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RECENT DEVELOPMENTS IN THE
QUANTUM MECHANICAL THEORY OF CHEMICAL REACTION RATES

William H. Miller

Department of Chemistry, University of California, and
Chemical Sciences Division, Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

As one tries to construct an increasingly rigorous quantum mechanical generalization
of classical transition state theory, one that is free of all “extraneous”™ approximations (e.g..
separability of a one dimensional reaction coordinate), one is ultimuteiy driven to the
dynamically exact quantum treatment. Though it seems pointless to call this a transition
state “theory” (it is in effect a quantum mechanical simulation), it is nevertheless possible
- using transition state-like ideas to cast a fully rigorous quantum approach in a form that
allows one to carry out such calculations without having to solve the complete state-to-state
quantum reactlive scattering problem. Rigorous calculations for the reactions H+H, —
H,+H, H+O, - OH+O, and H+H,O — H,+OH illustrate this approach. At the
semiclassical level. there does exist a version of transition state theory — based on the
locally ‘good’ action variables about the saddle point on the potential energy surtace —
which includes non-separable coupling between all degrees of freedom (including the

reaction coordinate) in a unified manner.



Introduction

The transition state theory (TST)! of chemical reactions is of enormous utility in
understanding and estimating the rates of chemical reactions. The fundamental dynamical
assumption? that leads to TST, however — i.c., that the dynamics is “direct”, that no
trajectories cross a dividing surface more than once (vide infra) — is based inherently on
classical mechanics, and it is not possible to quantize TST without introducing additional
approximations (e.g., separability of a one dimensional reaction coordinate). As one tries
to rid a quantum version of TST of all these “additional approximations” — e.g., by
introducing a rigorous multidimensional tunneling correction — one is driven ultimately3 to
an exact quantum treatment of the reaction dynamics which is no longer a transition state
“theory” (i.e., approximation).

The purpose of this paper is to review the notions alluded to above and to survey
some very recent developments# in the rigorous quantum treatment of reactive rates. In this
recent work one is able to determine the rate exactly without the necessity of a complete
state-to-state rgactive scattering calculation.; one does not avoid having to solve the
Schr(jdinger'equation, but needs only to solve it locally, in the transition state region where
the reaction dynamics is determined. The classical description of reaction rates is reviewed

first, and the transition state approximation, and then the rigorous quantum treatment.

Classical Rate Theory
Figure 1 shows a schematic depiction of the potential energy surtace for a generic
bimolecular reaction. Within the realm of classical mechanics the thermal, or equilibrium

(i.e., reactants in a Boltzmann distribution) rate constant is given by!.3-3

k(T) = QT)! 2mayT | dp| dq ePH(P-9) F(p.q) x.(p.q) - (1)

where [ = (KT)-!, Q, is the reactant partition function (per unit volume). H is the classical



Hamiltonian for the complete molecular system, F iS a flux factor, and y_ is the
characteristic function for reaction. The flux factor is defined in terms of a dividing
surface, defined by the equation

fq) =0. | @)

which separates reactants (for which f(q)<0) and products (for which £(q)>0); the flux is

then
—_d e A
- F(p.q) = hlttq)l. (3)
where h is the usual Heaviside function
1,&>0 ,
m®=’ 0| 4)
v \ 0,€<0 f '

Assuming for simplicity that the coordinates and momenta (q,p) are Cartesian — so that

the Harhiltonian is of the form

H(p.q) = &= V(p.q) 5
p.q) = o p-q) » 4
Eq. (3) for the flux becomes. '
. . of
F(p.q) = 3[(q)] — * p/m ©)
oq

where we here used the fact that h’ (§) = (&), the Dirac delta function.
X, can be defined in several ways.3 but the one that most naturally generalizes to the

quantum mechanical case is
%:(p.q) = 2im h{f(q(V)] 7

{0

where q(t) = q(t;p.q) is the classical trajectory determined by the initial conditions (p.q) at
time t = 0; thus, ¥, (p.q) = 1 if the trajectory with initial conditions (p.q) is on the product
~ side of the dividing surface as t — oo, and is 0 otherwise. All of the dynamics of the
reaction is thus contained in the characterization function y -

