
Recent developments in the Thomson Parabola Spectrometer
diagnostic for laser-driven multi-species ion sources
Alejo, A., Gwynne, D., Doria, D., Ahmed, H., Carroll, D. C., Clarke, R. J., Neely, D., Scott, G. G., Borghesi, M., &
Kar, S. (2016). Recent developments in the Thomson Parabola Spectrometer diagnostic for laser-driven multi-
species ion sources. Journal of Instrumentation, 11, [C10005]. https://doi.org/10.1088/1748-0221/11/10/C10005

Published in:
Journal of Instrumentation

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
 © 2016 IOP Publishing.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:26. Aug. 2022

https://doi.org/10.1088/1748-0221/11/10/C10005
https://pure.qub.ac.uk/en/publications/dcaaa2e8-afb0-4281-aa17-4631e31c1ba5


Prepared for submission to JINST

4th International Conference Frontiers in Diagnostic Technologies

Recent developments in the Thomson Parabola

Spectrometer diagnostic for laser-driven multi-species ion

sources

A. Alejo,a D. Gwynne,a D. Doria,a H. Ahmed,a D.C. Carroll,b R.J. Clarke,b D. Neely,b G.G.

Scott,b M. Borghesia and S. Kara,1

aCentre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7

1NN, United Kingdom
bCentral Laser Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

E-mail: s.kar@qub.ac.uk

Abstract: Ongoing developments in laser-driven ion acceleration warrant appropriate modifi-

cations to the standard Thomson Parabola Spectrometer (TPS) arrangement in order to match the

diagnostic requirements associated to the particular and distinctive properties of laser-accelerated

beams. Here we present an overview of recent developments by our group of the TPS diagnostic

aimed to enhance the capability of diagnosing multi-species high-energy ion beams. In order to

facilitate discrimination between ions with same Z/A, a recursive differential filtering technique was

implemented at the TPS detector in order to allow only one of the overlapping ion species reaching

the detector, across the entire energy range detectable by the TPS. In order to mitigate the issue

of overlapping ion traces towards the higher energy part of the spectrum, an extended, trapezoidal

electric plates design was envisaged, followed by its experimental demonstration. The design al-

lows achieving high energy-resolution at high energies without sacrificing the lower energy part of

the spectrum. Finally, a novel multi-pinhole TPS design is discussed, that would allow angularly

resolved, complete spectral characterization of the high-energy, multi-species ion beams.
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1 Introduction

For over a decade, the field of laser-driven ion acceleration has attracted significant attention due

to the potential compactness and cost-effectiveness associated with a laser-based approach, which

can facilitate a range of applications [1]. The most studied ion acceleration mechanism so far has

been the Target Normal Sheath Acceleration (TNSA)[2–4], capable of providing energetic, multi-

species ion beams, mainly accelerating light ions (H+, Cn+, On+) from the contamination layer

covering the target[5, 6]. Commonly used diagnostics for characterising such ion beams include

radiochromic film stacks [7], nuclear activation [8], nuclear track detection [9, 10], which are in

general capable of providing spatial and spectral information about an ion beam (See e.g. Ref. [11]

for a comprehensive overview of detection methods). However, in presence of a multi-species ion

beam dominated by protons, as typically obtained from laser driven sources, these diagnostics mainly

provide information about the protons due to their lowest stopping power amongst all ion species.

The Thomson Parabola Spectrometer (TPS)[12] is therefore used in most laser-plasma experiments

due to its unique capability of simultaneously characterising the energy spectrum while separating

ion species with different charge (Z) - to - mass (A) ratios. Recent evolutions in laser technologies

leading to currently available laser intensities above 10
20 W cm−2, has also opened up the possibility

of accessing new acceleration mechanisms, such as Radiation Pressure Acceleration (RPA)[13–16]

or Break-Out Afterburner (BOA)[17–19], which are, in principle, capable of accelerating bulk target

ions to significant energies (towards 100 MeV/nucleon range). Such enhanced beam characteristics

pose a challenge for the TPS as originally designed. In this paper we present a review of the recent

improvements brought to the design of Thomson Parabola Spectrometers, trying to overcome their

limitations in terms of characterising the high-energy, multi-species ion beams produced at high

power laser facilities.
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Figure 1. Schematic of a typical TPS with regions of static magnetic and electric fields. The trajectories
of a positively-charged ion and a neutral particle are depicted by a yellow line and a dashed black line,
respectively.

