56, R3, R59, R53 
Orthogonal array R2, R9, R16 

Central Composite Design (CCD) R1, R9, R14, R31 

Space filling, Latin Hypercube 
Sampling (LHS) 

R1, R3, R5, R7, R8, R9, R10, R11, R14, R16, R17, R18, 
R21, R22, R25, R26, R27, R28, R29, R30, R32, R35, 
R36, R40, R43, R45, R48, R54, R58, R59, R60 

Full and Fractional Factorial Designs, 
Optimal Designs 

R8, R9, R15, R17, R24, R31 

Sequential design R13, R20, R40, R52, R60, R35 

Plackett-Burman R14, R17, R56 

Yes

Yes 

DOE for noise 
(uncertain) parameters 

 

Use general sampling 
methods (LHS, CCD, 

etc.) 

Probability 
distribution of 

uncertain factors 
is distinct? 

No
 

Historical 
data is 

available? 

‐divergence 

Min Max approach 
(worst case scenario) 

No

Fig. 8. The strategies in faced with unknown probability distribution of uncertain variables. 
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There are three common types of design based on aliasing main or interaction effects in a model. While 
the effect of one factor depends on the levels of one or more other factors, called two of more degree 
of interaction between factors. A resolution-III design indicates that main effects may be aliased with 
two factor interactions. A resolution-IV design indicates that the main effects may be aliased with three-
factor interactions. Two-factor interactions may be aliased with other two-factor interactions. 
Resolution-V (or higher) assumes that main effects and two-factor interactions can adequately model 
the factors. Table 8 shows some DOE methods that have been used in literature to design experimental 
points through analyzing and improving different engineering design problems. 

3.3.1 Latin Hypercube Sampling (LHS) 

LHS was first introduced by McKay et al. (1979). It is a strategy to generate random sample points, 
while guarantee all portions of the design space is depicted. Generally, LHS is intended to develop 
results in SO (Kleijnen,  2015). LHS has been commonly defined for designing computer experiments 
based on space filling concept (Bartz-Beielstein et al., 2015; Del Castillo, 2007). In general, for  input 
variables,  sample points are produced randomly into  intervals or scenarios (with equal 
probability). For the particular instance the LHS design for	 4,	 2 is shown in Fig. 9. 

 

 

 

 

 

 

 

 

 

The LHS strategy proceeds as follows:  

i. In LHS, each input range is divided into  subranges (integer) with equal probability magnitudes, 
and numbered from 1 to	 . In general, the number of  is larger than total sample points in CCD 
(Kleijnen, 2004). 

ii. In the second step, LHS place all  intervals by random value between lower and upper bounds 
relevant to each interval, since each integers 1,2,… ,  appears exactly once in each row and each 
column of the design space. Note that, within each cell of design, the exact input value can be 
sampled by any distribution, e.g. uniform, Gaussian or etc. 

Three common choices are available to ensure appropriate space filling of sample points in LHS design: 

Minimax: This design tries to minimize the maximum distances in design space between any location 
for each design point and its nearest design points.  

Maximin: This design attempts to maximize the minimum distance between any two design points.  

Desired Correlational function: Inspired by Iman and Conover (1982) for the case of non-
independent multivariate input variables, the desired correlation matrix can be used to produce 
distribution free sample points in LHS.  

 

Fig. 9. An example for LHS design with two 
input factors, and four intervals 
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3.3.2 Orthogonal Array (OA) 

The OA design can fill the whole design space like LHS, and it has strength to allocate points in each 
corner of design space (Owen, 1992). The OA was adapted to balance n discrete experimental factors 
in a continues space (Koehler & Owen, 1996). The orthogonal array is matrix with  rows and  
columns where  is the number of experiments (input combination) and  is the number of input factors. 
Each factor is divided into  equal size ranges (grids), and sample points are allocated to these 
orthogonal grid spaces. In general, the orthogonal array is shown with symbol of , and has the 
following properties: 

 For the input factor in any column, every level happens ⁄  times. 

 For the two input factors in any two columns, every combination of two levels happens  times. 

 For the two factors in any two columns, all  input combinations are combined by levels as belows: 

1,1 , 1,2 ,⋯ 1, , 2,1 , 2,2 ,⋯ , 2, ,⋯ , , 1 , , 2 ,⋯ , ,   

 By replacing any two columns of an orthogonal array, the remaining arrays are still orthogonal to 
each other. 