It is useful for some purposes to define the microcanonical rate constant k(E),

k(E) = [2rhp (B)]! N(E) , (8)



where p . is the density of reactant states (per unit energy), and N(E) is the cumulative

reaction probability,

N(E) = 2n (2nh) T f dp f dq S[E-H(p.q)] F(p.q) %:(p-q) - )

where F and x_are as above. Since
” | (10)
dE e-BE §[E-H(p.q)] = e-PHP-@)
it is easy to see that the thermal rate k(T), Eq. (1), can be expressed in terms of N(E), Eqg.
(9), as

- (11)
k(T) = [27AQ(D)]™ j dE e-BE N(E) .

For most of this paper, theretore. N(E) will be focused on as the primary object of intcxést.
“and the canonical (i.e., thermal) and microcanonical rates are given in terms of it by Egs.
(11) and (8), respectively.

The cal¢ulation impiied by Eg. (9) for N(E) (or Eq. (1) for k(T)) is therefore to
integrate over phase space (p,q) — in practice usually with Monte Carlo sampling methods
— where each phase point (p,q) serves as the initial conditions for a trajectory that must be
run (i.e., numerically integrated) to determine whether _ is 1 or 0, i.e., whether or not this
phase point contributes to the integral. Because the tlux, Eq. (6), contains the factor
d[t(q)], all trajectories begin on the dividing smface f(q)=0.

Finally, we note that the rate is independent of the choice of the dividing surface (by
virtue of Liouville’s theorem) but that a sensible choice for it greatly simplifies the
calculation.b Referring to Fig. 1, itis intuitively clear that using dividing surface S, will |
require trajectories to be tun for a much longer time to determine whether they will wind up

on the product side as t — oo than if dividing surface S, is used.



Transition State Theory

The fundamental assumption of transition siate theory is that of direct dynam’ics. Le.,
that all trajectories which cross the dividing surface do so only once.!-3> If this is true
then a trajectory will be on the product side of the dividing surtace at t—ee only if it begins
at t = 0 (on the dividing surface) headed in the product direction, i.c., with positive

momentum normal to the dividing surtace,

"
A1sT(P.q) = h{?——(ﬂl . p/m} ) (12)
a(q)

which may also be thought of as a short time approximaiion to the dynamics. The resulting

phase space integral for N(E) which then follows from Eq. (9) is particularly simple if one -

choosés a planar dividing surtace; if qg is the coordinate normal to the dividing plane, then
| | fq) = ¢ (13)

— i.e., g = 0 defines the dividing surtace — and Eq. (9) then reads

. 2
Nrst(E) = 2h Qn)* f dq f dp S[E-V(@)3— 8pEE hipr) . (14)

The two delta functions in the integrand allow the integrals over g and pg. to be carried out,
giving

& (=4

Nrs1(E) = (2rn)FD j dp' f dq’ h[E-Hi(p'.q)] . (15)

where (p’.q") = (p,.q,)- k = 1. .... F-1 are the coordinates and momenta for motion on
the dividing surface detined by q¢ = 0. and

E-1 2
H¥(p'q) = 3, 25+ V(q\qr=0) . (16)
' k=t <M _

is the Hamiltonian in this reduced space. In words, Eq. (15) says that the cumulative
reaction probability is the volume ot phase space of the “‘activated complex™ (the (F-1)

dimensional system for motion on the dividing surtace) with energy less than or equal to E.



With Eq. (11). the TST expression for the thermal rate then takes its standard form,

krsx(T) = KL %r'—(%)— , (17

where Qf is the partition function of the activated complex,

Q¥(T) = 2rayF D | dp' | dq’ e-BHF P40 (18)

An important feature of classical transition state theory is that it 1 an upper bound 10
the correct result for any choice of the dividing surface. Le., since all reactive trajectories
must cross the dividing surface, but all trajectories that cross it are not necessarily reactive
(because they might re-cross it at a later time and be non-reactive), any error in the TST
approximation, Eq. (12), is to count some non-reactive trajectories as reactive. Thus,
while the exact rate expression does not depend on the choice of the dividing surtace. the
TST rate does, and by virtue of this bounding property the best choice of the dividing
surface is the one which makes k¢ @ minimum. This is the variational aspect of TST:
any parameters which specify the shape or location ot the dividing surtace are best chosen
to minimize the TST rate.”

