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Abstract

Understanding inhomogeneous and anisotropic fluid flows require math-

ematical and computational tools that are tailored to such flows and

distinct from methods used to understand the canonical problem of

homogeneous and isotropic turbulence. We review some recent devel-

opments in the theory of inhomogeneous and anisotropic turbulence,

placing special emphasis on several kinds of quasilinear approximations

and their corresponding statistical formulations. Aspects of quasilin-

ear theory that have received insufficient attention in the literature are

discussed, and open questions are framed.
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1. INTRODUCTION

Turbulence is one of the fundamental problems of fluid dynamics yet even devising a lan-

guage and mathematical framework to describe turbulence remains a formidable challenge

for theoreticians — Feynman considered turbulence as “the most important unsolved prob-

lem of classical physics” (Feynman et al. 1964). Turbulence is ubiquitous, arising in such

varied fields as engineering, geophysical, astrophysical and even biological fluid mechanics.

It is difficult to overstate its importance – though many have tried – and the field has

attracted attention from some of the great scientists of the last 150 years (see e.g. the

excellent historical perspective of Zhou 2021).

It is important at this point to state that, although turbulence is ubiquitous, homoge-

neous isotropic turbulence is not. Indeed, it is relatively difficult to find situations where

this is the correct description of the dynamics. In many situations of interest, turbulence is

characterised by an interaction with underlying agents that naturally lead to inhomogeneity

and anisotropy. In the case of geophysical and astrophysical fluid dynamics, such agents

include the presence of rotation, stratification and magnetic fields – all of which engen-

der anisotropy, with preferred directions being given by the rotation, gravity and magnetic

field vectors and inhomogeneities naturally arising likewise. In engineering and biofluids,

the complications may arise through the presence of systematic mean flows (e.g. for flow

down a pipe and other wall-bounded shear flows) or the interactions with boundaries –
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both of which are difficult to capture via the traditional, elegant formalism of homogeneous

isotropic turbulence. Of course, in many cases at small enough scales the fluid may forget

the constraints placed upon it by the interaction with the underlying constraint, be it mean

flows, rotation or stratification 1, but for the larger scales it appears that a more promising

avenue is to develop a theory predicated on the premise that the flows will be not be ho-

mogeneous or isotropic and that significant interactions with mean flows (and potentially

mean magnetic fields) are to be expected.

For this reason, this will not be a typical and certainly not a complete review of turbu-

lence theory and computation. For this the reader is directed to the many excellent books

(Batchelor 1953, Frisch 1995, Pope 2000, Davidson 2015) or substantial reviews (Yaglom

1994, Falkovich et al. 2001, Eyink & Sreenivasan 2006, Zhou 2021). The article will focus

instead on those developments that are concerned with a statistical description of inhomo-

geneous and anisotropic turbulence. We stress at the start that methods that work well as

a representation of such flows – because the interaction of the turbulence with the mean

flow dominates – may perform badly as a description of the idealised case so beloved by

theorists; we view this as a feature rather than a bug. Figure 1 gives an overview of a

number of the theories and approximations that we discuss below. Direct Statistical Sim-

ulation (DSS) – solutions of the equations governing the statistics themselves, rather than

their accumulation in numerical simulation as is usually done – is the focus of the later part

of the article. Many of these methods involve the consideration of quasilinear dynamics and

statistics, which is where we start our review.

2. QUASILINEAR DYNAMICS

We provide a high-level perspective on the quasilinear approximation and highlight some

underappreciated aspects. We also highlight some of the many open questions. The reader

is encouraged to consult the cited literature for details.

2.1. Historical Perspective

The quasilinear approximation has its early roots in the linear Rapid Distortion Theory of

Batchelor and Proudmann (Batchelor & Proudman 1954) (RDT); for a review see (Hunt

& Carruthers 1990). Around the same time, Willem Malkus, who had worked as a par-

ticle physicist under Enrico Fermi before switching fields to fluid mechanics, attempted

to understand how much heat could be transported by convective flows in a quasilinear

like approximation (Malkus 1954). The Malkus paper stimulated work on the quasilinear

approximation in the early 1960s (Ledoux et al. 1961, Spiegel 1962, Herring 1963). Quasilin-

ear theory appears to have been independently discovered in the context of plasma physics

(Fried et al. 1960, Vedenov et al. 1961, Noerdlinger 1963) and the phrase “quasilinear”

may have first appeared in this context (Fried et al. 1960). The approximation shares fea-

tures with other mean-field approximations used in physics such as Hartree-Fock theory

and molecular field theory and it seems possible that the advent of these quantum and

statistical mean-field theories stimulated the development of quasilinear approximations.

We leave this question for future historical exploration.

