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ABSTRACT ;25;‘?4151

e , The techuiques involvéed in some of the recent developments in low
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order perturbation theory are discussed in destail. These include: the

: “. ' ‘ close two«wéy relationship between the perturbation solutions. and the

L R

variational prineiples; the existenck of solutions to. the perturbation

equations and théir conﬂérgence; the explicit and variational solutiong

g e

of the first order perturbation equation; double penturbétiqns and the

e

calculation of expectation values; the detérmination of second order

BT SN

propefties~(such as polarizability); estimatiorn of 6ff-diag6na1.and
time-dependent properties; fast comverging iteration procedureé; simpli-
fiéﬂ treatment of degene;ate or almosy; degenerate-perturbations; sum
rule techniques and their applicatioﬁ to intermolecular forces; and a
sho;t éurﬁey of the atomic 1/Z expansion and Hartree-Fock applications

of perturbation pr.dcedures.. ‘ ‘ { {: j W_)
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~In rquat ye&ra\theze has been a great increase of iﬁte;est inrthé
appilcatipn=o£‘partuzhgtion theory to. the funéamental problems of
quentum chemistry. Porturbation theory is designeq.té deallsystemat-
ically with the effects of small perturbations cn physical: systems when
. the effcctslof the pertuzbations are mathematically_tod difficult to. ,
calculate ez;aci:ly, and the pmopet’ciea of Ehe unper;‘:l-zz_'bed‘ systetﬁ- are -
kaocwn, It 1is thexefore usually tha appropriate tool for dealing w1th
the effecta of external fields, with tae ]ong—range interactions
beiween atong and moleculea, and with smali internal perturbatious
3uch as those that glve rige to the fine and hyperfine stcucnure.of
‘apectral lines, Pertuzbation theory hes been used for these PUTPOSES ;
- gince the iacaption.af quantum mechéhica, but'it is only recently thak .
o it hao been applied.sericnaly to vhat may be called the fuﬁd_amep't‘al o
?feﬁ bc:d;:;‘;r probigmes electron-repulsién and the many»ﬁentér:pculcmb--
field in mplecules. A . R | .

The new applications have been wainly to atoms. The reciprocal -

of the atomic number, 1/Z , yzovides a natural ?erturbation.parameter,%
gince the elec&ron-electron zepulsion terms have the farm (17z) . rlzl .
when the coordinatea are expressed in units of 2 ao"andﬁthg rest of. . . ;
the Hmmiitcaiam is independént of Z_.; The new applicgtions_may_beT “J? e ' ;
_divided into two gmoupa. The firat-con ists ok caleulatlons of energy | .
levels, and is g notural outgreuth of HylleraaF' classic-work'on;thew.

« . iz egpamaion for bwo-eiectron atems Ie includes the cnntinuation

oF Hyila"aas' calcu?ation Pn highor erders by Scherr and. collahorators,

the work of Dalgarno aud'Lipﬂerberg;Qn;the_1!%heag&pa;onsﬁwiphig5thg;,43
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and explicitly, that " the standard’ sﬁmmation“fbrmulae uf perturbation

Hartvee-ﬂock apprrximatioa for ntoms, ‘aiid egploratious by aryr ahd

~others on’ the unlted:aﬁom (ainglemcehter}Na@proach'EO“moleculeé.“‘The

applications-in-ﬁheﬂseebn& grouﬁ-afé tbitﬁé'caidhlatiéﬁ-of“expééféfibn*
valﬁes énd other'proﬁerties offaﬁoméfand‘mbleéuiéS} aud_até“bf*mﬁéh~ﬁ'?
more veceat origin, Tﬁéy‘includé calcuiétibné-beéuﬁ by Séézﬁﬁéiméffénﬂ
developed by Dalgarno and by Schwartz cu’ the polarizabi 1it1es and "huclear
Shlelding ceusfants ‘of "dtoms, and récént’ attempts ‘to extend theSe o

4deas to molecules.n-p- «u#tv«J“.L R I

Ehere'aﬁe*two‘péinéipar“reaéans'féx-the”éﬁcééﬁé'éf‘tﬁeséfﬁéﬁﬁ“**“

| apﬁlic&tions?'”?iést; sufficiéﬁt’aécufaéy'is7freqﬁenéIy”bbfaiﬁéd“f:dﬁF:'
’knauledme of 'd ‘firdt order perturbe& wave functlon. From such a Fupes”

-tion, the energy can be rumputed accurate £hrough the’ thlra order and

goeﬂfvalues-can'ﬁe cbtained for*thé‘éxpeétntion-vaIues ofﬁprépéxtiesf'”
other then'the enefgy. ' Second, & gééat”advéﬁikgé‘bf*ééiﬁﬁ§béﬁi6ngiﬁg6fy

is that the ‘functional form of the ?é%ﬁurbéd'wave'fﬁﬁ&tfﬁﬁ“igﬁéﬁapgdiﬁ

by the perturbation itself. This is in contrast with thié usidl methods

vhere the cholce of trigllfunétidﬁ"ié”atbitiarﬁf“?br:éﬁéﬁpiéf,SéﬂWartz

(195903, sthrcing uith thé simplest lydrogénic wave funetion, ‘obtaired’

a simple cloéedifdtm”beftﬂrbatisﬁ expression for ihe tharge defisity Gf

the heliﬁm.atnm, ﬂ&icn agrees .almost precisely with’ the charg* den31ty

PR 4

calculated with the use of Hylieraas’ 8 paramater “ave zunctlon.j;“

a

| The recent’ renewal of ‘interest iti"-tﬁé gbtenﬁiali‘ﬁ‘iés of perturbas ©

oo .
= s .. N « ¥ -
R B L IR S L ERT 1

tiom theory has been sParked by ‘thiree developments.f“

(a) It ha& iong beeu recognzzed v the' litaraturce Both implicltly

S . R SO DAL I TR B SO WL L Iy % RN A LK
theory_axe 'tormal holutioms of certaln‘znhamogenods equatione, whosé
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~approximations to the individual texms in the pexturbation series. The

- methods used to obtain variational solutions of the perturbatiocs equa-

‘of the wave function can be written in terms of accessible‘fﬁnbtiané"

by means of what may be caile&.ﬁalgarno’é'Interéﬁange‘Theoreﬁ,’uThis ‘

3
solution @ight be better acccmplished.in.scme other fashion. Moxeover -
in many cases -&n exéminétion of the equations revealied the-poésibilityﬁ
of solution imn close& form. However, in spite of successes;;such
techniques were not pursued systematically'and, curiously enough, are
rarely'mentionéd in the usual text books, Today, impressed by the'-
many fruitful appiications made by Dalgarno, by'Schwaxtz,fand byrgthers;
one is looking more and more to the equations themselves rather than to
their-ﬁﬁrmal solutions. Ihé methods used‘to cbtain explicit sclutions -
of the perturbation equations are ‘revieved intchapter?IIIA.;

.(b)‘.Although-closed solutions are possible in some piéblemSé‘in“a'
particular for many-one?electrop atomic problems; ;his is not the casze
when thn perturbation involves the twonpartigle eléctron repuision
potential -1[312 3 or~indeed;for'most problems. Faced wi;h this-sitﬁh
ation, there has been increasing'recognitioﬁ of:thg faét; pointed ouﬁ

long ago by Hylleraas, that omne can often get satisfaciory variational

tions argﬁfeviéwed in Chapter-IIISQI

(e) Whereas.the total energy calculated by means of approximate
wave functions is accurate up to the scecond order, most.physiéél. ' -
properties calculated with such functions are only accurate up to th@

first order, The first correction to approximate properiies for badness

R 2

S.m

is discussed and proved iq-chaéterflv._

Theae'deﬁelepmenté, vhich have been mainly applied to atqms;‘are
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far from having exhausted their usefulness, or thsir puder to stimulate
further work. Perturbatiom theory appears destised to play au increas-
ingly 'Eéortant Tole in‘quantum chemistry, a2nd it therefore seems
timely to zeview the basic thecry underlying the new developmeats in a '
thorough manner. The persent article is mot imtended to provide a
comprehensive account of all aspects of perturbation theory,. such as
those given in the ezcellent review articles of Bélgarno {1962 ) and

Preuss (1962 ). MNHexr are all the important new developments discussed,

_such as the infimite order perturbatlon “reatments asscciated with the

names of Brueckuér-(l?SS ), Lowdin (1962 ) and Primas {1961 }; oxr the
partial summation techuique of Kelly (1963 ). Insiead, wost of our
discussidﬁ is restricted to the first few orders of perturbaticm theory

and dgvoted to the recent devslopsments which have been most successful;

or to those that seem most promising, : e e

The oaly form of parturbation theory we diseuss in this article '

is the Rayleigh-Schrodinger {revieved in Chapter ZI) which was developed

by Lord Rayleigh for wibrating systems and intrcduced into quantum

mechanics by Schrcdinger.1 In this treatment, a Bumiltomian H "for a

gystem is regarded as comsisting of an umperturbed Hzmiltoaisa L

’

and a perturbation operator

[+

‘In the Rayleigh-Schredinger perturbatiom theory, the eigemvalues -B(A)

and eigenfunptiouelﬁg’(?\) of 'H.,are:expamﬂeﬂ in.pover series in A ,
The essential vole of A is to define the differemt orders oﬁ.peztﬁrbae
tion, aad this is a unique feature of the'anleighfﬁeh:edinger“pheory.

In certain problems, A has an obvicus physical significance.

i e L
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thezwise, ® is usually assigned the value of umity. Thus the _

perturbatioﬁ equations-arise from the Schredinger equation
(HME)¥ mo R . . . " . . L+

by equating the coefficient of every individual pouer of A to‘zero.
There is a fery important consequence of this proéedure ﬁhich.it is..‘
énp;opriaﬁe to mention here, namely, that any theorem whlch is true for |
the exact solutions of the Schrcdlnger equatlon must have an analogue |
for the solutions of each perturbation equation separately, The mpst'
interestiﬁg exémples are the variatiomal ptiDCiplevtdisguS§Ed in Chapter_
V); the virial and hypervirial theorems, aﬁd the Eellmann:?eynman theore@.
1he variatlonal prlnc plg and perturbation theory a%e deeply igpe;i

tuined First, given a quantity accurate through a particular order

v

of perturbation, a corresponding variational primciple can be coastrgcted.

Second, glven a varlaiion:. r1BC1ple, 1nﬁ1v1dLal veriation prlnclples

for the different orders of perturbatlan can be derlved and pra?ide a
fruitful and practlcal source of apprcximate perturbation epergies agd

appzoximate perturbed Have Functlcns. A striking instance of the con—

nection is the fact that one of vhe most 1mportant theoremg 1n perturbae
tion theory, namely that knowledge of the n-th ozder wave function
suffices to determine the enezgy to order «2ntl) , is an immediate

consequence of the vari, ation prlnczple, as shown 1n Chapter II« These

R IrY “"1

and other aapectﬂ of uhe variatlon prznclple and varlatzonal appuaxima~

tiona are diacuased at - length in Ghapter v;h .
: AR T ;% “.i.‘ .‘;‘Q‘.__ti

& ﬁamlliar camplaint abuut nertuzbatzon theory la that uhen the

:;‘- iy A -'H-‘ £

pettucbatlon becomes 1arge, the treatment ceases to give meanlngfu’

- Cirrea b -

LRI T
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results.‘ The usual rule of ﬁhﬁﬁb‘is:tﬁati%hé\enezgy'shifté should be

small compared with the spacings of the ﬁﬁpertﬁébe& 1e§e15;1 1 the

enevgy lewvels tend tb crogg, onme expects difficulties gnd special
metheds must be used. (see Chapter VII).

Howa@ex,?almbat'dégeﬁeraéy‘is the'ohiy'soﬁiée of difficulties.
Sometxmea the 61ergy lavela and eigenfunctions are not analytiu funﬂ- |
tions of the perLurbation parameter and no solutlons to the equatlons AR
exist. In other C&SES) the series may only be asymptotic.

The qnescions of the e&ﬁstence, nature, au& convergance of the

perburbation series pose difflcult mathematical’ problems. Neverthe;esé “

‘some very ?oﬁétful‘theoreumb"apparéntiy lititle known to

chemists,have beén proved by Rellich (1939 and 1940), Kato (1951a),
thchmacsh (1958) and others, which cover most o{ the appllcatlons of
interest in quantum chemlstry. A baslc theorem, dae orlglnally to s

Rellich (1939), is that the Raylelgh~8chrodinger perturbation'serlesJ

for ‘,.) and Y(A) converge for éﬁff.ié.:iently émall '?; if th:a

,unpertuzbed Hamllbonlan is self-adjoznt (Ch&pter FII) aud 1f two

canatants a and b 'can be found such that V¢ and’ H ¢ satlsfy |

i e . TSI |

the inequality

<V¢ VfP} < a<H¢' B, ¢>+b<¢,¢> P ¢ ) 2
foi éli-fuﬁctidﬁé ¢ in tﬁé ﬁoﬁaiﬁ:o% wﬁv'{ The most important apﬁlléﬁ;
-l . T

'tion of Lhis theorem has been m&de by Fato (1951&), nho succeeded in

L i}
proving that it ls satisfied for any decom90uitioa vE the poﬁentiﬂl i)

. s LR 3¢

'of the non~?elativist5c Scnrodinger Hgmzltonian operator H for any

v

atnm, molecule or finite crystal, provided no new singularities strcnger

= o
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than Goulomb poles are intzaduced. In particular the thaoreﬁ is't§ﬁe
in the-foliowing impartént casesy . &

(a) The perturbation V is the EIectr;n repuiéioﬁ term in the -
potential U . This result justifies the IIZ'expansibn.ané'p?ovéé thae
it is asbgolutely cunvergent-for large enough 2 . Although Kato could
only cbtain the crude estimate 2 5'7 6 for the radius of convergence

I the tJo-elechon atam, the calculations of Scherr and Rnight (1963)
1nd1uated that the true value is as: 1ow as Z = 0. 8 .

(b) The perturbarion V 'is ‘the difference between'thé"méﬁchéntéi:l“'
coulomb potential terms in a molecule -and single-ceﬁter‘terﬁé for the
united atom nucleus. This applicat;on justifies the united atom (éingléi
center) exPansiops;z | B

‘For some unﬁounded operators the theorem of RBq. (1) is not satisfied
and the series does mot converge, but. is nevertheless valid in the
asymptotic sense; that is,.uaeful only up to a certain finite oxrder.

