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Abstract. We present here some recent results in single-product, capacitated 

production-inventory systems in discrete time. The key results are: (1) structure 

of optimal policy for single stage systems; (2) analysing via a shortfall process; 

(3) using simulation to optimize; (4) an approximation using tail probabilities. 

We consider periodic demand, and multiple stages - serial, distribution and 

assembly. Related topics of re-entrant flow shops, lead time quotation and value 

of information are also discussed briefly. 
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1. Introduction 

The motivation for this stream of research has come from problems faced by a diverse set of 

companies, such as IBM, Sematech, AMD, Allegheny Ludlum, GE, Proctor and Gamble, 

Westinghouse, Intel, American Standard and McDonald's. Smaller local (to Pittsburgh) 

companies such as Sintermet, Blazer Diamond, ASKO and Northside Packing have also 

provided several interesting issues to pursue. At the heart of many of the problems is the 

interaction between demand variability and non-stationarity, available production capacity, 

holding costs of inventory (at different locations), lead times and desired service levels. The 

central goal of this research stream is to understand the interactions in simple single and 

multiple stage settings and to provide insights and implementable solutions for managing 

inventories in a cost-effective manner for complex systems. The goal of this paper is 

to introduce in a systematic manner some recent advances in 'Discrete-time, Capacitated 

Production-Inventory Systems facing Stochastic Demands' and we limit ourselves to single 

produc! t ! setting. 

1.1 Quantitative models for supply chain management 

A modern manufacturing network, consisting of multiple manufacturing facilities and 

several external vendors, can be modelled as a multi-stage, capacitated, assembly system; 
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Figure 1. A typical supply chain: IBM assembly. 

see figure 1 for a representation of an IBM supply chain. Until 1991, the only major 

result that was available in capacitated systems was the structure of the optimal policy 

for a single product, single stage system facing a stationary demand process (Federgruen 

& Zipkin 1986a). Even for this case ('a simple model'), no computational method was 

available to compute the optimal parameters for a given instance. Since then, significant 

progress has been made in this area. In some sense, these models form the backbone of 

quantitative modelling for supply chain management. 

Among the many papers that are now available (since 1991), five papers on this topic - 

single-product, capacitated systems in discrete time - make the following contributions: 

(1) Develop a method to compute the parameters for this simple model; (2) find the optimal 

policy and provide a computational procedure for the case when this system faces a non- 

stationary (periodic) demand process (this paper generalises) (Karlin 1960; Morton 1978; 

Federgruen & Zipkin 1986; Zipkin 1989; Ciarallo et al 1994; Morton & Pentico 1995); 

(3) study the stability of a multi-stage capacitated system operated by a base-stock policy; 

(4) develop a computational method to compute good parameters for a multi-stage system 

operated by a base-stock policy; and (5) develop a very quick and accurate approximation 

method for the same problem as above. Re-entrant flow hops, multi-product systems, 

component commonality (and delayed differentiation) and other topics have been studied in 

greater detail since that time. Similarly, several papers and research! t! hemes in continuous 

time models are available as well. 

No attempt has been made to provide a comprehensive literature review; however, most 

references may be obtained from the papers mentioned here. For a thorough survey of 

results (mainly in uncapacitated systems), see Van Houtum et al (1995). Other useful 

surveys and books include Graves et al (1992) and Buzzacott & Shantikumar (1993). 
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1.2 Basics 

In our models, we will assume time buckets. Each bucket can be a day or a week long 

(or a month long) depending on the situation. These models will be called discrete time 

models. Each unit of time will be called a period. This approach is appropriate at the plant 

and system levels. Continuous time models are appropriate at shop-floor and machine 

levels. 

A base stock policy with order up to level = means that we produce in any period just 

enough to reach this target. If we cannot reach it, due to capacity limitations or lack of raw 

material, we do the best we can. An echelon base stock policy is exactly the same, except 

that all quantities (mainly inventories) considered are cumulative in order to include this 

stage and all stages downstream (near the end product, close to the customer). 

We will study these systems via a combination of analytical methods and simulation. 

Models are good for simple situations and to grasp concepts. To compute numbers for real 

world situations, simulation is preferred. The assumptions made are more realistic and 

the solutions obtained are more believable. Furthermore, certain flexibility that decision 

makers would prefer to have is better handled by simulation. In terms of acceptance by end 

users, a validated simulation has had better luck than complicated mathematical models. 

A sho~coming of simulation as compared to mathematical models is that it takes a much 

longer time to find answers. What we do then in reality is use models to get rough estimates 

and to provide intuition to fellow team members; then choose an alternative that shows 

most promise; finally, we simulate to get accurate solutions. 

1.3 Literature survey: Papers beJbre 1991 

Clark & Scarf (1960) developed a periodic review inventory control model for a serial 

system without setup costs. By using a discounted cost framework, they established that 

an order up to policy at each node is indeed optimal. Federgruen & Zipkin (1984) extended 

these results further. Muckstadt et al (1984) conducted a computational study using the 

Clark & Scarf (1960) model. A continuous review version of the Clark and Scarf model is 

studied by Debodt & Graves (1985). An in-depth analysis of an assembly structure with 

only two inputs, again by using the discounted cost framework is presented by Schmidt & 

Nahmias (1985). Rosling (1989) showed that under some initial conditions, an assembly 

system can be reduced to a serial system with modified lead times so that the results of 

Clark & Scarf (1960) may be applied to this equivalent serial system. 

A model of a production and distribution network in which manufacturing is modelled 

by a single node is described by Cohen & Lee (1990). It also differs from much of the earlier 

work in an important way in that decentralized control is assumed and the model itself 

is a framework that combines separate models of production and distribution. A supply 

chain planning model that can be used to study production scale and scope economics is 

presented by Cohen & Moon (1990). 

A model for supply chain management which assumes decentralized control at each node 

in the manufacturing network, controlled by periodic review order up to inventory policies 

is presented by Lee et al (1991). Once the service levels are set for each node, the overall 

relationships between cost and service can be obtained by applying this model. Although 
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capacity considerations are not addressed, they allow for uncertainty in the supplier lead 

times. 