1We do note here that the presence of magnetic fields is more profoundly felt as one moves to
smaller scales, with any cascades becoming increasingly anisotropic as the scale decreases.
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Numerical Simulation Direct Statistical Simulation

NL

GQL

QL

CE2.5

CE2 / S3T

GCE2

CE3

Hierarchy of Approximations

Triad D
ecim

ation

Figure 1: Hierarchy of approximations descending from fully nonlinear (NL) numerical

simulation that are discussed in this article. Corresponding forms of Direct Statistical

Simulation (DSS) appear on the right side of the schematic. For the definition of the other

terms that appear, see the text or the Terms and Definitions listed in Section 6. An example

of each of these approximations is presented at the end of the article in Figure 7.

Diagrammatic representations of the quasilinear approximation may be found as early

as 1961 (Vedenov et al. 1961, Vedenov 1963). Hasselman discussed the use of Feynman

diagrams for wave–wave interactions in 1966 (Hasselmann 1966). A recent review of weak

wave turbulence may be found in (Connaughton et al. 2015). Another early insight was by

Herring who noted that the statistics of quasilinear equations of motion close at second-

order: “The discarding of the fluctuating self-interaction then corresponds to closing the

system of moment equations by discarding the third order cumulants” (Herring 1963).

We will explore facets of Herring’s observation later in Section 3 including a surprising

disagreement between the quasilinear approximation and its second-order closure. Here we

note that second-order closures began to receive renewed attention with the publication of

(Farrell & Ioannou 2003, 2007) for stochastically-driven barotropic jets and (Marston et al.

2008) for a deterministically-driven point barotropic jet.

2.2. Choices for Averaging

For concreteness we focus on equations of motion with quadratic nonlinearities (typically

due to advection) here. The partial differential equations may be written:

∂tu = L[u] +N [u,u]. 1.

We proceed by utilizing a standard Reynolds decomposition of the state vector into its

mean and fluctuating parts; i.e. we set

u = u + u′, 2.

4 Marston & Tobias
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k1 + k2

Wave — Mean-Flow Interaction Reynolds Forcing of Mean-Flow Wave — Wave Interaction 
“pain in the neck”

Figure 2: Triad interactions in wavevector space retained in linear, quasilinear, and fully

nonlinear dynamics for the illustrative case of spatial averaging over the one direction. The

solid lines represent the mean flow with wavenumber 0; curvy lines have wavenumbers that

are conserved by the interaction.

where the selected average satisfies the Reynolds rules of averaging so that u = u, u′ = 0

and u u = u u. Many averaging procedures, such as spatial and temporal averages as well as

ensemble averages satisfy these rules. Once an averaging procedure has been chosen then it

is appropriate to denote mean quantities for the variables with an overbar, and fluctuations

(or eddies) with primed variables. Spatial averaging is perhaps the most common choice,

with the the choice of averaging direction(s) typically dictated by the symmetries of the

system. For large-scale planetary flows, averaging is generally over the zonal direction.

Figure 2 shows the triadic interactions in wavevector space that are retained and

discarded in the approximation for the illustrative case of spatial averaging for which zonal

wavenumber k = 0 is the mean. Ensemble averaging often makes for a better quasilinear

approximation than spatial averaging because the ensemble mean-flow need not be purely

zonal and hence can scatter waves into high wavenumber modes (Constantinou et al. 2016,

Allawala et al. 2020). However ensemble quasilinear simulations are expensive, and their

statistical closure suffers from the “curse of dimensionality” as two-point correlations are

a function of both coordinates, and not their difference. We discuss time-average means

below in Section 2.9.

In recent years the quasilinear approximation has been explored in many different con-

texts. Srinivasan and Young made a careful study of jet formation when the barotropic

flow is stochastically forced (Srinivasan & Young 2012). Constantinou, Farrell and Ioannou

showed that such flows can reproduce jet emergence and transience (Constantinou et al.

2014a) (see Figure 4). O’Gorman and Schneider studied an idealized model of the atmo-

spheric circulation and found that QL could reproduce some but not all of the features of

fully nonlinear dynamics (O’Gorman & Schneider 2007). Convection in the atmospheric

boundary layer was studied in (Ait-Chaalal et al. 2016) which also surveys other uses of the

quasilinear approximation in the context of planetary flows.

www.annualreviews.org • Anisotropic and Inhomogeneous Turbulence 5



2.3. Nature of the Quasilinear Approximation

The quasilinear approximation is a type of self-consistent mean-field theory. The eddies or

waves interact with the mean flow (first diagram in Figure 2) while the mean-flow is driven

by Reynolds stress produced by eddies (second diagram). The nonlinear interaction between

two waves that would produce a third wave is dropped (third diagram). The circumstances

under which this approximation can be guaranteed to give an accurate description of the

dynamics are outlined in the next section. In general, though, the approximation appears

to be useful beyond the formal limit of applicability of the derivation. The approximation is

conservative: in the absence of driving and dissipation, total energy is conserved as well as

other linear and quadratic invariants such as angular momentum and enstrophy (depending

on the problem). Stability of flows typically follows from the conservation of these invariants

(Arakawa 1966).