 By removing one or some columns of an orthogonal array, the remaining arrays are orthogonal to 
each other, and OA is able to employ by a smaller number of factors. 

3.3.3. Sequential design 

Most time in practice due to expensive simulations (i.e. a single simulation run is intensive time 
consuming), reducing the number of simulation runs (sample points) is interested. In mathematical 
statistics it is common that sequential designs are more well-organized than fixed sample size design 
(Wim et al., 2008). Different types of criteria can be used to sequentially define a candidate set of 
sample points, and most of them are based on mean squared prediction error (Van Beers & Kleijnen, 
2004). Kleijnen and Beers (2004) have proposed a customized sequential method based on cross-
validation and jackknifing approaches. In SO, Kleijnen (2017) has suggested replacing one-shot 
designs by sequential designs that are customized for the given simulation models. In other similar 
work, Wim et al. (2008) have employed bootstrapping technique to propose the sequential DOE with 
a smaller number of sample points than other alternative design like LHS, also with better results. A 
comparison on different sequential sampling approaches has been provided in (Jin, R. et al., 2002). 
Here, inspired by  Kleijnen and Beers (2004) and Wim et al. (2008), the cross-validation and 
jackknifing method are followed due to four reasons. First, this method is adapted for expensive 
simulation models. Since this model is used the cross-validation method and does not need extra 
simulation runs, so it is appropriate for expensive simulation models. Second, evaluate I/O behavior 
with the highest estimated variance which is desirable in robustness study. Third, smaller prediction 
error than other sequential design (Van Beers & Kleijnen, 2004). Fourth, this method is able to use for 
different types of metamodel such as polynomial regression and Kriging.  

Following steps are shown the procedure of sequential design based on cross-validation and 
jackknifing: 

 Expensive simulation runs are implemented for  initial sample points, and the approximation 
metamodel is constructed based on initial result. 

 Then select  candidate points ( 1,2, … , ). To select candidate points we can use halfway space-
filling between vertices.  

 To compare all candidates and select winner for expensive simulation, a jackknife variance for each 
candidate need to be computed separately and selected a point with maximum jackknife variance. 
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To avoid extrapolating, we do not drop the sample points on vertices, k sample on vertices is not 
droped, so  is replaced by  when . 

 Drop one point from model , ( 1,2,… ,  and construct metamodel based on 1 remain 
points. 

 Calculate the jackknife’s pseudo-value for candidate  as below: 

	 1 1,2, … , 1,2,… ,  (12)

where   is the original prediction for candidate  with metamodel over initial sample points, and 

 is prediction for candidate  with metamodel over  points ( delete  sample point from 
 set of points). 

 The jackknife variance is computed for candidate  by employing relevant pseudo-values: 

1
1

1
, (13)

where the candidate with maximum , ( 		 }) is a winner and is entered in a set of initial 
sample points after computing its relevant response with original simulation. 

 All steps are repeated till stop creation is satisfied. Among literature we could not found any 
suggested appealing stopping criterion, see (Van Beers & Kleijnen, 2004). It can be defined based 
on a limitation of computational time or cost. 

3.4. Metamodeling 

Metamodeling techniques have been used to avoid intensive computational and numerical simulation 
models, which might squander time and resource for estimating model's parameters. Metamodeling has 
utilized variety statistical and mathematical approach for interpreting parameters and their relationship 
in an original model. A metamodel or surrogate model by mathematical expression	 ,  can be 
replaced with true functional relationship	 , , where  and  denote respectively the design 
and the noise (uncertain) factors. The general overview of a metamodel with uncontrollable noise 
variables as uncertainty symbols is illustrated in (Fig. 10).  