2 Basics of the Thomson Parabola Spectrometer

Thomson Parabola Spectrometers [12] have the unique ability to energy-resolve ion spectra while

discriminating ions with different charge-to-mass ratios, thanks to the combined use of electric and

magnetic fields. In a typical TPS (see Fig. 1), a pencil beam of ions, selected by the pinhole located

at its entrance, travels through regions of parallel magnetic and electric fields applied transversely

to the beam axis. In reference to Fig. 1, the magnetic field determines the y-coordinate of the

ions on the detector, depending on their energy, while the electric field deflects the ions along the

x-axis according to their Z/A ratio. Assuming that the electric and magnetic fields are uniform

(with inhomogeneities such as fringe effects being negligible), the coordinates of the ions on at the

detector plane along the y (owing to the magnetic field) and x (owing to the electric field) axes can

be derived analytically [20] as stated below,

x =
γ

γ2 − 1

qE0LE

m0c2
(DE + LE/2) , (2.1)

y =
1

√

γ2 − 1

qB0LB

m0c
(DB + LB/2) , (2.2)

where c is the speed of light, m0 and q are the rest mass and charge of the ions, E0 and B0 are the

electric and magnetic fields, LB, DB, LE and DE are the dimensions of relevant sections of the

TPS as labelled in Fig. 1a, and γ is the relativistic Lorentz factor.

For non-relativistic speeds (vz ≪ c), the general expression can be approximated by performing

a first-order Taylor expansion around γ = 1. Introducing the kinetic energy (E =
[

γ − 1
]

m0c2),

one can obtain the formulae matching with the non-relativistic equations commonly used for this
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diagnostic [21, 22].

x =
qE0

2E
LE

(

1

2
LE + DE

)

, (2.3)

y =
qB0√
2m0E

LB

(

1

2
LB + DB

)

, (2.4)

where particles of a given q/m lay on a parabolic trace described by the expression

y
2
=

q

m0

B2

0

E0

L2

B
(LB/2 + DB)2

LE (LE/2 + DE )
· x (2.5)

Where most of the physical parameters of the TPS can be easily measured, it is paramount to

map the magnetic field accurately, whether using permanent magnets or electromagnets [23–25],

accounting in particular for non-uniformities in the field along the beam axis. The magnetic field

inside a yoke can either be mapped empirically using a Hall probe [25, 26], or modelled numerically

as described in Refs. [27–29]. The signal obtained on the detector along a given parabolic ion trace

can be converted to a raw ion spectrum using the Eqs. 2.1, 2.2. However, to obtain an absolute ion

spectrum, a calibration from the signal to ion numbers would be required, which depends on the

type of the detector and the ion species of concern. Since the response of the detectors for different

charged particles depends heavily on the ion species and energy, calibration functions for the

most common types of TPS detectors and particles have been obtained experimentally by different

groups. Some of the relevant works include calibration of Image Plates [30] for protons [31–33],

deuterons [34, 35], alpha particles [35, 36] and carbon ions [37], and the calibration of MultiChannel

Plates for protons [23, 38] and carbon ions [39].

Although TPSs are commonly used and are clearly suitable for the characterisation of multi-

species laser-driven ion sources, there are three main limitations compromising their use in exper-

iments. As it can be realised from Eq. 2.5, (1) The locus of the parabolic ion traces produced by

the TPS is a function of Z/A. Therefore, the traces of species with the same Z/A will be overlapped

at the detector plane, preventing their spectra to be analysed. (2) The separation between the traces

not only depends on Z/A but also on the ion energy. For high energies, the small deflection of

the ions by the fields leads to merging of the traces even for ions with different Z/A. (3) Finally,

in order to have a pencil beam of ions, a pinhole has to be placed at the front of the TPS, which

forbids obtaining any spatial information about the ion beam. This is particularly a concern where

the ion beams do not exhibit a uniform spatial distribution, which is a characteristic of some laser-

driven acceleration mechanisms. The modifications to the original TPS design to overcome the

aforementioned limitations are discussed in the following sections.

