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Abstract
The accuracy and scalability of multiple sequence alignment (MSA) of DNAs and proteins have long been and are still
important issues in bioinformatics. To rapidly construct a reasonable MSA, we developed the initial version of the
MAFFT program in 2002. MSA software is now facing greater challenges in both scalability and accuracy than those
of 5 years ago. As increasing amounts of sequence data are being generated by large-scale sequencing projects,
scalability is now critical in many situations. The requirement of accuracy has also entered a new stage since the
discovery of functional noncoding RNAs (ncRNAs); the secondary structure should be considered for constructing a
high-quality alignment of distantly related ncRNAs. To deal with these problems, in 2007, we updated MAFFT to
Version 6 with two new techniques: the PartTree algorithm and the Four-way consistency objective function. The
former improved the scalability of progressive alignment and the latter improved the accuracy of ncRNA alignment.
We review these and other techniques that MAFFTuses and suggest possible future directions of MSA software as a
basis of comparative analyses. MAFFT is available at http://align.bmr.kyushu-u.ac.jp/mafft/software/.
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INTRODUCTION
Multiple sequence alignment (MSA) is an important

step in various types of comparative studies of

biological sequences. MSA is used in phylogenetic

inference, conserved region detection, structure

prediction of noncoding RNAs (ncRNAs) and

proteins and many other situations. For an easy

MSA problem, such as an alignment consisting of a

small number (<�100) of short (<�5000) sequences

with global and high similarity (percent identity of

>�40% for protein cases and >�70% for nucleotide

cases), most of the current programs return a correct

MSA, and no special consideration is needed.

However, if all three of these conditions are not

met, then the construction of an MSA can be a

difficult task from both computational and biological

viewpoints.

There is an established method based on the

Dynamic Programming (DP) algorithm for calculat-

ing a pairwise alignment (an alignment between two

sequences) [1–3] with a time complexity of O(L2),

where L is the sequence length. However, when

more than two sequences must be aligned, the

situation is somewhat complicated. Theoretically,

the DP algorithm can be extended for cases of more

than two sequences, but the time and space

complexities of the naively extended algorithm,

O(LN), are impossibly large, where N is the number

of sequences. Finding the exactly optimum MSA

quickly becomes computationally intractable when

the number of sequences increases [4]. Considerable

efforts have been made to obtain the optimum MSA

of �10 sequences [5–10], which is still substantially

smaller than the alignment size biologists now need.

Therefore, some sort of heuristics are inevitable.

Even if the optimal MSA is successfully obtained,

it is not always the correct solution from a biological

viewpoint [11, 12]. This suggests that we should pay

attention to a biologically relevant objective function,

as well as to algorithmic techniques for obtaining the

optimum solution. This is one of the reasons why

various multiple sequence alignment schemes have
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been extensively studied to date, but there is no

definitive one. Moreover, the accuracy of multiple

alignment is improved by adding homologs or

profiles [13–15]. This is because homologs make

family-specific information available and enrich the

profiles used in the multiple alignment processes [16].

Recent protein MSA studies indeed tended to use

external sequence information [17–19]. Therefore,

for an alignment program, the ability to handle many

sequences is an important factor for yielding accurate

results, as well as for large-scale analyses.

The MAFFT sequence aligner [20] was originally

developed to perform the rapid calculation of an

MSA consisting of a large number of sequences.

A fast group-to-group alignment algorithm based on

fast Fourier Transform (FFT) [20] and an approx-

imate distance calculation method (the 6mer

method) [20–23] facilitate the rapid calculation.

Due to the increasing necessity for MSA of distant

homologs, in 2005, we sought to improve the

accuracy of MAFFT, and released Version 5 [14],

which adopted a new objective function, the

summation of a traditional weighted sum-of-pairs

(WSP) score [24], and a consistency score similar to

COFFEE [25] calculated from all-to-all pairwise

alignments before constructing an MSA.

As a result, the current version of MAFFT has

several options, as listed in Table 1, and covers

various types of MSA problems, ranging from a small

alignment consisting of distantly related sequences to

a large-scale alignment. Recent benchmark studies

under various conditions [26–30] consistently con-

cluded that MAFFT is one of the best choices.