 

 

 

 

 

 

 

 

 

 

 

 

Decrease 
Cost 

Increase 
accuracy 

Input variables (X) 

Uncertain 
variables (Z) 

Simulation Model 
,   Output (Y) 

Selected input variables 

Selected uncertain 
variables 

Metamodel 

,  
Approximate outputs 

Fig. 10. The viewpoint of metamodel under uncertainty (noise variables) and 
relationship with a simulation model. 
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3.4.1 Polynomial regression 

Polynomial regression also called Response Surface Methodology (RSM) is a collection of statistical 
and mathematical techniques used for developing, improving, and optimizing the process. The 
functional applicability of RSM in literature can be i) approximate the relationship between design 
(dependent) variables and single or multi-response (independent variables), ii) investigating and 
determining the best operating condition for the process, by finding the best levels of design region 
which can satisfy operating limits, and iii) implementing robustness in the response(s) of the process 
by designing the process robust against uncertainty. Barton and Meckesheimer (2006) have claimed 
the RSM was successfully used in recent decades for processes with the stochastic application. Kleijnen 
(2017) has mentioned the RSM is sequential since it uses a sequence of local experiments and leads to 
the optimum input combination. He has also claimed that the RSM can achieve an appropriate track 
record in literature. Some of the initial applications of RSM in SO can be found in (Azadivar, 1999; 
Biles, 1974). Commonly, the main motivation of polynomial approximation for true response function 
is based on Taylor series expansion around a set of design points, see (Myers et al., 2016). The general 
overview of the first-order response surface model is shown as: 

, (14)

where  is number of design variables. Most times, the curvature of response surface is stronger than 
the first model can approximate it even with the interaction terms, so a second-order model can be 
employed: 

 (15)

where	 , , 	 and  are unknown regression coefficients and the term  is the usual random error 
(noise) component. The number of expression in a linear polynomial regression model is	 1, 

quadratic model is	 1 2 , and cubic model is	 1 2 3  when  is 

number of input variables. By polynomial regression to fit reasonable metamodel, the sample size 
should be at least two or three times the number of expression ( ) (Jin et al., 2003). 

3.4.2 Kriging 

Since Daniel G. Krige (1951) addressed the geostatistics around six decades ago, today Kriging (also 
called Gaussian process) models have been used as a widespread global approximation technique 
(Jurecka, 2007). Kriging is an interpolation method which could cover deterministic data in a black-
box presentation, and it is highly flexible due to ability in employing a various range of correlation 
functions. In general, Kriging has been used in deterministic simulation models, i.e. Computer Aided 
Engineering (CAE). Kriging does not have many applications yet in random simulation (Kleijnen, 
2005; Kleijnen, 2015). The higher accuracy of Kriging models than other alternatives such as 
polynomial regression is confirmed via different numerical cases in literature (Dellino et al., 2015; Jin 
et al., 2001; Simpson et al., 2001). In the Kriging model, a combination of a polynomial model and 
realization of a stationary point are assumed by the form of: 

, (16)
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, (17)

where the polynomial terms of  are typically first or second order response surface approach and 

coefficients	 	are regression parameters ( 0,1,… , ). This types of Kriging approximation is called 
universal Kriging, while in ordinary Kriging instead of  the constant mean  is used. 
The term	  describes approximation error, and the term  represents realization of a stochastic 
process, which most time normally distributed Gaussian random process with zero mean, variance  
and non-zero covariance. The correlation function of  is defined by: 

, , , (18)

where  is process variance and ,  is the correlation function, and can be chosen from different 
functions which proposed in literature (e.g. exponential, Gaussian, linear, spherical, cubic, and spline). 
For instance, the general exponential correlation function is defined as below: 

, , exp , (19)

where  is dimension of input variables, and  determines the smoothness of the correlation function 
and  indicates the importance of   input factor, while the higher  denotes the less effect of factor 
 on output. For 1 and 2 respectively the exponential and Gaussian correlation function is 

made. 

3.4.3 Validation of metamodel 

In general, to assess the predictor behavior and evaluating of the model, the techniques can be divided 
into two types based on the set of sampling points. The first type is the evaluated model by using 
training data (i.e. the set of data which is used in estimating model) and the second one is used for 
employing validating data (i.e. new set of data except for data which used in estimation). Some different 
methods have been suggested for evaluating a metamodel, while among them four more applicable 
validation methods are chosen to discuss in follow. Notably, mentioned methods are based on 
employing validation data in semi-expensive models, since in expensive simulation models impose 
extra computational costs due to extra simulation runs. Moreover, in such a case some methods such 
as cross-validation or bootstrapping can be used, see (Kleijnen, 2015). 