Transition state theory is otten a very good approximation for the classical rate ofﬁ
chemical reaction. Pechukas ez al..8 in fact, have shown that TST is exacr at sutficiently
low energy. Figs. 2 and 3 show a numerical illustration? of this for the standard test
reaction H+H, —» H2+H. tor the collinear version of the reacﬁon (Fig. 2) and also in three-
dimensional space (Fig. 3). In both cases TST is essentially exact up to ~0.3 eV above the
potential energy bartier, but for higher energies it begins to be inéreasingly larger than the
correct result. Le., as the energy increases there is an increasingly larger fraction of
trajectories which “rebound”lback across the dividing surface and invalidate the transition
state assumption that no trajectories re-cross it. One also sees that this fraction of TST-

violating trajectories is much smaller in three-dimension space than in one-dimension.



Quantum Transition State Theory

The dynamics of molecular motion must be treated quantum mechanically it one is to
have a quantitative descriptidn of chemical reactions. Since transition state theory is such a |
good approximation in classical inechanics — particularly at the lower energies that are
most important for determining the thermally averaged rate k(T) — one would like to
quantize it. Unfonunately there does not seem to be a way to quantize the basic transition
state idea without also introducing other approximations. The heuristic argument goes as
follows.

The most naive ap.proach to quantizing the TST expression tor N(E). Eq. (15), is as
follows: the phase space average becomes a quantum mechanical trace,

Nowrst(E) = ufh(E-H)] ,

where H# is the Hamiltonian'operator in the (F-1) dimensional space on the dividing
surface, and {E *} are the eigenvalues (ie., energy levels) for this bounded motion. The
thermal rate constant which results is easily shown trom Eq. (11) to be

. () _kT Q;(T) 20)

but where here Q¥(T) is the quanmm partition function
QX (T) = . P, 1)
n
which corresponds to the classical one in Eq. (18).
This zeroth order approach, however, neglects any quantum mechanical aspect of the
reaction coordinate motion (the Fth degree of freedom). If one assumes that the reaction

coordinate is separable for the (F-1) degrees of freedom on the dividing surface, then the



Heaviside function in Eq. (19) is replaced by a one dimensional tunneling probability,
Nowrrs(E) = 2., PH(E-E}) . )
n
where P(Ep) is the tunneling probability for a one dimensional barrier along the reaction
coordinate. as a function of the energy Ep = E-Ef1 in this one degree of freedom. It is easy

to show from Eq. (11) that the thermal rate constant corresponding to Eq. (22) is

(h _ kT QHD) ok
l\«ITS'I‘(T) =x(T) h ——"‘QI ol (227)
where K. the tunneling correction factor,
- (21
k(T) = B dEg e-BEF Pe(EE) .

results as a multiplicaiive correction.

The reaction coordinate. however, is clearly nor separable trom the (F-1) degrees of
treedom on the dividing surface, and at low temperature and for the dynamics of light
particles (e.g., hydrogen atoms) the errors resulting from this assumption can be sizeable.
A multidimensional wnneling correction,!0 one that takes account of coupling between the
reaction coordinate and the other degrees of treedom, is thus needed in such cases, and
there are a variety of such approximate treatments! -7 (based primarily on what was learned
from semiclassical tunneling calculations!?). Though many of these are very useful, the
only correct multidimensional tunneling correction is to solve the full dimensional
Schrédinger equation, but this is then no longer a “theory” but rather simply the exact
qﬁantum result. Unlike classical mechanics, therefore, there is no “‘rigorous” quantum
version of TST — i.e.. one that does not make some approximations between couplings of
the various degrees of freedom — other than the exact quantum dynamical result.