3 Differential Filtering

As mentioned above, the parabolic traces of ion species with the same Z/A will overlap at the

detector plane, preventing their spectra to be characterised. This particularly concerns targets

containing deuterium, which are used for studies related to the development of compact laser-

driven neutron sources [40]. In this case, the trace for D+ ions overlaps with the traces of ions

produced by fully ionising the other atoms, such as carbon and oxygen, present in the hydrocarbon
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and water vapour contaminant layers. Therefore, the deuteron spectra cannot be analysed unless

one blocks the overlapping C6+ and O8+ species reaching the detector.

In order to detect the lightest of the overlapping ion species, one can consider placing a filter

in front of the detector, which would preferentially stop heavier ions and allow only lighter species

to be detected (due to the differences in the stopping powers of different ion species in a given

material [41]). However, due to the broad energy spectrum of the laser-driven ions (ranging from

sub-MeV up to tens of MeV), a single filter would either be too thin to stop the heavy ions of high

energies, or too thick to let the light ions of low energy pass through. In order to overcome this

limitation, one can use a stepped Differential Filtering (DF) technique [34], which consists of an

array of foils of different materials and thickness along the energy dispersion (y) axis, ensuring the

discrimination of the lightest ions from the rest of the overlapping species is achieved in the energy

range covered by each filter.
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Figure 2. (a). Stopping range of deuterium (black) and carbon (red) ions in mylar, as obtained using
SRIM[41]. The dashed rectangle corresponds to the area plotted in the inset, where the energy ranges in
which the green lines depict the energy range in which a 100 µm, 200 µm and 500 µm mylar foil can be used.
(b) Picture of the experimental configuration, with a Differential Filter mounted on an aluminium frame and
placed over a detector. (c) Measured signal for the detector shown in (b), with shadows appearing in the areas
were the filter was present, and heavier species appearing in the non-filtered regions. (c-1), (c-2) Zoomed-in
views of the detector showing the gap on the ion trace and the appearance of heavier species between the
filtered regions.

The choice for the thickness and material for each filter can vary depending on the materials

available and the species to be discriminated. As an example, the discrimination of D+ from C6+

ions is discussed here, which was tested in an experiment. At a given point on the parabolic trace,

the overlapping ion species possess the same energy per nucleon. This is a favourable condition

for differential filtering as the stopping range of ions of different masses can vary significantly at

a given energy per nucleon. Therefore a filter of thickness greater than the stopping range of the

heavier ions, and smaller than the stopping range of the lighter species can be used as a differential

filter at the given location on the trace. The stopping ranges of p+ and C6+ ions in mylar are shown

in Fig. 2(a), where a mylar foil of a given thickness can filter the energies between the two curves.

In our case, deuterium ions with energies from 2 to 15 MeV/n were diagnosed by the TPS. The

ion beam was produced by irradiating the petawatt arm of the Vulcan laser [42] to 25 µm thick foils

made of deuterated plastic (CD). The TPS was placed along the target normal axis, at a distance
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∼ 1 m from the target. Mylar foils of thickness 100 µm, 200 µm and 500 µm (refereed here as filter

1, filter 2 and filter 3 in this paper) were chosen for the different sections of the spectrum, covering

an energy range shown by the green lines in Fig. 2(a). A DF was designed using these foils while

taking into account the specific parameters of our TPS. Fig. 2(b) shows the picture of the DF used

in the experiment, where the filters were mounted on an aluminium frame that holds the detectors,

thereby avoiding any vertical displacement of the filters with respect to the detector.

Fig. 2(c) shows the data obtained on the image plate detector placed behind the DF. As one

can see, clear shadows appeared in those regions where the filters were present. The large gaps

between the filters were intentionally introduced, so that the filtered regions will allow the deuterium

spectrum to be obtained, while the C6+ spectrum can be calculated by subtracting the interpolated

deuteron-only signal from the total (C6+ and D+) signal. The Filter-1 in this case was placed a few

mm above its calculated height. Therefore, as can be seen in the Fig. 2(c) and inset (c-1), the ion

signal abruptly disappeared as the Filter-1 clips the ion spectrum. The signal started to reappear

after a few mm down in the filter, as the higher energy deuterons start to penetrate the filter. One

can also see a small drop of signal in the ion trace within the Filter-1 region compared to the ion

trace above the Filter-1, which is most likely due to filtering of the carbon ions by the Filter-1. The

effectiveness of differential filtering can also be seen from the disappearance of C4+ and C5+ traces

in the regions covered by the filters (Fig. 2(c-2)). This technique has been successfully implemented

in a number of experiments studying laser driven deuterons produced under different conditions

[40, 43].