Rato (1951a) has derived very generai conditiong under which the perturba-

tion geries will at least be aéymptotic; although unforfunately these

~ ave harder. to verify that Eq. (1). 'An even less well-Dehaved class of
- pexrturbations, namely.those which are unbounded from ﬁelow, causes the =~ ? %
digerete spectrum of H0 to vanish and be repiaced by a contimuous —g‘ ;
lspectium. A typical example is the Stark effect for an atom vhere the

discrete energy levels are converted to metastable levels, The physicalz'

gituation is quite clear in such cases-of'“wéak guantizaﬁion“ and the : ' : §
series'gives sensible results for small Sﬁ but Ehe ﬁatheméﬁical |
ja;ss:ificacion is quite difffcult. ALl thesd aspects of the theory of R

= .. L - 4
e ox .

convergence are described in more detail inm _Chaptet- gL, ' ‘.
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The storting pofnt im pertuvbstionm theory is.the division. of the
introsteble ‘Mlmﬁic—m H into 2 simple m?aszb*ﬂ_ pé‘;:t " .. Whose,
eigenfunctions are kacwn, and a :'amaimﬂ:;‘ ¥ containing the awkward
terms. In the asctual treatment of atoms and molecules, houever, we .
are given H omd scme fumction ¢ which is an approximation to the
true wove fumerica 2 . The shoice of ¢ is generally made on the
bagia oﬁ_pﬁnygical imu@tﬂrm, ‘methematical expediency, ete, | ;Z!:,:is

desired to treat ¥ as a zero order wave fumction and use perturbation

theozy to improve it. In order to ayply t¢he usual formalism of perturba-

- tion theory it io aecessary' t0 .comstract an uaperturbed Hemiltonian . -

B correcpending to ¢ . It is impws.:tmt to zeallze that this pzoblem .
cap always ke solved formally, as pointed cut by l‘smkinsén and Turner . ,,
(1953) and by Sternheicst '(1955})-. Be vrite the perturbed Hamiltonian

H in ths form s R AR

Z=T+U S e e

vheze T 1o the kinitic energy operater é_nd U is the .potential K = . -,

enezpy,. ascuzed to be a functica of cesrdinates. We ther define the

- gperator Ho by : L U

g = T+T N | (3)

vhere . -, SRR

o N
- - ) - . N L i R S IS TP (P S e

and the value of & con be chosenr arbitvarily. Then it follows.fzom. ..,

Fas. (3) oud (&) that ¢ is om cigonfemction of a,. with eigenvalue € .,

e e B,

o g 1 Cewd -




LS

g0 that *
By = €% | (5)
The perturbation potential V .is then defined by (A=1)

The next‘atep in obtaining an improved wave function is to solve
the first order equatidn. Dalgarno and Lewis (1955} defined a function

w such'that the fivst order wave fundtion.is equal te Fy . The first

'order-eqdatian then becomes (for one electron),

v = -4V ., m

In analogy with eiectrﬁstatics, this is-a'Poiason-ty@e?equationﬂfor the
Tootential® T prcﬁuced by a charge distribution ..'-(2:\:)_11;:(? -< v}-)iy
in_é‘region of variable dielectric constaﬁt'r¢2 {Prager -and Hivschfelder,
196%). - When separsble, it can be integrated bﬁ quadrature; in which

case the By procedure has determined the integrating factor. When

.Bq. - (6) iz not separable, opproximate solutions for ‘T con be obtaiped

bﬁfuaing,the excellent variational procedures discussed inucﬁépter'lllB{

| The calculation of physical properties of‘h system, othgr than thé g
emergy; is a problem of great importanée and intezes£, Ty?icalbﬁrope%tiés
are of tﬁ9 kinda, both associateﬁ with an operator -W ,ﬂand:frequently'

algo with an external Field ,&Q s thoy are considered in detail in

' Chapter-I¥. The simplést propecties arze straight expectation values, *

€1 » , ouch as a dipole mément, and caa be regarded as fivst ozder = -

perturbation energies for o perturbation MW . The other kind can be

e T R SR
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%egazded as the second order per *turbah.on energies for the perturbation,
’fy_ﬂif s.and have the form |
a3 =< - @ >
wheze % ig the first order wave function corresponding to the
Hamz.ltonian H+ /u.ﬂ a typical e:cample is the electrlc pelarizability.
If the only wave functz.on ¥ -available is approximate, with an error
% =¥ of order A ,. the .calculated values of {u> end. Q2> uill
alap_ be in erTOoL, bljrb\f:el_:ms of order 7\, ;. enly the enexgy - <H } hes
an error of order 7\2 . .‘ The problem of devising a practical way of ..
calculating the leading coxrections has been solved by Dalgamo and
Si:e*aart (1956) , and by Schuwartz (1959), and is dlscussed in Ghap‘:er iv.

The simplest approach is to u.e.‘e a douvble perturhation proceduyre . . : .y

(Dalgarno and Stewart, 1958) based on the Hauiltopiam . =+ .o 0.
| g By ¥ AV 4+ W ' -

Since the calculation of the first order emergy for a perturbation only

1

vequires the .corresponding zeroeth order wave function, the first order;

?&«correction to the ﬂ'“pertu*bed energies {propexties associated vith

W) only require perturbation solui.:.ons of the s:.ng ly perturhed -,
Bamiltonmion . - . . o el e el 1 i
L 11 . g P AT S L O A
N SR
. B i PP S N SRR PO A NP A
This is the point  of ‘Balgarvo s 1ntarchanga Theorem (Dalgavne and .

: Steuaft, 1956 19583 Its 3.mporcauce lz.es in the facc thae. the "'badness"";

of f,he inif;lal wave function :i.s due. to -neglect of ttzonpa?‘ticle electron R
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repulzion terms which therefore appear in V and moke the first order

A ~equation impessible to solve éﬁblieitl&. The operator W, on the’
other hand, is usually the sum of one-particle terms, and the corre-
sponding /m{fequations‘are often easy to solve explicifly; The -
A -corrections to { W}l and £QP then involve simply an integration
over V , which isgéually Gtréightforwa:d; | |
Percurbatio? methods are particularly valuable for the caleulation’
of intermolecular potentials. The great adventage is taat the inter-
action energy is calculated directly rathex than obtained as-tﬁe
difference betﬁeen two large nmumbers. In this mamner, Dalgarno and
Lyan (1956 and 1957) determined the long-range forces between two
hydrogen atoms in azqellent agrecment at R = 4ab ?4th.the.precise

variational calculations of Kolos and Roothaan (1960). - Other -perturba-.

tion calculations have been made by‘Dalgarno‘and.Lewis=(1955-and_1956),-

‘Dalgarnc and Stewart (1956), and by Salem (1360 and 1962). Since the ..

wave functions ave not known aécurately for the separated ﬁbleculesﬁ
the calculations of intermolecular potentials require not only double,
but triple perturbation techniqpes:}

The Egllawing more recent devglpym;nfs are deacxifedlin the later

chapters of the review.

L Perturbation Methods (Chapters VI:amd VII) .

Frequently it is sufficient to cbtain the fiwvst order perturbed

vave function since this permits the ealculation of thé energy accurate.

gthrough the third ozder. Indeed; frumfthg'Rayleighfschrodinger wave: . - .

function through the n-th ovder, the enezgy can be detezmiped through .

the {(2ad+l)-th ozder. However, even faster convergence can be obtained

oo




o
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and ‘are presented heve for the firét‘timei3

> A L B I
12
; ‘ | |
i by sa iterative procedure (¥OPLY) such that, from the n=th iterated
; wave function, the emergy can ke c@@cgiated.up to terms imvolving the

ok - . . . S R

2“$1 péwer of the perturbation paéa@gtez,i_
A combination of pgfturbgtiop and variational techniques can be,
used (DE-FOP=VIM) to sdlveiprqblema involving degenerate ox almost- .
degenerate states without speciganqnéideratioq of the order in which
theidegene?acyfis bzoken up orzﬁor?y aboqg the crossing of tﬁe energies

ag the perturbation parsmeter increases.

- 2. Time Dependent Problems (Chapters VIII and IX) -

These ave of two kinds: Those in which the parturbation causes -

‘troneitions, and those in which the stationmary properties are modified -

by en ogcillating field., The techniques developed for time independeént

preblemg can bé'appiiad to both types. - Interchangé thesrems have been'™

 proved in both ‘cases under falrly general conditions by one of us (SIE)"

Chapter VIII is devoted- ™%
to second ovder steady states prop wwtles, and Chapter IX to the calcula-

L

tion of off-diagonal elementsi ~ - R T T
3. Sum Rules'(dhaptet_ﬁy
Useful Sum Rules cen frequently be obtained by colparing the
emplicit solutions to the perﬁurbatgan equations with their equivalent
gpectral representations expressed_inuiufinite'aezies;:‘The-famiiy

of sums f{nvolving oscillator strengths is of particilar interest since

it has ‘a wvide variety of physical gpplicacions.” 'Sum rules can now be '

mathematical trick vhich has beeﬁjpoiﬁteﬁ;but-byjmavroyannis'and””"‘*’

ATy - P ot e - . Rt LI T s Lt e T
ERAC U A TS SRR ERUI IS S P M S T R RO 2 N Ly e PR R PR SN

AR IR A7 S P aary oy oy

M e Mo st e k- e

applied to dispersive intermoleculdt -forces;- thanks to an ingenioud

1 TG T O TS =, N et T sy Y S I T . W5 T I e,

F

TR

Bl | P
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- Stephen (1962). Beceuse of its importance, this application is reviewed

. in ponaiderable_Qeééil.

4. Applications (Chapter-XI) . - .

This chapter contains a list of veferences to the recent litevature

on applications of perturbation theory to quantum chemistry.:. An effort’

has been made to make the bibliography completele apart from references

to polarizability, nuclear shielding comstants, etec., which have recently

been reviecwed by Dalgarno (1963, . . - = -~ S .,

,? In proceeding from the formal theory to the practical applications
g - : |

-ﬁ many questions arise. For example, is: it really necessary or desirable:
?E to use Hariree-~Fock orbitals as the starting point for perturbation

M ‘ : . ' '

4

4.;3
L]

calculations (Szasz, 1963)? The success of the work of Dalgarno anmd

Aty

;.-.Js'-i:,:z-‘_"'“f

Stewars (1960) using Slater type orbitals with screening constants

iy

iR e

i
-

adjusted to make the first order perturbation vanish, suggests that

gimpler orbitals may provide a more convenient starting point, The

perturbation equations themselves mold the wave function into the

23 i 5 S
rdnrunr 15

proper form.

The idea of applying perturbation theory to improve the familiar _
; ] | I

0rbital model of atoms and molecules has been éteatly stamulated by

Binacnoglu peints out that the Hartree-Fock potential correctly represents

%3

&

! . 2 : , .

v Sinanoglu’s (1961) discussiors of the .electron correlaiion problem,
5 . -

£

§
é the behavior when the electrons are far apart. It foliows that the

ﬂ ?erturba&ion potential contains only.shnrtérauged‘elecéron—electrqn
interaction gtevms when the unperturbed-wave funetion is of the B@lf-‘

consiscent field type. Furthermore, because of the Pauli principle,




"ww e Wi b Ehad” m~afacer’&s?'wﬂ au‘f‘"ffu&uﬁ‘ 28

close togather to uimltmouszy feel the effects’ “{Jf’ st G ‘“ﬁi‘t}ﬁ'sedt :
£orces. '.l'h:l.s lupport& the. '-‘Jlea ‘that electmns are mainly- correl.ated ¥

IS :ln plm belanging ‘to the -same -gpatial orbitals.:s And thusy: in. ngr’eemenl:
: 2 with the G. No: ..mts:fnntigns_..-which«-nnderliq present=ddy chmﬂ.ﬂl_my{q'ﬂm:o L

waye. fum;tm fo;:, -em cmpl.ex moleculea can: be: broken up 'inm aets ami

. of m—el;:ctmn funetzi.pns (gﬂn;lmlsl.: r‘:‘:'hus,, to:-& chemically mseful g 3

3

m:'oximtim,' pertnrbation theory need, only ,cope:m_ﬁrb.- pxoﬁiemsx ves aosd

1nvolv:|.ng two. glectrons st a i@‘,e.( i ik

e i Hils Tamrod wdd woxil nkbssosoig al

'b‘wu {a~eagn;n q!g# §0E B slomaxs 40M Lsuiis gnoldesup ynsm

A, SRS b s dy T oy ﬁﬁi,zhibq Antien itz ed® as 2ikuidso danl-nerdrell vou o

e
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3.

: oscurs (see Chapter XI).

1a

FOOTEOTES TO CHAPTER I

The Brillouin-Wigner or Feenberg perturbation series converge faster
than the Rayleigh-Schredinger, but they require that the emergy be

deternined in an iterative manner.

Note that it does not justify expansions in powers of internuclear
distances. These are, indeed, nen-analytic in the simplest case of

a onec~electron diatcmic molecule, where in fact a term in nslogll

The Interchange theorem for transitions has been proved independently

using a variational mathod by Borowitz (private commmication).
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1Y, MIGB-&CEIZ@EEEB_PERTURBATION THEORY FOR_A NON-DEGENERATE STATE

B

In oxder to lay the foundation for the new d‘evelopnents > let us
review the Rayleigh-Schrodinger pérturbation théory for a non-degenerate
state. Tha unperturbednm‘_ﬂtogiati Eo has the com’plel_:e_ set of nor-
mlised' eigenfunctions ¥ 5 with the corresponding energies Ej K . The
petturbéd Honiltonian H =H + AV has ‘the eigenfunctions’ W j with
the correspounding energies ‘B g We fix oui attention . on that perturbed
gtote which in the limit a3 A approaches zero has \Pq = wq and
.Eq- Gq vhere ’Eq is not degenerate.""' Gt FIREER “

" The basic assuzption of the Rayleigh~Schrodinger theory 13- that
‘P and B moy be expandeéd in power series in the ﬁertutbation'imrm-

L3

eters , i e d By Lo s ean il et e

b ZM‘“’ and B Za - s T

In ordar to keep the notation from becoming too clumsy 3 the subacr:lpt
L 19 mitted am:ept where it is necesaary to avoid confus:lcm between

diffe:enr. ntatea of the aystu. The power seriea (1) are subst:ltuted

33

into the perturhed Schrodinger equation. Since the result:ing equation l
zust be true for 2ll aufficiently smwall values of A , 3 t_he coefficient : "
of goch power of A in the equation must be equal to zero. This :

. lezds to the fenily of partnrbation equac:lona. CIearly, since the
state "q“ is non—degenarate, V( ) = ' and e(O) = € ‘80 that the

n;i : '.‘ “ A b T e I T T A S “'-'_} ey gt G ."t': i ,'(2)

|
5 > Jigle A 2y 4 7 ; 2 : ‘ 4
R Raees NRISRR ol T A T 7 et [ iy o asrn U VSRR 0E G L "!p 3t i
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:
dhere l{:, = H L 4o € . The first order equat"'.crn is
ay D vy = 0 S - ® ‘
' where V=V - 6(1) « And the r-th order reiation is s
Ty ® ey @D LN Oy g @
; Normalization ceuditions are required to complete the epecificetion, of
E & . h .
; - the perturbed functions.,
i . - ‘ .
! We require that the exact wave function \P be normalized to uuil:y.1
5 Subatitutiué the power series Eq. (2) in:o £ Q ,}P)- 1 .' and requ_irihg
; l:hat the coefficient of each pawer of A in this equation be individ-
i ually zero, we obtain the nomlization conditions for the various orders

of perturbed wave functionms,

Z(k,n-k) =0 , 'n-I._;Z,"" W B S

.

vhere (j,k) = {t(_l.‘),vm) ror n =1, this gives (0,1) + (1,0) = 0,

which for re:al functions is the familiar orthogonnlity condition (0 1))=0.

Expreaaiona for the perturbation energies can be obtained by taking

e LR

the scaler product of qu. (3) and (4) with v v Th‘,’.’ - :
‘."m = <LW> | Ak S0y
CLEE D BT oo BATENIE
| i o . o 8 ,
€™ - <y, v'v“‘ Dy, z 0, e‘“"" IR WICTER

(8)

In deriving Bqs. (7) aud (8), ve have assumed that H_ is Hermitian.

If V is 2lso Hermitian, additional teiationn can be obtained for the
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higher ozder perturbation energies by carrying out a sequence of

algebralc menipulaticns of the perturbation equations, as explained in

Appendix A. The most important of these re}lati;ona are

e® o ¢y (2>> - e‘”(z,m_ P - (o)
e(:s) . 4P Wa) > - <2>{(1 2) + (2, 1)} - an

€@ . <‘€“"”,v'v‘“’> ‘z G Z (wii-k,m=]) B o= 2,3,
| k=2 j=o s

| (12a)
: : ‘ n 7 k-1 L 2
. é(znﬂ.) - <?(n) ;V'ﬁsn} > - Z (k) Z (rdl4+j-k,n-3) s D= 2,3,000
c k.=2 j=o : (12b)

Bqgs. (12) demonstrate the well-known theorem that the perturbation

energy to- the (Zn-i-i)-ot order can be obtained from knowledge of the’

wave function perturbed through the n-th order. Hylleraao (1930 ) first
showed that the energy thoough E(a) is determined by tﬁe wave function
I:hrough \\v(l) . Later Dalgarno and Stewart (19561?) 3 Dupont-Bourdelet,
'rill:leu, and Guy (1960 ), and Sinanoglu (19613) “made explic:lt demonstrn-
tions of the general theorem. Actually, thie theorem is an imediate
consequence of the var?lational principle given in chapt. v (W:Lg,ner, 1933 3
Silvernam, 1952 ; and Sinanoglu, 1961a,. From the varietional principle
ve knov that 1f the trial wave functi.on i.s in error by order ?l s the
energy u 1n error by oxder 1( . rutting 1( ; praveathed .
theoren. ' | .

We shall have need for the explicit energy expectation -




S0
-
o

F S A —a peme———. R
1
. } 5 & £ () =& \z{.(n) ,H"y(n))‘_ corresponding to W) , the. perturbed wave -
: funct;lon_tt_uncated after the n-th order term and normalized te umity,
l' n - ; . V. B s
"P(nJ ’ Z akv(k)/l)'(n) £, SESRHRE Se. s 1h & N 'I':I"::(IS) “
5 h Here the D(n) is the normalization constant
B S ‘a-k - - Vel -
‘ ; | n(n) = [1+ JL"""Z)_ Z(n-j.jﬂt)] ' . (19)
i : k-l g ~' '

’-.