Betore proceeding to consider such rigorous quantum treatments. though, it is usetul

to note that there does exist a “‘rigorous” semiclassical versions ot TST.



Semiclassical Transition State Theory

The starting point1’3 for semiclassical TST is to note that the classical Hamiltonian can
in general be expressed in terms of a set of locally conserved (“‘good™) action variables
associated with the transition state (i.e., saddle point) region of the potential energy
surtace. The first stép in SCTST is thus to determine the classical Hamiltonian H (1) =
H (I;.....Ig) in terms of the F actions {I, }. Within a second order perturbative treatment!4

of the anharmonicity, for example., H ; has the form

F F
Ha(D = Vo + Y, oy + Y, Xl . @3
k=1 ksk'=1

where {®, } are the nonﬁal mode frequencies and {x, . } anharmonic constants that are
determined by the cubic and cﬁartic force constants of the potential energy surface. If one
were éonsiden’ng vibrational motion about a minimum on a potential surface, then these
actions would be quantized in the usual semiclassical (Bohr-Sommerteld) tashion,

T = (e (24)
n,=01... and Eq. (23) would then yield the vibrational energy levels. For a saddle
point H  has the same form as Eq. (23) (within the perturbative approximation), the only
difference being that g, the normal mode frequency associated with the reaction
coordinate, is pure imaginary. (Also. of course, one is not thinking of vibrational energy
levels in connection with a saddle point. but rather the reaction rate through it.) The (F-1)
actions associated with the bounded degrees of treedom are quantized in the usual
semiclassical fashion, i.e., via Eq. (24), and the action I — the one associated with the
reaction coordinate — is pure imaginary and defines the generalized barrier penetration
integral 6,

0= -inl/h BNELY
8 is determined as a function of total energy E and the (F-1) quantum numbers of the

activated complex by energy conservation,
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Hallg = (ﬂk-*—,l)-)h, I =in8/w] =E ; (26)
Le., for n = {n,}, k=1.....F-1, fixed. one must invert the E-0 relation defined by Eq. (26)

to obtain 6(E,n). Since the dynamics is integrable in terms of the “‘good™ actions, the
transmission probability for state n and energy E has the same form as in éne dimension,
i.e., (1+e29)-1 so the CRP is given by!5

| Nscrst(E) = Y, [ 1+e20Em] @27)

n

The SCTST expression tor the thermal rate — which results from Eq. (11) with Eqg.
(27) tor the CRP — can be put in an even more useful forrr‘l,‘6 one that avoids having to
invert the E-O relation in Eq'. (26). Thus Egs. (11) and (27) give the thermal rate as

kscrs(T) = 2raQ)™" . f dE eBE {1+e20Em) ©
" JEp

where Ej) is the reaction threshold and where we have interchanged the order of summation
and integration. Since one must integrate over all E in Eq. (28), it is equivalent to change

the integration variables from E to 0 and integrate over all 0,

dE eBE(1+¢20mB) ' = | 4@ oE(n.8) e-BEM.0) | 426) "
By a0

oo

[ . (29)
= lf d@ ¢-BE(n.8) %sc—:ch2 ®).
where the last line results from an integration by parts. (The surtace terms vanish because
E(8—) = E,, the reaction threshold, and E(B——) = .) Use of Eq. (29) in Eq. (28)
then gives
SR o GO
kscrst(T) = 2nAQP)" | d6 Jsech?(B) 3, ePEn?o), ~
-00 n;

where we have again changed the order of summation and integration. Noting that
(2rAR)-1 = kT/h, Eq. (30) takes the form of the traditional TST,

kscsts(T) = kﬁt —%} . (3la)
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* by detining the reactive partition function of the activated complex (including the tunneling
correction factor which is not separable trom it) as an average of the fixed 6 partition

function Q+(T.8) with the weight function ZLsechz((-)),

QH(T) = [ d0Lsech?(©)QH(T.0) . (31b)
where |
QHT.0) = 2 e-BE(O) A1)