However, MAFFT does not completely cover all

of the situations that biologists encounter. Especially

for distantly related sequences, the use of multiple

independent methods is important. The different

MSAs computed by independent methods can be

subjected to meta-aligners such as M-Coffee [31], to

generate a more accurate MSA than those yielded by

individual tools. The consensus among the different

MSAs also provides information about which sites

were reliably aligned [32, 33]. It should also be noted

that different alignments sometimes result in quite

different trees in phylogenetic analyses [34–36]. Such

contradiction is partially (but not completely)

avoided, by subjecting only reliably aligned sites to

a phylogenetic inference.

In this article, after reviewing the general multiple

alignment algorithms implemented in the MAFFT

sequence aligner, we describe two new techniques

introduced in Version 6: (i) a new tree-building

algorithm, PartTree, for handling even larger

numbers of sequences and (ii) a multiple ncRNA

alignment framework incorporating structural infor-

mation. We also describe some utility options that

were added in Version 6 and provide tips to produce

a reasonable alignment efficiently. For situations

outside the scope of MAFFT, we introduce alter-

native tools developed by other groups.

GENERALALGORITHMS
Terms and basic concepts
Sequence, alignment, homology and gap
A sequence alignment is a set of corresponding

residues among a collection of nucleotide or amino

acid sequences. The sequences can be protein- or

RNA-coding sequences or noncoding nucleotide

sequences, such as introns or spacers. The sequences

involved in an alignment are assumed to be

homologous; that is, derived from a single common

ancestral sequence. Aligned residues are usually

interpreted as sharing their evolutionary origin.

When a sequence has no corresponding residue

because of an insertion or deletion event, the position

is displayed as ‘�’ or another symbol and is called a

‘gap’. Most alignment programs do not attempt to

filter out nonhomologous sequences, leaving the

decision of what sequences to include in the MSA as

an external decision for the user. However, this

problem is sometimes important in actual analyses.

Global homology and local homology
Some MSA methods assume that all of the input

sequences are globally alignable; that is, the entire

regions of the sequences are assumed to be

homologous, but this assumption does not necessa-

rily agree with real analyses. Local alignment

methods avoid the assumption of global homology.

Some MSA methods, such as DIALIGN [37–39] and

T-Coffee, have a facility to incorporate a local align-

ment algorithm to detect short patches of strong

sequence similarity.

Alignment of genomic sequences
Unlike database-search programs [40, 41], most

MSA programs try to include all of the residues in

the input sequences, even when a local alignment

algorithm is employed in a part of the calculation

process. This policy makes the programs impractical

when there are large nonhomologous regions within

the sequences. We sometimes encounter such
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situations when aligning genomic sequences. In such

cases, MAFFT consumes a large amount of time.

Instead, MLAGAN [42] and MAVID [43] are useful.

Order of residues to be aligned
When we are handling rearranged genomic

sequences or mosaic proteins with rearranged multi-

ple domains, the order of alignable residues can differ

among the sequences. In such a case, tools without

the assumption of the conservation of the order of

aligned residues should be used. ABA [44] (for

protein/DNA), ProDA [45] (for protein), TBA [46]

(for genomic DNA) and MAUVE [47] (for genomic

DNA) are available.

Progressive methodçFFT-NS-2
The progressive method [48, 49] is the most

commonly used multiple alignment algorithm.

Clustal W [50, 51], MAFFT, POA [52], Kalign [53]

and many other MSA packages use this method with

various modifications. The procedure of the progres-

sive method implemented in MAFFT is schematically

illustrated in Figure 1A. A guide tree, a tentative tree

only used for constructing an alignment, is created

based on all-to-all pairwise comparisons, and an MSA

is constructed using a group-to-group alignment

algorithm at each node of the guide tree.