The energy expectation is 8 (n) = < '{’(n) ,H‘y (n) ) Tnus, we find

Tk oy RSN Ty
e '1'.-‘_ . oy s

6 (0) =€+ Rém | o (15)

. s
§odoj2

g 1 ' 8(]1)" - P & -ae(l) 3- 7(26.(2) + 13 e®s - v "-:(16) .
. 2 ng, + A (1,1)

The results .".or-ilarge‘;_,velueo.‘_of_ ~n -are given in Appendix A.: .In general, s

the ﬂin)i,., are accurate through the.order of ‘A.znﬂ and provide a

_. sequence, of .upper bounds to the exact .energy; . to -which they converge.

S T

‘

E_x_gansiona in Ungerturbed ‘Wave Functions P RU R \

! TR the usual presentation of ngleigh-Schtodinget Pert“rb“i‘“‘

theo:y, the perturbed wave functiont -are expreesed in terma of a spec:ral

(T4

distti.bution of a complete function set. 'rhe formnlae are given in’
Append:lx B !or a seneral function aet which hu no relation to the un-

\ petturbed problem (\r.lth the pou:lble exception of one member of the set) .

conaidereble si.nplif.:loations are obteined 1f the function set is the

eompl.ete set ot unpetturbed wave funct:lonl. 'rhen (‘Dolgarno, 1961 )

using ths. notntiv.on- vj.k. -'(‘t.j.,.V!kl) nnd V' = <vj,v 'Ir.> 5

S o » “‘ AR e
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N V ¥ i
v - Z ki Tl | | -
€q Ej | PR
v vy -
" ai iK'k
ZZ(& €)Ce €) Z e-e)*q"‘ (18)
i k | _
v(:!) - v ijkvég‘i ‘
%Z' Z" fulidee @ Z' . B
“ - q .
& (e €)% e - € o (e €

:Z' Z' VL.
& (eq-E\z'e €)
Here thz primed sigmas indicate the sum over all of the discrete states
plus the integral over the continuum but omitting the state (or states)
with energy Eq

The corresponding expressions for the second and third order

perturbation energies are

Z Eq" Gk
and
' Y.y Y '
(3) ﬁ' ai ik kq _
4 P Ref— (21)
%, Z (€~ €€, €Y

As Brueckner (1955 ), Huby (1961 ), Primas (1961 ), and Lowdin (1962 )

have shown, compact explicit formulae for the higher order perturbation

 energles and wave functions may be written in terms of .“ha operater

g Sl ikl | o M




Ay

P s

il ki "“m«mwmm;mfnr

P ——

—atina

' . ;
= z M ; e . (22)
3 (Eq' GJ) . i . : B

Thus for example the energies are :

(4)

e = comlver - € PTw> | (23)

e® =< ym [vavigre - € - @y + Qv'}] voy > (24)

cee
- _‘ 1)
.
i 2
~
é ..
-
k3 .
uth oy
& ' - -
(S gt s 5 \ #
% v
.
v
.
£
h 3
-
Ly 3 -
H 1 &
LA 4oy
2 L]
3 ¥
: . i ‘\." L]
i : r = r s
= % f : 3
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FOOTNOTES TO CHAPTER IIX
1. There is another type of normalization which Is commonly used.
Instead of requiring that < ‘P,\P> 1 , the perturbed components ¢
of the wave function are taken to be orthcgonal to the original
function, (0,m) = 0 for n=1,2,°** ., This makes €™ =¢y,w® D>,
Or, according to F. Dupont-Bourdelet, J. Tillieu, and J. Cuy {:J. Phys.

Radfum 21, 776 (1960) ] : .
n-1 2n-k-1
e(zn) = <*(n'1),w(n)> = Z X e(j)(k,Zn-k-j)
k=1 j=n-k

n 2n-k : :
€5 . <y Wy Z 2 €D, znt1k-p
’ k=1 j=ntl-k

e A TP S —

comostiat 98 B0 wsneeosd gnrieupe Bsdwitieg fenigivo 2di e dsdd ool

sddal tsva 928 esupivifoes lassnse cobife o} enoldsves fsiinorsilib 2065119 .

g8f 3tdT .nollsuds wuisvnoegls re al colisupe f[eolytro sd2 esuvsile
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{ I1I. SOLITION OF PERTURBATION EQUATIONS

In this chapter methods for solving the perturbation equationa of
Rayleigh-Schrodinger perturbation theorj are discussed The nwth order
equation (2.4) fo; *( n) involves all the wave functions‘tf ldwer
order, so that the e.quations must be solve.d atep-wiae sterting with the
first order equation (2:3), substituting its solation into the second,
xolving the second crder equation, and so on. The same is true for the
equations of double perturbation theory discussed in Chapter IV. The

basic problem is therefore to solve a first order perturbation equation

[}

@ -enwP+rw- ey = o )

[+]

where Bb is the unperturbed Hamiltonian, ¥ and € are the unperturbed
eigenfunction and energy (assumed non-degenerate) of the state under

M g D

consideration, are the first order eigenfunction
and energy, and V is the perturbation operator. The sclution of this f
equation makes it possible to evaluate the second and third order
enérgiea by means of Eqs. (2.7) and (2.9). However‘the recent develop-
ments mentioned in the intrﬁduction have been more concerned with using
the solution of this type of equation to obtain the first order cor-
rections to expectation values. In this case the perturbation is the
operator W whose expectation value is sought. "
The solution of perturbatiot equations is usually mnth easier

than that of the original perturbed equation because they are inhomo-

genecus differential équations for vhich general techniques are available,

whereas the original equation is an eigenvalue equation. This is
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especially true in the most usual situation when Ho is a one-electron
Homiltonian or tlhie sum of one-electron Hamiltonians. Unfortunately,
however, in the case of gha puerturbation of gteagest impo:tagce, ramely
the electron repulsion terms 1/1.'12 , analytic solutions have not been
found and their discovery is no longer a matter for hope. The same is
true pf other ;wo—eleg;ron»peyﬁu:ba;ions such as the dipole-dipolf and
h;gh;r multipqle interaction terms occurfing in the tregtme;t qf long-

-

range forces. The first order equations involving two-electron terms

‘in 'V must therefore be treated by alternative approximate methods

such as the variation method discussed in section B of this'Chapter or

the familiar method of expansion in a compLete~set as discussed in

.Chapter I1 and Appendix B. . The explicit solution of perturbation equa-

tions in closed form is therefore effectively limited to perturbations

which only invelve one-electron operators or the sum of one-electron

operators. Fortunately most'propefties of interest othér than the

energy are associated with operators W . of this kind.

A, Explicit Solution

There is a well known device in the treatment of inhomogeneous
differential equations (see Morse and Feshbach, 1953 ) which is used tq
simplify (1), ﬁnd which has been employed very effectively by Dalgarno

and his colleagues (Dalgarno and Lewis, .1955. ). This is to. put

0 .o BE)

o

¥

where ‘¥ 1is a scalar function of the coordinates to be ﬁetermined; and

to mote that - ‘i .o g o A1 v @i

- o
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" be written in the form

24
(B - €)Fy = (HF ~FH)Y
so that (1) may be written
| [no,r]w-l-v'v =0 , . , ®
L

where the square brackets denote & commutator and V' =V -
This form already has the advantage that it is usually unnezessary to

know the explicit form of the unperturbed Hemiltonian Ho , since

] - [md

as iong as the perturbation H - H is a scalar, and V' can be

o,

repiaced b§ H- € - iéu) (talging 'ﬂ,-- 1 ).' Equation (3) can then
[R,F]'qr-l-(ll- €- €My = o o o )

To proceed further it is necessary to spe-ify the form of the
Yamiltonian. For the many electron Hemiltcaian (atomic units:

energy o~ ezlao and length ~ a, V-
B o= -3)vi+u | T ®)
() i o g : e
i ' " ‘
where the unperturbed potential energy Uo is a scalar, so that (3)

becomes

z [vtz,r ¥ = 2v% (6)

If this equation is multiplied by 17* and its coinplu conjugate by

¥ , the sum of the two equations can be¢ rearranged to give
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Y va'wm = vt @
: &

where we have assumed we can choose F to be reall' For simplicity
of presentation we Bhall only consider the case when W ia real 80
that (7) becomes
2 ’ 1 . C . ’ . » i
v, V) = 29y Py (8)
i : '

The boundary conditions on the perturbed wave function, and therefore
on all w(n) s, are the same as those on the unperturbed eigenfunction

4 , Thus on the boundaries at'infinity the conditions on F are:

FF =0 .-wzvir.no R o ()

' el ; -
A -

This guaranteea that the integral of the right-hand side of (8) vanishea.
The solution F of (8) is of course arbitrary to the extent of an

additive constant, which may'be chosen so- that the orthogonality

» v SEt F MR

condition (2.5) is satisfied; that is
L¥;F¥) .= 0 . . e
In terms of F the second order, energy, 'E(z) given by (2.7) is

€ = <vvw > | 1)

¢ Gl v e s 1@ = S v = cor, " L e IO

By substituting from (8) and using Grgen's_theqrem.wg_gg;L

€(2) - %Ewi(wzvir)> IS Ca

(12)

‘e

= -5Gn ) @)
i '
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gince the surface integral vanighes berause of the boundary condition
‘ k9). Thus the second ordar energy need only involve 'Vif; in the
integrand rather than F itself, and in principie only a.aingle inte-
gratioﬁ of (8) is needed. In kerﬁs of -F the third order eheré&Igiven

by ki.Q) becomes
€ - Qwd L - (13)

= %Z(rz,vi(vzvir? .

e e S T

> 1 U VLTI U N, ‘ 2 1
b i = -

£ N }:(v,mir) v) (14)

Z i . i. AL Ly
i The integral for the third order-ena:gi thus involves 'F explicitly
; pnd the forms (13) and (14) are only valid if F satisfies the
orthogonality conditica (10). i
1. Reduction of the Many Electron Equation

For completeness let us indicate hcw the many electron problem

e

may be reduced to onc-eleciron equations in the simplest case. This is

when the total Hamiltonian H is the sum of one-electron Hamiltonians

‘H = z {n) + avar} : " s N ¢ L)
- !

The only significant remark to be made is that it is best to separate

%f the many electron equation into the one-electron equations’

L : »
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before considering the perturbation problem. The alternative is to
attempt to reduce the total first order equation, and is neither as
simple nor as accurate. The one-electron first order perturbation

equations derived from (16) are
- e +w- €M -0 , )

and the total wave function correct to the first order in A for

each electron is now

2- & Tl'{¢(°) +20°F | (18)

where é% is the anti-symmetrizer and the ¢'s include spin factors.

This procedure leads to simple sums over the electrons for all the

perturbation energies; for example

¢ Z e® . z@‘ RO
. i
i

2. One-Dimensional Equations

As an introduction to the solution of equation (8) let us consider
the simplest case of a one-dimensional system described by a variable
x confined to the interval (a,b) . Egquation (8) may then be integrated 5

directly to give

g gt A : . 2 3 b NS
Vi = B R <

where

St ot e g
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u(x) = 2f WEHVHWSHE @D
| L o g,

ard the constanu of integration vanighes because of the boundary
condition (9). |
(2) CGround Sl:.ate. Fof the ground state in which the unperturbed wave
function ¥ does not possess any nodéa insi.de the interval (a,b) ,
(20) may be integrated immediately to give
- ‘g P i
F(x) = F(a) + [ u(§)¢'2<f>d‘f (22)

as pointed out by Young and March {1558 ). The one-dimensional equa-

“tions for G(z) ‘and E( ) corresponding to (11) and‘“(ljfcan' be '

2 vaeaTe

written in terms of M as

3 _ . (2) j‘
€ . dx&*< ) + 2 F0Y (x)} df (f) (24)

(b) Excited States. Gomider now the case in which *(x) is the

n~-th unperturbed eigenfunction w:lt:h n simple zeros at al,az,“- e
in the interval (a,b) This case has been treated by Brown am! :
Hirschfelder (1963 ). If the first order wave function. t( ), _1g
well behaved the function F . will have sir )le poles at . 8589510 ,8,
The direct integration of (20) to yiel@ 'F presents difficulties .,
because M(x) does not in general vanish at the nodasl“_ of‘_ ¥ , and

for the same reason (23) and (24) are not valid for emciteé states.

To avoid the singularities in these equations let us assume that.




.

H(x) by

-+ points aj . By substituting (27) into the differential equation (20)

29

y,F and M are analytic functions in the vicinity of the real interval
(a,b) . It may be shown that equations (22) znd (23) cén then be

replaced by

F(x) = F(a) + fld(z)\y-z(z)dz u (25)
a
and
@ - af [w.) e

vhere the contours C in the z-plane do not pass through (84,895,008 .
A similar equation can be written for 6(3) in place of (24).

An alternative method for dealing with excite. states, more suited

to numerical work, is to remove the singularities by subtracting out the

poles of F . This may be accomplished by defining a new function

and choosing the coefficients C, so that é is anaiytic at the

k|

we get .

4% --1-)—M z -—-L—— 7 v : (28)
dx e
v 2x) j=1 (x - i) : :

The ccoefficients C, are therefore given by

3

¢, = may/[v'cap] Bk ot

Bquation (28) may now be integrated along the real axis to give '+
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dw = élca)-*[%[mh ;;‘)(ﬁ] df' . | o

where

AN® = ¥ (x)z 0 : * (31)

j’l x-a

j)
and the second oxder energy is given by

@ - _,j‘[ [__A.]dx ;,}: fde (32)

j=1

(c) Separable Equstions. Direct quadrature, as in the pne-dimensional

cartesian case above, is also possible when the original Schrodinger

1

equation is separable in curvilinear coordinates. In this case, as in

~the reduction of the many electron equation, it is advantageous to

separate the exact Schrodinger -zquation i~to ordirary differentia1
equations first, end then to expand into the 4different orders of pérturba~
tion. .This avoids spurious cross terms in the eﬁergy of the second and
higher orders. If the perturbation V vappearé in two or more of the
sepaiated equations the method is really a multiple perkurbation procedure
for independent perturbations, 8o that cross terms are rigorously absent.
Details of the separation and equations are given in sopendix D. The
most important chemical application is to the two-center problem in
molecules which *s separable in confocal elliptic éoordiﬁates (see
Chapter- XI). ! . , ‘ - :

3. Separation by Partial Expansion
The perturbation equations can be solved expiicitly in a much

wider class of cases than the strictly sepatnble one of the previous




31

sub-gection, When a one-electron equation of the form (1) is not
separable as it stands, the first step towards finding a salu;;on,ig
usually to expand the perturbation V and the wave function ﬁ(l) in
terﬁs of a conplete orthogonal set in one or two of'ihe_coordinates.

