
Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-1

RECENT DEVELOPMENTS IN SLAB: A SOFTWARE-BASED SYSTEM
FOR INTERACTIVE SPATIAL SOUND SYNTHESIS

Joel D. Miller Elizabeth M. Wenzel

Raytheon Technical Services Co. Spatial Auditory Displays Lab
NASA Ames Research Center

Mail Stop 262-6
Moffett Field, CA 94035-1000 USA
jdmiller@mail.arc.nasa.gov

NASA Ames Research Center
Mail Stop 262-2

Moffett Field, CA 94035-1000 USA
bwenzel@mail.arc.nasa.gov

ABSTRACT

This paper provides an update on the features of SLAB, a
software-based real-time virtual acoustic environment (VAE)
rendering system designed for use in the personal computer
environment. SLAB is being developed as a tool for the study of
spatial hearing.

The SLAB software is being released to the research
community under a free-public license for non-commercial use. It
is our hope that researchers will find it useful in conducting
research in advanced auditory displays and will also add their own
extensions to the software to provide additional functionality.
Further information about the software can be found at:
http://human-factors.arc.nasa.gov/SLAB.

1. INTRODUCTION

Interest in the simulation of acoustic environments has prompted a
number of technology development efforts over the years for
applications such as auralization of concert halls and listening
rooms, virtual reality, spatial information displays in aviation, and
better sound effects for video games. Each of these applications
implies different task requirements that require different
approaches in the development of rendering software and
hardware. For example, the auralization of a concert hall or
listening room requires accurate synthesis of the room response in
order to create what may be perceived as an authentic experience.
Information displays that rely on spatial hearing, on the other
hand, are more often concerned with localization accuracy than
the subjective authenticity of the experience. Virtual reality
applications such as astronaut training environments, where both
good directional information and a sense of presence in the
environment are desired, may have requirements for both accuracy
and realism.

All applications could benefit from further research that
specifies the perceptual fidelity required for adequate synthesis
[e.g., 1, 2]. For example, it is commonly assumed that only the
direct-path head-related transfer functions (HRTFs) need to be
rendered at the highest possible fidelity while early reflections
may be rendered with less fidelity, i.e., fewer filter coefficients
[3]. However, the number of coefficients actually used is often
based on a designer's best guess and the limitations of a particular
system, rather than the outcome of perceptual studies. Such

studies can give system designers guidance about where to devote
computational resources without sacrificing perceptual validity.

The goal of SLAB is to provide an experimental platform with
low-level control of a variety of signal-processing parameters for
conducting such studies. For example, some of the parameters that
can be manipulated include the number, fidelity (number of filter
taps), and positioning (correct vs. incorrect) of reflections, system
latency, and update rate. The project is also an attempt to provide
a low-cost system for dynamic synthesis of virtual audio over
headphones that does not require special purpose signal
processing hardware. Because it is a software-only solution
designed for the Windows/Intel platform, it can take advantage of
improvements in hardware performance without extensive
software revision.

2. SLAB ACOUSTIC SCENARIO

To enable a wide variety of psychoacoustic studies, SLAB
provides extensive control over the VAE rendering process. It
provides an API (Application Programming Interface) for
specifying the acoustic scene and setting the low-level DSP
parameters as well as an extensible architecture for exploring
multiple rendering strategies.

The acoustic scenario of a sound source radiating into an
environment and heard by a listener can be specified by the
parameters shown in Table 1. Currently, the SLAB Renderer
supports all but the following parameters: radiation pattern, air
absorption, surface transmission, and late reverberation.

SOURCE

Location
(Implied Velocity)

Orientation
Sound Pressure Level

Waveform
Radiation Pattern

Source Radius

ENVIRONMENT

Speed of Sound
Spreading Loss
Air Absorption

Surface Locations
Surface Boundaries
Surface Reflection

Surface Transmission
Late Reverberation

LISTENER

Location
(Implied Velocity)

Orientation
HRTF
ITD

Table 1. Acoustic Scenario Parameters.

In addition to the scenario parameters, SLAB provides hooks
into the DSP parameters, such as the FIR update smoothing time
constant or the number of FIR filter taps used for rendering. Also,

Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-2

various features of the renderer can be modified, such as
exaggerating spreading loss or disabling a surface reflection.

Recently implemented features include source trajectories,
API scripting, user callback routines, reflection offsets, the Scene
layer, and internal plug-ins. An external renderer plug-in interface
is currently under development that will allow users to implement
and insert their own custom renderers. This paper focuses on
software architectural issues and provides an update to the work
demonstrated and discussed in [4-7].

