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Abstract: The use of an enantiomerically pure amino alcohol, coupled to a transfer hydro-
genation process, in the asymmetric catalysis of the reduction of ketones to alcohols, is de-
scribed.  The process works well for unfunctionalised ketones, affording e.e.s of up to 98%,
and excellent conversions.  We have recently extended, for the first time in this application,
the scope of the methodology to the reductions of α-heteroatom substituted substrates,
through the use of the appropriate protecting groups on each atom.
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Introduction

The asymmetric reduction of ketones to enantiomerically enriched alcohols remains a pivotal trans-
formation in organic synthesis [1,2].  Of the methods available to achieve this reaction in a catalytic
sense the most established are those based on either hydrogenation [3-7]  or the use of oxazaboroli-
dines for the catalysis of ketone reduction by borane [8,9].

Catalytic hydrogenation using a homochiral phosphine in conjunction with an appropriate metal,
usually rhodium or ruthenium, is a versatile method which requires only very low levels of catalyst.  In
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general, however, the method is most suitable for ketones which bear a proximal co-ordinating group
[3-7].  There are however a number of recent notable examples of reductions of simple ketones
through the use of additives [10-13] and a remarkable system for the asymmetric hydrogenation of
simple ketones using a combination of a Rh(I) complex of a chiral phosphine with lutidine and KBr as
additives has been reported very recently [14].

The oxazaborolidine-catalysed borane reduction process is complementary to hydrogenation and is
ideally suited to the reduction of unfunctionalised ketones and enones [8,9].  The drawback of this
method is the requirement for a relatively large quantity (usually at least 10 mol%) of catalyst and the
non-compatibility of certain functional groups with borane.

In this paper the combination of a homochiral amino alcohol with ruthenium(II) is demonstrated to
form an effective new system for the asymmetric catalysis of the transfer of hydrogen from isopropa-
nol to acetophenone.

Transfer Hydrogenation of Ketones

Asymmetric transfer hydrogenation with Ru(II) complexes, in which we have recently commenced
a programme of research, has recently emerged as an effective approach to asymmetric carbonyl re-
duction [15].

A particular advantage of transfer hydrogenation methodology is the requirement for only very low
quantities of catalysts; typically less than 1 mol%. Furthermore the ligands employed are often are in-
definitely stable to the reaction conditions and may be recovered after use.

We have recently discovered that (1R,2S)-(+)-1 is an excellent ligand for asymmetric transfer hy-
drogenation of ketones (Scheme 1) [16].  The use of 1 mol% of 1 in conjunction with 0.25 mol% of the
ruthenium complex [RuCl2(p-cymene)]2 and 2.5 mol% of KOH in propan-2-ol ([ketone]=0.1M) at

room temperature resulted in reduction of acetophenone to S-(-)-1-phenethanol in 70% isolated yield
and 91% e.e. after 90 minutes.  Of a series of aromatic groups in the catalyst, p-cymene proved to be
superior to benzene and 1,3,5-trimethylbenzene.  The reaction does not require exclusion of water or
air and may be worked up simply by filtration of the reaction mixture through a plug of silica followed
by removal of solvent.

Ph Me
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Ph Me

O

0.25 mol% [RuCl2(p-cymene)]2

1 mol%

NH2

OH

72% isolated yield
91% enantiomeric excess

S
2.5 mol% KOH, i-PrOH solvent, 4 hrs

room temperature
(49% yield, 93% e.e.  at 0oC)

(1R,2S)-1

Scheme 1. Asymmetric transfer hydrogenation of acetophenone using (1R,2S)-1.

The presence of a primary amine function on the ligand appears to be crucial; use of the methylated
amine gave a product of only 20% e.e. In order to determine the importance of the rigid structure of the
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ligand we repeated the reaction under identical conditions using R-phenylglycinol 2. In this reaction S-
(-)-phenethanol was obtained in 95% yield but only 23% enantiomeric excess (Scheme 2). Although
we have not yet investigated a systematic series of ligand modifications, it appears that a primary
amine function in the ligand is essential. We have also established that the relationship between the
enantiomeric purity of the ligand and the e.e. of the product is linear, suggesting that the active catalyst
contains a 1:1 ligand:Ru ratio [17].

NH2
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Ph Me
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2.5 mol% KOH, i-PrOH solvent, 4 hrs

Ph Me

O

S

95% yield
23% enantiomeric excess

0.25 mol% [RuCl2(p-cymene)]2

1 mol%

room temperature

R-2

Scheme 2. Asymmetric transfer hydrogenation of acetophenone using (R)-2.