To illustrate the method consider first the important case of a Bphgr;-

cally symmetric unmperturbed wave function Y (r) perturbed by a potential

v(r,0,0) which may be expanded in spherical harmonics ?ii‘:

R A Z VY 0, - R (E9)
’, : . R - L = 1 25 ; FIT

F may be similarly expanded to give

ey

F = X Fj,m(r)vlm(e,cﬁ) “ (34)
fm _ e
By substituting these expansions into (8) and separating the harmonic

components we get

d (22 % 2 2 5 it

e (r v T) - 22+ Dy fog = 2V ¥, (@ ==f,000 .05 £=0,1,2,:-0).
s | ) | ' ‘ (35)

This 18 a set of ordinaryflinear”inhoﬁbgenédua second order differential

equations which, although they are not directly integrable by ‘quadrature

for f#0 -, may be solved either by inspection or by :;'tandargl procedures.
" From the formal standpoint the key to solving an equation of the

type (25) is a soluiion of tﬁe'correspondlng homogerieous equation, which

may be writtea

L}

L O

ﬁtnﬁmg-mzi_u', - B (36)
r

2 dr dr

dr
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-
If such a solution K 1is known we repeat the device (2) used in
simplifying the original perturbation equation and put
Fpm = KE . | 37

By substituting into (35), multiplying by K and rearranging, we get
.e_'( 22248 _ '
ar \® tZK i ) 2r2KtVlnv 7 (38)

The equation is now in the one-dimensional form discussed in sub-section

- 2(a) ﬁbf.. this Chapter and may be integrated immediately to 31ve2

2 K2 .g.f. = Myu(x) (39)
where
X |
My (r) = 2 _[ szﬂviﬁtda £V (40)

For the ground state Eq. (39) may be integrated again diréctlj. l'o:.'.
excited states the u_npetturbed wave function ¥ will possess nodes,
and so also may the solution K of the homogenecus:Eq. (36). This
liﬁhatton has been discussed in sub-section 2(b) of this Chapter.
The singularities of £ may be either avoided by integrating along.

a contour "c in the compLe.: plane which avoids the zeros of ¥ and

‘K 5.0F the poles may be subtracted out. For reasons of space we shall

give only the complex integral form of F which is

‘B, (r) = K(x) {f(o) + f —-i";-a-} (41)
‘" 2%

Ld
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The second order emergy can be written in a form analogous to (26)

o2 Z -
e? . _-;52 ‘{%] ds ' (42)
£,m _

and likewise the third order energy. In many éases, hoﬁ;ver, it may

be easier and quicker to obtain a particular integral of the inhomo-

geneous equation than to solve the hcmogeneoﬁs-dne and integrate,
The case in which ¥ 1s an orbital eigenfunction with non-zero

angular momentum .L ,

o= R (DY,0,0) (43)

$r.y

is similar in principle but somewhat more complicated in general, aad

is therefore treated in Appandixz E. However when the perturbation V
. 18.radial, that is for the coﬁponenet V;o , the first order equétion

may be integrated directly to give

F(r) = F(c) + f [b_ilszlle]ds o)
[+}

where
r : A o , N @ ,
M(zx) = 2 f s V;ORLds (45)
(] : \ e s 3

The second order energy can be written as usual either in the form

(see Brown and Hirschfelder, 1963 )

°0 : ; G

2) " o o ' u’rznlyi:' ' R ‘
e( = - &f“[;&;ﬁ% dr -_%;Cj[ % _O:j PO e no b (47)
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whgre 8 e the zeros of R -and
¢, = map/[amicap}? - ‘ (48)
T = :2anz Tj;—— | | @9

4, econd and Higher ‘Order Emat:lona

So far we have only considered the first order equation. . The
éeeond order perturbation equation corresponding to (1) cou be obtained
“from (2.4) and is
@ - P ey - Py =0 (50)
It has the same form as Eq. (1) except that the inhomogeneous term
involves _¢(]f) which must be known before V(?) can be found., To.

solve Eq. (50) we therefore put
A S | (51

and suppose that *(1) = Fy is known. Then by thc¢ manipulations

described at the beginning of this section we get

veyve) = 2w'E- &Py (52)

This equation is now of the same form as Eq. (8), and can solved by

the same techniques.
The greatest need for explicit forms of the second order perturba-

tion functions is in order to correct the zeroéth order approximaticn
to a second order property; th:ls is discussed Chapter IV. The search

for explicit solutioms of the higher order equations follm the sams
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patiern &8s that of the first and second order equations. However

they are not usually of specilal significance.

B. Variational Solutf:ion .

When the unpertufbed equation is not separable, or when the partial
expension technique requires an infinite series which only converges
slouly, it is nevertheless often possible to obtain a useful variational
approximation t§ the perturbed wave funciions. This is indeed the only
effective method when the perturbation is due to electron repulsion.

The basis of the variational apbroach is discussed fully in -
Chapter V. There is a variational principle of a very general k@qd
for each order of perturbation which may be derived from the Ritz
variation principle for the total emergy. In practice it is natural

to choose a special form of these principles, of which the prototype

is that for the first order wave function introduced by Hylleraas (1930 ).

1. Hylleraas Variotion Principle for Cround State -
Hylleraas pointed cut that for the ground state of a system Eq.

(1) is equivalent to the variation principle

€ 2 P L (53) l
vhere
€@ = VP, - ¥V + Py D+ (v ¥ ) o)
and ?(1) is arbitrary; the equality in (33) oniy holds when bthe |

variation function_?f(n- J#(-l) » the true first ordar wave: function. The

principle is easy to prcve: by substituting ?y'(l)‘ - *(1) & 54;‘(1). ’

: -

in (2‘)‘ we get
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€@ - €@ = 206VD, [ir, - € D+ vylY + (¥, @, - )5V
' (55

The term in .85 vanishes because of (1) and the term in 52 is positive
| becausg € 1is the lowest eigenvalue of 'Ho . Clearly the same argu-
ment‘also applies t.o‘ex-:c:lted states which ate the lowest of each symmetry
class of the total Hamiltonian H=H_ + AV .
A If the first' order equations cannot be solved analytically it
may nevertheless be ;;ossible to get a good appi:ox'imatioﬁ to € 08 and
P by inserting a trial function T in (54) end making €'
stationai-'y with respect to the variation parameteérs appearing in _';(1) .
If the trial function is a linear combination of. orthogonal functions
Q“ ‘ti:an E(Z) has a form similar to Eq. (B.6). This procedure was
introduced by Hylleraas and has been used by him (1956;:1958) in
approxihatiné to the second urder energy in the 1]2 expansion of two-

electren atoms. This work on He-like systems has been continued to

hfghér orders of perturbation of Scherr and Knight (1963 ), and is

""v

discussed in Chapter-XI. _— . s o
One of the most important applications of the variational principle
) i

is to determine an approximate in order to calculate the first

order corrections to expectation values (sze Chapter 1IV). In cases

R e e o e

where ‘the unperturbed wave function ¥ is not known exactly, Eq. (54)

nay still be used to determine an approximate w(l) by making A%
) ‘ ¥ s

" )i

ey

ataticnary, but in such a case is no loﬁger a correct -vari’aiional

s

- approximation to '€(2) 3 This approachhas been used Extensivel'y" 1n

=7

i

&v;
-.

ab_ie_ldi.iig calculations eud is further diacuss'ced in Chébter v (see. in

particular footmote 8, where the functional € 2 is déﬁﬁtéd by ?H ).

;i SR : R
5 g \..5‘\ 15 & i 8 b Bl d e it L Fiidl ¥
o el W e’ R o oy ek b i
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~(1>

= FW as
N s
in BEq. (2) end regard the magnitude of F as a variable,we can minimize

(a) Dirichlet Forﬁ of Hylleraas Principle. If we put

A

??‘2) explicitly to geﬁ a form homogeneous in F

=(2) _ S 'Ry D
/ £ P {CRERF) 7 o

The denominator in this expression can be written
~ ~ o ol -~
<¥FMH - €)Fyy = Yy, F(HF - FE)Y >

and if Ho has the form of Eq. (5) then

s T, ) ettt A v s T 1§ T

VFaF - Fu)y = sjz W, H? - %Zvi-(‘fv’viﬁ')
i i

On integrating this expression we get

HFEF -Fa)YD> = 54V, Z w,H% >
b |

i
- L o

provided that the surface integrals of vzfﬁif' vanish., Equation (56)

can then be written

2 | C<HY o PN
i

It is clear from this form that the second order enmergy for the ground

state 18 always negative.

Prager and Hirschfelder (1963 ) have recently pointed out chat the

v ' firot order-Bq. (8) is gnalogous to a 3N-d1menaional ?oiason 8 equation

AR in electrostatics, F playing the role of the electrostatic-potent;al,

i
o *2 that of a variable dielectric constant and -¢V*¢sz that of the

charge density. The variation principle in the form (5?) is well

T R e P T AN G s T B



E | e . Ty e -
T
N
: | B .
F o . : ¥ |
f ' knu:m 111 electrus_tati_cs as “thevnirichlet principle for the self anergy
of a charge distri.bution. g g Do She B e e X
i h - S .} : ’ e e (8- - .
A particularly simple general I:ype of variation function which has
} proved useful in connection with this formula when V is scalar is
i ‘ .
. - _ ‘ % .
i F =V ‘ (58)
f which leads to
A : 5
1 L i Y 2 a3 .
i £ ?
@ ., <¢,(v Y2 e(ﬂ) (59
H ‘ z v DAY - ¢
ﬁ.‘ : ) =
Unfortunately *he denomi.nator d:lvetges in the impottsnt case- of electron
4
1 repulsion so that E(z) =0,
; ' 2, Extension of Hylleraas Principle to Excited States
The risual extension of the Ritz Variation'principie to excited
-gtates requires knwledge of the exact perturbed wave functiona of the
lower’ states of the same aymetry. Apptoximate energ:lea and wave
functicns for the exc? ted states caa of course be eotu;:':ed ! n the -

. process of minimizing the trial energy-‘expresston for the ground state,
but in general these appromimetioue_are unbounded. The only caee in
which the approximate enetgy is an upper bound to the e':u.ited state
energy is when it is the luweat state of a given symetry type An
‘ | important advantage of the more restricted variation prim:iple for the B
second order - energar ia that 3 ‘as olwwn by 81nanoglu (19611:) s 1t can be

fa:lrly mﬂy uodiﬁ.ed to upply to an exc:lted state :lf the unperturbed

& 2 " wave functions for the lover states are knovn. e T

i ' 5

causider the var:lction 5€(2) for the ex..ited atate q when

‘..\‘- zak . SR ' "f" "”E' ~\‘ b Sl X <h .‘ 1'?& :' LR E T )




"':2) is stationary with respect to changes 5 (1) K

[+)

=~ (2 ~(1) #(1) ’
8P = <P, - €P5V, > (60

The reason this is not always positive is that the variations will in
general contain components ‘wl;(lr < q) which give rise to terms .
(Ek - é.q) wvhich are negative. These comronents are in fact known
exactly from perturbation -theory, and the variati.onall method ‘auggested
by Sinanoglu is to insert them in the ficst order trial wave function

g:l) and to vary only that part of 7{:‘;1) which is orthogonal to all

the lower states. That is, we put
~<1) Z =1 xm (6

where

<wkn<f,1’ > =0 (k < q (62)

By substituting (61) 1nto-(54) we get

k(q . (63)
wlhere. VIi=V - e(({l) . I.et: ‘X(l) be the exact part of 1;( D ort:hog-
onal to #k(k < q) , and put 'xfll) = -x(l) + S‘X(l) . Then by the

analogue of Bq. (55) we have
e - eff’ =< S“x“’ - €8Py 20
for variations 6?,:1) for which I

: <1lfk: 5&&1) > = 0 k < q) {65)

B
Bw,' i
BE.
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‘Whereas the 'exact‘ solutions ﬁr‘(ll) of the first order equations

for different states q would yield wave functions orthdgonal to the

first order in A , this is not generally the case for vairiational
approximations. The conditions under which it is true are derived in

Chapter V,

3., Variat;.ion ‘Princigl'e for Second brder Perturbation Equatio: o
' The variation principle of the leleraas type (53) for the second

order pertufbation function '(2) given by equation (50) is

5~m > W ' L ek
'.m' L
W 5D, - e 7Dy 5D gDy <-;(i>,v_.;cz>> ,
. - €9 [( P42+ 2], | o

.t(n is the exact solution of (1) ard ?(2) is arbitrary. For cases
in which (50) cannot be solved = plicitly it is therefore possibie to
obtain a variational approximation for '(2) by making z(&) :

stltibnﬂrf w:lt:hl respect to parameters appearing in the i:rill function

';‘2) » .An obvi.ous drawback to th:l.a procedure is that it requirea an
S3F
uact *(1) » 8ud if t(l) can be obtained u:plicitly then 80 in all

likelihood can *(2) and the problem is not cae requir;lng t:.ha varla—

tional lpproximat::lon. The difficulty can be overcome :l.n prim-.iple by '

adopting the approach of chlpter Vi, which is to tefomlate the second

order stage in_pa_rtw.hation theory as a new first order problem.
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C, Variational Principles for Lower Bounds to the Energy =+ -

In this section we shall discuss two other variation principles
vhich, unlike the Ritz principle, give iower boundslto tﬁ; energy of
the ground state, The first of these, due to Temple (1928 ), applies
- to all orders of the energf, but haﬁ tﬁe disadvantage of-;equiring
knowledge of the unperturbed energy of an ercited state. The second,
which has been discovered recently by Prager and Hirachfelder (1963 ),
is specifically for the second order energy and does not require

knowledge of an excited-atate.

“ 1. Temple Primciple ~ =+ - ilvh e

This principle (Temple, 1928 ; Hylleraas, 1961 ) is based on the

R 0 TR S

inequality for the exaptfﬂsuiitonian
b Al : 3 :.-: : - o o= : r -~ " o s . '
a-p)Qa-gp¥y>0 @@

where E and E; are the two lowest eigenvalues of H (of a given
symmetry) and (f’ is any variation’ function. By means of the usual
parturbation expansion we can deduce a second order result which may
be combined with (53) to give o

R PR (0 ST ey
-- (B - €397 +Vy |
0 5 €7 - 552)- s <, .é’l_-,f 3 °,-" > . (69)

°

whare €( ) :I.-s given by (5&). Prager and Kirschfelder (1963 ) lmve

1mproved thfa uppar bound furtuer by optimizing'with reapect to the

magnitude of *2 D unich taads e . 0o s fad
o - I s * ,(v')* A = TS .:_'".‘1‘! 'n-j'::_ .
6(2)2--(9—.‘ ‘l—+—‘-'-- S pin s v s 103
[+ ] 3 €1' ‘O Bo RS T T L & B O JUITS P

Saugd wory! faadidbiinv

-

e AR A € A e it




el CApa it

—— e

i Y T S

e -

et et

ﬁ

%
g
:
g_

Y o T S s .| 3

-sion (2.20) by approximating the denominatpra. e--k - G"o by . €1 - €
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where .. Bl g, -
= l1Ya
557 o sty Vs B, = € v, p
b, =KV WD T g, |
¢ - : ' )
\ (1) ~(1)
(U, - €V, ., - €, ) 7D ¢ ~(1)
.304 - b f éo < o eot)’i'o >

‘rha s!.npler inequal:lty

v, % v
€. <e =€ 22 - - ; € °k|€
'. 1 o 151 1 ()

a2)

follows either by dropping the positive term A' 2/3 or by setting

"‘(1) - It can-also be obtained from the exact pertutbal:ion expan-

o

and using the closure relation for the complete-uﬁperturbed set tn H

it is originally due to UnsBld (.‘1927")". It ’i.s iﬁte’reatin’g to note3

_that if this spproximation is made in the sum (2.17) for the first

order wave function we get the form (58), .. P TR—

2 E1 i eo 'o

The Temple variation principle and the crude fixe. .ower bound

i

.- 0

""" (72) suffer from the disadvantage that they require a knowledge of the

unperturbed energy E of the firat excited state which is coupled to

the gtouml state by the pertv"bution V . This may not be known. -

. Analopue of Thomson's Principle
The electroatatic mlogy mntimed above has recently been

g Ve ' n
P & b3 i |

fruiefully- exploited by l=ager ard nirachfelde: (1963 ) to provide a

variational lower bound for € : ) which does nct require knowledge
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of €1 . The principle in question is the analogue of Thomson's

principle in electrostatics, and may be stated in the form.

(2) N e "‘V . ) : ;
€D > -1YCr5:8, ) )
- &
where the trial vectors gi satisfy the equation

Yorwls = -y, o as)
: | |

end the boundary cond ‘tions

© ¢,%6, = 0 on boundaries P e (76)
but are otherwise arbitrary. The equality holds if and only 'if
:G; = - vir , when (74) reduces to (12). The proof is simple. Substitute
o~ e
G =-VF+ S G, into (74) to get

ED . -aZ(v,,,&i v - e? Z’(vo,vi 88w, > - %Z(ir 258,56, )
7

§'°VLF'5§1‘T°" - v':I.'. (Hoz 65.). - Fv':I.. ("02 6§i) (78)

The second texm vanisbes by (75) and the integral of the first term

by (76). Hence
~(2) 2) ~ e
€ = e - a.Z(v,,,s G,-58v >
i

and the inequality is proved. In the three-dimensional case the diffi-

culty of obtaining a vector solution of (75) can be overcome by putting

b T
50, R gl o
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~ ' -2 = g 2
G =y, [v<§4+¢_) +2_| _ e - (79) )
vhere & 18 a solution of the Poisson equation )
PR i b ' :
v P = 2y (V- €7V, R4 B WnE 4 (80)
given by . ; :
1
. j' v - ePye
2@ = -3 oo ®, @
. i Lad "1 ¥ :
() 1s a solution of Laplace's equation chosen so that the boundary
conditions V(& +¢) = 0 are satisfied, and D 1is a vector such
thot d&iv) = 0 und which vanishes at the boundary, but is otherwise
3
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FOOTWOTES TO CHAPTER IIX
1. This is possible <f the perturbation V is a real Hermitian
. operator, vhich is ucually the case. The only important excépt:idne

are magnetic perturbatioaé'.