3. THE SLAB USER RELEASE

SLAB is being released via the web at http://human-
factors.arc.nasa.gov/SLAB. The SLAB User Release consists of a
set of Windows applications and libraries for writing spatial audio
applications. The primary components are the SLABScape
demonstration application, the SLABServer server application,
and the SLAB Host and SLAB Client libraries.

3.1. SLABScape

SLABScape allows the user to experiment with the SLAB
Renderer API. This API provides access to the acoustic scenario
parameters listed in Table 1. The user can also specify sound
source trajectories, enable Fastrak head tracking, edit and play
SLAB Scripts, A/B different rendering strategies, and visualize
the environment via a Direct3D display.

Figure 1. SLABScape Screenshot.

3.2. SLABServer

The SLABServer application allows a workstation to be dedicated
as a stand-alone SLAB Server. In this configuration, the entire
computational load is transferred to the server. This allows for
more robust rendering and frees user workstation resources.

3.3. SLAB Libraries

The SLAB Host and SLAB Client libraries encapsulate the SLAB
Renderer API and allow the user to develop SLAB-based

applications. The APIs of the two libraries are essentially
identical. Once the IP address of the server has been specified, the
client library mimics the host library. Both libraries can be linked
into the user’s application simultaneously, allowing the user to
decide at run-time whether to use host mode or client/server
mode.

4. DESIGN OVERVIEW

In the following sections, an overview is provided of SLAB’s
software architecture, rendering model, and latency.

User’s
Application

SRAPI

Scene

Render

SLABWire

Figure 2.
Classes (th
solid lines
flow, horiz

n
SLABAPI
SLAB
ick so
= clas
ontal a

n

e

y

Applicatio
t t
SLABHos
 Software
lid lines = l
s hierarchie
rrows = sig

I

SLABClien
n

SLABServer
Scene
Spatial
 Diotic
Architecture
ayers, boxe
s, vertical a
al flow).

Plug-In
DSPFunction
DSPThread
DSP
Delay Line I
 Delay Line Out
d
Generator
 DirectSoun
I
Waveform AP
RIFF File
y
Memor
Waveform AP
RIFF Fil
Memor
Render
 - Layers and
s = classes, thin
rrows = control

Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-3

4.1. Software Architecture

SLAB is a software-only solution written entirely in C++ using
the Win32 SDK (Software Development Kit) and the Microsoft
Foundation Classes. C++ was chosen as the development
language for its speed and its object-oriented nature. An object-
oriented approach was taken for its emphasis on modularity,
extensibility, and maintainability. Microsoft Windows was
selected as the operating system for its developer resources,
persistent APIs, and the price/performance ratio of the
Windows/Intel platform. The following SLAB layers discussion
refers to the SLAB software architecture shown in Figure 2.

4.1.1. The SRAPI Layer

The user of SLAB interacts with the SRAPI (SLAB Renderer
API) layer. This layer passes acoustic scenario parameters to the
Scene and provides high-level control of the Scene, Render, and
SLABWire layers via a host or client/server interface. The SRAPI
layer is also responsible for processing SLAB Scripts. SLAB
Scripts allow several API commands to be combined in a macro
and sequenced over time. An example SRAPI code fragment
appears in Figure 3.

CSLABAPI* pSLAB;
IDSRC idSrc;

// allocate SLAB
if(bAllocateInHostMode)
pSLAB = SLABAPIHost();

else // allocate in client/server mode
pSLAB = SLABAPIClient(“10.0.0.1”);

// render a spatial display
pSLAB->Render(RENDER_SPATIAL);
// allocate a wave file sound source
idSrc = pSLAB->SrcFile(“test.wav”);
// locate source 1m forward, 1m right
pSLAB->SrcLocate(idSrc, 1.0, -1.0, 0.0);
Sleep(5000); // wait 5s
// render a diotic display
pSLAB->Render(RENDER_DIOTIC);
Sleep(5000); // wait 5s
delete pSLAB;

Figure 3. SRAPI Example - an A/B comparison of a
spatial and diotic display.

4.1.2. The Scene Layer

The Scene layer contains all scenario state information. It
performs source trajectory updating and room image model and
listener-relative geometry calculations, providing a list of sound
image incident angles and distances to the Render layer. All
renderers use the same Scene object. Currently, the image model
is limited to a rectangular room with six first-order reflections per
sound source.