To achieve a reasonable balance between speed

and accuracy, MAFFT [20] adopts, by default, a two-

cycle progressive method, called FFT-NS-2, in

which low-quality all pairwise distances are rapidly

calculated, a tentative MSA is constructed, refined

distances are calculated from the MSA, and then the

second progressive alignment is performed, as shown

in Figure 1A. In addition, MAFFT uses two key

techniques, an FFT-based group-to-group alignment

algorithm [20] (Figure 2) and the 6mer method

[20–23] for all pairwise comparisons, to reduce the

CPU time of progressive methods. The time com-

plexity of the progressive method implemented in

MAFFT is basically O(N2L)þO(NL2), where L is the

sequence length and N is the number of sequences.

The first term corresponds to the guide tree calcu-

lation and the second term corresponds to the group-

to-group alignment stage. When the input sequences

are highly similar to each other, it is reduced to

O(N2L)þO(NL)¼O(N2L), because of the FFT-

based alignment method (See [20] for details).

Table 1: Options of MAFFT Version 6.5

Option name Command

For a large-scale alignment (N> �10 000). Progressive methods with the PartTree algorithm
NW-NS-PartTree1 mafft ��parttree ��retree 1 Distance is by the 6mer method
NW-NS-PartTree2 mafft ��parttree ��retree 2 Distance is by the 6mer method.Guide tree is rebuilt
NW-NS-DPPartTree1 mafft ��dpparttree ��retree 1 Distance is estimated based on DP
NW-NS-DPPartTree2 mafft ��dpparttree ��retree 2 Distance is estimated based on DP.Guide tree is re-built
NW-NS-FastaPartTree1 mafft ��fastaparttree ��retree 1 Requires FASTA [40] to estimate distances
NW-NS-FastaPartTree2 mafft ��fastaparttree ��retree 2 Requires FASTA [40].Guide tree is rebuilt

For a medium-scale alignment (�10 000>N>�200). Progressive methods
FFT-NS-1 mafft ��retree 1 Approximately two times faster than the default
FFT-NS-2 mafft Default

For a small-scale alignment (N<�200, L<�10 000). Iterative refinement methods
FFT-NS-i mafft-fftnsi Fastest of the four in this category.Uses WSP score only
G-INS-i mafft-ginsi Uses WSP score and consistency score from global alignments
L-INS-i mafft-linsi Uses WSP score and consistency score from local alignments
E-INS-i mafft-einsi Uses WSP score and consistency score from local alignments

with a generalized affine gap cost

For a small-scale RNA alignment (N<�50, L<�1000). Structural alignment methods
Q-INS-i mafft�qinsi Requires no external structural alignment programs
X-INS-i-scarnapair mafft�xinsi ��scarnapair Requires MXSCARNA (Tabei et al., submitted for publication)
X-INS-i-larapair mafft�xinsi ��larapair Requires LaRA [78]
X-INS-i-foldalignlocalpair mafft�xinsi ��foldalignlocalpair Requires FOLDALIGN [79]. Uses the local alignment option
X-INS-i-foldalignglobalpair mafft�xinsi ��foldalignglobalpair Requires FOLDALIGN [97]. Uses the global alignment option

If not sure which option to use
Automatic mafft ��auto Selects an appropriate option from FFT-NS-2, FFT-NS-i and

L-INS-i, according to the size of input data

N is the number of sequences and L is the sequence length.
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Its space complexity is basically O(N2)þO(L2)þ

O(NL). When the sequence length exceeds the

threshold (set as 10 000 residues at present), FFT-

NS-2 automatically switches the DP algorithm to a

memory saving one [54] and the space complexity

becomes O(N2)þO(NL). On a current desktop

computer, this method can be applied to an MSA

consisting of up to �10 000 sequences. The

maximum length depends on the similarity level:

�10 000 residues for distantly related sequences or

�500 000 residues for closely related sequences with

global homology.

The progressive method has a drawback in that

once a gap is incorrectly introduced at a step, the

gap is never removed in later steps. To overcome

this drawback, there are two types of solutions,

the iterative refinement method [55–61] and the

consistency-based method [25, 62–64]. These two

procedures are quite different: the former tries to

correct mistakes in the initial alignment, whereas the

latter tries to avoid mistakes in advance, but both

work well to improve the alignment accuracy.