The literature on inventory control systems and production-distribution systems is 

extensive and hence we limit our review to the work that is closely related to the theme 

of this paper. Similarly, there is a vast body of literature on single location production- 

inventory systems (addressing many aspects of interest) that is not reviewed here. 

The Clark & Scarf (1960) model and many of its extensions, including the one by Rosling 

(1989) analyse the model within a discounted cost framework. These results are fairly 

involved and further, the computational procedures are not easy to describe or program. 

The assembly system inventory control problem in an average cost framework is studied 

by Langenhoff & Zijm (1989) and Kamesam & Tayur (1993). This analysis leads to 

an exact decomposition of the assembly system into several single location problems. 

Even this decomposition is not easy to handle, but Van Houtum & Zijm (1990) describe 

computational approximations that lead to a simplified computational procedure. 

Except for that by Federgruen & Zipldn (1986), not much work was done in capacitated 

systems in discrete time. In this survey paper, we will begin with their model and then 

describe recent developments of several extensions of this basic model. The notation we 

use may change between sections to remain consistent with the papers that are being 

summarized. 

2. Single-stage, single-product models 

The first progress since 1991 was the introduction of shortfall l, and the connection that 

was made between the capacitated inventory model operated under a base stock policy and 

a dam model that has been studied extensively by applied probabilists. 

2.1 Basic model 

Tayur (1993) provides a method to compute the optimal policy for a basic inventory 

problem addressed previously by Federgruen & Zipkin (1986a). We are to determine the 

base stock level of a single item at a single location under periodic review, when 

• the unit variable cost of purchase is c per item and there are no fixed costs; 

• the holding cost (h) and stockout cost (p > c) are per period and per item; 

• demands in successive periods are non-negative i.i.d, random variables with known 

distributions (labelled by d); 

• there is an infinite horizon and the costs are not discounted; 

• all demands that are not satisfied by stock on hand are backordered; 

• there is a finite production capacity, C, in every period; 

• the cost is computed on the amount of inventory or backorder at the end of each period; 

1Our thanks to a referee for pointing out that this shortfall type connection was known to queueing theorists before 

t991. 
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• we are to minimize the expected cost of holding plus penalty per period. 

Recall that im'entorvposition is defined as (stock on hand) + (stock on order) - (back- 

orders). An order up-to (or a base stock) policy with a critical number z. is one in which 

the inventory position (x) is raised to z if x < z, and no production is done if x >_ z. 

Unlike previous approaches, we provide a different construction of the sequence of 

problems that converge to the problem of interest. In particular, we do not consider finite 

horizon problems of the capacitated problem and then take the limit as the number of peri- 

ods go to infinity. Rather, we have a sequence of uncapacitated, multi-stage, serial infinite 

horizon versions that converge to the desired system. We use results from uncapacitated 

multi-stage serial systems coupled with results in storage stochastic processes. 

Specifically, our steps are the following. First, we show that the inventory model of 

interest is equivalent to a problem in dams. This suggests an analysis based, not on the 

evolution of (inventory on hand minus backorder) process but, rather, by considering a 

shortfall process. The shortfall is defined as the amount on order that has not vet been 

produced because of the capacity constraint. If Xn is the shortfall at the end of period 11, 

then X,, = max(0, X~-I + d n  - C), where d,  is the demand in period n. 

It is important to differentiate between backorders and shortfalls: the former represents 

what the customer did not obtain, while the latter represents what the manufacturer could 

not produce because of the capacity constraint. Thus, the backorder at the end of period 

n equals max{0, Xt~ - z) where z is the order up to level. The penalty cost p is on the 

backorder; there is no direct penalty on shortfall. Similarly, the amount of inventory at the 

end of period n is max(O, z - X,~ ). The cost in period n, therefore, equals pmax(O. X. - 

z) + hmax(O, z - X,,). 

Second, we show that we can replace the single-stage capacitated inventory model by 

constructing a specially structured uncapacitated infinite-stage inventory model: This is 

simply a mathematical artifact. The sequence of multi-stage problems alluded to above 

will converge to this infinite stage system. 

2.2 Connection with a dam model 

Figure 2 shows the sample path of a typical single-stage capacitated inventory system 

under periodic review that is operated by a base stock policy where excess demand is 

backlogged. The capacity (C) is 30, the order-up-to level (z) is 45, and the inventory at 

time 0 (I0) is 10. Let dt = 15, d2 = 9, d3 = 37, d4 = 21 be the demands in the first 

four periods. Figure 3 shows the sample path of a dam (see Prabhu 1965, 1980) that has 

an infinite height, a release capability of at most C, and an initial water level of 35. Let 

the rainfall in the first four periods be 15, 9, 37, and 21. The dana releases as much water 

as it can, and if the water level is less than C, the dam becomes empty. The equivalence 

of the two sample paths is obvious. Let (a)+ stand for max(a, 0). If Z,, is the content 

of the dam in period n just after release, then it satisfies Zn = (Z,,-1 + d,,-1 - C)+ 

and if Xn is the amount on order in period n that has not yet been produced, it satisfies 

Xn = (X,,_ 1 + d n -  1 - C)+ (a similar recursion arises in the study of a D/G/1  queue also). 

Note that {X,, n = 1, 2 . . . .  } is a Markov chain. This motivates us to study the capacitated 

inventory system in terms of the process X,,, and provide results in terms of the steady 
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Figure 2. Sample path of inventory model. 

state distribution of X = l i m n ~  Xn. Table 1 summarizes the equivalence between the 

capacitated inventory model and the dam model. 