4.1.3. The Render Layer

The Render layer performs acoustic scenario rendering. It is
constructed such that any rendering algorithm adhering to the
internal SLAB Plug-In format (i.e. a subclass of Render) can be

inserted into the rendering framework. This can occur in real-time
allowing for the A/B-ing of different rendering techniques. A
general-purpose plug-in strategy is currently being developed to
allow users to import their own renderers. The SLAB Renderer is
encapsulated in the Spatial class; it will be discussed in more
detail later in the next section. Diotic is an example of an included
alternate renderer that simply renders a diotic display.

4.1.4. The SLABWire Layer

The SLABWire layer manages sound input and output and routes
sound samples through SLAB’s signal processing chain. It is
encapsulated in its own library and operates in its own thread of
execution. SLABWire also provides interpolated delay line and
DSP parameter tracking (a.k.a. smoothing) functionality. Not all
features of the SLABWire layer are available via the SLAB
Renderer API. For example, the user cannot currently select
Waveform API input or output.

4.1.5. Everything You Need to Know About Object-Oriented
Programming in Two Paragraphs

For those unfamiliar with object-oriented programming, a
subclass extends the functionality of its base class and/or provides
a different implementation for the same class interface. An object
(the thing one uses) is an instantiation of a class (a description of
the thing) (e.g. this is analogous to the relationship of a circuit to a
schematic). An object of a subclass can be used in place of an
object of its base class. In other words, a Spatial object is a
Render object; a Render object is a DSPFunction object. This is
termed “polymorphism” and is responsible for the inherent
extensibility and flexibility of object-oriented programming.

Polymorphism allows multiple renderers to “plug into” the
Render layer and the Render layer to plug into the SLABWire
layer. It also allows the DSP object to operate on different types of
sound input and output without knowledge of implementation
details. Further, the SLAB user can take advantage of
polymorphism by manipulating SLAB through the SLABAPI
object for both host and client/server modes, allowing the user’s
code to be identical for both modes (see Figure 3).

4.2. The SLAB Renderer

The SLAB Renderer is based on HRTF filtering and is
encapsulated in the Spatial object in Figure 2. The listener HRTF
database contains minimum-phase head-related impulse response
(HRIR) pairs and interaural time delays (ITDs) at fixed azimuth
and elevation increments. The azimuth and elevation increments
can vary from one database to another.

The SLABWire frame size is 32 samples, meaning sound
samples are routed through the signal processing chain 32 samples
at a time. The sample data type is single-precision floating-point
and all calculations are performed using single or double-
precision floating-point arithmetic. Every frame, the DSPFunction
object (Figure 2) receives a frame of samples (remember, the
Spatial object is a DSPFunction object). For a sample rate of
44100 samples/s, the frame rate is 1378 frames/s. Every frame the
following processing occurs:

Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-4

Script, Trajectory, and Callback Update - updates the script,
trajectory and callback mechanisms at update rates defined by the
user. The callback feature allows user code (e.g. a custom source
trajectory) to run inside the SLABWire thread.

Scenario Update - converts scenario parameters to DSP
parameters. The Spatial object performs a scenario update each
time the user updates a scenario API parameter (e.g. listener
position). The maximum update rate depends on available CPU
resources. Since the HRIR FIR filter coefficients are updated
every other frame, the absolute maximum update rate is 690Hz. A
typical scenario update rate is 120Hz.
• Performed in Scene layer:
o Tracker Sensor Offset - compensates for the location of the

head tracker sensor.
o Image Model - computes the location of sound source

reflection images.
o 3D Projection - converts scenario information into listener-

relative geometric quantities:
� Image-Listener Range
� Image Arrival Angle

• Signal Flow Translation - converts listener-relative geometric
quantities into FIR coefficients and delay line indices (a.k.a.
“DSP parameters”) for each sound path and for each of the
listener’s ears, modeling:
o Propagation Delay
o Spherical Spreading Loss
o HRTF Database Interpolation (FIR Coefficients, ITD)

Process - processes each sound image, performing the following
signal processing tasks:
• Delay Line - models propagation delay and ITD.
o Delay Line Indices Parameter Tracking - bumps current

delay line indices towards target values every sample.
o Provided by SLABWire layer:
� Interpolated Delay Line - implements a 2x up-sampled,

linearly interpolated, fractionally indexed delay line.
• IIR Filter - models wall materials with a first-order IIR filter.
• FIR Filter - models spherical spreading loss and head related

transfer functions.
o FIR Coefficient Parameter Tracking - bumps current FIR

coefficients towards target values every other frame.
o FIR Filter Operation - implements an arbitrary length FIR

filter. Typically, the direct path is computed with 128 taps
and each reflection with 32 taps.