Applications!® have demonstrated the usefulness ot this formulation of the k(T) calculation.
- These SCTST expressions, in both the microcanonical [Eq. (27)] and canonicﬁ] [Eq.
(31)] forms, include coupling between all the degrees of fx‘eedom in a uniform manner.
E.g., even at the perturbative level, Eq. (23), there is anharmonic coupling between modes
of the activated complex (X, - k and k" <F-1) and between the reaction coordinate and
modes of the activated complex (x, ;. kSF-1). This is not a dynamically exact theory,
however, because these actions variables are in general only locally “good”. For energies
100 far above or below the barrier V, they may fail to exist. This semiclassical theory is

thus still a transition state “theory” (i.e.. dynamical approximation).

Rigorous Quantum Rate Theory
The completely rigorous equilibrium rate constant can also be written in the torm of
Eq. (11), where for a bimolecular reaction the rigorous expression Lor the cumulative

reaction probability is!?

NE) =D, D ISu,ulE), (32)

np nr

where n (n p) denote all the quantum numbers of the reactants (products), and the square
moduli of the S-matrix elements are the reaction probabilities for the n. — n > (state-to-state)
transition. Itis Eq. (32), in fact, which suggests the erm “cumulative reaction probability”

for N(E): i.e., the roral reaction probability from initial reactant state n_is given by



PodB) =2 1Supn BN’ (33a)

_ ) _
and if one idealized matters by assuming that some initial states are completely reactive and -
othefs completely noh-reactive, e, P, =0or 1 then clearly N(E),

N(E) = nz Py E)- (33b)
. r

would be the number of reactive states. This interpretation as the “number of reactive
states” also comes from transition state theory, cf. Eq. (19), where there N is the number
of states of the activated complex that lie below total energy E. i.e., which have positive
kinetic energy in the reaction coordinate at the transition state. In reality, of course.
reaction probabilities can take on any values between O and 1, but the interpretation ot N(E)
as thé effectiye number of quantum states which react is still qualitatively usetul.

Though Eq. (32) provides a rigorous quantum definition of the cumulative reaction
probability, is not helpful in a practical sense because a complete state-to-state reactive
scattering calculation is required to obtain the S-matrix. We seek a more direct (and thus
presumably more efficient) route to N(E), but without approximation, to which
approximations can be incorporated later as needed in specific applications.

A tormally exact (and “direct’) expression for N(E) can be obtained by quantizing the
dynamically exact classical expression, Eq. (9) [with Eq. (7)]; the classical phase space

average becomes a quantum trace. and classical functions become operators:

N(E) = 2nh u{8(E-H) F%,] . (34)
where '
X:= £im hE@G()] .
—> oo
and we note that quantum mechanical time evolution is expressed as
Y= Lim eiHuA h[f(q)] e-HV" (35) ‘

t—>o00
(% is a projection operator that projects onto all state that are on the product side of the

dividing surtace in the infinite future.) The long time limit can also be written as the

integral of the time derivative,



Lim h[f(g()] =f dtd% h{f(q(1)]

t—> 00 0
f NP (36)
0
where F is the flux operator,
F= - (Hh(t@)] - (37)

Interchanging the order of the trace and the time integral. and noting that the (real part of

the) integrand is even, then gives

NGE) = @) & f dt tr [S(E-H)Feifun Fe-iHun)

But the operator ¢-HY7 can be replaced by the scalar ¢-EV7 since this operator sits next o
p p y p
O(E-H) (with a cyclic permutation inside the trace), and with the identity

f dt ¢itH-Ewn = 2mad(E-H) |

one obtains the following result!s

NE) = L @nm? u(FSE-H) FSE-H) . (38)

L
2
Equation (38) is quite a beguiling expression. E.g.. in the classical expression tor
N(E), Eq. (9). there is a statistical factor &(E-H). the flux factor F, and a dvnamical
factor %. A similar structure exist in the quantum expression, Eq. (34), where the
dynamical factor is the projection operator ¥,. The manipulations following Eqg. (35).
however, lead to the result, Eq. (38), which appears to have no dynamical information;
i.e., only the statistical operator S(E-f{) and tlux operator’lE are involved in Eq. (38).