Iterative refinement method with
theWSP scoreçFFT-NS-i
In the iterative refinement method, an objective

function that represents the ‘goodness’ of the MSA is

explicitly defined. An initial MSA, calculated by the

progressive or another method, is subjected to an

iterative process and is gradually modified so that

the objective function is maximized, as shown in

Figure 1B. Various combinations of objective

functions and optimization strategies have been

proposed to date [55–61]. Among them, Gotoh’s

iterative refinement method, PRRN [16], is the

most successful one, and it forms the basis of recent

methods, including MAFFT, MUSCLE [23, 65] and

PRIME [66]. The iterative alignment option of

MAFFT, called FFT–NS–i, uses the weighted sum–

of–pairs (WSP) objective function [24]. As shown in

Figure 1B, an MSA is partitioned into two groups,

which are then realigned using an approximate

group-to-group alignment algorithm [20]. The new

MSA replaces the old one if it has a higher score.

This process is repeated until no more improvements
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Figure 1: Calculation procedures of the progressivemethod (A) and the iterative refinementmethod (B).
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are made. To save computation time, the partitions

of the MSA are restricted to those corresponding to

the branches of a tree among the sequences [67]. The

time complexity of this method is O(N2L)þO(NL2)

and the space complexity is O(N2)þO(L2)þO(NL)

or O(N2)þO(NL), depending on the sequence

length, as in the case of the progressive option.

On a current desktop computer, this method can be

applied to an MSA consisting of up to �500

sequences. The maximum length depends on the

similarity level: �10 000 residues for distantly related

sequences or �500 000 residues for closely related

sequences with global homology.

Iterative refinement method with consis-
tency andWSP scoresçG-INS-i
T-Coffee [64], ProbCons [68] and other methods

[69, 70] take an entirely different approach to

overcome the drawback of the progressive method

by using a consistency criterion, in which an MSA

consistent with pairwise alignments is judged to be

relevant. Several types of consistency criteria were

described previously [25, 62, 63], but T-Coffee

achieved a great improvement in accuracy by using

the COFFEE criterion [25] together with the library

extension technique [64] in the progressive method.

In 2005, MAFFT adopted a consistency criterion

into the iterative refinement method [14]. Instead of

the library extension procedure, which plays an

important role in T-Coffee but requires considerable

computing power, we took a iterative strategy

with an objective function of the summation of

the WSP score [24] and a consistency-based score

like COFFEE [25]. This method was implemented

as the G-INS-i option. Its time complexity is

O(N2L2). Its space complexity is at least

O(N2)þO(L2)þO(NL) but greatly depends on the

similarity level. The G-INS-i option assumes that the

input sequences are globally alignable. This option is

suitable when the lengths of the input sequences are

similar to each other, as in Figure 3A. On a current

desktop computer, this method can be applied to an

MSA consisting of up to �200 sequences. The

maximum length is �5000 residues.

NEW FEATURES IN VERSION 6
Variants of G-INS-içL-INS-i and
E-INS-i for large gaps
After the publication of MAFFT Version 5 [20], we

added the L-INS-i and E-INS-i options, which are

variants of G-INS-i, to the MAFFT package. Their

basic procedures are the same as that of G-INS-i,

but different algorithms are used in the pairwise

alignment stage. L-INS-i uses a local pairwise

alignment [3] with the affine gap cost [2], while
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E-INS-i uses a local pairwise alignment with the

generalized affine gap cost [71], in which the

unalignable region is left unaligned at the pairwise

alignment stage. L-INS-i and E-INS-i can be applied

to the cases where alignments those in Figure 3B–C

are expected, respectively. Note that E-INS-i also

includes all of the residues in the alignment during

the rest of its procedure, and the resulting alignment

is always a full-length alignment. Moreover, it

is better to see how MSA programs work and to

try some independent methods with various para-

meters, particularly when a set of distantly related

sequences is aligned [33, 72]. T-Coffee, ProbAlign

and DIALIGN can be alternative choices for such

situations requiring large gaps.

PartTree
Since increasing amounts of sequence data are being

generated from large-scale sequencing projects,

scalability is now critical in many situations. As

noted above, the time complexity of the progressive

method is O(N2L)þO(NL2). The first term corre-

sponds to all-to-all comparisons of input sequences

and guide tree building by the UPGMA method [23,

73]. As this term can be the time-limiting factor

when large numbers (10 000 or more) of sequences

are aligned, it is desirable to omit the two steps.

Without a guide tree, however, the resulting

alignment highly depends on the input order, and

the quality is not acceptable in most cases.

Hence, we developed a scalable tree-building

algorithm, PartTree [74], to generate a guide tree

from a set of unaligned sequences with a time

complexity of O(N log N). PartTree is a divisive

clustering algorithm. In summary, n representative

sequences are randomly selected from the input

sequences and then the other sequences are grouped

with the n representatives, according to the similar-

ity. The calculation of similarity is performed only

nN times at this time. The UPGMA tree among n
representatives is calculated. This step is recursively

repeated for each of the n groups, unless the group

has only one sequence. The n UPGMA trees

returned by child processes are combined into a

single tree. In total, the similarity calculation is

performed N log N times, on average. Thus, this

algorithm is faster than the conventional UPGMA

algorithm, which requires all pairwise similarity

calculations with a time complexity of O(N2).

The PartTree option implemented in MAFFT

Version 6 (Table 1) can successfully align a dataset

consisting of a large number (�60 000) of homo-

logous sequences, at the cost of an accuracy loss of

�2%. Various combinations of distance estimation

methods (FASTA-based, DP-based or 6mer-based),

a parameter n (the number of representatives) and

the number of re-estimations of the guide tree

(as shown in Figure 1A) can be selected, according to

the needs for balance between accuracy and speed.

See the original paper [74] for the benchmark results.

RNA alignment
The importance of RNA alignment is increasing,

since the discovery of functional ncRNAs. MAFFT

Version 6 has two new options, Q-INS-i and

X-INS-i, for RNA alignment. Both methods

consider secondary structure information, as a form

of base-pairing probability, predicted by either the

McCaskill algorithm [75] or the CONTRAfold

algorithm [76]. In Q-INS-i, the base-pairing pro-

bability is incorporated into the resulting

alignment with a new objective function, Four-

way Consistency (Katoh and Toh, submitted). In

X-INS-i, the structural information is also used
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Figure 3: Globally alignable (A), locally alignable (B), and long internal gaps (C).‘-’ represents a gap,‘X’represents an
aligned residue and ‘o’ is an unalignable residue.

page 6 of 13 Katoh and Toh



at the pairwise alignment stage, in addition to

the Four-way Consistency objective function.

At present, three different external structural

alignment programs, MXSCRANA [77], LaRA

[78] and FOLDALIGN [79], are supported as

the source of pairwise structural alignments for

X-INS-i. Although MXSCARNA and LaRA

are multiple RNA alignment programs them-

selves, only their pairwise alignment functions

are used.

A benchmark result (Table 2) indicates that the

performances of structural alignment methods for

multiple RNAs have rapidly improved in 2007, as a

result of intensive studies by many groups [78, 80–88],

and that the combination of X-INS-i and SCARNA

(denoted as X-INS-i-scarnapair in Table 2) is

the most accurate method, according to most bench-

mark criteria. Moreover, the calculation time of

X-INS-i-scarnapair is shorter than those of other

accurate methods, such as RNA Sampler [84],

MASTR [87] and Murlet [83]. The difference

in accuracy between X-INS-i-scarnapair and

MXSCARNA reflects the improvement gained by

the X-INS-i framework, because these two methods

use the same pairwise structural alignment algorithm,

SCARNA [77].

Group-to-group alignment and
seed alignment
MAFFT Version 6 has the mafft-profile
program, which functions like the profile alignment

option of Clustal W. When two alignments are

given, the mafft-profile program converts

each alignment into a profile and returns an

alignment between the two alignments.

% mafft-profile aligned_group1
aligned_group2 > output

This is sometimes useful in actual analyses, but

needs consideration of the phylogenetic relationship

between the two groups. The profile alignment

assumes that the two input alignments are phylo-

genetically separated, as in Figure 4A or B.

When another phylogenetic relationship is

expected, as in Figure 4C, the profile alignment

could introduce misalignments. In fact, we sometimes

encounter such a situation when we want to add

Table 2: Comparison of aligners formultiple RNAs using 52 Rfam alignments as references

Accuracy of predicted structure (MCC)

Method Time (s) SPS SCI Pfold McCaskill-MEA RNAalifold (intrinsic)

FFT-NS-2 1.2 0.832 0.674 0.678 0.663 0.669
Clustal W v2 (Default) 2.6 0.795 0.646 0.640 0.641 0.648
Clustal W v2 (Iteration¼ tree) 22 0.798 0.641 0.649 0.641 0.652
G-INS-i 3.5 0.866 0.719 0.710 0.684 0.681
ProbConsRNA 16 0.874 0.721 0.708 0.689 0.684
------------------------------------------------------------------------------------------------------------------------------------------------------
StrAl (2006) 18 0.809 0.699 0.662 0.662 0.675
LaRA1.31 (June 2007) 5200 0.835 0.741 0.708 0.687 0.683
Murlet (November 2006) 4800 0.875 0.737 0.732 0.702 0.705
MXSCARNA (May 2007) 47 0.856 0.732 0.731 0.708 0.705
Q-INS-i (May 2007) 54 0.877 0.741 0.730 0.701 0.695
RNA Sampler (May 2007) 6900 0.809 0.789 0.733 0.700 0.725 0.699
MASTR (August 2007) 5400 0.824 0.748 0.677 0.685 0.692 0.700
X-INS-i-scarnapair (December 2007) 390 0.880 0.769 0.736 0.708 0.731

Themethods above the dashed line are purely sequence-based alignmentmethods.RNA structural alignmentmethods are listedbelow the dashed
line.The names of MAFFT options are shaded.The benchmarkdataset in the MASTR paper [87] was used.The alignment accuracies were assessed
with two criteria, SPS and SCI [110,111], using the compalign and scif programs distributedwith the BRAliBASE Version 2.1benchmarkdataset [29].
The SPS SCI values were computed for each alignment and then averaged across all the alignments.The alignmentby eachmethodwas subjected to
three external prediction programs, Pfold [112],McCaskill-MEA [90] and RNAalifold [89], and then the differences from the Rfam curated structure
were calculated with Matthews correlation coefficient (MCC) criterion. The accuracy values for secondary structure internally predicted by
RNA Sampler and MASTR are shown in the (intrinsic) column.The MCCvalues were computed for each sequence and then averaged across all the
sequences.The highest accuracy values are underlined for each column.The accuracy values close to the highest (P> 0.01 in theWilcoxon test) are
shown inbold.McCaskill-MEAwasrunwith the default � value of 0.91.RNASampler was runwith the-i 15 -S 1;; arguments. SeeKatoh andToh
(submitted for publication) for benchmark results using larger datasets. See the MASTR paper [87] for the results of other methods, including
FoldalignM, LocARNA and RNAcast, that are not listed here.
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a newly determined sequence into an established

alignment, which was already adjusted by eye

or taken from an annotated database. For such a

case, MAFFT Version 6 provides another type of

group-to-group alignment option based on the

consistency criterion,

% mafft-linsi ��seed aligned_
sequences new_sequence > output

which discards all of the gaps and then makes a new

alignment consisting of all of the members of

aligned_sequences and new_sequence,

in which the alignment within aligned_
sequences is exactly reconstructed. Thus, new_
sequence is first aligned with the nearest sequence

(marked with * ) in aligned_sequences and

then is aligned with the other members. This can be

applied to a situation like that in Figure 4C.

The seed alignment option can be used in a more

complex situation like that in Figure 4D, in which

we already have a skeleton alignment, based on

structural information or manual annotation, and we

have to add multiple unaligned homologs into the

alignment. In such a case,

% mafft-linsi ��seed aligned_
sequences unaligned_sequences >
output

makes an entire alignment while preserving the

skeleton alignment.

AVAILABILITY
The source code of MAFFT Version 6 is available

at http://align.bmr.kyushu-u.ac.jp/mafft/software/.

The code for McCaskill routine was taken from the

Vienna RNA package Version 1.5 [89] and the

McCaskill-MEA package [90]. The binaries for

Macintosh, Windows and Linux are also available

at the same site. We provide alignment and

phylogenetic inference services (Figure 5) at http://

align.bmr.kyushu-u.ac.jp/mafft/online/server/. For

the phylogenetic inference, users can chose either

the NJ [91] or UPGMA [73] method. For the NJ

method, several methods for distance estimation can

be selected: the Poisson correction, the maximum-

likelihood (ML) estimation assuming the JTT [22] or

WAG model [92] for protein alignment; and the

Jukes-Cantor correction [93] for nucleotide align-

ment. We modified the MOLPHY package [94] to

consider the variable substitution rate across sites

with the discrete � model [95] and use it in the ML

distance estimation from a protein alignment.

Bootstrap analysis is also supported. Alignments and

phylogenetic trees are visualized with the Jalview

[96] and ATV [97] viewers, respectively.

 Aligned group1

 Aligned group2

 Aligned group1

 Aligned group1

 Aligned group1

 Aligned group1

 Aligned group1

 Aligned group1

 Aligned group1

 Aligned group2

 Aligned group2

 New sequence 

 Aligned group

 Aligned group

 Aligned group

 Aligned group

 Aligned group

 Aligned group

 Aligned group

Aligned group

 Aligned group

 Aligned group

 Aligned group

 Aligned group

 New sequence 

 Aligned group

 Aligned group

 Aligned group

 Aligned group

 Unaligned sequence 

 Skeleton alignment

 Skeleton alignment

 Skeleton alignment

 Unaligned sequence 

 Unaligned sequence 

 Unaligned sequence 

 Unaligned sequence

 Unaligned sequence 

 Unaligned sequence 

 Unaligned sequence 

 Unaligned sequence

B

A

D

C

*

Figure 4: Possible relationships between a group of aligned sequences and new sequence(s). The profile alignment
method is applicable to casesA andB, whereas the application of themethod to casesC andD should be avoided.
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FUTUREDIRECTIONS
Consideration of RNA structure
As of December 2007, X-INS-i-scarnapair is one of

the most accurate methods for multiple structural

RNA alignment. With the current implementation

with a time complexity of O(N2L3), X-INS-

i-scarnapair is already faster than other accurate

methods, such as RNA Sampler [84], MASTR [87]

and Murlet [83], but the time complexity of

X-INS-i-scarnapair can be further reduced to

O(NL3)þO(N2L2) if the SCARNA source becomes

open [see Katoh and Toh, submitted for publication

for details].

Many research groups are now working on the

RNA alignment issue [77–88], and the accuracy and

speed of ncRNA aligners have rapidly improved in

the last several months, as shown in Table 2. Many of

them are based on the Sankoff algorithm [98], which

simultaneously performs alignment and secondary

structure prediction with a time complexity of

O(L3N). For pairwise structural alignment (N¼ 2),

several successful methods are becoming available

[77, 79], which reduced the time complexity from

O(L6) to O(L3) or so, by introducing various

approximations. However, it does not seem fruitful

to directly extend the Sankoff algorithm to multiple

alignment, for the reason explained in the

Introduction section, as well as the problem of

time complexity.

This is one of the motivations behind the

development of the X-INS-i framework for multiple

structural RNA alignment based on the Four-way

Consistency (Katoh and Toh, submitted for pub-

lication). We are ready to support any pairwise

structural alignment algorithm, regardless of whether

it is Sankoff-based or not, to be extended to the

multiple alignment problem using our framework,

which was designed to accept various types of

pairwise structural alignments and combine them

into a single multiple structural alignment.

Consideration of protein structure
The consideration of structural information is also

important for protein alignment, and thus many

efforts have been made. SPEM [17], MUMMALS

[70], PROMALS [18] and other methods incorpo-

rate predicted structural information into an align-

ment, like the RNA aligners noted above. In

contrast, 3DCoffee [99], Expresso [100] and other

methods incorporate experimentally determined

protein structure information into an alignment by

using external structural alignment algorithms, such

Figure 5: MAFFT web server. (A) Interface for sequence input, (B) visualization of an MSA with Jalview [96],
(C) interface for phylogenetic inference and (D) visualization of a phylogenetic treewith ATV [97].
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as SAP [101], and structure-sequence alignment

algorithms, such as FUGUE [102]. Both of these

approaches achieved considerable improvement in

the accuracy [33]. The latter approach seems

promising, because many protein structures are

being determined along with the progress of

structural genomics. We are planning to explore a

combination of MAFFT with the ASH [103–105]

structural alignment algorithm.