1- R-square Index 

This method can be used to compare first order against the second or above order polynomials 
regression, or RSM with other metamodels namely Kriging. The  coefficient is defined as: 

	 1
∑

∑
1 , (20)

where  is mean of observed values ( ) and  is corresponding predicted values. 
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2- Adjusted R-square Index 

Due to the index	  always increases when the terms are added to the model, some regression analysts 
prefer to use another statistic index called adjusted	 -square: 

1
1
1 	 . (21)

By adding variables to the model, generally the statistic  will not increase. In fact, the value of 
adjusted -square often decreases, if unnecessary terms are added to the model. 

3- Relative Maximum Absolute Error (RMAE) 

While the larger magnitude of R-square indicates better overall accuracy, the smaller amount of RMAE 
indicates the smaller local error. A suitable overall accuracy does not necessarily signify a good local 
accuracy (Jin et al., 2003). 

max | |, | |, … , | |

∑
. 

(22)

4- Cross-validation 

The cross validation method can be used when collecting new data or further information about 
simulation model is costly. The cross validation uses an existed data and does not require to re-run of 
the expensive simulation. This method is also called leave- -out cross-validation to validate metamodel 
(i.e. in each run  sample points would be removed from an initial training sample points)(Kleijnen, 
2015). The leave-one-out cross validation ( 1) is briefly explained next that is most popular than 
others: 

Step 1: Delete  input combination and relevant output from the complete set of  combination (
1,2, … , ).  

Step 2: Approximate the new model by employing 1 remain rows	 . 

Step 3: Predict output  for left-out point ( ) with metamodel which obtained from Step 2. 

Step 4: Implement the preceding three previous steps for all input combination (sample points) and 
compute  predictions ( ). 

Step 5: The prediction result can be compared with the associated output in original simulation model.  

The total comparison can be done through a scatter plot or eyeball to decide whether or not metamodel 
is acceptable. 

3.5 Robust metamodeling in SO  

There are different number of methodologies in optimizing the deterministic simulation, but there are 
few number of studies have been done on  random (stochastic) SO problems under uncertainty and the 
effect of noise parameters, particularly based on the combination of metamodels and robust 
optimization, see (Simpson, Poplinski et al., 2001) and two recent review papers by Amaran et al. 
(2016) and Kleijnen (2017). Table 9 depicts a different combination of SO methods which have been 
applied in reviewed articles. Barton (1992) has introduced the Taguchi methods as an alternative to 
metamodeling strategies. Bates et al. (2006) have shown that the Taguchi crossed array was more 
successful than the dual response designs in its relevant numerical example. Others (Dellino & Meloni, 
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2015; Kleijnen, 2015; Myers et al., 2016; Vining & Myers, 1990) have combined the Taguchi approach 
with approximation methods to use the advantages of both methods. Fig. 11 illustrates a general 
procedure in SO method under uncertain condition based on surrogate models and Taguchi 
termonology (Dellino & Meloni, 2015; Kleijnen, 2015).  

Table 9  
Simulation optimization  methods applied in literature (“M” means multi-objective, “C” means 
constrained problem) 

ID Type Methodologies  ID Type Methodologies 

R1  RSM-Kriging-Neural Networks-Rule 
Induction. 

 R31  First-order and second-degree polynomials 
(RSM) and Kriging. 

R2 M Kriging, Response Surface, simulated 
annealing algorithm, generalized 
reduced gradient (GRG). 

 R32 C Deterministic Sequential Approximate 
Optimization (SAO), finite element 
method, and single response surface 
modeling.

R3  Polynomial regression, multivariate 
adaptive regression splines, radial basis 
functions, and Kriging. 

 R33 M Genetic algorithm, on-line and off-line 
scheduler, and RSM. 

R4 C Integer linear programming and RSM.  R34  Monotonicity preserving Kriging models 
and distribution-free bootstrapping. 

R5 M/C Stochastic Optimization, the Genetic 
algorithm (GA), RSM, and 
bootstrapping. 

 R35  Adaptive hybrid functions (combination of 
quadratic response surface, radial basis 
functions, and Kriging), and Cross 
validation. 

R6 C Genetic Algorithm and Mixed Integer 
Programming. 

 R36  Kriging 

R7 C (Adaptive)Response Surface Method, 
and Simulated annealing global 
optimization method. 