Reduction of a series of aromatic ketones under identical conditions using ligand 1 resulted in for-
mation of the corresponding alcohols in good to excellent yields and enantiomeric excesses (Figure 1).
The reduction of 1-tetralone gave the most remarkable result; up to 98% enantiomeric excess under the
room temperature reduction conditions. Extended reaction times resulted in loss of selectivity due to he
reversibility of the reaction. Isolated yields of only 39 to 63% were obtained however when account
was taken of the quantity of recovered starting material the mass balance is generally excellent.  In all
instances where e.e.s are observed to reduce over extended times it is likely that this is a result of the
slow reversibility of the reaction.

Although aromatic/alkyl ketones were generally good substrates, alkyl/alkyl ketones gave products
of lower enantiomeric excess. An exception to this trend was observed for 2-tetralone, which gave a
product of 81% e.e., which represents a result competitive with any of the best alternative methods.

Figure 1. Asymmetric transfer hydrogenation of ketones using 1 mol% (1R,2S)-1,
0.25% [RuCl2(p-cymene)]2, 2.5 mol% KOH, i-PrOH solvent, 1,5 hrs, room temperature.
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Our speculation on the mechanism of the reaction follows on from the suggestion by Noyori that

hydrogen bonding may play a key role in the catalytic process [18].  This speculation has been sup-

ported by a series of enlightening X-ray crystallographic studies [19].  We have obtained results which

suggest a 1:1 relationship between the ligand and the metal and have observed that the nature of the

aryl group has an effect on the enantiomeric excess [16].  This leads us to suggest that the ‘pro-

catalyst’  is probably an 18 electron compound such as 3, which forms upon treatment of the ligand 1
and the ruthenium complex precursor with base.  Further elimination of HCl allows the active catalyst

to form and enter the catalytic cycle of hydrogen transfer (Scheme 3) in a process analogous to that

proposed by Noyori.

N
H

O

Ru
N
H2

O

Ru
Cl

NH

O

Ru
H

H

Ph

O

Me

Ph Me

OH

Me

O

Me

Me Me

OH
H

HKOH

(-HCl)

PRODUCT

3

Scheme 3. Proposed catalytic cyclic for transfer hydrogenation using (1R,2S)-1 as catalyst.

The origin of the asymmetric induction is less clear, however the highly rigid nature of the amino

indanol ligand ensures that any complex will be well  defined.  In this the hydrogenated ligand will

have a choice of two geometries for complexation (Figure 2), one of which is likely to be rather more

congested than the other and thus disfavoured.
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Figure 2. Possible diastereomeric complexes of 1 and rutheniu(arene)C.



Molecules 2000, 5 8

Having thus generated a rigid and well defined chiral environment in the complex, the hydrogen

transfer, which may involve a hydrogen bond from the amine nitrogen atom to the carbonyl oxygen,

will take place in a stereochemically predictable manner (Figure 3). We have no direct evidence, how-

ever, for the structure shown in Figure 3, which is our present speculation and the subject of ongoing

investigations [17].

Ru
ONH

H

O

Me

H

H H

Figure 3. Proposed transition state for asymmetric reduction.

With a view to extending the transfer hydrogenation methodology to a variety of substrates we have

studied the reductions of a series of α-heteroatom substituted ketones (the results are summarised in

Figure 4).  The reaction of α−chloro acetophenone 4 failed to give any product, a result which we ini-

tially explained by assuming in-situ cyclisation to the epoxide and thus deactivation of catalyst by

neutralisation of the base.  However we were most surprised by the same lack of reactivity of both

α−methoxy and α−amino substituted ketones 5 and 6.  It was clearly the case either these ketones were

poor substrates or that some form of product inhibition was terminating the catalytic process.
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Figure 4. Results of asymmetric transfer hydrogenation substrates bearing α-heteroatom functions
(1 mol% (1R,2S)-1, 0.25 mol% [RuCl2(p-cymene)]2, 2.5 mol% KOH, i-PrOH solvent, 1,5 hrs,

room temperature).



Molecules 2000, 5 9

In order to test this we examined the transfer hydrogenation of a 1:1 mixture of propiophenone

(which is known to be a good substrate) and α-methoxyacetophenone.  In the event neither ketone was

reduced, thus confirming that the catalyst is clearly inhibited by certain substrates or their reduction

products.  Our present speculation is that the formation of a chelating product results in inhibitory

complexation and ultimately decomposition of the catalytic species (Figure 5) [20].  The proposed

complex is a 20-electron complex and is likely to undergo rapid decomposition through loss of the

aromatic ring.

Ru
O

NH2

X
OH H

(X=OMe, Cl, NMe2)
H

Figure 5. Proposed intermediate leading to catalyst inactivation by a chelating product.