This is an example of the tact that dynamics and statistics are inseparably intertwined in

13

quantum mechanics; e.g., a wavefunction describes the dvnamical motion of the particles

and also their sraristics. Finally, note that one cannot convert Eq. (38) directly into a

corresponding classical expression by replacing the trace by a phase space average and the



14

operators by the corresponding functions (as one can do for Eq. (34)). If one tries, the
result is

N(E)%(znmz @2na)F f dp f dq 8(E-H(p.q))’ F(p.q)2. (39)

which appears to be infinite (because of the squares of the delta functions); the factor /2
(which doesn’t divﬁde out in 'm')nnulization) is 0 in the classical limit, however, so Eq. (39)
is simply indeterminant.

The difficult part of Eq. (38) to evaluate is the microcanonical density operator,
S(E-ﬁ), which is usually!® expressed in terms of the outgoing wave Green’s function

(actually an operator),

S(E-H) = - % ImG*(E). (40a)
where
6*(5) = 2im (E+i£-/l-\l)'l . (40b)
£—()

€ 1s a positive constant which imposes the outgoing wave boundary condition on the
Green’s function (hence the “+” designation), or it may be thought of as a convergence

factor in the expression for G* in terms of the time evolution operator ¢-iHUh

oo

G"(E) = (iﬁ)'lf dt ei(E+ie)Uﬁe-iﬁt/rz;
O .

the factor exp(-ev#) in the integrand makes the time integral well-behaved in the long time
(t—>e0) limit. |

The parameter € in Eq. (40b) usually plays a purely formal role in quantum scattering
theory, but it has recently*? been pointed out that one may think of it as the absorbing
potential that a number of persons?0 have used in numerical wavepacket propagation
calculations to prevent retlections at the edge of the coordinate space grid. In this latier
approach one adds a negative imaginary potential to the true potential energy function.

V(q) = V(q) - ie(q) . (41a)
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but this is clearly equivalent to adding the positive (operator) € to E in E-H.,
E-H —E +ig(q) - H. (41b)
Allowing ¢ to be a (positive) function of coordinates, i.e., a potential energy operator. is
better than taking it to be a constant. because it can be chosen to be zero in the physically
relevant region of space and only “turned on” at the edges of this region to impose the
outgoing wave boundmy condition. Absorbing flux in this manner. and thus not allowing
itto reuh*n to the interaction region. is analogous in a classical calculation to terminating
trajectories wheh they exit the interaction region.
Figure 4 shows a sketch of the potential energy surtace for the generic reaction H+H,
- H2+H, with the absorbing potential £(q) indiqated by dashed contours. €(q) i1s zero in
the transition state region. where the reaction dynamics (i.e., tunneling, re-crossing
'dynamics, etc.) takes place, and is turned on dutside thfs region. In practice one chooses
the interaction region (that between the absorbing‘potentials) to be as small as possible, so
that as small a basis set as possible can be used to represent the operators and evaluate the
trace. Choosihg it too small. though, will cause the absorbing potentials 1o interfere with
reaction dynamics one is attempting to describe.
| With Lhe' microcanonical density operator given by Eq. (40) (with some choice tor €),
straightforward algebraic manipulations (also using Eq. (37)) lead to the following even
simpler form for the cumulative reaction probability, 4
N(E) =4t [G'(E)* £, G (E)el] . | (42)
where £r(ep) is the part of the adsorbing potential in the reactant (product) valley, and e =€,
+E, This expression may be evaluated in any convenient basis set which s;;zms the
interaction region and also extends some ways into the absorbing région. The explicit
matrix expression is then |
N(E) =4 tr [(E-ie-H)"l» €, (E+ie-H)teg], - (42b)

with
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e=g +€,.
It is interesting to note that in Eq. (42) all reference to a specific dividing surtace has
vanished; it is implicit that a dividing surface lies somewhere between the reactant and
product “‘absorbing strips” (cf. Fig. 4), but there is no dependence on its specific choice.
This-is consistent with the carlier discussion that in classical mechanics N(E) is independent
of thé choice of the dividing surface provided that one actually determines the exact
dynamics, as is being done here quantum mechanically.