-

2. Attention must be paid to the behavior of the right-hand svide.‘of ‘
Eq. (38) at the lower limit when r-»0 . For example, assﬁming
W(O) #0, v.’.mv’: e and K ‘-i r-k at the origin, we musf hafe
k < 2+ in order that M(xr) exists. It will 'Qally'be possiﬁie
l;.o find a solution K(r) of Eq. | (36) which behaves cdrxé-cfiy;' #f:

the origin.

3. The authors are indebted to Mr. W. J. Meath for this observation.
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- IV, EXPECTATION VALUZS AND DOUBLE PERTURBATION THEORY

]}n this chapter the perturbation theory of expectation values

q‘f‘v operators other than the energy is discussed. The most importanmt

properties of particular states of a system are of two kinds, and can

be written as the expectation values of two different kinda of operators.
First order properties, such as permanent dipole and quadrupole

uomenta 9 diams.gnetic susceptibilities, charge densities at the nucleus,

are the straight expectation values of operatora W, whx.ch are usually

the sum of one-electron operators, For a system with Hamiltonian H

in a at‘ate with energy and normalized eigenfunction ? , the expecta- - ’

tion value of W is simply

<ﬂ>-(?,§‘?> W ‘

Such expectation values can be brought within the framework of perturba-

tion theory by introducing a fictitious Hamiltonian

Fi= B+ pw

~ with eigenvalues & ( }l.) , 8o that € (0) =B . Then since W = 37N ) Moy

by the Hellmann-Feynman theorem,
(ud = {RRHPUE D> ,
(2)
Thus ‘W can be regarded as a first-order perturbation energy E(l) —

in the pérturbaticm e:xpa-nfii.on cf 8 :

+)Lim + pE@ el (%))
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Sceond order properties include electric pola;iaabilitieu, para-
magnetic Bﬁuceptibilitiea, optical rotary constants, chemical shifts,
¥ nuclear spin-spin coupling constants, nuclear shielding constants, long
range Van der Waals interaction constants.. These are all essenticlly
second order energies B2} associated with the Hamiltonian 7L
(which in this cage will usually hav~ physical significance) and can . .

be written in form - . . : A SO T

o) = xd8rpdy,, = LAw-<ny> @
wh;r; 7{ i3 the qolutian of the equation | | |
@a-oX+a-<cm¥-0 . g

Second order properties can be written formally as expectation values -
of operators involv;ng,the inverse of (H -~ B) 3 thus Q can be re-

garded as the operator
Q = - - <ud)H -_rg)'lcw - LW)) | '.» o ®

Since the exact eigenfunctions W ot many-electron atoms ‘and-

rolecules .are unknown, the calculation of first and second order:

‘properties starts with approximate wave functions ¢ . The approximate -

expectation values calculated in this way compare unfavorably in -
. accuracy with the enexgy, because wherecas knowledge of an approximate
wave function ¢ 18 aufficiegtgto»calculata the energy through first
orﬁarlin,tha error, this is not true in gemeral for any other operator. -
The corrections to such approzimate expecpﬁtian values are therefore'

a ﬁ@ttar of importance. The Hamiltonian H - can be written in the form
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B o= H + AV

where Ho is the approximate (unperturbed) Hamiltonian corresponding

to the approxicate wave function VY (= 1}'(0)) and AV is the remainder

vhich is responsible for the corrections. Since expectation values

can be regarded as perturbation energies asgsociated with an operator .
" , the sppropriate tool for calculating the corrections in a systematic

} ponner is a double perturbation theory based on the Hamiltonian
Té= m +Avipu . (7

This approach has been used extensively by Dalgarno and his collaborators
(Delgarno and Lewis, 1955 ; Dalgarno and Stewart, 1958b) and is the
subject of the present chapter.

Attention is maturally focussed on the leading corrections of -

firet order in the sctual or fictitious perturbation parameter A ..
(At first sight even these seem impossibly difficult t-o obtain explicitly
becanse‘they involve perturbed wave functions. such ash *(1)" » glven by
‘BEq. (3.1) for the case in which the perturbation involves the two-
electron yepulsion terms. !'ortunar.ely' it is not in fact ne?:easary to
find such wave functions in order to cvaluate the first order cor-
rections to expectaltion values, as the corrections can be expressed
entirely in terms of integrals involving only the accessible solutions
of first ordcs pexturbation equatiocas with one-electron perturbation
terms. The‘theorem permitting this alternative form has been exploited -

very thoroughly for atoms by Dalgarno and his collaborators (1¢535 .,

1958b, 1960 ), and together with the integrability of the one-electron
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first-order equations has allowed them to evaluate the leading
corrections to the expectation values for a variety of operators. For
this reason we refer to the relation as Dalgarno's Interchange Theorem;
it is derived in Section B of this Chapter.

Schwartz (1959 ) has developed what appears to be a different
approach in that he deliberately avolds the use of a Hamiltonian Ho 3
corresponding to the apprczimate wave function {qand bases his
methcd on a variation principle (see Chapter V). However, since he
too seeks to calculﬁte <W>» and Q) correct to the first andur
in W- ¥ , the results are equivalent to those of double perturbation
theory, as we shall show. It should be emphasized that, as stated in
the Introduction, a Hamiltonian 'Ho can always be constructed and
used in the formal development of perturbation theory. An interesting
feature revealed by Schwartz's approach is that Ho may then be

eliminated from the final formulae if desired.

A. Double Perturbation Theory

The Rayleigh-Schrodinger perturbation formulae of Chapter II are
easy to generalize to double perturbation probiems where the Hamiltonian
ﬁ#-is given by Eq. (7). The basic assumption is that the wave func-
tion @ and energy E for the perturbed state can be expanded in

a double power series in® A and M,

$-) ) awnHem o, - ®)

8“?27\%‘“6‘“’“’ T )
n=0 W=0 t . 58 sl 3 v
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the same as- Bqs. (2.3) through (2.10) with *(n_.,O) replacing ¥

50

(2,0) and - ‘e(‘n,O)' . are

(n)
(O,n)

The resulting perturbation equations for ¥

and G(n’o) replacing G(H)’. Similarly, the relations for

and €™ are the same as Bys. (2.3) through (2.10) with <%

replacing *(n, G(O,n,) replacing e(n) s W replacing V and

H' =W - e(o’l) replacing V' .- It is only the mixed perturbation

. equations which are egsentially new, th= general member being

n m
. *(n,m) B T L Z Z (510, (a-3,m- k) o

j==o k=o

In order that § _be normalized to unity for all values .f 7\ }

(3,k)

and _M , the perturbed’wave functions ¥ must satisfy the

conditions, analogous to Eq. (2.5),

z i(wﬁ k) (u-j"m-k) ) - éno 6mo ? ‘.n,m - 0’1’2’} ," (11)

jﬂo k=0
A general express:lcn for the mixed order €(n,m) can be obtained by

multiplying Eq. (2.22) by v and integrating over all spacza,

€™ o gy, wL® 3 ¢y gylneDy

n m ' (12)
(j:k) ( =35 ~k)
-z ze [1 - Sj°5k°~- Jjn %}(':fn ™ >
j=o0 k=0 o _.

These double perturbation energies can be expressed in a variety of

forms, some of which are discussed in Section B.

1. Bxpectation Values
The first and second order properties W) and Q)

associated with an operator ‘W can be expanded in powers of the
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perturbation parameter A , and the coefficients expressed in terms
E(n,m) o

-of the perlt:urbation energies . « The 'genera]: connection can

be made by comparin; Bqs. (3) and (9), which leads to the expansions .

‘,‘(m) - }:h" €™, meo,1,0r . (13)

n=o

The corresponding perturbed wav;e functions are gi’ven by

o0
W(m) = yzu_*(n,m) s m=0,1,00 . (14)

n=o

(2) First Order Properties. The first order property < W ) defined

by Bq. (1) can be expanded in povers of A by means of Eq. (14):
' n

L~ -]
Q) = Z a" (*(k*o),w(n'k’o)> - (15a2)
=0

n=0 “k

= Ly, + ﬁ[{*(1’9?5W> + (hwu_’o-))_] e
| . sm)

In this form the first order correction involves #(1’0), ‘which is

the solution of the equation

- e evy 50 R

that has been made orthogonal to V . Equat.:ion (15) is ‘uaeless for
explicit calculation since Eq. (16) cannot be solved in closed form
if V coniains two-particle electron repulsion terms. Note that.
since W -:.E(I) , the corrections in Bq, (15) Ican also be wr;it:ten in
the form I

{u) = ) Ame™d | an

n=0
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(b) Second Order Properties. The second order property < Q > defined
by Eq. (2) can be expénded in powers of A by means of Eq. v(l_l‘o) iy

{e) = Z z'<*(k 1) gy (27K,0) > " ot gy

k=0

ot

= KO e ALK >+ < 2 B> 4 o

'l.t

(18b)
vhere ¥(%1) 15 the solution of &

(8 - E.)t(o’”. *WY o= 0L, (10)
and *-‘(1,1) is the solution of Eq. (10) vim{“n ‘-‘-‘m'- 1, i S8
- et D 4 grg 0D +w'v‘1 A

'rhe initial approximation for < Q) 5 given by the first term of

'Bq. (181:) , has the same form as a second order energy, and requires

' f.or its evaluation the solution of Eq. (19a). As discussed in Chapter

IIIA, an equation of this type can frequently be solved explicitly =

(0 D). cauny [ cricg 'y

whep W 1s a one~particle cperator by putt:lng R = F'l , 80 that

it assumes the form of _nq. (3.3), namely

[HO’FJW-I-’H"- e '.o kil £ SENE L W GG pnne el :&_:‘(1_9!))

boao

If H - B = ﬂV is a function of cootdinatea only we can’ go one step

further and eliminate no to get Schwartz's (1959 ) Toge e ¥
i Jam e a2 s T L R B o e S LT
& ~-} ’A‘ ,\' ‘.:. S
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The first brder energy is simply

23

As far as the correction t.rms are concerned, however, Eq. (20)
iz no easier to solve than Eq. (16). Thusythe form (18) is of little
practical interest for calculating the correction terms. Note that

- gince < Q) =-E(2) the corrections may elso be written in che form
“ ~ -
2 - )
<Q> = Z an e(n: ) ) (21)
n=o0 _ :

B. Dalgarno's Interchange Theoram

The general form of this theorem (Dalgarno and Stewart, 1958p)

L)

allouws one to express the mixed perturbation energies entirely

(0,m)

in terms of the W-perturbed functions ¥ To establish the con-

nzction it is convenient to intioduce the Hamiltonian

B o= Bbpd e

with eigenfunctions X and eigenvalues E, . The perturbation

expansions of ')& (normalized) and ‘E, are given by Eqs.. (8) and

(9) as

. S | .
X-= z/w‘*(o.’m) , ! (23)
=0 .

oo B &
R ok e M e
m=0 '
Let us now regard "ﬁ{— as the single perturbation Hamiltonian

$om B EAV | | | 25)

TN 1O Sorait e i oot
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This proves that the integrals:in-Eqs. (15) and (18) imvolving ‘wy L™ -

- (@) *First Order Properties. By using Rq.- (28) for 5(1’0)‘ “‘the

S ek,

LA 3 S
54
3(1) <%v’x> £y =
' U o Gt o (26)'
(0;’&) .
0 v = 7 R TORAEL
Z# rcom > |
. A S T 4
But by the definttion of ESD 1 follovs from (3) that

and therefore by comparing Eqa. (26) and (27),

e(l,m) i‘«(o,m K) w“' L R TR

can be interchanged for others involving 'W(O’mﬂ) 5 which is the '
content ‘0f the Interchange Theorem, | .

expectation value of W through the £irst ‘order can be written iu ‘¢he
£ : § e
form (Dalgarno .and Stewart, 1956p) i

<Y = rmd + ALYOD W) ¢ Grw DX e

: W s (29a)
where ,*(0,1) is the golution of Eq. (19). But putting . 1( >1) = F}
and AVeH - B Eq. (29a) can be writr.en the fom derived by
Schwartz (1959 )

<"> <'-¢,[w‘+rcn--ﬁ).+(n--ﬁ;r]¢> E (29m)

where i‘ 48 given.by. Bq.. (19c) and, fonwins Schwnrts, = -{i,!ﬂ)

has bgen. 1ntroduced to free ? from the usual orthogonality reatrictim




55

{y,Fy) = 0. Since Nq. (19) can usually be solved explicitly, and . .
the integrations in Eqs. (29) are straightforward, < 1] > can now be
calculated ezactly to the same order of accuracy as the energy.

(b) Second Order Properties. In a similar fashion the use of Eq. (28)

for 5(2’1) allows the second ordar property <£Q) to be written

ia the form
> = OV w) + ATy W) + Gy wODy & GO,y 015

Foaes g 0 (308)

where the function 7(0’2) is the solution of the second order single

perturbation equation

A+ @D puny@D | @D, |5 gy

Schuartz's (1959 ) form of Eq. (30a) can be obtained in a similar vy, oy
fashion to.Eq. (?9b) by putting *(0’2) = Gy , etc,, and making the ,, .

additional assumption that V is a function of coordinates onlys:
. . B 2 3 ‘ _ 3
oy Ty, [wr+em-B+@-be+ |Fl®m-Hlv> . (30b)

Equation (31a) can be written in terms of G and F , and Ho can be

eliminated in favor or H , to give the equation quoted by Schwartz: _

[n,c]v+w'n- ey w0 v . .(31b)

Since this .quation can also frequently be solved explicitly by the
techniques of Chapter III, the first order corrections to < Q) cen

be calculated exactly in 2 large number of cases, This result has

o o (5

been very widely applied to the calculation of the second order . i
: = : 3 SN D S X ;
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properties of atoms .y many authors (see Dalgarno, 19€2 ). - P 2

e
4

C. Solution of Perturba*ion Eggation »

_ The methods of solving Eqs. (19) and (31) when W 1a a one-electrou
operator have been thoroughly diacussed in Chaptet IIIA. Theae aqpa-
tions correspond to.Eqs. (3.1) and (3. 50), the only diffezencea being ;
the notational ones: W' V', 1&’(0 1)—5' 1}‘(1) (°< 2)—) 1‘(2) P o
e.(O 2)-—¥'€(2) . When explicit solutions for w(q’l) ﬁné *(0,2) S
cannot be found, varicus approximate variational techniques can be
used. The straightforward method,discussed in Chapter IIIB, is to use
the Hylleraas variation principles, Eqs (3.54) and (3.67). Modifications
have also been used (Rarplus and Rolker, 1963;) and are discussed:- . ‘'

br:lefly in Chapter-XI.

e IR
4

The only cases in whic‘h explicit fomulae can be given for the
corrections' are when the equations are -one-dimensional or separable. . ..:.
In the one-dimensional case discussed in Chapter & 4 49 Sectioh‘AZ,. the . .:

first order cajrrect:lon 6(1’1) can be expressed in a form similar to .:

-Eq. (3 26) which applies to ground or excited statea, namely

LD f ugzzn_;_)_d

; (32)

* (2) -] S & oo . Sy
where - - et o, sE PRE anle S . Lo . Tt ow TR

z . .
M(z) = -Zf "’V"df g G e : (33)
; a '

SRR RN L UL gt PR O B SR SN S TSN T S B L

N(@) = 2 f Wyl o . - (34)
il TR (e el A 2 il RO S R S i (T AR O T I PR |

b s:l.milnr type of formula can b. derived when H ‘and W ‘are aeparable"

$ornE g g gl

" in the same coordinate ayatem (see. -Appendix D). Elapy fletag
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D. Expansion in Perturbed and Unperturbed Eigenfunctions

In this section thé expression of the first and second order.
properties <W)> and < Q> in terms of the perturbed eigenfynctions
‘Pk of H (single perturbation) and in t:erms of:the unperturbed
elgenfunciions \yk -of Ho (d.o_uble perturbati_on) are presented.

We begin by considering the difference between fi;:'st and' second
orxder properties, Vhereas the expectation value of W for a particular

state q of a system with Hamiltonian H requires only a knowledge

of ?q , namely
<), =K Y8 > (35)

the formal expression for the second order j:ropérty £ Q) in terms
of the solutions of H requires the entire spectrum of eigenfunctions
and eigenvalues. This can be seen Sy' éxpan&ing ‘x 5 ‘g:iven by ~Eq; (5) =
in terms of the eigenfunctions ?k ar.' substituting into Eq. (4).
The reslt;lting“well known expreasi.cn: has exuctly the saﬁe form as the

second order energy expansion Eq. (2.20) and is

{e) "Z"iﬁw‘kL - o : el
AR S
where
Wy = SEAE> . o 3 o

the sum is to be taken to include integration over. the continuum, and "~
the prime indicates that states with ’eﬁergy 34 are to be omitted.
It is instructive to compare these. formally exact expressions '

with the approximate expressions obtained when H = Ho + AV and we
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regard only the spectrum of the unperturbed Hamiltouian H - a8 known.