Mix - mixes the direct path and six first-order reflections for an
arbitrary number of sound sources.

4.3. SLAB Latency and Sound Buffer Management

The internal latency of SLAB is defined to be the time it takes for
a scenario parameter modification to be rendered at the sound
output of the system. Since the frame size is small, the internal
latency is largely determined by the DSP parameter-tracking time-
constant (a.k.a. smooth-time) and the size of the DirectSound
output buffer. The latency of each is added to calculate the total
internal latency. Since the smooth-time is adjustable by the user, a
smooth-time of 0ms is assumed in the discussion below. In
practice, the smooth-time is adjusted to be as low as possible

without causing audible artifacts. A typical smooth-time value is
15ms.

When a scenario update occurs, the DSP parameters are
updated within two milliseconds (two frames, 64 samples),
ignoring smooth-time. The next frame of input samples is then
filtered with the updated parameter values with the result
transferred to the DirectSound write buffer. Within three
milliseconds the write buffer (128 samples) data is transferred to
the DirectSound output buffer (1024 samples). Assuming a full
output buffer (worst case latency), the samples are available at
sound output 23ms later.

Since the output buffer is somewhat costly to manage, the
write buffer helps to minimize computational load. Ideally, the
output buffer is kept fairly full in order to protect against
SLABWire thread starvation. Thread starvation can result in
output buffer underflow causing an audible click.

To measure internal latency under Windows98, an interval
counter was placed between the parallel port and the sound
output. A byte was written to the parallel port immediately prior
to updating the listener orientation with an API function. The
result of this update was a transition from an all zero HRIR to a
single impulse HRIR. With a 128 sample write buffer and a 1024
sample output buffer, the measured internal latency of the system
was 24ms. Preliminary measurements indicate that the latency
under Windows98 and Windows2000 is comparable.

5. COMPARISON TO OTHER VAE SYSTEMS

Different VAE applications emphasize different aspects of the
listening experience that require different approaches to rendering
software/hardware. Auralization requires computationally
intensive synthesis of the entire binaural room response that
typically must be done off-line and/or with specialized hardware.
A simpler simulation that emphasizes accurate control of the
direct path, and perhaps a limited number of early reflections, may
be better suited to information display. The fact that such a
simulation does not sound "real" may have little to do with the
quality of directional information provided. Achieving both
directional accuracy and presence in virtual reality applications
requires that head tracking be enabled with special attention
devoted to the dynamic response of the system. A relatively high
update rate (~60 Hz) and low latency (less than ~100 ms) may be
required to optimize localization cues from head motion and
provide a smooth and responsive simulation of a moving listener
or sound source [8-11]. Implementing a perceptually adequate
dynamic response for a complex room is computationally
intensive and may require multiple CPUs or DSPs.

One solution for synthesizing interactive virtual audio has
been the development of hybrid systems [e.g., 3, 12]. These
systems attempt to reconcile the goals of directional accuracy and
realism by implementing real-time processing of the direct path
and early reflections using a model (e.g., the image model)
combined with measured or modeled representations of late
reflections and reverberation. During dynamic, real-time
synthesis, only the direct path and early reflections can be readily
updated in response to changes in listener or source position. A
densely measured or interpolated HRTF database is needed to
avoid artifacts during updates. Late portions of the room response
typically remain static in response to head motion, or given
enough computational power, could be updated using a database

Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-5

VAE System /
Primary Target Application

Audio
Display

User
Interface

OS

Implementation

Rendering
Domain / Room

Model
SLAB /
research

headphone C++ Windows 98/2k software /
Intel

time (HRIR) /
image model

DIVA /
research

headphone,
speakers

C++ UNIX, Linux software /
SGI

time (HRIR) /
image model

AuSIM /
research

headphone C client-server model
(client: Win98/2k,
DOS, Mac, etc.)

software /
Intel

time (HRIR) /
direct path

Spat (IRCAM) /
research

headphone,
speakers

Graphical
(Max, jMax)

Mac, Linux, IRIX software /
Mac, Intel, SGI

time (HRIR) /
reverb engine

AM3D /
research, games

headphone,
speakers

C++ Windows 98/2k software /
Intel (MMX)