Eq. (42) provides the first practical scheme tor determining the rate constant tor a
chemical reaction absolutely correctly, but directly, 1.e., without having to solve the
complete reactive scattering problem. This is not a transition state “theory” since
calculation of the Green’s function, the mafrix inverse ot (E+ie-H), is equivalent to solving
the Schrodinger equation. i.¢., it generates the complete quantum dynamics. Since this is
required only in the transition state region (between the reactant and pl'odLch absorbing
strips), one may think of this quantum mechanical calculation as the analog ol a classical
trajectory calculation which begins trajectories on a dividing surface in the transition state

region and tollows them for a short time to see which ones are reactive.

Illustrative Examples

In recent applications? it has proﬂred useful to employ a set of grid point.& in
coordinak space as the basis set in which to evaluate Eq. (42b). These discrete variable,2!
pseudo-spectral.22 or collocation methods?? are proving quite usetul tor a variety ot
molecular quantum mechanical calculations. The primary advantages ot such approaches
are that (1) no integrals are required in order to construct the Hamiltonian matrix (e.g.. Lhé
potential energy matrix is diagonal. the diagonal values being the values of the potential
energy tunction at the grid points), and (2) the Hamiltonian matrix is extremely sparse (so

that large systems of linear equations can be solved etficienty).



17

Since the absorbing potential is diagonal in a grid point representation, Eq. (42b) for
the cumulative reaction probability simplifies to

NE)=4 z ei"IGi.i-lzsip . _ (43)

i.i i
where the index labels the grid points (the “basis functions™) and G, . is the (i.i*) element
of the inverse of the matrix {5, ;. (E+ig)-H; ;. }. with g =gl +¢P. The sumoveriandi’
includes only points in the reactant and product absorbing regions, l'cspecti\}cly, since gF
and €. P are zero at other grid points.

Figure 4¢ shows the set of grid points and the absorbing potentials which yield
accurate results tor the standard test problem, the collinear H+H, — H,+H reaction. The
irnponanf feature to see here is how to close the absorbing potentials can be brought in and
how localized the grid can be taken about the transition state region. This is the region in
which it is necessary to determine the quantum dynamics in order to obtain the correct
result for N(E) (and thus k(T)). No information about reactant and product quantum states
is involved in the calculation.

Figure 5a shows the cumulative reaction probability so obtained* for the collinear
H+H, reaction. Apart frém noting that it is correct (by comparison with any number of
carlier scattering calculations using Eq. (32)), it is interesting to observe that at the higher
energies N(E) is not a monotonically increasing function of energy. This is a signature?4
of transition state theory-violating dynamics, i.e., re-crossing trajectories in a classical
picture, and the result of a short-lived collision complex that causes resonances in a
quantum description.

For the H+H, reaction in three dimensional space one needs to add in the bending
degree of freedom in the transition state region and also allow the three-atom system to
rotate. Fig. 5b shows the cumulative reaction probability obtained#? for zero total angular
momentum (J=0). and again it is in completé agreement with results?S obtained from Eq.

(32) via full scattering calculations. Even though collision complexes also torm in the
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three-dimensional version of the H+H, reaction, N(E) in Fig. 5b appears (to the eye, at
least) to increase monotonically with energy in transition state-like tashion. This is the
quantum mechanical analog of the phenomenon seen above classically,? where the
dynamics béhaves more transition state-like the higher the physical dimension of the
system.