4 Trapezoidal Plates

As mentioned before, a DF can be used to discriminate between species with the same Z/A ratio

overlapping on the detector. However, for the case of high-energy ion sources, the different species

can also overlap at high ion energies, even when they possess different Z/A, due to the small

deflection of the energetic particles by the fields. The traces for two given species will merge

together when the width of the traces, defined by the size of the pinhole, is larger than the separation

between them [21, 44]. Analytically, this separation can be expressed as

δ = |x2 − x1 |y2=y1
=

Z2eE0LE (DE + LE/2)

A2mpc2

γ2

γ2

2
− 1

�
�
�
�
�
�
�

1 − 1

γ2

√

γ2

2
− 1 +

(

A1

A2

Z2

Z1

)2
�
�
�
�
�
�
�

−−−−−→
γ → 1

Z2eE0LE (DE + LE/2)

2E2

�
�
�
�
�

A1

A2

Z2

Z1

− 1

�
�
�
�
�

(4.1)

where {Z1, A1} and {Z2, A2} are the atomic and mass numbers of each ion species, and E2, γ2 are

the kinetic energy and Lorenz factor of one of them.

In light of Eq. 4.1, there are three ways to increase the separation between the two traces: (1)

Increasing the electric field, (2) enlarging the electrode length (LE ) [21, 22], or (3) placing the

detector farther away (DE ) [22]. However, the increase in DE in most cases is limited by the size

of the vacuum chambers, where the diagnostic has to be placed , whereas the maximum electric

field attainable is limited by the vacuum conditions inside the chamber (∼ 20 kV/cm is typically

attainable in a laser-plasma interaction chamber at ∼ 10
−4 mbar). Therefore, the most pragmatic
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route for improving the separation between the ion traces is increasing the length of the electrodes,

which will lead to a quadratic improvement in the trace separation with the increase in the length

of the electrode.

Unfortunately, the increase in the electrode length also causes the lower energy part of the ion

spectrum to intercept the electric plates due to their large dispersion, which prevents their detection.

In order to allow transmitting low energy particles to the detector in an extended electrode case, one

may use a wedged configuration as studied in Refs. [26, 28]. However, an increase in separation

between the plates in this configuration reduces the field strength commensurately, compromising

the net separation between neighbouring species at high ion energies. An alternative method

is using trapezoidally shaped electric plates, as suggested by Gwynne et al. [21]. With such

electrodes, the high-energy ions will effectively experience a longer electric field region, while the

slower ions will be able to reach the detector by passing over the wedged side of the electrode.

The effectiveness of the trapezoidally shaped electrodes was thoroughly investigated by Gwynne et

al. by varying the electrode dimension and shape in fully relativistic particle tracing simulations.

The design was recently tested experimentally [20]. In order to increase the maximum resolvable

energies for proton and carbon ions, 30 cm-long trapezoidal electrodes were used in the experiment,

which is double the length of the electrodes simulated in [21]. As a result, the separation between

neighbouring traces was increased significantly for the high-energy ions (extending the maximum

resolvable carbon energy up to 350 MeV), without clipping the low energy part of the spectrum.

The experimental data was found to be in an excellent agreement with an analytical model, which

does not take into account the electrostatic fringe fields above the wedged side of the electrodes.

As suggested by simulations in Ref. [21], the experimental data shown by Alejo et al. in Ref. [20]

indicates negligible fringe field effects on the low energy ions escaping over the wedged side of the

electrode, which simplifies significantly the data analysis.

5 Multi-pinhole TPS

The third limitation of a TPS discussed in this paper is its inability to resolve the ion spectrum

angularly, since it requires a pencil beam of ions at its entrance. Stacks of Radiochromic film (RCF)

detectors can be used to obtain an angularly-resolved, coarse spectra for protons, although spectral

analysis using RCF data has limitations due to the discrete energy sampling allowed by consecutive

RCF layers in a stack [7, 45]. However, a comprehensive characterisation of multi-species ion beams

is not possible by using such approach. The minimum achievable angular resolution by deploying

two TPSs close to each other can be 5 − 10 degrees, depending on how far from the source one

can place the TPS with sufficient ion flux for detection. The lack of information about the angular

dependence of the ion spectra is of particular concern in cases of highly structured beam, as often

produced, for example, from the interactions of intense lasers with ultrathin foils [15, 46].