Owing to the absence in the quasilinear approximation of general triadic interactions

among eddies that represent eddy + eddy→ eddy scattering processes — sometimes called

cascades or inverse cascades — energy is typically confined to the lower wavenumbers, in

particular waves that are marginally unstable in the presence of the mean-flow. It is thus

natural to expect the QL approximation to work well when the mean-flow is strong and

waves and eddies are relatively weak. In general this seems to be the case but a complete

understanding the regimes of validity is lacking. At least three asymptotically exact limits

exist (as discussed below). First, waves may be strongly damped due to large friction or

other forms of dissipation (Marston et al. 2008, Plummer et al. 2019). Second, there may

be large time-scale separation between a slowly evolving mean-flow and rapidly evolving

eddies (Bouchet et al. 2013, Laurie et al. 2014, Woillez & Bouchet 2017, Frishman 2017,

Frishman & Herbert 2018). And third it is possible to stimulate only a single wavenumber

(for instance with stochastic forcing that is spectrally sharp in wavenumber space) (Bouchet

et al. 2018). In this case no other waves will be excited so long as the mean-flow strength

remains below the threshold of instability. In each of these limiting cases the quasilinear

approximation is expected to hold exactly.

2.4. Asymptotic theories that lead to QL systems

Once averaging has been performed and a Reynolds decomposition has been applied the

equations may take the form.

∂tu = L[u] +N [u,u] +N [u′,u′]), 3.

∂tu
′ = L[u′] +N [u,u′] +N [u′,u]︸ ︷︷ ︸

Lu[u′]

+ (N [u′,u′]−N [u′,u′])︸ ︷︷ ︸
G[u′,u′]

, 4.

Formally, the quasilinear approximation is applicable when the term G(u′,u′) is small

compared with the quasilinear term Lu(u′) in Equation (4) for the fluctuating velocity —

then this “pain in the neck” term may be neglected. This occurs when the Kubo number,

defined as Ku = τcurms/`c is small; i.e. when the correlation time of the turbulence is

short enough. The Kubo number is really an output of the system, being a property of the

turbulence, and can only be determined post hoc. For this reason, it is of limited practical

utility. However, there are circumstances for which a low Kubo number can be guaranteed

a priori. These occur in certain asymptotic limits, usually ensured via a separation of
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timescales, though sometimes guaranteed by an ordering of the relative amplitudes of the

mean flows and the fluctuations (as discussed above).

Perhaps the best-known examples of quasilinear turbulent interactions with means flows

arise through the interaction of low amplitude wave turbulence with mean flows. One

example of this is the quasi-biennial oscillation; here slowly varying winds in the lower

equatorial stratosphere couple to gravity waves with a typical period of tens of minutes.

The separation of timescales leads naturally to a quasilinear model (Plumb 1977)

Another example is the generation of a streaming flow via the interaction of acoustic

waves in a fluid with strong stable density inhomogeneities (see e.g. Chini et al. 2014).

Recently this asymptotic approach has been successfully extended to the case of a turbulent

free shear flows in the presence of a strong stabilizing density stratification (Chini et al.

2022); the separation of timescales is ensured by taking the simultaneous limits of small

Froude number and large Reynolds number.

Turbulent driving of jets in the atmospheres of gas giant planets such as Jupiter is fre-

quently modeled by stochastically forced barotropic flows that can also be described within

a quasilinear formalism in the asymptotic limit of high zonostrophy parameter (see e.g.

Bouchet et al. 2013); this limit represents a separation of timescales between the evolution

of the mean flow and that of the eddies (valid in the limit of weak driving and dissipation);

for these strong jets and weak turbulence the emergence of a perfect staircase can be de-

scribed by a quasilinear theory (Scott & Dritschel 2012). (Note, however, that recent precise

measurements by spacecraft of the gravitational fields of Jupiter and Saturn show that they

have deep jets with more complicated dynamics Kaspi et al. (2020).) Finally, in geophysical

and astrophysical dynamo theory, often described by mean field electrodynamics, the quasi-

linear version of the induction equation is obtained via the so-called first-order smoothing

approximation (Moffatt & Dormy 2019, Krause & Raedler 1980, Tobias 2021), which is a

reduction to a quasilinear theory. The approximation can lead to quasilinear generation of

an electromotive force both in rapidly rotating systems such as Earth’s dynamo (Plumley

et al. 2018) and in accretion disks (Squire & Bhattacharjee 2015).

We stress again that the presence of a formal separation of timescales means that the

quasilinear approximation is guaranteed to be asymptotically accurate. In other circum-

stances however, it is interesting to determine whether the dynamics may be well approx-

imated by the quasilinear approximation; it may be that other considerations renders the

“pain-in-the-neck” term smaller than its quasilinear counterparts.