? /
direct path

Tucker-Davis /
research

headphone Graphical /
ActiveX

Windows 98/2k special purpose
DSP hardware

(RP2.1)

time (HRIR) /
direct path, reverb

engine
Lake /

research, entertainment
headphone,

speakers
C++ Windows NT special purpose

DSP hardware
(CP4, Huron)

frequency (HRTF)
/ precomputed

BRIR
Creative Audigy /

games
headphone,

speakers
C++ Windows 98/2k consumer

sound card
proprietary /
reverb engine

Sensaura /
entertainment

headphone,
speakers

3D sound
engine

N/A software /
hardware

proprietary /
reverb engine

QSound /
games

headphone,
speakers

3D sound
engine

N/A software /
hardware

proprietary /
reverb engine

Crystal River Convolvotron /
research

headphone C DOS special purpose
DSP hardware

time (HRIR) /
direct path

Table 2. Summary table describing system characteristics for various VAE systems.

VAE

System
Sources Filter Order Room Effect Scenario

Update Rate
Internal
Latency

Sampling Rate

SLAB arbitrary,
CPU-limited
(4 typical)

arbitrary
(max. direct: 128,

reflections: 32)

image model
6 1st order
reflections

arbitrary
(120 Hz typical,

690 Hz max.)

24 ms default
(adjustable output

buffer size)

44.1 kHz

DIVA arbitrary,
CPU-limited

arbitrary,
modeled HRIRs

(typical direct: 30,
reflections: 10)

image model
2nd order

reflections,
late reverb

20 Hz ~110-160 ms

arbitrary
(32 kHz typical)

AuSIM

32 per CPU
GHz

arbitrary
(128 typical,

256 max.)

N/A arbitrary
(375 Hz default

max.)

8 ms default
(adjustable output

buffer size)

44.1 kHz
48 kHz (default)

96 kHz
AM3D 32-140,

CPU-limited
? N/A ~22 Hz max. 45 ms min.

22 kHz (current)
44.1 kHz (future)

Lake 1 (HeadScape,
4 DSPs)

2058 to 27988 precomputed
response

? 0.02 ms min. 48 kHz

Convolvotron 4 256 N/A 33 Hz 32 ms 50 kHz

Table 3. Summary table describing system specifications for various VAE systems.

of impulse responses pre-computed for a limited set of listener-
source positions. Model-based synthesis is computationally more
expensive but requires less memory than data-based rendering
[12]. The Lake Huron/HeadScape system relies entirely on long,
densely pre-computed binaural room impulse responses (BRIRs)
rendered with a fast frequency-domain algorithm. The early
portion of the BRIR (4000 samples) is updated in response to
head motion and the late reverberation remains static.

Tables 2 and 3 summarize system characteristics and
specifications for some of the currently available virtual audio
systems targeting different applications. (The Crystal River
Convolvotron is listed for “historical” comparison purposes.)
These systems tend to fall into two categories. Those aimed at
high-end simulations for research purposes (e.g., auralization,
psychoacoustics, information displays, virtual reality) tend to
emphasize high-fidelity rendering of direct path and/or early

Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

 ICAD02-6

reflections, accurate models of late reverberation, and good
system dynamics (high update rate, low latency). Other systems
are directed toward entertainment and game applications. The
rendering algorithms in such systems are proprietary and appear to
emphasize efficient reverberation modeling; it is often not clear
whether the direct path and/or early reflections are independently
spatialized. The information in the tables is based on published
papers in a few cases [e.g., 3, 6, 10] but more often on product
literature and websites [13]. It is often difficult to determine
details about a particular system’s rendering algorithm and
performance specifications. For example, critical dynamic
parameters like scenario update rate and internal rendering latency
are not readily available or not enough information about the
measurement scenario is provided to evaluate the quoted values.
Some systems listed in Table 2 are not present in Table 3 because
not enough information was found regarding system performance
specifications.

Informal listening tests of the SLAB system indicate that its
dynamic behavior is both smooth and responsive. The smoothness
is enhanced by the 120-Hz scenario update rate, as well as the
parameter tracking method, which smooths at rather high
parameter update rates; i.e., time delays are updated at 44.1 kHz
and the FIR filter coefficients are updated at 690 Hz. The
responsiveness of the system is enhanced by the relatively low
latency of 24 ms. The scenario update rate, parameter update
rates, and latency compare favorably to other virtual audio
systems.

6. CONCLUSIONS AND FUTURE DIRECTIONS

The goal of SLAB is to provide a software-based experimental
platform with low-level control of a variety of signal-processing
parameters for conducting psychoacoustic studies. To meet this
goal, a modular, object-oriented design approach was taken.