By expanding the perturbation functions #(0’ D and *(0’ 2). of Egs. . '
! (19) and (31) in terms of the unpevturbed functions ¥y and using

Bqs. (29) and (30) we obtain -

t () ' w(°)v£°) } i

5 : " o gk _kq_ ...

: <f">q | H _-l-z'hz e +. Ty - J_(aa_)

: (0 (o) (0),,(0) (o) (0) 4 (0)(0) . (0); (3) (o) |
& O zz Sk, ?\z Z' O My P1q * ot Vi Miq + g My Viq ) |

4" L Teq - & (6 "I (Eg - €y

‘ s 39y
ﬁ-ﬁ Whare

(0 |

g “gq 2% <fq:“f*q> il 5 : , b o5 S U3 )

ﬁj” = {W> - 6, <w ,vv> (ankj exceptk=1 - 9.
The firstlorder corrections due to the perturbation V are effected’ ~*

through the matrix elements Vl(‘;) in the terma of order A .

'l'here are two important and related second order properr.ies of
electtoniir. systems which we shall consider in more detail to exemplifyr; :
these formulae. They are the polarizability d of an atom or mole-

cule and the Van derWaals constant C for t'la long range intex:action

oftwoanpga or moclecules. . PR CE 10 S N PR 55 b it i,

The operator ‘W for the polarizability tensor is the electric. - [:

dipole moment vector ke = § santaTyl ta OB a il G 3

AL S B A

-
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,&'Z‘&;;.7~,~'WH s SR Y

vhere e, and r = are the charge (see footnote 2, Chapter X) and-
position of particle s , and the summation is over all particlé,;, -
mean polarizability for a system iﬁ state q , siven'by Eq. (365; can
be written (cf. Chapter X, where € 1is used in the sense of the E,

in the present chapter):

b= o f LS Yoo g E QP (T T LoE LR
3 - gk s : : f% T
e a8 e
wvhere qu is the mean oscillator strength defimed by * .~ v. . .o .o
fy = 3 BIICYL MRS o o @
T qk 3 3]; q k’/-‘-(‘ q e i
If the atom or molecule is isotropic then EE s Mo s B R i

G * 2 - BDICUI T vhen Qg = SV B> G4
and /ux is one of the components of /g!. SR e BT IR el g

The zeroeth order approximation of l(IO) o the polarizability of
(o) .
q ,

a system based on an approximate wave fui_ict:ion ¥
HartreerFock, vhich takes inaaequa.te account of elec_ircm repulsion

“such as a
! . -

will be giver Ly Bq. (38), namely,

{0 = q 2 ¢ A bt -t -5 (‘5") 4
q : Z . W . :
! k ( eq ‘ek) ! .;'-__-9"'_- TR S S o e :'\' i'ia

The leading correction for the perturbation V , which involves the

two-particle electron repulsion terms, is given by
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o) (0) (o) (0) (o) (0)
where ‘v"‘;')' 1s defined by Bq. (40) and
A« o> - kaﬂ 20 ST

The treatment of the Van der Waals constant C 'is similar (see
Chapter X, 8ect:lon‘63). Consider the loi;g range fnteraction of two "
identical atorc A and B in ground S states ,gt_d’istax_\ce‘ R apart.
The leading terms in the multipole expaansion of the';-interaction potential

vk
n M A

is the two-particle perturbation:

1 a ,b R . ;
e 1Y) S R SR
where /&' and A-l_-b are the electric dipole operators for A and B -

and ,ux ’ }A- are the cunponenta nlung the molecular axis. c is
dt“i.ua.d ll the coefficient of R . in the expanaion of the interact;l.on
energy in powers of 1/R . 'I‘he exact expression for C in terms of .

the atomlc eigenfunctions \Pk. is therefore ..
C = 3 z 49)
- = - B )(B‘,| 3 )(Ek’fx

However if, as ig the case for all atoms other than hydrogen, aﬁﬁrdiin'xété'

atomic wave functions 'téo) are used then C has correction .

terms of the same kind as (40) and involving the same matrix elemants.h
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 FOOTNOTES TO GHAPTER‘IV, i

' 1. This is similar to, but different from, Eq. '(3.4), since here we
. are dealing with double perturbation theory, and . H involves 'V
and not W . 5 : A
1 PRI A

~
.
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V. GENERAL CONNECTIONS BETVEEN PERTURBATION TEEORY

e IS TP SR SRS

AND THR VARTATIONAL PRINCIPLE
There ave many connections between perturbation Lheory_ and the
variational principle, some of vhich have been discussed in the pre- F
ceding chapters. In this chapter we will explore certain of these

connections in more detail,

o S o e
T S

First we want .o emphasize that the relationship between perturba-

S tion theory and the variational primciple is two-way. Cfmsider some

™
quantity A for which we wish a perturbation expressiecn, A -2 \)nA(n) ’

e

where Y is the order parameter. Then, on the cne hand, given a
variational principle for A one can derive variationai principles
for the nulividual‘]‘ A'(n)‘ . This possibility is obviously of great

practical importance. We have already discussed the case A =E , in

e s R

Chapter III and will discuss it further below. We would note however,
‘that one can do similar things Lf A is a scattering phase shift or a

scattering amplitude.
. On the other hand the perturbation formula for A(o) +9 A(]') in

fact provides a variational principle for \ because the mark of the
latter is precisely that it yields errors of second o:rde:.-.1 We have
already had one example of this sort in Chapter‘ IV in discussing ﬁhe
connection between the double-perturbation and Schwartz approaches to

the calc'ulation of expectation values. Another, more femiliar ce:v:ample2

‘ ig the followings From first order perturbation theoryue know that
<*(0) ,w.(o)} [('- *19) ,t(°)> =R + 0( \)z) whence we infer that

o < in‘f »/ ("':'v, Q) is atlttonarj for first order vari.a.tidns of §
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about the true wave funcl:ion__, .which is of course c:or_:x‘eq:l:.3 .As usual,

vé use tilde to represent trial functibns.

A, Perturbation Theory of the Variational Principle ' tew

Let us now consider the case A =E in some detail where, for
notational simplicity, we continue to consider only a single perturbstioﬁ :,
- which may be thought of either as AV ‘or MH. Thus, we consider

the Hamiltonian

FIP R S S g Lo

and the associated srationary expression 'J where

— g e
= <$,(ft' - BV « O« | WO
For fixed E one determine' te opt imal 'f from 5.]’ =0 and the.n
* one determines .E from J=0. Wewill symbolize this process by e
53=0,J3=0. Toderive variational expressions o fodividiual -
expansion coefficients we simply insert
' ~ s ~ i
s Z‘, (n) .5 - Z"n"@ N Zv“""“’f | |
into Eq. (1)..ardetmata terms of like power of v so obtais the fsiloﬁing
sequenca'o.f stationary expreasions.l' | v ;
~(0 : i .‘
39 2§ 2, - TN | ) i
n. o 201w (0)y o 2(0) FOGDs 5D g - FOFO :
_<3> ¥
iR S0

e kSR e D AR U T R R
i
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, (4)
4 %
¢ £ g
: Y 7 | : T B
% 1. First Order Variation Principle

" | ' i &

: ' We will now examine the content of each of these stationary

Fl: v 7 & i - A

ia expressions i.n_tutn. ‘Bquation (2) is of course the variational expres~

sion for the zero order problem and requirea no further ccmant.

-k : velke, ¥

,m‘ (a) leves' Variation Prinmciple. Equation (3) 13 a variational :
principle for A LB stationary for variations of 7(1) " and

”(0) about thelr correct values., Thus s Ju) = 0 3(1) ko J(o) =0 can

. L]
e

é provide approximte 3(1) ’ '(l) nnd t“ s :he latter in gemral _
5 : (0) - 0 - br-y

:  different frou the approximate v(°) furnished by &3
} Until recently this variation principle has not attra?:ted any
atl:ention." The ;:easm are sﬁple: o : |

(1) In the calculation of the energy levels of an 1aolal:ed ayatem

’ : by perturbation theory . (ﬂo =0 \){1 =AV) one naturally chooses

é: % so that '0(0) and hence !( ) - are known exactly and one hu no

;% (1) In the caleulation of the effacts of external fields L '
_ - (ﬂo = H ’ fol = 1W) , very, often 3(1) =0 by symatry whanc.e, s
»» _ once ég#in one has no need for I,

{i41) CGiven, as is usually the case, a definite but approximate
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\}'(0) s 1lees a ";(0) » then J(]') is likely to be of little help in
e(1 )""

deteranining an optimal 11( D becauee unrestricted variati.on of V¥
20 ot ."(1) .

clearly ylelds an equation for
Houever, as has been pointed out receutly by Delirea',s if 'w'e 1.'10 not
know *(0) exactly and if one is 1nterested in <1}'(0),H t(0)> for

scme 111 , then l:hia variat:l.unal principle offers the posaibilit‘.y of
0 ~(0)
ORTICN

More apecifically the resultant
ACTC ORI

an icprovement over 4\
(1)
B will be correct to terms of order ¥
However, this variational principle has at least two drawbacks:

(o) Even for the ground state it is not 2 minimal princ’ple, only::iv
a stationary p::i,r'u:.i.pZlLe.6 .Thus what we have termed an improvement may . »
in fact not be on: at all, i.e. may not be numerically more accurate; .. ::
and iun particular one does not necessarily improve thinge by ueing

more elchorate trial functions

(@) Related to this is the following: we are allowed to vary

23

'5‘03 and ?(1) independently and this can lead to 'peculiar :'resull:s.'-

In particular we may fix ?(0) (determined say from &J © .o s

J(o) = 0 ) and vary only the scale of %'(1)' (i.e. we write ?“') = 3@ ’

and vary the parameter S ). One now readily finds that the optimal
S
FD 4 simply < ?(O) S '0)) , i.e. no improvement.

-(b) Schwartz' Method. One may regard the Schwartz meéthod. (diec’uas’ed "in

Tt

-Chapter IV and shown there to be equiualent to the Double Perturbatiou
Method) to be a special case of the D"lvee' variation principle in*
which, for fixed 'f( ) one restricits the freedom of .?i(l) by requiring
that 5(0) _7*(0) and .';(1) - *(1) be cf the same oxder, ao-thet the
error tn BV  is of order '@(0) --1(0))2
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This is c‘lanal in the follcuing wajr: writing '*(1) ] F*(o)” w;‘ hava

the Dalgarno-Lewis eguation for F : '
rﬁosrl *(0) <2 (f(]_ * <*(ﬁ):ﬂ1‘y(0)))*(°)

If now we write -‘;(1) -fiﬁ“” it is clear that the error in ‘f“.’(l) "

will be of the same order as that in %:(0). Cif 'E‘ | _sgtisfiea

[# 7] w = (R - <TO, KT 7O oy

vhich is the Schwariz condition. As Schwartz notes, one can also .
derive this _..aion from a variation principle (see below), which
then can be used, if necessary, to effect an approximate solution. -

2." Secondh Orde'r:"va'r‘ihf:l.’oual :Princigle. -
Equation (4) is a variational pri_nciple for 3(2) . tn thig
general form it has not been used though it could_'li_aye a_ppl:l.ca_b;n:l.i:y
to external field problems where 'uau_ally one does not know _“1?(0)

exactly. However, folluwing Schwartz, it is probably better to restrict

";(1) and ';(2) or following Dalgarno, to use double perturbation
‘theory. T | T - ST

< rf
if '(0) is known exactly, i.e. "i"(')',' *(0? :ﬁ(o)-_'g(p.) A

'i(l) = g_(_n » then, so far as the numerical value of 3(2) and its .

ﬂ :
behavior under variations of t(l) are concerned we may drop the last

A
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two terms whence 6.1'(2) =0 ,.J (2) = 0 is identical to the Hylleraas

minima16 principle for E( ) and ﬁ(n « An esacntlal point here is

that, in contrast to the aituation with J (1) 3 free vari'ttion of
?(1) does yield an equation for ”(1) « Similarly free variation of

*(n) S J(2n) ~(n)

whence, if one knows the

(2n)

yields an equation for w

lower orders exactly, ome can derive from J a Hy‘lleraas-like

variationnl princip1e7 which determines an optimal Tf(n) and an upper

bound to B(Zn) 6

If on the other hand w( ) is only approximate then the expression -

SS’K =0 w:l.th

- <FO, (A - EO% D> TR, R

D, (g, - TOFDy

with O 2O KGOy ana FD  approxinated by (F K3 (°)>

can be used to determine an optimal '1?(1) for a given -?(0) . Thi.s o

2(1) (1) 1d
v can then be used in conjunction with J = (0 to yield a

variational approximation to E(D .8 Indeed if we write ?(1) -=::"(o)

RGO GO

apd make the approximation ~ then this becomes

exactly the method of Schwartsz. - In this connection one shcild note

¢ 5 POR (0)”5(." (0)

that £ree variation o without the approximation
leads to an equation vhich one can presumably not solve exactly si.nce, "
Ly hypothesis, one cannot solve the asaociated homogenﬁfms equat:ion.

On the other hand one may hope to solve Schwartz' equation (5).




- B. Special Theorems for Variational Wave Functions -

1. Orthogonality and Related Theorems

Ve could now go oo . and discuss 3(3) etc. but since no new
‘ queiticm; of prirciple arise snd the acalysis becomes repetitive, we

will terminate the dei:a:lled discussion at this point and turn to

-another question. ‘thus far we have been concerned with a single state.

4
3

However, our var:lational procedures may well provide us with a number

of stationary aolutiona which one would then be tempted to asaociate :

with various states. The queation then arises--will these se.veral
solutions be orthogonal? In what follows we will, among other things‘,-
derive sufficient ébnd:ltiona for orthogonality. We believe that I:hey
; &re llso necessary cond:ltions ‘if the orthogonality is to be enforced
only by the var:l.ational principle, i.e. if the sclutions in question

ore net Q priori orthogonal by comnstruction or because of some symmetry

IR ——. S -

proverty-

s

Our basic tool is the observation that 1f 1|r and * aze
optimal trial functions then from &J = 0 we have (varying 71) but

*
not 71:

£ (‘ 5Ty = <LFRe¥y - - 0 T ®
and (varymg 7 but not fq) Jge | _r -. 4

z <5€’,vq) {5 q,- . ' SRR '

From now on we will assume -BP % i‘q « Then we have the following »

theorem:
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(a) 1If 5#9 =YV, and Sqrq ¥, are possible variotions of

the optimal trial functions then ?'P and “Fq are orthogonal.
Prooi: The proof is immediate. Simply insert the variations into

Bgs. (6) and (7) and subtract to find
- p
(Ep = Eq) <$p’*q) - 9

which proves tho theorem.

From this follow as special cases, for example the orthogonality
of the exact i and # and of different solutions of t:he Raylpigh
Ritz method. - It is also of interest to make the following two remarks-

(b) Generalized Brillouin T Theorum- 1f &Y 1{! = 1{'@' where ¥ ,1‘ ) =0

is a possible variation of the optim_al trial function then
b1 d
<‘I":ﬁvq> = 0

This is of course an immediate consequénce of Eq. (7).

(c) Off-Diagonal Hypervirial Theorems for Variationél Wave Functions:
1f J; = i'{W and J? = iT‘W ~where W is a Hermitian |

operator are allowed variationa of the optimal trial funct::lons then

it follows by subtracting Eq. (6) and Eq. (7) that

S A ARERE M IS 2 | |
This generalizes an earlier result of Epstein and Hirschfelder (1961 ) ' |
which applies to the diagonal case P=19q. . |
From this for example one can immediately infer, in agxfeéineni:'with

other authors ,9 that although all one-electron diagonal hyperviriall

theorems are satisfied in the Hartree-Fock a’pproxiination' for closed

N - Z
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~ ghells (see G’hapte:r: XI) 9 off-diagonal ones are- not.
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Roturning now to the problem of orthogonality » by oxpand:lng every--
thing in powers of 9 , we can derive conditions that variational '_1

calculaiions based on JJ(O) = 5.!(1) = JJ(z) ves = 0 yield .