Some efforts have been made in order to increase the solid angle of detection by using magnetic

spectrometers with large acceptance angles, such as the Imaging Proton Spectrometer [47] and the

iWASP [48], in which the pinhole is substituted by a horizontal slit. By placing a filter in front

of the detector, an angularly-resolved proton spectrum can be obtained with significantly higher

energy resolution than RCF stacks. However, the absence of electric field deflection forbids a full

characterisation of multi-species ion beams. In an attempt to improve this diagnostic, Senje et al.
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[49] developed a modified iWASP, in which an ion beamlet was selected by using an vertical slit after

the magnetic field and applying an electric field to the beamlet for detailed spectral characterisation.

This design allows for simultaneous characterisation of the angularly-resolved proton spectrum

and full spectral characterisation of different species along one specific direction. A multipinhole

approach applied to a Thomson parabola was developed in [50, 51], where several adjacent pinhole

(obtained in the same substrate) were located at the entrance of a standard TPS. This set-up allowed

discrete angular sampling of the beam, although only within a restricted angular range (∼ 2 degrees).

Here we present a novel design for a compact, multi-pinhole (MP) TPS (Fig. 3) which,

combining some of the elements described above, would be capable of capturing fully resolved

ion spectra along multiple directions, and over an extended angular range of 30 degrees. In this

design, the entrance pinhole is substituted by a horizontal slit that selects ions emitted within a

broad angle, with an angled dipole yoke spreading the particles along the y direction depending

on their energy, similar to the first stage of an iWASP. A set of vertical slits is placed after the

magnet, where each of the vertical slits is coupled with the input horizontal slit to perform angular

selection similar to the input pinhole in a standard TPS design. The ions passing through each

vertical slit will be able to travel through an electric field region created by a pair of electrodes. In

order to have a strong field perpendicular to the ion axis, each slit would require its own different

set of electrodes. Since the sets of electrodes will have to be placed close to each other, in order

to maximise the angular resolution, one can alternate the electric field direction in the consecutive

sets of electrodes. With the same voltage being applied to adjacent electrodes between two sets of

plates, this design will allow deploying high electric fields across the ion beams.
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Figure 3. Schematic top view of a large collection angle Multi-Pinhole TPS. The characteristics of the dipole
yoke can be found in [48], with a length of 100 mm. Each set of electrodes consists of two metal plates with
length of 150 mm and separated by 10 mm, where the electric field applied is 16 kV/cm.
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Although a more complex design can allow sampling at smaller angular intervals, a test design

consisting of 14 electric plates, allowing for the simultaneous measurement along 7 angles (Fig. 3),

was simulated using the SIMION particle tracing code[52]. Similar parameters as those commonly

employed in experiments were used in the simulations. The characteristics for the dipole yoke

were taken from Ref. [48] and 150 mm-long electric plates were used with E0 = 16 kV/cm. The

simulated ion traces on the detector are shown in Fig. 4, where the p+ and C6+ ions are shown in

blue and red, respectively. One can see the ion parabolas in neighboring angular sets are reversing

their orientation, as a consequence of the alternating field polarity.

Neutral (ZP)

Proton

Carbon 6+

Figure 4. Results for a particle tracing simulation showing the position on the detector of p+ (blue), C6+

(red) and neutral (black) particles.

6 Conclusions

The interest in characterising different species makes the Thomson Parabola Spectrometers a natural

choice, although improvements on the traditional design are needed in order to diagnose the beam

expected at the current/upcoming laser facilities. Possible solutions to overcome three main issues

with these diagnostics are discussed. The use of differential filters enables the characterisation of

the lightest ions from a set of ion species with same charge-to-mass ratio. Trapezoidally-shaped

electrodes can be used to increase the maximum ion energy at which ion traces can be prevented

from overlapping. Finally, a Multi-Pinhole TPS is proposed as a possible solution to obtain

angularly-resolved ion spectra using TPS. The three modifications to the TPS design discussed

here can also be implemented simultaneously, providing a compact diagnostic capable of providing

angularly-resolved, high-energy resolution spectra of laser-driven multi-species ion sources.
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