2.3 Computing the optimal base-stock level 

Let K(x)  be the distribution of the input to the dam in any period. If F(x)  is the steady 

state distribution of the water content in the dam just after release, then the optimal value 

of the order up to level, z, in the capacitated inventory system satisfies 

(F . K)(z )  = p / ( p  + h), (1) 

where • represents convolution. F (x) is known for all discrete distributions of the demand, 

and for Erlang distributions. Intuitively, we are adding the following two independent 

random variables: (1) demand in a period and (2) the amount on order at the beginning of 

the period that has not yet been produced. The necessary and sufficient condition for the 

distribution F(x)  to exist is that the expected demand (input to the dam)_in a period be 

less than the capacity, C. Intuitively, the result states that it is the sum of two independent 

random variables (demand in a period and the amount on order not yet produced at the 

beginning of that period) that adds up to z. Penalty p is incurred if this sum crosses (at the 

end of the period) z and is proportional to the excess, and a holding cost (h) is imposed if 

the sum is less than z and is proportional to the amount on hand at the end of the period. 

Example 1. If the demand is exponentially distributed with mean rate ~ (K(u)  = 1 - 

e-ZU, u > O; K (u) = O, otherwise) and the capacity is C, then the steady state distribution 

of the water content in the dam just after release is given by 

F ( x ) = l - e  -u(x+c) (x >0 ,  )~C > 1) 



Single-product, capacitated production-im,entory system,~ 51 

WATER CONTENT 

Danger Level 50 ] J 

P n ,  I  er,od4 I Por,o i 

Upward arrows represent rainfall 

Downward arrows represent release 

One cannot release more than the water level 

The danger level is simply shown to connect with the inventory model 

Figure 3. Sample path of dam model 

- -  time 

where/~ is the largest positive root of the equation 

# = X -- )~e -(#+C). 

Thus, the optimal order upto policy has a critical number z*, and is obtained by solving 

(F  , K)(z*)  = p / ( p  + h). 

Independently, the similarilty of the basic invento D' model operated via a base stock 

policy to a D/G/1 queue is recognized by Van Houtum & Zijm (1994). 

2.4 Optimal po l io ' f o r  an extended model 

In the previous subsection, we computed the optimal base stock level. We now want to 

show that among all policies, a base stock policy is optimal. Federgruen & Zipkin ( 1986a I 

show this for the stationary case above. Kapuscinski & Tayur (1996a) provide a proof for an 

extension that allows for periodic demand as well as capacities by considering the following 

variant of the basic single-stage, single-item, discrete-time production-inventory model. 

The demands (stochastic) follow a periodic pattern with a period K. As before, there is 

a maximum production capacity (C) in any period; demands not satisfied in a period are 

backlogged to the next; there is holding cost (h) per unit of inventory per period and a cost 

of penalty (p) per unit of backlog per period. We want to find policies that minimize the 

Table 1. Comparison of dam and inventory models. 

Dam model Inventory model 

Maximum release Capacity 
Water content Amount not yet produced (shortfall/ 
Empty dam Order-up-to level achieved 
Rainfall Demand 
Danger level crossed Backorders 
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finite-horizon costs, the infinite-horizon discounted cost and the infinite-horizon average 

cost (respectively) of operating this stage. 

For all the three cases - finite-horizon cost, discounted infinite-horizon cost and infinite- 

horizon average cost - we show that an order up-to (or base-stock, critical-number) policy 

is optimal. This extends the results of Karlin (1960b) and Zipkin (1989) for uncapacitated, 

non-stationary models and Federgruen & Zipkin (1986) for capacitated, stationary models. 

Our proof for the finite-horizon case follows standard steps. The proof of optimality for 

the infinite-horizon discounted case is simpler than that provided by Federgruen & Zipkin 

(1986) because we are able to use more recent results from Bertsekas (1987). To provide 

the optimality proof in the average cost case, we use the framework of Federgruen et al 

(1983), but our approach is different from that used by Federgruen & Zipkin (1986a) for 

the stationary case. All proofs can be found in Kapuscinski & Tayur (1996a). 

2.5 Sequence of results leading to optimal policy structure 

The following is the sequence of events at the beginning of a period: (1) some inventory or 

backlog exists; (2) a decision to increase the inventory is taken (limited by the production 

capacity): and (3) demand arrives. Holding or penalty costs are charged on the inventory 

after demand arrives. The notation is mostly standard. We have suppressed the time sub- 

script in x, y and d below and these are assumed to be reals unless mentioned explicitly 

as integers. We will write them when necessary. We define 

• x :  inventory at the beginning of a period; 

• y :  inventory after ordering, but before demand arrives. 

We assume that Edi < ~ for all period types i = 1 . . . . .  K. 

2.5a Finite horizon: As is standard practice, we begin with the finite-horizon case, 

which is not only the simplest situation to consider but also sets the framework for the 

infinite horizon cases. 

Let 0 < /3 _< 1 be the discount factor. Define (recursively) Vn (x) = minimum total 

expected discounted cost with a time horizon of n periods. Note (in this subsection only) 

that we start in period n and count downward towards period 1, the end of the horizon. 

The demand in period n is one of the K period types (i = 1 . . . .  K). We may assume that 

period 1 has type 1 demand and period n = K + 1 has type 1 demand again and so on. 

Thus: 

where 

v0(.) = 0 ,  

Vn(X) = inf {c(v - x) + Ln(v) + flEdnVn-l(Y -- dn)}, 
( x . y ) E A  ~ 

f o r x ~ R a n d n >  1, 

A-----{(x,y) E R2ix < y < x + C} = U Y(x) 

x E R  
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is the feasible set. For x e R, 

Y(x)  = [x, x + C], 

and for y E R, 

Ln(y)  = Ed , (h (y  - d n )  + + p ( y  - dn ) - ) .  

We can express Vn using additional functions Jn and In as follows. 

V n ( X ) = - c x  + In(x),  x E R, n >_ 1, 

I n ( x ) = m i n { J n ( y ) ' y E  Y(x)} ,  x E R, 

J n ( y ) = c y + L n ( y ) + f l E v n _ l ( y - d n ) ,  y E R, 

with v0(') ---- JO(') = I0(') = O. 

Our first lemma generalizes theorem 2 of Federgruen & Zipkin (1986b) to the cyclic 

case. The proof is a direct adoption of theirs. 