- orthogonality to a certain order. This is of interest, for example,

in connection with perturbation theory within the Hartree-—?ock fomalism
(see Chapter XI)where in effect *(0) -(1) _-“--: are the Hartree- ‘
Fock approx:lmlt:lona to 1(02. $ _"( D 3 . s l
Since the manipulations are straight forward we merely qooto‘a,omé
of the roauits;" : . : I S | |
@ 1f 5‘%;") = ‘oﬁfl") and 5’&':") - uﬁ;‘” are alloved ;};ﬁ"gtioé;“
then from 5.!(0)_ =0 we find (?l(,o) ,”;0)> =0 , i.e. we have orthog-

" +
¥ ¥ .

‘onality to zexo order. :

(&) If 5*(0) =y ¢(°) and § #(0) =9 w are alloved varistions.
and 1f ﬁl(,o) -*(0) and *(0) -*(0) l:hen from 5.!<1) = 0 we ﬂnd ‘
ve have orthogonality to first order, i.e. <'"‘(°) ~(1> 3 “&(1 (0)>
£ 7I1f 5‘,(0) ,,".(0) 50-(0) _,!*(0) 5*(1) '_.'l*(l) and.

(1) ,,”(1) are alloved variations aud if (0’ = 1(0) aod

-'(0)
Yq

second order.
(8) ete,

As one application of thes: results, it 'foliowa directly in agree-

:O). then from JJ(z) =0 we fi.m. we have orthogonality to

ment with other mr.hon,m that in Hartree-Fock calculations of say

the (18)% 'S and .(1s2s) 'S states of He as an expansion in uz,l.‘_;

~ one will hsve orthogonality to first order but not in higher ordors. W

These results, as noted are based on JJ(O) 5.!(1) =000 0,
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It is aluo clearly of interest to ask what happens if we use say the
Hylleraas variational principle, i.e. JJPH =0, JJqH = 0 where

RS (1)y=(1) (1) g (D) @)y
3y - S -y + K ,H’f By,

~(1) .. (0) yz(1)
€ ,(f'{,, BN
and a similar expression fur an_

From &Jph 83 qh = 0 we then’ infer
O ) ) (1) - 2(0)y £=(1)
0 =<y ,gaq RSy 4 CHTHH - BT
and

1 (1), (O (1 (0) (D)
0 = C8FV, (- 20vg >+ <57 Rl - 1

By use of #f, *(0) ;(,O)#;O) s Rys? =z ana

(1‘1;0-) ,'4!((10) > =0 we can then immedictely ci_erive, by subtracting -:he
two expressions above, the follcwing R '
(h) 1£ 5?1(:1) = ')[v((lo) and 5@'&1) = \1#!(’0) are possible variations
of the optimal trial furctions in the Eyilere.as variational p'l.':l.n_cip]..e
then we have orthogonality to first order.

In a similar way we can show:
(1) 1f 5\7(1) -qw;o) and &'ifln - nlw;o) are ailowed varia-
tions in the Hylleraas variation principle chen the ofs diagonal
hypervirial theorem for -W will be aat:isf:leci to first order., :
) 1f 6'5;1) - 1"1"'*:0) is an allowed variation in the Hyllerass
variation principle then the hyécrvirial theorem for ﬂ vi.il be 7

satisfied to first ‘ordexf.

il A S e i, S
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2. The Helimann-Feynman Theorem -

In this section we will discuss the Hellmann-Feynman theorem.
within the framework of the H}lleraa variational p]::i.nciple.'13
\ s K o W)
Dropping the state subscript, we will show that if Jv = 7[ T
is an allowed variation where @ 1is the parameter in question then
the Hellmann-Feynman theorem is satisfied to first order:

The Hellmann~Feynman theorem states that

bE{Bg’ = (‘P, g-% ‘l’)/(\}{, ¥ Y. In zer§ order we have then

o ofe. .
BBG' = <\'!(0), g'go' 1'(0)) » which is certainly true. In first:

order then we find

(1) 3.4,
g—%— = <y 9, 3‘5:-?(0)> [ (v“’) > - <¢(1) (0)>]
(3:
oK. .. . ai( B«R.
XY &_g,,(n)“vgn e ¢y 1 @, ‘55-—1*‘(0))

On the other hand ‘we have E < W(O) ?( (°)> whence ‘ |
o) © ) Y A
ax g_z ﬂlv‘°))+w‘°) x, g&._> +(y 0 5,_1 ,,<°)>;
PP < -
and the question is, are these two expressions t(aqt)ml'l,]‘4
0

- and find (varyin;

We now put st = 0 with Jv(l) =M

both § ana F%

@
0= <¥@,c#, - D) >4 u (# - “’)t“”)

(10
o T TR
+ (8§ (H - - 25§D +(¢m,<1( n‘°’) ?——)

We now use -5%:: <\7(°) (°)> =0, < v e
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(0) 0) ¥
(0) gy oE (0

which follows from differentiating ﬂov(o) = E(O)v(o) with respect

to (@ , and the zero order Hellmann-Feynman Theorem to write Eq.’ (10)'339

(0) (0)
0 = <V, K > + ¢ 2, 4y )

3, ~(iy O
- GO, 52¥D > - (7P, 552 v 9>

o £, r~ ~
+ 1@, 552 ¢ [<h@QFD> 4 QO]

which when inserted into Eq. (9) yields Eq. (8). Q.E.D.

- Ol AP S all pe e S
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FOOTNOTES TO CHAPTER V

R. B. B. Makinson and J. S. Turner, Proc. Phys. Soc. (London), 56

857 (1953).

Por examples from scattering theory see footnote (1).

Further by using higher order perturbation theory one can derive
"Super—Stationafy’* variation principles. See T. Kiknta, Pro'g.
Theo. Phys. 12, 10 (1954); 14, 1453 (1955);. L. Biedenham, and

J. M, Blatt, Phys. Rev. 93, 230 (1954) and Chapter VI.

See also C. W. Scherr and R. E. 'Kg:lght:{, Rev. Mod. Phys. 35, 436

-(1963).

R. M. Delves, Nuc. Phys. 41, 497 (1963).

For the ground state we know .f(o) + g'i(l) C R E(O) + '01:(1) + oeee

If now our trial function is accurate to order v o then the left
hand side will be accurate to order 9 2nl whence we will have

PI2 FONK) o g2m2 (20D

(211+2) (2n+2)

which :hupli.es E In short we will have minimal

principles only for even orders, and then only if we know the lower
orders exactly.

0. Sinanoglu, J. Chem. Phys. 34, 1237 (1961).

C. W. Scherr, and R, E. Knight, Rev. Mod. Phys. 35, 436 (1963).

As has already been remarked in Chapter III, in many applications
e

S"n has been used as an approxiaation to

our discussion, and as most authors have realized and mentionmed,

HAONNON

« As is clear from

this is not a variational apyroxiuuon unless V¥

v s it o i T R
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9. 8. I. Vetchinkin, Optics and'ISpectroscopy, 14, 169 (1963); and

F. Villars in Proc. of the Int. School of Phycs. Earico Ferni, Course

’OXXIII; Nuclear Ph.z.a:lcs (Academic Press, New York, 1963).

10. M, Cohen and A. Dalgarno, Rev. Mod. Phys., 35, 506 (1963)

D. Layzer, Phys. Rev. 132, 735 (1963).
11, C. S. Sharma and C. A. Coulson, Proc. Phys. Soc. 80, 81 (1962).

12, A different theorem (with much weaker conditions) is stated by . ...
R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35, 431 (1963),. .

Appendix II, but this in fact is the theorem which they prove.

13. For the ordinary variational principle &J = 0 and hence by

5 inplication for J'J(o) = JJ(]') = +++ 0 the problem has already -

been discussed by A. C. Hurley, Proc. Roy. Soc. A226, 179 (1954)
who shows that a sufficient condition is that the trial function

not depend explicitly on the parameter in question,

14. They are of course trivially equal if ‘f(o » and hence i(o) ,. 15

independent of & . For a further diséuasion of this case see

R. Yaris, J. Chem. Phys. 39, 863 (1963). They ave also of course

equal if FU 4V |

% Here and in what follows VL in a general waj,' symbolizes a small ! |
gquantity. It need not hive the adne value in different variations.

<

Nota also that since J is homogenaous the variations

. 6¢ 7}7 and 57 VL? are, 1n effect:, always allwed..

Thus all cond:l.ti.ona are to be undeutood as be:lng modulo auch

variations.
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VI. THE ?OPIM AND FOP-VIM FAST CONVERGING ITERATION'PROCEDURES

Aﬁ we have discussed :ln Chaper II, given the wave function correct S

r""1) . Although

this is "better" than computing the energy only to O( ).n) ’ this proceas

L Fyy =

0 s s ey e - T TR A SRR
.

to 0( }n) we can compute the energy correct to 0(1

is not tapidly canverging since the energy ie only i.mproved two orders
in A for each additional order in the wave function. ! In thiu Ghapter

we present two procedures which are much more rapidly eon%efgjent:' the

et i T T YT W 4 O T A o

First Order Perturbation Method or FOPIM, and a slightly improvéd version’

called First Order Perturbation-Variation Iterative Method or-FOP-VIM.

In FOPIH, the wave function through the first order is used as the-

BIPE LB

zeroeth order function in the calculation of an improved first-order.

function. 'l.’he perturbat:j.on potential for this new calculation is .

proportionnl to _3. + This process can be iterated and each time the

new perturbation potential is proportional to the square of the preyious

S —

perturbation potential.l Thus, after .n iterations, the energy is :;-
given accurately up to terms of the order of A raieed to the (2)
power. Pc: example, after 5 iterat:l.ona the energy ia accurate up to
terms of the order of 7\-“ ‘ Lt
In FO‘?-VD!, fol].owing Dhlgarno and Stevart (1961 ) . the perturbed
wave function is taken to be the variationally best linear 'combinetion
of the ‘zeroeth order and hyle:lgh-&chrodinger first order functi.ons. !
This perturbed-variatiml functi.on is then l:aken to be the zezoeth-

order wave funet.i.on for the calculation of an imprcved perturbed-varh—

tional funeti.on. ﬂherens FOP-VIH may have only a modest edvantage cver

=]

FOPIM for ndn-degen'er_ete energy..levels i e shaw 1in chapter VII that the

basic notion of FOP-VIM is very useful for degenerate or almost degenerate H
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energy levels.

e staft with a trial wave function ¥ which satisfies the

_ Schrodinger equation H ¥ = & ¥ . The Hamiltonian for the perturbed
system is H=H_ + AV . The first order wave function is ﬁ'(l) = Fy .
The expectation value of the energy corresponding to the original trial
function is £ (0) as given by Eq. (2.15). The perturbed normalized
wave function through the first order is v (1) as given by Eqs. (2.13)
and (2.14). The expectation value of the energ}; corresponding to W (1)
is given by & (1) of Eq. (2.16). Everything up to this point h:s
been discussed in the preceding chapte;a. The follcwing treatment is

somewhat novel.
. FOPIM
The wave function ‘P(l) satisfies the Schrodinger equation - . -

BHLOW) = & (0)W() e = (1)

where

2 () “ . i g .
AY+ A &Y
1+ AF T I o KY,

H(1) = H°+

The Hamiltonian for the perturbed system is then

H o= H(1) + AZV(D) | ©)
where
Sl iy 4 i
V(1) "L_fr 2 T ®

Now we consider the new perturbation problem in which ‘W (1) serves as

the zcroeth order wave function and Z’V(l) is the perturbation
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potential. Note the A"~ plays the same role in the new problem as
A plays in the original problem. The new first order perturbed wave
function is
yPo = rv@ | - [}
£ » wher.e the function F(1l) is determined by
i [rn,u]wm = o - ePanga ) (6)
: i : ‘ :
E The methods of solving equations of this form are discvssed in Chapter
i el ' ;
; ‘III. The specification of the F(l) is completed by the requirement
- I; that ¥ '.:“
E <YW,FHPM@WY =0 | )
i square o : v g sk " 2% gl i
i The /norm of ¥ 7(1) is designated as 1) ;
l’ , .
<R PP PR = 5{1) (8)
3 Using the first, second, and third order perturbation equations for the
i new perturbation problem,
eV =Pw,yownd =[Ew - &0/
o} : (9)
- €D = QHWLVOPWLPD) ) (10)
' eV = rapom,yororom) - €Pmsm  an
We can now define the second iterated normalized wave function
'l v@ = [1+2%m]™ a+ aan v ay’
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The expectation value of the energy corresponding to V¥(2) is

A e@ gy + 2%y
1+ a%s

. | : ‘ (13)

For exactly the same reasons the & (1) is accurate up to terms of the

; B2 = @,m@> = €@ +

order of 7\4 , it is apparent that E(2) is accurate up to terms of
the order of AS .

The function ¥(2) can now be used as the zeroc:zth ordef»ﬁave
function in a new perturbation calculation. Indeed, after _ (n+1)‘

iterations we have the normalized wave function
2a “X a,
v = 1+ 2%%@] T a+ Atr@vm )

’ Here, because of printing difficulties, we use the notation a = i
square )
The S(n) 1is the/norm of ¢ “(n) ,

<F@Y (), F@y@) = ) . )

The function F(n) satisfies the inhomogenous partial differential

equation

[r,a]vw = [vew - €Pw] v (16) | |
together with the requirement that
v Fayym D = o -

From the first, second, and third order perturbation equations for this

perturbation problem it follows that - -

e Bl et e e & e
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eV = <y, vmvm D> = [Em - 2@nl/a® a9

€Pm) = <y, @F@y ) (19)

i
i

P = Lr@y@,v@r@vm)> - €Pwsw o

The expectation value of the energy corresponding to ¥(nt+l) is

R —— e T

A28 (D) 0y 4 232 §(3) ™
1+ A2%0m)

Etl) = y(ntl),By(n+l) ) = E(n) +

(21)
Since a‘ in the present problem plays. the same role as " A .tn the
5 original problem, it: follows that since 8 (1) is accurate up to

| terms of the order of A , the value of E(mtl) is:accurate up to.

: terms of the order of htm A

a ; T

/ The function Y(unil; satisfies the Schrodinger equation
H(e)y (k) = By(eHl) @

e where |

1 ' L W ey gy i
H(obl) = H(n) +-AY@ + A€ ()P @23

1+ A% @)
& _ The Hamiltoniau for the perturbed syste:.n is then
' B o= HGeH) + AZ4(ae1) - _ @)
where

JEs = o

& ' i (n) ] (n) (1)[ ) l
4 V(ndl) _Ptl Vl_:l - €‘*ifn (25)

14+ A%()
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The iteration scheme can then be continued through the rext step.