 R37  Select and review 10 top articles in 
simulation optimization. 

R8 C Polynomial regression, Kriging, and 
Radial Basis Functions (RBF). 

 R38 C Hydrologic simulation and Mathematical 
Programing. 

R9  RSM, Kriging, regression splines, 
regression trees, and neural networks. 

 R39 C RSM and fuzzy linear programming. 

R10  Ordinary Kriging and classic cross 
validation. 

 R40  Integer programming formulation, low-
complexity surrogate model, machine 
learning techniques, derivative based or 
algebraic solvers, reduced-order modeling, 
and error maximization sampling (EMS).

R11  Updated correlation parameter 
estimates. 

 R41  Multiple surrogates techniques 
(polynomial regression and Kriging). 

R12  Low order polynomial and Kriging.  R42  Statistical Selection Methods (SSM), 
Metaheuristics (MH), Memory-based 
Metaheuristics (MMH), Random Search 
(RS), Stochastic Approximation (SA), 
Sample Path Optimization (SPO) and 
Metamodel-based Methods, Gradient 
Surface Methods (GSM), Surrogate 
Management Framework (SMF), Reverse 
Simulation Technique (RST), 
Retrospective Simulation Response 

R13  Kriging, cross-validation, and 
jackknifing. 

 R43  RSM and Kriging 

R14  Polynomial regression, Kriging, and 
cross-validation. 

 R44 M/C RSM, Kriging, and neutral network. 

R15  RSM, regression spline, spatial 
correlation (Kriging), radial basis 
function, and neural network. 

 R45  Kriging metamodel and Monte Carlo 
simulation. 
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Table 9  
Simulation optimization  methods applied in literature (“M” means multi-objective, “C” means 
constrained problem) (Continued) 
R16  The Bayesian approach, Gaussian 

process based emulator, free surface 
velocity, and third-degree polynomial 
response surface. 

 R46  Bayesian inference and Interval 
metamodel. 

R17 M/C Polynomial functions, Kriging, neural 
networks, Radial Basis Functions 
(RBF), Multivariate Adaptive 
Regression Splines (MARS), least 
interpolating polynomials, and 
inductive learning. 

 R47 M/C Monte-Carlo Simulation. 

R18 C Kriging (spatial correlation 
metamodels) and generalized expected 
improvement criterion. 

 R48  RSM, gradient-based methods, discrete 
optimization via simulation, sample path 
optimization, direct search methods, 
random search methods, and model-based 
methods.

R19  RSM and Kriging.  R49 M Transfer function modeling and time-series 
pre-specified by forecasting methods. 

R20  Kriging and bootstrapping.  R50 M A Gaussian process metamodel, Monotone 
cubic spline, and computer-aided IPTD 
(Integrated Parameter and Tolerance 
Design) approach. 

R21  RSM and Kriging.  R51  Gaussian process or Kriging surrogates, 
global optimization algorithm, surrogate-
based algorithms, nature-inspired 
algorithms, and evolutionary algorithms.

R22  Kriging, classic linear regression 
(RSM), and bootstrapping. 

 R52  A quasi Monte Carlo (MC) simulation, 
deterministic multi-resolution lattice 
points, thin plate spline (TPS) metamodel 
(which is a special case of RBF), and 
swarm optimization. 

R23  RSM, Monte-Carlo simulations, and 
finite element design. 

 R53  Regression models (RSM). 

R24  Sequential Bifurcation (SB)  R54  φ- divergence and Kriging 

R25 M/C Kriging, evolutionary optimization 
algorithms (EAs), Data Envelopment 
Analysis (DEA), adopted optimization 
system, and Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II).

 R55 M Polynomial response surface, Kriging, 
computational fluid dynamics (CFDs) 
solver, and Monte Carlo simulation. 

R26  RSM  R56 M Polynomial regression and Kriging. 

R27  Kriging  R57 M Quasi-response surface approach, 
gradient-based robustness measure, 
minimum distance (MD) algorithm, and 
weighted sensitivity index. 

R28  RSM, one layer Kriging, and two layers 
Kriging 

 R58 C Kriging, single-loop optimization 
structure. 

R29  Kriging  R59 C Radial basis function, leave-one-out cross-
validation, and sequential improvement 
criterion.