Recent additions to SLAB include source trajectories, API
scripting, user callback routines, and reflection offsets. These
features are included in the SLAB v4.3 release. A refined version
of these features will soon be available in SLAB v5.0. Other v5.0
additions include the Scene layer and internal plug-ins. Presently
in development for the v5.0 release are an external plug-in format,
an HRTF per source feature, and a “sound event” architecture
where sources are allocated and freed while rendering.

Future development includes enhancing the acoustic scenario
with the addition of source radiation pattern, air absorption,
surface transmission, and late reverberation models. To enable
complex room geometries and higher order reflections, multiple
processor systems and distributed architectures will be explored.

7. REFERENCES

[1] D. R. Begault, “Audible and inaudible early reflections:
Thresholds for auralization system design.” 100th Conv. Aud.
Eng. Soc, Copenhagen, preprint 4244, 1996.

[2] D. R. Begault, E. M. Wenzel & M. R. Anderson, “Direct

comparison of the impact of head tracking, reverberation,
and individualized head-related transfer functions on the
spatial perception of a virtual speech source.” J. Aud. Eng.
Soc., vol. 49, pp. 904-916, 2001.

[3] L. Savioja, J. Huopaniemi, T. Lokki, & R. Väänänen,
“Creating interactive virtual acoustic environments.” J. Aud.
Eng. Soc., vol. 47, pp. 675-705, 1999.

[4] J. D. Miller, J.S. Abel, and E.M. Wenzel, “Implementation
issues in the development of a real-time, Windows-based
system to study spatial hearing,” J. Acoust. Soc. Am., vol.
105, p. 1193, 1999.

[5] E. M. Wenzel, J. D. Miller, and J. S. Abel, “Sound Lab: A
real-time, software-based system for the study of spatial
hearing,” 108th Conv. Aud. Eng. Soc, Paris, preprint 5140,
2000.

[6] E. M. Wenzel, J. D. Miller, and J. S. Abel, “A software-
based system for interactive spatial sound synthesis,” ICAD
2000, 6th Intl. Conf. on Aud. Disp., Atlanta, Georgia, 2000.

[7] J. D. Miller, “SLAB: A software-based real-time virtual
acoustic environment rendering system.” [Demonstration],
ICAD 2001, 9th Intl. Conf. on Aud. Disp., Espoo, Finland,
2001.

[8] J. Sandvad, “Dynamic aspects of auditory virtual
environments.” 100th Conv. Aud. Eng. Soc, Copenhagen,
preprint 4226, 1996.

[9] E. M. Wenzel, “Analysis of the role of update rate and
system latency in interactive virtual acoustic environments.”
103rd Conv. Aud. Eng. Soc, New York, preprint 4633, 1997.

[10] E. M. Wenzel, “The impact of system latency on dynamic
performance in virtual acoustic environments.” Proc. 15th Int.
Cong. Acoust. & 135th Acoust. Soc. Amer. Seattle, pp. 2405-
2406, 1998.

[11] E. M. Wenzel “Effect of increasing system latency on
localization of virtual sounds.” Proc. Aud. Eng. Soc. 16th
Int. Conf. Spat. Sound Repro. Rovaniemi, Finland. April 10-
12, New York: Audio Engineering Society, pp. 42-50, 1999.

[12] R. S. Pelligrini, R. S. “Comparison of data- and model-based
simulation algorithms for auditory virtual environments.”
107th Conv. Aud. Eng. Soc, Munich, 1999.

[13] Websites: www.3dsoundsurge.com www.ausim3d.com
www.ircam.fr www.am3d.com www.tdt.com
www.lake.com.au www.creative.com www.sensaura.com
www.qsound.com

Acknowledgements: Work supported by the NASA Aerospace
Operations Systems Program and by the United States Navy
(SPAWARSYSCEN, San Diego).

	INTRODUCTION
	SLAB ACOUSTIC SCENARIO
	THE SLAB USER RELEASE
	SLABScape
	SLABServer
	SLAB Libraries

	DESIGN OVERVIEW
	Software Architecture
	The SRAPI Layer
	The Scene Layer
	The Render Layer
	The SLABWire Layer
	Everything You Need to Know About Object-Oriented Programming in Two Paragraphs

	The SLAB Renderer
	SLAB Latency and Sound Buffer Management

	COMPARISON TO OTHER VAE SYSTEMS
	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES

