PG Lemarié-Rieusset

Recent developments in the Navier-Stokes problem

A CRC Press Company Boca Raton London New York Washington, D.C.

Introduction

Chapter 1: What is this book about?	3
Uniform weak solutions for the Navier–Stokes equations	5
Mild solutions	6
Energy inequalities 1	0

Part 1: Some results of real harmonic analysis 13

Chapter 2: Real interpolation, Lorentz spaces and Sobolev embeddings A primer to real interpolation theory Lorentz spaces Sobolev inequalities	15 18
Chapter 3: Besov spaces and Littlewood–Paley decomposition The Littlewood-Paley decomposition of tempered distributions Besov spaces as real interpolation spaces of potential spaces Homogeneous Besov spaces	$\begin{array}{c} 23 \\ 25 \end{array}$
Chapter 4: Shift-invariant Banach spaces of distributions and series and series and shift-invariant Banach spaces of distributions	$\frac{31}{34}$
Chapter 5: Vector-valued integralsThe case of Lebesgue spacesSpaces $L^p(E)$ Heat kernel and Besov spaces	39 41
Chapter 6: Complex interpolation, Hardy space and Calderón–Zygmund operators The Marcinkiewicz interpolation theorem and the Hardy–Littlewood maximal function The complex method in interpolation theory Atomic Hardy space and Calderón–Zygmund operators	47 50
Chapter 7: Vector-valued singular integrals Calderón–Zygmund operators Littlewood–Paley decomposition in L^p Maximal $L^p(L^q)$ regularity for the heat kernel	$\begin{array}{c} 57\\ 62 \end{array}$

1

Chapter 8: A primer to wavelets Multiresolution analysis Daubechies wavelets. Multivariate wavelets	68 73
Chapter 9: Wavelets and functional spaces	79
Lebesgue spaces	
Besov spaces	
Singular integrals	
Chapter 10: The space BMO	91
Carleson measures and the duality between \mathcal{H}^1 and BMO	
The $T(1)$ theorem	95
The local Hardy space h^1 and the local space bmo	100

Part 2: A general framework for shift-invariant estimates for the Navier–Stokes equations

Chapter 11: Weak solutions for the Navier-Stokes equations 1	105
The Leray projection operator and the Oseen kernel	105
Elimination of the pressure 1	107
Differential formulation and the integral formulation for the	
Navier–Stokes equations	112
Chapter 12: Divergence-free vector wavelets	115
A short survey in divergence-free vector wavelets 1	115
Bi-orthogonal bases 1	116
The div-curl theorem	120
Chapter 13: The mollified Navier–Stokes equations	123
The mollified equations	123
The limiting process	128
Mild solutions 1	1 3 0

103

Part 3: Classical existence results for the Navier–Stokes equations 133

Chapter 14: The Leray solutions for the Navier–Stokes equations	135
The energy inequality	135
Energy equality	139
Uniqueness theorems	142

Chapter 15: The Kato theory of mild solutions for the Navier–Stokes	
equations	
Picard's contraction principle	145
Kato's mild solutions in H^s , $s \ge d/2 - 1$	
Kato's mild solutions in $L^p, p \ge d$	191
Part 4: New approaches to mild solutions1	157
Chapter 16: The mild solutions of Koch and Tataru	
The space BMO^{-1} Local and global existence of solutions	
Fourier transform, Navier–Stokes and $BMO^{(-1)}$	167
Chapter 17: Generalization of the L^p theory: Navier–Stokes and	
local measures	171
Shift-invariant spaces of local measures	171
Kato's theorem for local measures: the direct approach	
Kato's theorem for local measures: the role of $B^{-1,\infty}_{\infty}$	175
Chapter 18: Further results for local measures	179
The role of the Morrey–Campanato space $M^{1,d}$ and of $bmo^{(-1)}$	179
A persistency theorem	181
Some alternate proofs for the existence of global solutions	183
Chapter 19: Regular initial values	189
Cannone's adapted spaces	
Sobolev spaces and Besov spaces of positive order	
Persistency results	194
Chapter 20: Besov spaces of negative order	197
$L^p(L^q)$ solutions	
Potential spaces and Besov spaces	
Persistency results	
Chapter 21: Pointwise multipliers of negative order	205
Multipliers and Morrey-Campanato spaces	
Solutions in X_r	
Perturbated Navier–Stokes equations	
Chapter 22: Further adapted spaces for the Navier-Stokes equations	221
The analysis of Meyer and Muschietti	221
The case of Besov spaces of null regularity	
The analysis of Auscher and Tchamitchian	226
Chapter 23: Cannone's approach of self-similarity	233
Besov spaces	233
The Lorentz space $L^{d,\infty}$	239
Asymptotic self-similarity	241

vii

Part 5: Decay and regularity results for weak and mild solutions

Part 6: Local energy inequalities for the Navier–Stokes equations on \mathbb{R}^3	315
Chapter 29: Stability and Lyapunov functionals Stability in Lebesgue norms A new Bernstein inequality Stability and Besov norms	303 308
Chapter 28: Further results on uniqueness of mild solutions Nonboundedness of the bilinear operator B on $\mathcal{C}([0,T], (L^d)^d)$ Uniqueness in $L^{\infty}(L^d)$ $(d \geq 4)$ A uniqueness result in $\dot{B}_{\infty}^{-1,\infty}$	289 291
Chapter 27: Uniqueness of L^d solutionsThe uniqueness problem.Uniqueness in L^d The case of Morrey–Campanato spaces	$\begin{array}{c} 277\\ 279 \end{array}$
Chapter 26: Time decay for the solutions to the Navier-StokesequationsWiegner's fundamental lemma and Schonbek's Fourier splittingdeviceDecay rates for the L^2 normOptimal decay rate for the L^2 norm	268
Chapter 25: Space localization and Navier–Stokes equations The molecules of Furioli and Terraneo Spatial decay of velocities Vorticities are well localized	$\begin{array}{c} 255\\ 260 \end{array}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 247\\ 249 \end{array}$

Navier–Stokes equations on \mathbb{R}^3

Chapter 30: The Caffarelli, Kohn, and Nirenberg regularity criterion	317
Suitable solutions	317
A fundamental inequality	322
The regularity criterion	324
Chapter 31: On the dimension of the set of singular points	331
Singular times	331
Hausdorff dimension of the set of singularities for a suitable solution .	332
The second regularity criterion of Caffarelli, Kohn, and Nirenberg	•••••

Chapter 32: Local existence (in time) of suitable local square-integrable	
weak solutions	341
Size estimates for \vec{u}_{ϵ}	342
Local existence of solutions	346
Decay estimates for suitable solutions	348
Chapter 33: Global existence of suitable local square-integrable weak	
solutions	353
Regularity of uniformly locally L^2 suitable solutions	353
A generalized Von Wahl uniqueness theorem	354
Global existence of uniformly locally L^2 suitable solutions	360
Chapter 34: Leray's conjecture on self-similar singularities	363
Hopf's strong maximum principle	363
The C_0 self-similar Leray solutions are equal to 0	364
The case of local control	367

Conclusion

Chapter 35: Singular initial values	375
Allowed initial values	375
Maximal regularity and critical spaces.	376
Mixed initial values	377

References

Bibliography .	 383
Author index	 391
Subject index	 393

381

373