A more challenging application?0 is to the reaction

H+0O, - OH+O ,

which is one of the most important reactions for modeling the combustion of
hydrocarbons. Fig. 6 shows a schematic of the potential surface, and one sees why this is
a more complicated reaction to deal with: the deep well (~2 V) in the interaction region
leads to the formation of a moderately long-lived collision complex. strongly violating the
transition state assumption of “direct dynamics”. The rigorous quantum methodology
described above. however, is nevertheless applicable: absorbing potentials are introducéd
just outside the interaction region where all the reaction dynamics (tunneling, re-crossings.
erc.) 1s determ‘ined. and the grid points cover the region in between. Figure 7 shows the
cumulative reaction probability tor this reaction (for J=0 total angular momentum), and
structure resulting trom the collision complex is readily observabile.

Finally, at the time of this writing, full (six-) dimensional calculations tor the CRP of
the reaction?’ | .

H+H,0 — H,+OH

are being completed, and the reference to this work will be supplied at proof stage.

Cumulative Reaction Probability as an Eigenvalue Problem
To conclude I describe some recent developments28 that facilitate the evaluation of

Eq. (42). Since the absorbing potentials are positive operators (and diagonal in a grid point
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representation), it is easy to symmetrize the operand of the trace in Eq. (42),
N(E) = u[P(E)] . (44a)
where
P(E) = 48, '?G(E)"€,G(E)E, . (44b)
/IS(E) is seen to be a Hermitian operator (or matrix), so that its eigenvalues {pg(E)} are
are all real. and from Eq. (44a) the CRP is their sum,
N(E) = % pi(E) 45)
It is also easy to see that /IS(E) is a positive operator (since it\has the form L'L), so that its
eigenvalues are all positive. It is not as obvious — but can be readily shown — that /IS(E)
is also bounded by the identity operator
PE)<I, (462)
from which it follows that

O<pE)sl. (46b)

The eigenvalues {p,} can thus be thought of as probabilities, and then Eq. (45) bears an
interesting relation to the simple transition state expression, Eq. (22), in which N(E) is
given (approximately) as a sum of one-dimensional tunneling (or transmission)
probabilities over all states of the activated complex. The exact N(E) is given in Eq. (45)
as the sum of the “eigen reaction probabilities” {pk}, the eigenvalues of the operator P
detined by Eq. (44b).

Finally, since one only needs the eigenvalues of P. one can do equally well with the
eigenvalues of P(E)L, . 4
BE)" =16, A(E+ig-H)E, (E-iE-HyE, 2

=& o e (47)
The eigenvalues of P are {i} the reciprocals of the desired values. The advantage of
working with Pl is clear — it is not necessary to obtain the Greeen's function in order to

construct this matrix; it is readily available from the Hamiltonian itself. The most powerful



20

and efficient approach currently available, therefore, is to determine the eigenvalues of the
- . . s . . .

matrix P defined in Eq. (47), the reciprocals of which are the desired cigen reaction

probabilitics {p, }. The reader is referred to the original literature?® for more specifics of

this approach to the calculation.
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Figure Captions
(a) Schematic depiction of the contours of a potential energy surtace with two possible
choices of the dividing surface (actually a /ine in this two dimensional case), S, in
the reactant region and S, through the transition state region.
(b) Same as (a), but indicating a region of some width about the dividing surface S,.
Reaction probability for the collinear H+H, reaction on the Porter-Karplus potential
surface from a microcanonical classical trajectory calculation (CLDYN) and
microcanonical classical ransition-state theory (CLTST). as a function of total energy
above the barrier height (1 eV = 23.06 kcal/mole‘).
Same as Figure [, except that 6(E) is the microcanonical reactive cross section for the
three-dimensional H+H, reacton.
Solid lines are contours of the potential energy surface for the H+H, — H,+H
reaction. Broken lines are contours of (the absbrbing potential (which is zero in the
central part.of the interaction region and “turned on” at the edge). for three possible
choices of it. The points are the grid points which constitute the “basis set” for the
evaluation of the quantum trace, Eq. (42).
Cumulative reaction probability for the H+H, — H,+H reaction. (a) for collinear
geometry (ref. 4a), (b) three dimensional space [or total angular momentum J=0 (ret.
4b).
Energetics (in eV) of the H-O-O potential energy surface.
The cumulative reaction probability, for the H+O, — OH+O reaction as a function of

total energy, for total angular momentum J=0.
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