Scalability
The FFT-based alignment algorithm, the PartTree

algorithm and other techniques successfully

improved the scalability of MSA. However, these

are only applicable to a progressive method, FFT-

NS-2, but not to the most accurate methods,

G-INS-i, L-INS-i and E-INS-i. The maximum

size of the sequence data for these options is

currently �200 sequences��5000 sites or so, on a

typical desktop computer. We are planning to

parallelize the pairwise alignment part of these

three options. The maximum data size can be

extended by parallelization, although the order of

time complexity does not change.

Determining an appropriate set of
sequences and positions to be included
within an MSA
For phylogenetic analyses, we sometimes encounter a

serious problem, in terms of which sequences should

be included in an MSA and a phylogenetic tree, and

which sequences should be excluded. As a large

number of homologs are available from databases,

such a problem becomes quite bothersome. There are

several types of unusual sequences that degrade the

accuracies of alignment and phylogenetic inference:

(i) fragment sequences, (ii) amino acid sequences

incorrectly translated from genomic data and

(iii) nonhomologous sequences, etc.

Gouveia-Oliveira et al. [106] recently described a

tool, MaxAlign, that deletes unusual sequences from a

given MSA to maximize the size of ‘alignment area’,

the number of residues in gap-free columns.

MaxAlign seems to be an interesting approach and it

may be more useful if an MSA method itself auto-

matically determines the sequences to be included

within the alignment. One possible way is to extract a

commonly aligned region by all-to-all pairwise local

alignments. However, such a method may miss a

considerable part of alignable residues, because

pairwise alignment is usually less sensitive than

multiple alignment. A iterative application of multiple

alignment and MaxAlign may be worth trying.

There can be different situations where unusual

sequences should not be excluded. For example, an

MSA itself is useful to identify misidentified genes

and other unusual sequences. Therefore, an align-

ment algorithm that is robust to unusual data is also

an important issue.

Incorporation and extraction of
biological knowledge in an MSA
In order to construct a biologically relevant MSA,

we have to consider the structural, functional and

evolutionary information, as well as the optimality

with respect to a given scoring system. Manual

inspection based on biological knowledge will thus

remain important [35], although it is becoming

difficult with the increasing number of available

sequences. In such a situation, the use of databases of

annotated alignments [107, 108] will be a fruitful and

practical way to construct an accurate MSA, as well

as to extract solid information from an MSA [109].

Hence, more flexible frameworks and tools to build

an MSA combining various types of alignment-

related data, including structural alignments and

manually annotated information, will become

important, in addition to more relevant objective

functions and faster algorithms.

Key Points
� MAFFT Version 6 has two major new features, the PartTree

algorithm for handling a large number (>�10 000) of sequences
and the Four-way Consistency objective function for multiple
structural alignment of ncRNAs.

� PartTree is a divisive recursive clustering algorithm with a time
complexity of O(N log N). It is more scalable than the conven-
tional UPGMA algorithm with a time complexity of O(N2). The
PartTree option can create a large alignment composed of
�60 000 sequences, at the cost of an accuracy loss of�2%.

� The X-INS-i-scarnapair, which is a combination of an external
pairwise structural RNA alignmentmethod, SCARNA, and the
Four-way Consistency objective function, is one of the most
accurate methods for multiple RNA structural alignment. It
requires less CPU time than other accurate structural alignment
methods, such as RNA Sampler,MASTR and Murlet.

� Two different types of group-to-group alignment methods, the
profile alignment option and the seed option, were implemen-
ted, in order to deal with the various possible phylogenetic
relationships between two groups.

� MAFFT Version 6 has L-INS-i and E-INS-i options, which are
variants of G-INS-i, the iterative refinement method withWSP
and consistency scores. L-INS-i allows large terminal gaps, while
E-INS-i is applicable to a dataset with internal unalignable
regions.
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