. FOP-VIM
The.;;erturbed wave functions can be improved still further with
very little. effort.z This involves the coupling of the perturbation
and variational techniques. Consider in place of \E(l) s -'t:he‘nc_:rmalized

function
A = [1+ a1 @+ akny EEd (26)

Here 8 = CFy,Fy>and oL is a parameter varied to make stationary
' the energy E'(1l) = <'X(1),HX(1)> . For this optimum value of Ol’,

the value of R'(l) is given by the secular equation

o E© - (D) A%e®

: 4 ; T .= 0

o - A2e® 4+ A2 e® & A% [E - 2 1)
27)

Of the two roots to the secular equation, the only root which has

physical significance for our problem corresponds to .E'(1) approaching

£€(0) as A approaches zero. ‘Thus,

2 -%
€@ _ aem][ a7 [eD]1°
E'(1)) = 8(0)+[ -1+{1+ .
25 2 [5(2) _ 7«.6(3)]2
(28)

The improvement in the emergy obtained by this variation of o 1is {

given by the expansion in powers of A ,

| (32 (3 | @
e 7\4-&3%_4' A’ -2(2532 -28€®| +... @29 '

Saelarias i,
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The optim value of ¢ is E!‘(l) - E(O)][j\z'e(z)J'-l , or

expanding in powers of A,

“:._ H'a €™ ( <3>) ] . o
e® " ey A &

“Clearly, in much the same manner as in FOPIM; the ’X (1) can be
uged as the zeroeth order wave function to generate a new first order

function. The A (1) satisfies the Schrodinger equation

X = EmX® - . e wew e (G)

where : :
| e T T e e
o - 5+ 2T AQ MRy ntaey oy

o .E'

The Hamiltonian for the perturbed system is then H = h(l) + _3_2\7' (1)

where

V(L) [;\ (1-&0) + (KP] f_v - (1)] [1 + A r] - (33)

iy
=g

Prom _Bq; | (31) it follows that A (1- “) ia zeroeth order in k ;_ g
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FOOTNOYES TO CHAPTER VI .. 0 . 'ic. oo i

‘ 1. J. 6. Hirschfelder, J. Chem. Phys. 39, 2009 (1963). There is. a
variety of other iterative procedures that have been proposed- to
‘take advantage of this rapid convergence. The most noteworthy of..
these are L. Biedenharn and J. M. Blatt, Phys. Rev. 93, 230 (1954);
T. Kikuta, Prog. Theo. Phys. 12, 10 (1954) and 14, 453 (1955); and,
R. A. Sack, University of Wisconsin Theoretical Chemistry Institute
Report No. 30 (1963). in additiom, P. 0; Luwdin; J. Molec. Spect.
10, 12 (1963) hasldeveloped an iterative perturbatidnrvgriation

procedure for solving the perturbed Schrodiﬁger equation by parti-

tioning the secular equation. . .- . - T %
y 2. A, Dalgarno and A. L. Stewart, Proc. Phys. Soc, (London) 77, 467

(1961). A similar procedure has been used in connection with the

Brillouin-Wigner perturbation method by P. Goldhammer and E.
Feeaberg, Phys. Rev. 101, 1233 (1956); and by R. C. Young, L. C. -

fiedenh~rn, and E. Feenberg, Phys. Rev. 106, 1151 (1957). % ~ . °°
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VII, _DECENERATE OR AIMOST DECENERATE ENERGY LEVEYL. PERTURBATIONS

Non-degenerate perturbation theory becomes inapplicable when two )
or more energy levels lie clecse together and interact strongly under
the inxluence nf the perturbati-n, An extension of the FOP-VIM analysis
of Chapter VI suffices to show the explicit effect of some quantum ‘ ]

state k on the q-th state under consideration. Let us form a trial

wave function § (1) as a linear combination of \yk and 'x (L ,\ as

defined by, Eq. (6.26),
3 - : 2 x
| | B = X+ Moy, )
The constant C can be adjusted so as to optimize the energy
= <3, m,aF W)/ <F M, B Mm> @ :

subject to the condition that, as A approaches zero, Eq approaches - i

Eq . In this Section it is convenient to use the notation:

(X)L1 - (-vi,xvj ) . Since v:]’) = Fq\kq , it follows from Eq., {2.17)

that

-1

The constant § corresponding to the physically significant root of

the secular equation is

(3)
IR RO AR R RS
g

Expanding the energy in powers of A ,

i | "n':"l =g +at e - ] [e“’ {e ek}' emur q:j
i | o3 i (20 R
-
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Herxe E;(l). is given by Eq. (6.28). -Since E&(l) -1s accurate through
terms in 713 it is not surprising that the first corrections to E;(l)
should be propecrtional to 7\4 . From Eq; (5) it follows' that
T >E'() if € > € and E <E(1) if € < € h

> > < . B
Eq Eq(l) 1 K a q ) %q Kk or the
ground state or the lowest energy state of a2 given symmetry, the energy
is lowered by the interaction with every other state. If
"ﬁq - E:l(l)‘>‘n"l(1) - &q(o)‘ , the expansion of Eq in powers of 7\

(as given by Eq. (5)) is not longer possible and the non-degenerate

perturbation theory becomes inapplicable.

DE-FOP-VIM S ' 4

The usuél Rayleigh-Schrodinger method can be exceedingly complex
and difficult to apply to perturbation problems involving degenerate or
almost-degenerate energy levels (see Dalgarno, 1961 ). Greater
accuracy and far greater simﬁgicity can be obtained by the following
procedure:; DE-FOP-VIM, whicﬁ‘is FOP-VIM generalized to apply to the
degenerate and almost degenerate energy levels (Hirschfelder, 1963 ). °

We may wish to consider the effect of a perturbation either on a -
particular degenerate energy level or the effect on a tightly packed
group of degenerate or almost degenerate energy levels. -Since. the
states corresponding to different energies may interact under the °
influence of a perturbation, the iarger the number of interacting
states which are explicitly considered, the greater is the éécuracf ‘
of the calculations. 7 ' ‘

The first step in the DE-FOP-VIM is the'd;términatioﬁ'of the -
Pstarting™ wave functions.l For each of ‘the ni 'degénerété energy

states Gk under consideration, we are given a complete set .of. -
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linearly independent eigenfunctions ¢kl;’" v @knk for the unperturbed

Bamiltonien H . Thus, H§ 6 = Ed’kg . The Hamiltonian for the

perturbed system is H_ -+ AV . The "starting” functions are
m
Lot O
Yea = ) %up b (6)
- =1 il i

The constants a“P are chosen to diagonalize the perturbation matrix

so that

a9 <*kag’wk@> N 'Jotp Ve ox skt M

This automatically makes the different ¥, . orthogonal, ' N

<*ko&’*k @> =0 ,e# (3 : (8)

If each of the eigenvalues V of the matrix is different, the
, kel ;kol

degeneracy is ramoved in the first order of the perturbation and the
choice of the ‘ﬂp is determined to within a phase factor. If, on
the other hand, the eigenvalues for the energy matrix are not all
different, the ao‘% are not completely specified. For our purposes,
in contrast to the usual Rayleigh-Schrodinger treatment, any choice of
the O“P compatible with Bq., (7) is 'sufficient. This is one of the

principle simplifications of the DE-FOP-VIM.

Corresponding to a "starting™ wave function *kot we can define a

function !k - such that rku'kd . satisfies the first order equation,

(- EFru Vi * [” " View ;k«]*koc i )

The iethodl for solving equations of this type are discussed in Chapter

III. Any solution of Bq. (9) suffices provided that Fyoc¥yoc Satisfies
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the usual bonndary, cont.irmity, and integtability conditions required

g 7
i e &

et = Frad Z Pecp Yicp Mo o e Q10)
g=1
for arbi.trary constants b o @ is also a solut:ion to Eq. (9) does not
cause us any concern. ‘
Now we are ready to consider the effect of the.éertdrbitibn on a
set of n aan energy levels €k . We fix our étiént.ion"cjm those

‘

petturbed wave functions \Pq whose energies Bq approach the values

of the Gk :ln the limit as A approaches zero. The f:l'.r:st approxima=-

tion to \Pq can then be written in the form

Vo = Z Z[q:kﬂ AR e Bk“]vk“ (11)

k of=1

q, ket and Kq,kot

and optimize the ~nergy Bq(l) = <vq(1) ,!ﬂrq(l) > subject to the

The constants J are chosen so as to normalize #q(l)

condition that B q(1) approaches the value of one of the €k in the
limit g8 A approaches zero. The optimum values of Kq(l) are given

a8 n of the 2n roots of the secular equation

A B

= 0 (12)
BT €

whare A ’ IB » and € are the n by n dimensional sub-

matrices with the elements
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Akﬂ 3‘?'? - <*k“4wklp> I-'#(1)<*kq’*k-'lp> (13)

nk“ ;k'F = < *k“ "E_Ek'p *ktp > - 3(1)<*k“ ,Pktp *ktp> (14)

Cret k'@ <_rku"'ku’m"k'ﬂ *k'P> _- (1) <E'.k«*k§’rk'p*i“"p) (13

The Lowdin (1963 ) partitioqing technique is particularly well suited

to the solu_tibn_ of such secular equations. The values of l:he_ E q(l_) _

obtained in this mﬁer'ahoul.d be accura.e through terms of 0O( }\3) .
| The 'fq(_l) can themgelves be usﬁd as the zeroeth ordex Iwave- J

functions for a new periufbation calculation in much the same manner

as in the FOPIM or FOP~-VIM procedures.

L]
-
¥
-
: |
2
-
4
-
4
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. " POOTNOTES TO 'CHAPTER VII
The advantage'of .determining the "colfiect zeroeth ordei:" functions
*k d- ' is that the first order perl:urbation .energiesAare obtained
at an early. stage in the calculations. If, hov}ever; one wishes

to avoid this step, the ¢k°¢ can be used in place of the vkl’(

in Bq. (10) and beyund provided that Eq. (9) 13 replaced by

W, - €D e * Mo 'zvk,g;koe"k,g =% & "
K=1

where A ked < ¢k @ ,V{)k °‘> Equation (9') follows fr'om
the multiplication of Eq. (9) by aﬁld’ summing over o( and
making use of EBq. (6).

i
g
!
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¢ ‘- . VIII. OFF-DIAGONAL FATRTX ELEMENTS
;{ % As we have geen in Chapter IV, the Dalgarno Interchange theorem
g i : is often of decisive importance in m_aking practical the calculatipn of
i ] the first oxder .corrections to the exper:tai:ion values of onefpﬁi;ticle "
E : operntors.' In this chapter we show that a 31@11&: theorem holds for
E ; off-diagonal ﬁatrix elts.l
E{ : A. General Formulation
gl In order to compute the matrixz element < TP,W \I’q > for a
L I Hermitien .opgr-ator ‘W between the eigenfunctions \Pp * and \Ilq of
E l two Eamil:tonim Hp and Ilq (pqsaibly, but ﬁot n.eceaaarily; identical),
f fg we consi.«ier the evq,tmt::l.omiz . ' |
i g B3t peig, = 8% h = ‘
a | .
BBt p g, T ER @
~where s is an arbii:rary complex number.
Introducing a 2x2 matrix notation we can combine (1) and (2) into
ﬁ i e g i (3)

. where
#’ ( HP % ) ’ 3 - (89 ) s é - (§p .
= B - B . ° & = \3 ;

Bquation (3) is now of standard Hamiltonian form, and thus, with "

suitable notational changes, we can take over many of the earlier

results in this art:l.cla.. In particular, if we write 'Ep = Hpo + J\VP »
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(0,0): 0,1)

nq-n +mr , i"’i‘o*"g"'f”l'-.’ &=y "'“i. *°)+;cv + one
’ and g(o ,0) + ZE‘O 1) + /As(l ,0) + ¢++ ., we have the identity
. <*(1 ,0) w%(“ 0)> +($(0 0), (1 0)> <*(0 s 1) W’(O 0)> +<¢(0 0) (0 1)>
(4)
where
(20 - s(oso))!‘(cio) = 0 _ (5)
0,0, (1,0 o (1,0)) (0,0) |
H - €7y - ¢ C . =(6)
(go,.. (0;0))z(0 1) = __(H= = i(o’l));(o,O) | | | ‘-7)
with - L :
» 0,0) .. (0,0)
JER) R Pt S o
: = 0 <09 v“’ 7
b 2. (0,0) (0,0)
3 * JW ; ‘ . Y .
RCH R % a2 A TR ' _J
3 & B*Gc(lo,u),w;o,o)) . | ot

and where we have normalized in such a way that

<¢(0 0) (1 0)) (1,(0,0) ‘,(0,1)) <,‘,(0 0),*(1 0)} <*(0;Q),*(0 1))

For s = 1 , the left hand side of Eq. (4) is simply twice the

» first order (in - ) correction for the matrix element & '.? ,V\F) ’

and for g = -1 it is twice the mginary part since urs ' | ek
. (0,0) + A (1 U) L e e (0 0) _ (1,0) 4 ... I rRRE
v P b A R R g qu + .

‘The right hand side of Bq. (4) then informs us 'él;él':' we can equally
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well evaluate r.hese corrections by solving Bq. (7) ral:her than Eq. (6),
i.e, we have an inl:e:change theorem. We will d:lscuns the solution of

Bq. (7) in Section C below. AL 2 "aoe i

B. Variation friﬁciglea .

Equation (3) can of course be derived from the variation principle

SI=0 where

J = <§:(#"8)§>

= @ =

We can carry over to the o££-di.agdnal case much’ of our ear_liér discus~-
sion (Chapter V) of comnections between perturbation theory and the
variational principle. In particular, writing '&- B+ ul ,

~ ~ ~ ~

i = 2(0) + }‘2(1) + +++ and §-§(0) +JA§(1) + +++ , the varia-.

tional principle 5.1(1) =0, J(l) =0, J(o) =0 't‘uti: :
1 = ¢ 30,@ - FHEO

W = (3O, ,(1),§(o>>+<4,<0) & - n‘“’)i“’} 5

gives us, for s =1 , a variation princ:lple for twice the real part
of the deslred natr:lx eleuenc and for 8 = -:l w:u:h a var:lat:lc-n |
principle fo; twice the imgg:lnary part. These are, vi!:h_ appropriate
uot:ationgl ghar.gjés 3 exactly ghe variationgl principles given by Delveéz

and have the advantages andv .disadvantgges » already discussed in Chapter

V, of his variational principle for diagonal matrix ele_u_ne.nti.-_ 7 SO S

further, in analogy to the Schwartz ptqceg!u:_:e for'diag?qal matrix ,
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elements, for a given %‘0) we consirain §(1) so that %(0) - 2(0)
and i(n é(l) are of the same otder { this is the approach in
effect followed by Borowitz ) then, of course, as in the diagonal case:,
one arrives at' results quitAe equivalent to those of our double perturba-

tion approach.

C. Separaiion of Equationa for ( One-Electron W

For W a one particle operator, we will show that our problem

reduces to the solution of one electron equations in the apecial case

(0,0 are single deteminanta. The mel:hod

(0.0)

for which *(0,0) and 1{

is obviously extendable to the case where only one. .of the ¥
.(0,0)

is
a single determinant. The case ‘'where neither ‘?

is a single determinant remains to be investigated.
0,0 g
Let us consider then t; 0 e P1(1) £,(2) --- PyM™ e

"(10,0) B A_?l (i) ¢2('i) ko P, (N) . where . _:i_.vls t’hg_‘_agti:lsymetrize.ti.cm

operator and where we assume *l()0,0) and v‘(IO,O) ‘differ by anlg‘r a
single spin orb:l.l:513 {the case where they differ by more than one is
much simpler in that g(o’n =0 ).. | Since all the opera_tqfh in (7) :
are symmetric in the particles, ve clearlf may write !;(0, D . A—l

whence, singling out one component of Eq. (7) in detail, we have
(hl + hz + e mey e, - ...)‘X.P = .-.3'(‘,1‘-.;- W, -|‘-‘...,) 191(1) 42(27). s
+ S <¢P1,W *1) P(]-) ?2(2) g
Here B =) h | E(O’d) =) e " Also we need h f (1) =g ? (1)
op £* % S 1 1
_ i i : 5

.‘.'

(we will assume, Zor simplicity, that Hop ;Boq ) . We now qbse:ve
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9%
that we can write ‘xp = ‘x'pl + 'sz where
(b + iy & 200 = &y = oy = e )Xy = - R ACEACKE

il i 3<¢1,V1 ?1)?1(1) ?2(2) e
and .

(hl + h2 Five -.el o Igz,- ---)'xpz ll- 3(32 +W3 +.o.-.) ;1(1) ?2<2) see

the easenﬁ:lal_po:l.nt being that the right; hand sides of each of the last

‘two equations are orthogonal to the solution of the homogeneous equa-

tio:_i',. and t.hérefbre :hé equations are consistent.

The ieduction to one Telébtrog equations is now imﬁi#t;a, namely
Zor = A P - ﬂ(_y)
g = PrD B, Py(3) o0 Py + P D P B woe oo
where

(hy - e)dy = -ou P +alPpuP>P

Gy +8y.c eay = - md

(RS NN RN RN RN

Further faductirm de.pcﬁﬁa on the part;.i.cular form of IV . Note also that
if V isaome partiéle operator (as it ‘13 wi.t:h:ln_ the Yartree-Fock
formalism), then ‘xpz ~does not contribute to the right hand side of
Eq. (4) and our theory, as it must, becomes identical to that of Cohen
and Bilgar_:u_:‘.l g

Finally we remark that, as with the diaéonal case, variational

~
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procedurea are also ava:llable t:o approximqte the so..uti.on of Bq. (7),

the at:at:lonary e:tptesuon being Just the Hylletm form .,

- K5O, - éo,o)),co,m> i < =(0,1) (3 2 <o 1),*(0,0)>

e

e LT sl e e
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POOTHOTES TO CHAPTER VITI
¥ithin the Hartree-Fock formaiism this has been shown by M. Col':én_.
and A. Daslgarno, Proc. Roy. ':Soc. {London) _Azlg, 492 (1963).
genera'l,r result to be derived in this ﬂhapéer h..a; also been deri;;ed

by 8. Borowitz (private communication).

Such equat.ons have firsi been discussed by L. M. Delves’,' Fue. Phys.
45, 313 (1963).

We ignore possible complications dve te degeneracy. It often is

the case th : W is ™diagonal™ in the sense that g:lven t(o 0)

then . <'(°’0),W(o’°) “ differs from zero only for one '(o 0)

(0,0

of the degenerate set, and similarly given 1 a unique

'0(0’0) is singled out. We ziso assume (?1, 1?1) =0 .

P