R30 C Multivariate adaptive regression 
splines, Kriging, RBF, Artificial Neural 
Networks, and Support Vector 
Regression. 

 R60  Monte Carlo, kriging, sequential 
approximate optimization (SAO), and 
gradient realization. 
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3.5.1 Bootstrapping 

Consequently both sensitivity analysis and optimization must be performed based on metamodels to 
interpret the observed simulation input/output data (Van Beers & Kleijnen, 2004). Sensitivity analysis 
can serve optimization of the simulated system (Kleijnen, 2010). The sensitivity analysis is based on a 
fixed condition for a system just with the variation of one factor.  

Start

DOE for design variables  
(inner array) 

DOE for uncertain variables 
(outer array)

Run simulation model and 
gain output

Compute mean for each 
input combination

Compute variance for each 
input combination

Fit metamodel over varianceFit metamodel over mean

Cross-validationCross-validation

Accept  both metamodels

Robust  optimization model

Estimate Pareto frontier

Yes

No

Results  satisfy model

Updating methods (e.g. 
Sequential improvement)

Bootstrapping (sensitivi ty 
analysis)No

Finish

Yes

 

 Fig. 11. Main steps in MBRSO procedure 
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Kleijnen (2009b) has recommended that the designs for sensitivity analysis and optimization need to 
be combined for the robust optimization. The parametric bootstrapping has been suggested in such a 
case while we assume a specific distribution type is estimated from I/O simulation data on hand. The 
basics of this method have been explained in (Kleijnen, 2004; Kleijnen, 2010; Kleijnen, 2009b, 2015). 
In stochastic simulation, each input combination  is replicated a number of times 1. In an 
expensive simulation, yet just the number of replication are less, so good results cannot be expected to 
gain by this types of bootstrapping (i.e. rarely can find the exact distribution of I/O simulation data). 
Moreover, a simple method for estimating the exact variance of predictor is distribution-free 
bootstrapping, see (Dellino & Meloni, 2015). 

3.5.2 Sequential improvement 

The sequential improvement methods have been interested in engineering design problems to a trade-
off between local and global search with the criterion of expected improvement. Abspoel et al. (2001) 
have proposed a sequential approximate approach to solve SO with integer design variables. Sequential 
improvement can be appropriately used in different practical engineering design problems, (e.g. 
Wiebenga et al., 2012; Havinga et al., 2017) in improving metal forming processes, (Jurecka et al., 
2007) in the 10-bar truss under varying loads, and (Zhang, J et al., 2017) for optimal design of the 
skyhook control for the suspension of a half-car model. These methods are combined with two main 
parts, first statistical part consists of DOE and metamodeling techniques, and second evolutionary 
algorithms. Note that, this method handles capturing the behavior of the overall design space, so the 
global approximation methods (e.g. Kriging) can be covered by this method while polynomial 
regression cannot, due to locally behavior. Sometimes due to the low correlation between predicted 
optimum point (which estimated by metamodel) and other points, the metamodel does not show enough 
accuracy in optimal point compared with the original model, for more information see (Havinga et al., 
2017; Jurecka, F et al., 2007; Sóbester et al., 2004).  

4. Discussion and results  

Polynomial regression metamodel can be established by two main consecutive steps, screening and 
optimization. In the screening step, the significant interested levels of input factors can be identified, 
so in the second step, the closer interval of input factors can be studied (Kleijnen, 2010; Myers et al., 
2016). Haftka et al. (2016) have considered the latest development on global-local approach. In this 
approach, the rough surrogate model is constructed in entire design space, and then apply it to zoom on 
promising regions. Wang, (2003) has developed the adaptive RSM which instead of regions with large-
scale, made a new DOE through the central composite design or LHS in reduced region (See Peri & 
Tinti, 2012). On the contrary, a polynomial model is easy to establish, more distinct in the sensitivity 
analysis, and cheap to work (Wang & Shan, 2007).  In addition, comparison of different metamodel 
types such as polynomial regression and Kriging in practical problems also remains a challenging topic 
(Beers & Kleijnen, 2004; Kleijnen, 2017; Wang & Shan, 2007). More support is currently available for 
the implementation of polynomial regression with computer software than other types of metamodels 
(e.g. Design Expert (V. 10), Minitab (V. 17), SAS (V. 14.2), SPSS (V.23), and so on). For Kriging the 
MATLAB (DACE, free Kriging toolbox2 can be used (Lophaven et al., 2002). In addition, ARCGIS 
(geostatistical analysis) and Isatis (geographical analysis) can support the Kriging surrogate model, but 
the number of input factors does not exceed three (Kleijnen, 2009b).  

However, a study in literature shows there is a lack of software package that can cover Kriging surrogate 
model in the framework of practical engineering design (Jin et al., 2001; Kleijnen, 2009b), while it has 
been more employed for academically usage than for practical problems in the real world (Jalali & Van 
Nieuwenhuyse, 2015). Viana et al. (2014) have listed a number of existed commercial software (e.g. 
BOSS/Quattro, DAKOTA, HyperStudy, IOSO, LS-OPT, OPTIMUS, and VisualDOC) by highlighting 
their metamodeling and optimization capabilities, while they have claimed that for many these software 

                                                            
2. http://www2.imm.dtu.dk/pubdb/views/edocdownload.php/1460/zip/imm1460.zip 
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systems, metamodeling is not a final goal. In practice, most problems can be supported by polynomial 
regression requirements, and due to less complexity, process designers have preferred to use it than 
other metamodels, (See Forsberg & Nilsson, 2005; Jalali & Van Nieuwenhuyse, 2015; Jin et al., 2003; 
Simpson et al., 2004). However, due to strength points of Kriging, recently there is a significant 
increasing trend to attend more in the application of common modern metamodel namely Kriging, 
compared to classical metamodel techniques such as the different order of polynomial regression. 
Kriging is a popular method for metamodeling with simulation data (Havinga et al., 2017). The Kriging 
gives more accurate and flexible approximation than polynomial regression due to fit globally over 
whole design space (Dellino, 2015; Jin et al., 2001; Simpson, Poplinski et al., 2001). The main 
advantages of Kriging over polynomial regression is exact interpolating of Kriging, i.e. the predicted 
values and simulated output in the set of observed input values are exactly equal (Kleijnen, 2005). In 
general, Kriging predicts poorly in the case of extrapolation outside observed sample data  (Kleijnen & 
Beers, 2004).   

Most methods mentioned in this context just have been tested in theoretical settings of problems, so 
applying these methods in practical problems and in-depth comparing of their performance can be an 
interesting area for additional research (Dellino, 2009; Jalali & Van Nieuwenhuyse, 2015). Kleijnen, 
(2009b) has emphasized on applying metamodels particularly Kriging in practical random simulation 
models, which are more complicated than the academic M/M/1 queueing and (s, S) inventory models. 
Another shortcoming which has been revealed by reviewing literature is that most publications assume 
single variable output, whereas in practice simulation models have to be covered by multi-variable 
output methodology (Kleijnen, 2009b; Simpson, Mauery et al., 2001; Teleb & Azadivar, 1994). Yet, 
investigating suitable DOE for multiple outputs has been an interesting topic for researchers (Kleijnen, 
2005). To the best of our knowledge, rarely can we find any study which considers variability in design 
variables parallel with noise variables. Most studies consider the variability of environmental factors, 
so they have assumed that design variables can be exactly controlled in their relevant values, while in 
practice this assumption may not hold, see (He et al., 2010; Sanchez, 2000). Most of the times in 
practice important uncertainty can be toleranced in nominal value of design variables (Myers et al., 
2016).  

5. Conclusion 

In this paper, the latest developments on optimization of complex simulation models under uncertainty 
have been investigated. Intensive attention was focused on surrogate based methods hybrid robust 
design optimization, particularly according to dual response methodology. These types of methods are 
classified as MBRSO. Main methodologies that have been used in the reviewed articles have been 
highlighted, while important methods were discussed. Outstanding shortcomings and also positive 
points of each method were mentioned based on discussed topics. Respect to advantages and 
disadvantages of both metamodels (polynomial regression and Kriging), appropriate methods which 
integrated both metamodels (hybrid surrogate methods) in practical problems have not been attended 
enough. The low-order polynomial can be used in screening and Kriging for optimizing as well. 
Proposing methodologies which can cover different gaps mentioned in discussion and result section 
can be interesting topics for future works by researchers.  
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