Further investigations have added support to the product inhibition theory. Reduction of β-methoxy

substituted ketone 7 proceeds rather more slowly than the acetophenone reaction whilst reduction of γ-

methoxy substituted ketone 8 is once again a rapid process. These results suggest that, as one would

predict, an increase in the distance between the potential chelating groups in the product causes the in-

hibitory effect to decrease sharply. Furthermore the reduction of α−phenoxy substituted acetophenone

9 proceeds rapidly and with high selectivity; a valuable and noteworthy result [20].  In the latter case

the lone pair of the oxygen atom adjacent to phenyl is delocalised with the aromatic group and is thus

unavailable to contribute to a strongly chelating product.

Armed with a realistic hypothesis for the mechanism of inhibition we have been able to design

functionalised systems which are compatible with transfer hydrogenation reactions under our condi-

tions.  Mindful of the need to deactivate the electron-donating ability of the alkoxy substituted sub-

strates we have discovered that the acylation of the adjacent hydroxy group gives a substrate which is

both rapidly and selectivity reduced to the acylated diol (Scheme 4). Although some product of acyl

transfer is isolated, both products are of essentially identical e.e. and we have therefore assumed that

the isomerisation process follows the reduction reaction. To our knowledge this is the first example of

the reduction of an α−alkoxy functionised substrate containing a removable protecting group under

these conditions of transfer hydrogenation [20].
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Scheme 4. Asymmetric transfer hydrogenation of α-acyloxy substrates using (1R,2S)-1.

In a similar manner we have demonstrated that α-amino substituted substrates bearing an electron-
withdrawing group on the nitrogen atom are valuable reagents for our process (Scheme 5) [20].  In our
example the use of an acylated primary amine function gave no reduction, however Noyori has re-
ported one example of the reduction of a substrate containing such a functional group [15s].
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Me
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86% yield
79% e.e.

Scheme 5. Asymmetric transfer hydrogenation of α-acylamino substrates using (1R,2S)-1.

It is also noteworthy that, since our own studies, the highly enantioselective asymmetric reduction
of α-chloroacetophenone using a combination of formic acid/triethylamine in conjunction with a ru-
thenium(II)/monotosylated diamine system has recently been reported [21].

In conclusion it has been demonstrated that transfer hydrogenation using stereochemically rigid
amino alcohols is a versatile and practical method for the synthesis of enantiomerically enriched sec-
ondary alcohols. Recent developments have extended the scope of the reaction system to substrates
containing heteroatoms adjacent to the ketone, thus greatly increasing the applicability of the system.
Our current research portfolio in this area is focused at the extension of the methodology to related
systems, the reduction of C=N bonds [22], the solid phase support of our reagents [23], [15l] and the
reverse process, which allows kinetic resolution of alcohols through an enantioselective oxidation [24].
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Table. Asymmetric transfer hydrogenation of acetophenone

(hydride source / solvent is isopropanol unless otherwise indicated).

Entry Ligand Metal Time, h Temp, °C Yleld, % e.e., % Ref
1 1 Ru(II) 111 120 35 4(S) a
2 2 Rh(I) 3.5 82 60 9(R) b
3 2 Ir(I) 23 82 71 58(S) b
4 2 Ru(II) 0.03 100 80 52(S) b
5 3 Ir(I) 3 82 87 42(S) c
6 4 Ru(II) 120 68 99 72(R) d
7 5 Rh(I) - 82 - 7(R) e
8 6 Rh(I) 4 82 89 63(S) f
9 7 Ir(I) - 82 89 37(S) g
10 8 Ir(I) 3 80 89 58(R) h
11 9 Ru(II) 0.17 82 91 97(S) i
12 10 Sm(III) 2 rt 74 96(R) j
13 11 Rh(I) 168 rt 100 67(R) k
14 12 Rh(I) 24 70 100 60(S) 1
15 13 Rh(I) 163 60 97 43(R) m
16 I4 Ru(II) 9 82 98 87(S) n/o
17 16 Ru(II) 120 -30 98 30(R) p
18 17 Ir(I) 12 rt 74 78(R) q
19 19 Ru(II) 2-8 82 89 28(S) r
20 20 Ru(II) 15 rt 95 97(S) s
21 20* Ru(II) 20 rt 99 98(S) t
22 21 Ru(II) 24 rt 97 56(R) u
23 21* Ru(II) 120 rt 42 83(R) u
24 22* Ru(II) 24 30 99 96(R) u
25 23 Ru(II) 1 rt 94 92(S) v
26 24 Ru(II) 1.5 rt 70 91(S) w
27 25 Ru(II) 5 83 95 95(S) x
28 26 Ru(II) 0.5 82 74 86(R) y
29 27 Ru(II) 7 28 80 94(R) z
30 28 Ru(II) 24 rt 91 35(R) aa
31 29 Ru(II) 24 rt 96 20(R) bb
32 30 Ru(II) 0.2 80 72 79(R) cc
33 31 Ru(II) 1 45 60 60(R) dd
34 32 Ru(II) 7 45 93 97(R) ee

aFormic acid / triethylamine 5/2 used as solvent and hydride source
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