Lemma 1. The set offeasible pairs (x, y), A (as defined above), is convex. For all n E N: 

(a) The expected sum of  holding and penalty costs, Ln (y), is convex; 

(b) Jn, Vn, and In are convex: 

(c) vn >_ O; and 

(d) For n > l" Vn(Xn) ~ oo when txnl --+ oo, and i f  p > c then Jn(Yn) --+ oo when 

T h e o r e m  1. Let y~* be the smallest value minimizing Jn. The optimal policy in period n 

is order up-to y*. As l imly , , l~aJn(yn)  = cx~, we have y* < oo. 

As a first property, we have the following. 

Property 1. For any x E R, lJnK +i(X ) is increasing in n. 

Proof We show by induction that Vm+x (x) > Vm (x) for all x and for all m. First, VK (x) > 

0 = vo(x). Let VK+m(X) >_ Vm(X) for a certain m and all x. Then, 

VK+m+l(X)  = min {c(y - x)  + LK+m+I(y)  + f lEVK+m(y -- dK+m+l)} 
ycY(x) 

> _ min {c(y - x) + Lm+l(y)  -t- fiEvrn(Y - din+l)} 
yEY(x) 

= Vm+l (x). [] 

Note that the convexity of  functions Jn, In, Vn implies continuity of these functions. One- 

sided derivatives exist at all points. Also, two-sided derivatives exist with the exception of 

a denumerable set of  points. Points where two-sided derivatives do not exist are generated 

by mass points of  demands. Although derivatives do not have to be continuous, they are 

monotonic and bounded on any compact set. Therefore, in this paper we will define them 

as right-hand-side limits. We will use a prime (i) to denote these derivatives. 
! 

We define the myopic solution to period i, Yi, as the one that satisfies c + L i (Yi) = O. 

Property 2 provides a simple lower bound as in the uncapacitated case; see Zipkin (1989). 
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ProperO' 2. Assume that period 1 has the minimum myopic solution; Yl = min{~i: 

i = 1 . . . . .  K } where Yi is the myopic solution for period i. Then: y* > Yl, Yn. 

Strictly speaking, our next result is not a finite-horizon result. However, this appears to 

be the most appropriate point to state it. Part (c) of  the technical lemma (lemma 2) is used 

for the next result. We will use this property in proving property 6 in § 2.5a below and 

when analysing the infinite horizon average cost case in § 2.3. 

Property 3. For a given 0 < fl < 1, the sequence y* is bounded. That is, l imsup{y*: 

,~ c N} < vc. 

Propert3' 4. For any finite-horizon (n periods) problem consider a policy that produces 

up-to zi in period i = 1 . . . . .  n. For all i, the cost of  such a policy is convex in zi. 

2.5b h!linite horizon: Discounted model: We now move to the infinite-horizon dis- 

counted case. It was natural in the finite-horizon case to label periods as time to the end of  

the horizon. In the infinite-horizon case, we typically start the process at some point and 

continue indefinitely. To make the notation more intuitive, starting from this subsection, 

we will number periods in increasing order: following period n, we have period n + 1. 

Federgruen & Zipkin (1986b) showed the next result for the stationary, capacitated case. 

We provide a simpler proof as we are able to use results from Bertsekas (1987). 

T h e o r e m  2. Let 0 < 1~ < 1 (discounted case). The optimal policy for  the infinite-horizon 

is cyclic up-to level policy. 

Since E(di ) < ~ for i = 1 . . . . .  K, we have the following. 

Propert3' 5. Let u,n(x , i )  : =  1)nK+i(X ) for i = 1 . . . . .  K, n ~ No :=  N U {0}, and 

x ~ R. The limit, lim,~,:,c Wn (x. i) = w(x ,  i) (where values of  w are in R U {¢c}), exists 

and w < ~ .  

w < ~ does not imply that stationary up-to levels are finite. However, it is possible to 

prove the following (since E(dt)  < ~ f o r / =  1 . . . . .  K). 

Propert3' 6. The up-to levels are finite (i.e. zt < ~ ) .  

2.5C Average cost criterion : This case is the most difficult one to analyse. We need 

some technical results before the optimality of  base-stock policies can be proved. 

Propert3' 7. (Convexity) Consider the infinite-horizon case (with cyclic demands) and 

the class of up-to level policies, where levels zi for = 1 . . . . .  K are period-type specific. 

For both the discounted cost and average cost criteria, the average cost is finite and convex 

in each of  zi 's. 

Let Zmax and Zmin be the maximum and minimum respectively among the levels for a 

given vector (zl . . . . .  ZK). 
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Proper~ 8. (Coupling) If Zmax is strongly regenerative, then for any two processes with 

starting points x I1t x~ 2) i0 and respectively in period i0, there exists (with probability 1) a 

period n such that starting from this period the two processes coincide. 

Property 9. (Shortfall stability) Consider an up-to policy with a vector zl . . . . .  ZK. If 

~_K Edi < K C  then ESi < ~ for all i's, where Si zi Yi is the shortfall in period / = 1  ~--- - -  

type i. 

Average cost criterion is easy to analyse when either the number of states the process can 

take is finite or the one-period cost function is bounded (see Bertsekas 1987). Conditions 

when an optimal policy exists for semi-Markovian process with average cost objective 

function with denumerable state space and unbounded one-period cost function are derived 

by Federgruen et al (1983). These conditions were used by Federgruen & Zipkin (1986a) 

to derive optimality of up-to policy for a capacitated stationary model. We extend it to a 

cyclical model as follows. 

We first show that any policy can be dominated by a policy that requires reducing (any) 

backlog and not exceeding some stationary level A*. Then we show that among such 

policies, the up-to policy is optimal. The main structure of our proof is based on results of 

Federgruen et al (1983), but the proof that the required conditions are satisfied is shown 

by a different method as compared to that by Federgruen & Zipkin (1986a). 

Fact 1. If an optimal policy for the problem exists (including possibility of randomized 

policies), then it has the following form: 

(a) f o r x < - C , y = x + C .  

(b) there exists A* < ~ such that for y > A* for all period types it is better to produce 

nothing rather than take any other action. 

Theorem 3. Consider a capacitated system with cyclic discrete demands and linear 

ordering, penalty, and holding costs. For the average cost criterion, the cyclic up-to policy 

is optimal. 

Lemma 2. Consider thepolicy 6 [0] (produce up-to 0). Let ~K=I Edi < K C and E (di)2k+2 

< cx~ for  a certain k > 1 and for  all i = 1 . . . . .  K. Consider a point process defined by 

points i, for  which Yi = 0 (no backlog of  previous demands). Let N be a random variable 

equal to time between m,o consecutive points o f  this point  process. Then for  any starting 

period-type: 

(a) E ( N  k) < cx~ 

(b) E([yil k) < ~ and E(]xi] k) < cx~ 

(c) I f  O < ~ < 1 then E(y-~n~=0 fYnik~n), E(y~n~_O IXnlk~ n) < cx~ for  any xo. 

(d) ForO </~ < 1, there exists A E R, such that Jn(O) <_ An. 
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2.6 Basic properties 

We show several properties of the optimal policy including the following: (1) capacity 

smooths the base-stock levels in a manner that is different from that due to holding costs; 

(2) the limit of finite horizon order up-to levels are bounded; (3) the optimal levels are higher 

than the minimum of the K myopic levels; (4) in an infinite-horizon average cost case, the 

optimal levels are lower than the maximum of the K stationary optimal levels and higher 

than the minimum of the K stationary optimal levels; (5) if demands are stochastically 

larger or the capacity is lower, the base-stock levels are higher; and (6) for K = 2, as 

the penalty cost is increased, the difference between the maximum and minimum levels is 

bounded by C under fairly general assumptions on demand distributions. 

2.7 Computational technique 

Exact computation of optimal levels by analytical formulas appears difficult. We provide 

a simulation based method using infinitesimal perturbation analysis (IPA) to find these 

levels. The basic idea is simple: instead of using the derivative of the expected cost in a 

gradient search method, we use the expected value of the sample path derivative (obtained 

via simulation). To validate this approach and prove the optimality result for average cost 

case, we derive several technical properties of base-stock policies - convexity, regenera- 

tion, coupling and stability. See Glasserman (1991) for an excellent reference and a later 

subsection for details of a multi-stage system analysed in this manner. A numerical study 

indicates that our IPA method is robust and finds solutions within a few minutes on a 

workstation. The steps are similar to those described later in § 3 for a serial system, and 

so we do not detail them here. See Kapuscinski & Tayur (1996a). 

2.8 Insights into some complex issues 

We also numerically study several issues that provide insight into the behaviour of optimal 

solutions. Examples of issues studied include the following: (1) what is the increase in 

cost if all periods are forced to have the same base-stock level? (2) what are the benefits 

of changing capacities in each period based on the demand type? (3) how many periods 

are affected by smoothing of the levels? (4) how are the above results affected by high 

penalty cost or high utilizations? (5) what is the relationship between service level and 

costs? Several of the qualitative and technical properties in our capacity setting differ from 

the uncapacitated non-stationary model. 

See Kapuscinski & Tayur (1996a) for extensive computational testing. The basic insights 

are as follows. 

(1) Basic insights. Several basic properties of the system confirm what we expect. All 

other things being equal: 

• with an increased mean demand, the up-to levels increase, 

• with decreased capacity, the up-to levels increase, and 

• with increased variance of demand, the up-to levels increase. 
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(2) Effect of  capacity and range o/'denumds on "smoothing '. By smoothing, we mean that 

values .=i are affected by demands and the capacity of period j gi i. The difference 

between Zmax and 2rain i s  lower as compared to the difference between the maximum 

and the minimum of K independent stationary capacitated models; so some higher 

levels are brought down and some lower levels are lifted up. We have two types of 

smoothing working in opposite directions: (a) in anticipation of high demand, some 

levels are lifted up. and (b) in anticipation of low demand, other levels are decreased. 

The second type was described by Karlin (1960b) and Zipkin (1989) in the uncapaci- 

tared setting. The first one is induced by finite capacity, and the second by the holding 

cost. 

At times there are changes in the ordering of the levels as capacity decreases. For ex- 

ample, the period with the minimum level may be different depending on the capacity. 

Furthermore, although the differences between levels do not disappear as capacity is re- 

duced, the levels increase and the ratio between the maximum and the minimum of the 

levels gets closer to 1. 

(3) Constant base-stock versus optimal (period wise) base-stock. We compare the cost 

of the optimal constant base-stock policy to the optimal cost. (Note that the cost is a 

convex function of this constant level and the simulation based method remains valid.) 

Not surprisingly, the optimal constant z lies between the minimum and the maximum 

optimal base stock levels When capacity is tight, the cost ratio (say R) becomes close 

to t. We note that in some cases the difference 2.max - -  =min first increases and then 

decreases as capacity decreases, while in other cases it only increases with capacity. 

Even in cases where ~.max - -  2.rain of optimal policy increases as capacity decreases, 

R monotonically decreases to l. One explanation is the fact that the cost function is 

relatively flat around the optimum (see item 8 below), and more so as the capacity 

becomes tighter. 

The effect of variance on R is as follows. R is close to 1 in most cases. A case when the 

cost ratio is large has two small but different variances (example: N(70, l), N(70, 102) 

in a K = 2 situation). With increase in variance the levels increase and the ratio of costs 

goes to 1. We can also show that even with significantly different means, the ratio of costs 

goes to 1 when at least one of the variances is high. 

(4) Changing capaci~ with periods according to period type. Rather than remain constant, 

capacity can vary according to period type. (The cost is still a convex function of 

(=l . . . . .  :-K ) and the optimal policy is still order up-to. The simulation-based method 

remains valid and recursions can be easily adapted.) Several capacity allocations for 

four situations each with K ----- 2 were tested: (i) both period types have low variance; 

(ii) period with lower mean has a high variance; (iii) period with higher mean has a 

high variance; (iv) both periods have high variance. We are able to test if two natural 

alternatives to constant capacity (with the same total capacity KC in a cycle) - (a) 

proportional to mean demand and (b) proportional to (mean + constant • standard 

deviation) of  demand - do well. 

We note from our experiments that the optimal spread of total capacity among periods 

is not a simple function of mean demand alone and quite often not one based on variance 
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either. Typically the spread proportional to mean demands did well only in small-variance 

cases, but in these cases nearly all spreads did well. In case of high variance, a proportional 

(based on mean and variance) spread did much better than one based on mean alone, but 

surprisingly it was possible to find cases when it was optimal to allocate more to a period 

type with a demand having both a smaller mean and a smaller variance. We think that in 

these cases there is typically sufficient capacity in low demand period to raise the inventory 

to optimal level in higher demand period, but the effect of a surge in demand in high demand 

period can be repaired faster when a little bit more capacity is assigned to low demand 

period. This is seen very clearly in the following example: let K = 4 with demands wi! 

th! means and variances equal to (20, 1), (20, 1), (90, 50), (20, 1) respectively. We find 

that the optimal capacity allocation is (22, 22, 93, 143). So the use of the term 'recovery 

capacity' seems appropriate. In all cases, allocating equal capacity to periods did very 

well. 

(5) Servicelevel. In all the experiments - constant capacity, equalbase-stocklevels, period- 

wise capacity allocation, different K's, different demand distributions, different hold- 

ing and penalty costs - the type-1 service, defined as P (inventory after demand > 0), 

at optimality, was p / p  + h. See Tayur (1993) for a proof of this connection between 

service level and costs in the single-stage capacitated stationary case, and Glasserman 

& Tayur (1995) for the multistage stationary capacitated case. 

(6) Increasing penalty cost. With increased penalty the up-to levels increased. Obviously 

larger differences in means and variances caused relatively larger differences in up-to 

levels, but this effect was small over a range of penalty costs. For most part, the levels 

rise in parallel. Furthermore, in all our experiments, the ordering of the levels did not 

change as a function of p (unlike item 2 above). We also noticed that the difference 

between the maximum and the minimum levels at optimality was bounded by C for 

K = 2 as we increased p. Property 12 below provides an explanation. 

(7) Mean utilization vs. variance. As penalty cost is increased, the optimal up-to levels of 

low variance system with high utilization increase faster than in a system with high 

variance and lower utilization. This indicates that the rate of increase of base-stock 

levels depends on both the variance and excess capacity. 

(8) Cost sensitivity. Cost is not very sensitive to the up-to levels around the optimum. This 

was noticed in the stationary multi-stage system studied by Glasserman (1991) also. 

3. Single-product, serial system 

It has been shown that for a serial capacitated system, the optimal policy (under the cost 

criteria discussed above) is not base-stock in general; see Speck & Van der Waal (1991). 

3.1 A simulation-based optimization procedure: Single-stage simulation 

Let s be any base stock level; the optimal value for s is what we eventually need. The 

notation used is consistent with the papers referenced on this topic where detailed proofs 

are available. 
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Figure 4. Illustration of a single stage. 

We need notation. 

In = inventory - backlog in period n; 

Rn -= production in period n; 

-= leadtime from production to inventory: 

T~l = Rn-i  + "'" + Rn-e 

-~ pipeline inventory; 

Dn = demand in period n; 

s ----- base-stock level; 

c --- production capacity. 

We always assume that c > 0 and Dn >_ 0 for all n. Under a (modified) base-stock policy, 

the production level in each period is set to try to restore the inventory position In + 7",, - Dn 

to s. If production were uncapacitated, this would be achieved by setting Rn = Dn. Since, 

h o w e v e r ,  Rn cannot exceed c, it may take multiple periods of production to offset demand 

in a single period. 

The system evolves as follows: 

Lz+l = In - Dn + Rn-~, (2) 

Rn = c  A Is + Dn - (l~, + Tn)] +, (3) 

Tn+l = Tn + R,, - R,,_~. (4) 

x + denotes max(0, x), x -  denotes max(0. - x )  and a A b denotes rain(a, b). 

What about costs? In period n the cost will be Cn = hlf + + p l - .  The average cost over 

the long term will be (~nXl C n ) / N  for a large N. N is the number of periods simulated. 

3.2 A simulation-based optimization procedure: Single-stage gradient 

We can certainly find the gradient of expected cost by simulating one more time and 

changing (say, increasing) only the order up to level by 1: the difference in cost between 

the two simulations is the gradient. This would be too much work especially if we had 

several stages whose order up to levels we want to optimize. Can we get the gradient by 

not doing any more simulations? Yes; and here goes the basic trick. 

(1) If we had inventory in period n, having started at a higher base stock level means an 

increase in holding by h. 

(2) If we had backlog in period n, we will decrease penalty by p. 
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Thus, the changes are either h or - p .  We will just average these changes. The point is we 

are claiming that average of  changes is the change in the average. In this situation, and in 

several others, this claim is good. 

How do we make the computer do this? In principle, we are just differentiating the 

recursions. The easiest way is to write the following two lines in the code to be executed 

in every period: 

d C o s t = d C o s t + h ,  if In > 0 ,  

d C o s t = d C o s t - p ,  if In < 0 .  

Then dividing dCost by N provides the derivative. Note that at the beginning of  the simu- 

lation dCost is set to zero. 

3.3 A s imulat ion-based optimization procedure: Serial system 

3.3a Operation" We now link multiple stages in series. There are m stages: stage 1 

supplies external demands and stage i supplies components for stage i - 1, i = 2 . . . . .  m. 

Stage m draws raw materials from an unlimited supply. To specify an echelon-inventory 

base-stock policy for the system, we let 

s i = echelon base-stock level for stage i. 

Naturally, we require s 1 < s 2 <_ . . .  <_ sm. Let the variables R,iz, Tin, e i, and c i have the 

same meaning as before, applied to stage i. For i = 2 . . . . .  m, let 1 / be the installation 

inventory at stage i, and let In l = In, with In as in § 2.1. In period n, stage i sets production 

to try to restore the echelon inventory position, 

i 

Z ( 1 ) n  + T j )  - Dn, 

j= l  

to its base-stock level s i. 

Two features distinguish the multi-echelon system from a single stage: production at 

stage i, i < m, is constrained by available component inventory 1/+1 , as well as by the 

capacity limit ci; and for i > 1 the amount removed in period n from the store at stage i 

is the downstream production level R / -  1, rather than the external demand. Thus, for stage 

i = 2 . . . . .  m - 1 we have 

i i i - 1  R i . (5) 
In+l = In -- Rn + n - V '  

R i n = c  i A s i + Dn - E ( I  j + T  j )  A l i + I ,  (6) 

j = l  

R i (7) r n i + ,  = + - , _ , , .  

At stage m, raw materials are unlimited so the last term in (5) is absent. To subsume these 

special cases in (5-7), we take R 0 =-- Dn and I m+l = cx~ for all n. To complete our 

specification of the model, we need initial conditions; for simplicity, we take I~ = s 1, 



Single-product, capacitated production-im,entorv systems 61 

I I ~ S i - -  S i - l ,  i = 2 . . . . .  m, and all other variables zero. In other words, the system 

starts with full inventory. For details see Glasserman & Tayur (1995). 

Similar to the single stage case, the derivatives with respect to the base stocks can be 

computed. 

3.4 Validation o f  technique 

Validation of finite horizon derivatives - inventory, and costs - is quite straightforward. 

We show that (fight-side) derivatives exist with probability one at a given value of s, then 

appeal to Lipschitz continuity and finish by applying the dominated convergence theorem. 

See Glasserman & Tayur (1995) for details. 

3.5 Stabil i~ and recurrence 

For IPA to work in the infinite horizon, several conditions have to be satisfied by the 

underlying stochastic process. These are derived by Glasserman & Tayur (1994). When 

capacity limits are introduced, an ineffective policy may lead to increasingly large or- 

der backlogs: the stabilio, of the system becomes an issue. In this paper, we examine 

the stability of a multi-echelon system in which each node has limited production ca- 

pacity and operates under a base-stock policy. We show that if the mean demand per 

period is smaller than the capacity at every node, then inventories and backlogs are 

stable, having a unique stationary distribution to which they converge from all initial 

states. Under i.i.d, demands we show that the system is a Harris ergodic Markov chain 

and is thus wide-sense regenerative. Under slightly stronger conditions, inventories re- 

turn to their target levels infinitely often, with probability one. We discuss cost implica- 

tions of these results, and give extensions to systems with random leadtimes and periodic 

demands. 

3.6 Extensions 

Let us discuss two obvious extensions. 

3.6a Assembly system : In an assembly system, each node i requires components from 

a set of predecessor nodes. These are assembled into stage-/finished goods. By changing 

units, if necessary, we may assume that components from predecessor stages are assembled 

in equal quantities. 

To keep the notation simple, we consider a representative example, rather than the 

general case. Figure 5 depicts a three-node system in which node 1 assembles components 

supplied by nodes 2 and 3. Node 1 feeds external demands: the other nodes draw raw 

materials from infinite sources. The evolution of inventory at node 1 is characterized by 

I 1 =111 - D , , + R  1 
n + l  n_~Vl ' 

Rn 1 = c '  A [s 1 + D,, - (1,~ + T,,')] + A 1,2 A 1, 3, (8) 

T,~+I = T~ + R 1 - R '  
n n - f l "  

The assembly feature is reflected in the dependence of R~ on 1, 2 and I, { in (8). Nodes 2 

and 3 are characterized by the basic recursions (5-6), with obvious modifications to the 
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indexing. The only notable difference is that now 1,7 and t,, are decreased by the same 

production level Rn 1 each period. 

3.6b Distr ibut ion sys tem Another variant of the serial system allows intermediate stages 

to supply multiple lower-echelon stages, typically in a tree topology. Our results extend 

without difficulties to such models. For ease of exposition we describe a less general setting 

- a serial system in which each stage faces external demands for components in addition to 

internal demands from the downstream stage. A manufacturer of electronic equipment, for 

example, may face demands for integrated circuits, and for circuits assembled into circuit 

packs, along with demands for finished goods. 

To characterize the operation of such a system, we need to specify how each stage 

allocates inventory to internal and external demand. Rather than restrict ourselves to any 

one policy, we describe a class of policies consistent with our results. Let Irn be the stage-/ 

inventory reserved for external demands at stage i in period n, and let 11, , = I n - l~n be 

the inventory available for downstream production. Suppose stage i has base-stock levels 

s6 and s I to supply external and internal demands, and let s i = Sio + s I . Denote by D / the 

external demand a! stage i in period n. 

The operation of stage 1 is unchanged. At stage i, production is now set according to 

Also, 

[ i ]+ 
- -  _ l i +  1 ,.'A s'+ Z(D  r,,) A.,,, .  

j=l 

- R/-'  16,] + + I n +  1 : 111 - - [ D i n  A i 

Pipeline inventory follows (5), just as before. It only remains to specify how lrn and l~n 

are determined. 

A broad class of policies sets 

• gi (li . + O,l~ . i-l(~_~\j_, I j Th]) " + D, it _lon') 

Figure 5. An assembly system• Super- 
scripts represent node numbers. 
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and I i = I i i On n - lln, for some funct ion gi; in other words, the inventory reserved for internal 

production is a function of the available inventory and of the shortfalls in meeting internal 

and external demands. The choice of  gi determines the particular policy. 

We briefly describe two types of policies. The first type gives strict priority to internal or 

external demands, allocating as much inventory as needed to the high-priority demand and 

using any excess for the other. The second type attempts to balance shortfalls, allocating 

inventory to minimize the resulting difference between inventories and base-stock levels. 

• ~ i  The This type of policy implements relative priorities through the choice of s~ and ~1" 

assumption that the system can, in fact, be balanced in each period is essential to many 

analytical approaches; our setting, of course, does not require this. For both types of policies 

just described, the particular functions gi are tedious to write out but they are sufficiently 

smooth to allow derivative calculations. 

3.7 An approximation using tail probabilities 

The IPA method could be computationally prohibitive for large problems, or for problems 

where the starting solution for the simulation is far way from its eventual optimal. So a 

quick (and accurate!) approximation is presented by Glasserman & Tayur (1996): Recall 

that our objective is to find base-stock levels that approximately minimize holding and 

backorder costs. The key step in our procedure approximates the distribution of echelon 

inventory by a sum of exponentials; the parameters of the exponentials are chosen to 

match asymptotically exact expressions. The computational requirements of the method 

are minimal. In a test bed of 72 problems, each with five production stages, the average 

relative error for our approximate optimization procedure is 1.9%. 

Much of the technical development of this approximation is based on the work by 

Glasserman (1994), who uses techniques from Asmussen (1987). 

4. Brief summary of related topics 

(l)  Re-entrant flow shops. How do we handle multi-product re-entrant flow lines, a very 

typical topology in semi-conductor fabrication facilities? (Re-entrant flow lines have 

attracted significant interest from the research community in recent years because of 

their direct applicability to semi-conductor fabrication.) This question was motivated 

by a fab visit at AMD and is studied by Bispo & Tayur (1996). Along the way we 

are able to study serial multi-product capacitated systems. The framework is similar 

to that described in § 2 above, but requires a far more detailed analysis. 

(2) Lead tinw quotation. To compete effectively, suppliers are realizing that three aspects 

of lead times are important to customers - short, accurate and consistent - and that 

this 'service' has to be provided at minimum cost. Several improvements along the 

just-in-time (JIT) philosophy (and quality paradigms) have made production processes 

fairly reliable at many supplier plants. While negotiations with customers have reduced 

the variability of order streams, these variabilities continue to remain significant and 

further reductions seem unlikely given that the customers themselves face an intensely 

competitive marketplace with increasingly fickle and demanding (end) customers. 
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We concentrate on (in Kapuscinski & Tayur 1996b) the uncertainty of demand from 

multiple customer classes (1 < i < M) and consider production times to be deterministic. 

It is costlier to quote a longer lead time to-a customer from a higher class than from a 

lower one; in particular, the cost is linear with rate mi for class i customer. We impose 

the constraint that we will ship the order to the customer with a 100% reliability within 

the quoted lead time; we may ship earlier at no penalty, but we gain no benefit from the 

customer for this early shipment. Our original motivation to study this problem came 

from a company that produces "rolls' that are used in steel mills. The goal was to find 

an easily implementable lead-time quoting rule, preferably graphical, that the sales force 

could use. 

Briefly, we consider a finite-horizon, discrete-time production-inventory model with a 

single stage, single product that faces a stochastic demand from many customer classes in 

any period. Processing time is deterministic. In each period, after the demands are realized: 

(a) we quote lead times to these demands, 

(b) we make production decisions for this period, and 

(c) we ship some material (sometimes earlier than its due date). 

Items (2) and (3) above determine the inventory level at the end of the period, on which we 

pay a holding cost of h per unit (per period). Note that quoting a large lead time for a low 

margin customer (and so having a lot of capacity in anticipation of future higher margin 

customers) causes a penalty from this low margin customer, while a short quoted lead time 

would force a higher margin customer arriving in the near future to wait a little longer. This 

is the basic trade-off. We find a policy that is simultaneously optimal for 100% reliable 

quotation, production, inventory, management and shipping. We show that for some cases 

the policy is easily implementable. 

A simple model relating lead times, inventories and batching is studied by Karmarkar 

(1987); however, no quotation of due dates is considered there. 

(3) Co-operation in supply chains. Industrial supplier-customer relations have undergone 

radical changes in recent years as the philosophy behind managing manufacturing 

systems is influenced by several Japanese manufacturing ?ractices. As more organiza- 

tions realize that successful in-house implementation of just-in-time alone will have 

limited effect, they are seeking other members of their supply chain to change their 

operations. This has resulted in a certain level of co-operation, mainly in the areas of 

supply contracts and information sharing, that was lacking before. This is especially 

true when dealing with customized products, and is most commonly seen between 

suppliers and their larger customers. 

We incorporate (in Gavirneni et al 1996) information flow between a supplier (or pro- 

ducer) and a customer in a capacitated setting of a simple supply chain. The customer 

faces i.i.d, end-product demand, and the supplier has a finite capacity in each period. We 

consider three situations: (1) a traditional model where there is no information to the sup- 

plier prior to a demand to him except from past data; (2) the supplier has the information 

of the (s, S) policy used by the customer as well as the end-product demand distribution; 

and (3) full information about the state of the customer. Each of these leads to different 
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non-stationary demand processes as seen by the supplier. Study of these three models 

enables us to understand the relationships between capacity, inventory and information at 

the supplier level. We show that order up-to policies continue to be optimal for models 

with information flow for the finite horizon, the infinite horizon discounted and the infinite 

horizon average cost cases. We develop a quick recursive solution procedure to compute 

the optimal parameters when capacity is infinite. For the finite capacity case, we develop 

and validate Infinitesimal Perturbation Analysis (IPA), as well as show how the solution 

for the uncapacitated system can be easily modified to obtain approximate values. Using 

these solution procedures we estimate the savings at the supplier due to information flow 

and study when information is most beneficial by varying capacity, holding costs, demand 

distributions and S - s values. 

5. Summary 

Several significant advances have occurred in the study of capacitated systems since 199 l. 

This paper informally provides an introduction to topics, and some techniques. The ref- 

erence list below is not exhaustive at all, but should provide a good starting point. At 

least two very interesting developments (within a single product setting) are not consid- 

ered in this informal review: (1) supply contracts and (2) international supply chains. See 

Scheller-Wolf & Tayur (1997), for example. 
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