2.5. Infinite U(1) Symmetry

In the case of spatial averaging over one or more directions, the quasilinear equations of

motion exhibit an infinite U(1) symmetry, with physical implications that are at present

not fully understood (Zhang et al. 2019). The symmetry replaces invariance under volume-

preserving diffeomorphisms (equivalent to particle-relabling symmetry) of fully NL dynam-

ics. The infinite U(1) symmetry can be seen by examining the triadic interactions that

are retained in the quasilinear approximation (see Figure 2). In both the linear, and

quasilinear, approximations, the phase of each wave in spectral space can be rotated by an

arbitrary amount at each zonal wavenumber m: qm(t) → eiθmqm(t). The fully nonlinear

equations do not have this symmetry since each wave is coupled to every other wave. As

a consequence, there exist families of solutions of the quasilinear equations of motion with

phase-shifted waves (Pausch et al. 2019). Does the invariance of the quasilinear equations
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of motion under such phase rotations also correspond to an infinite family of conserved

quantities?

For purely linear waves there exist both Hamiltonian and Lagrangian formulations of

the dynamics that permit the application of Noether’s theorem to find the conservation

laws (Shepherd 1990). It can be shown that pseudomomenta are conserved at each zonal

wavenumber. For barotropic flow on a rotating sphere with Coriolis parameter f(θ), for

instance, the pseudomomenta are defined in terms of the vorticity ζ(θ, φ, t) resolved into

zonal components ζm(θ, t) and a mean-flow that is static in time ζ(θ):

ζm(θ, t) ≡
∫ 2π

0

ζ(θ, φ, t)eimφdφ, 5.

as

Mm =

∫
|ζm(θ, t)|2

∂θ(ζ(θ) + f(θ))
sin2(θ)dθ 6.

Note that expressions for the pseudomomenta commonly found in the literature sum over

all the zonal components; however each is in fact separately conserved in the linear approxi-

mation (Held & Phillips 1987). Pseudomomenta continue to be conserved in the quasilinear

approximation when the mean flow is steady in time (Section 2.9). The question remains as

to whether or not conserved pseudomomenta can be found in the quasilinear approximation

when the mean state varies with time? If the approximation can be formulated as a vari-

ational problem with either a Hamiltonian or Lagrangian structure, it should be possible

to employ Noether’s theorem to derive pseudomomenta. If found, such quantities would

have immediate practical application to geophysical and astrophysical fluid dynamics and

possibly to weather forecasting.

2.6. Waves of Topological Origin

Rotating or magnetised fluids share basic physics with the quantum Hall effect, and the

mathematics of topology plays a surprising role in the motion of the atmosphere and oceans

(Delplace et al. 2017) and plasmas (Parker et al. 2020). For rotating fluids, there is a

topological origin for two well-known equatorially trapped waves, the Kelvin and Yanai

waves, connected to the breaking of time-reversal symmetry by planetary rotation. ( (Parker

2021) is a pedagogical review of this physics). Coastal Kelvin waves also have a topological

origin (Venaille & Delplace 2021) and Kelvin’s 1879 discovery of such waves (Thomson

1880) likely marked the first time that edge modes of topological origin were uncovered

although Kelvin was unaware of the topological nature. As the waves appear in regions of

frequency-wavevector space that are forbidden in the bulk away from boundaries such as

the equator or coastlines, the waves are protected at least partially from scattering. This

makes application of quasilinear theory attractive. The influence of background shear flow

on such waves was studied in (Zhu et al. 2021). That work may provide an entry point to

the inclusion of nonlinearities through use of the quasilinear approximation.

2.7. Three Dimensional Quasilinear Models

In two dimensions with one inhomogeneous direction (such as a spherical surface) it is

apparent that averaging should be considered over the homogeneous direction (e.g. the

zonal direction), yielding a mean that is a function of the inhomogeneous direction only,
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whilst the fluctuations remain functions of both spatial directions. In three dimensions more

choices may be available, both in the nature of the averaging and the choice of application

of quasilinearity.

This choice is highlighted by the series of papers introducing, and considering the proper-

ties of so-called reduced nonlinear (RNL) models. These have been systematically examined

for the paradigm problem of parallel wall-bounded shear flows (Thomas et al. 2014, 2015,

Farrell et al. 2016, Pausch et al. 2019). For this model problem, the system is inhomo-

geneous in the wall-normal direction and periodic in the two horizontal (streamwise and

spanwise) directions. Because of the dynamics, the authors choose an averaging solely over

the streamwise direction, yielding a two-dimensional time dependent mean flow. The lin-

earisation takes place around this mean, and so the system is quasilinear in the streamwise

direction but fully nonlinear in the other two directions. Once this linearisation is per-

formed the model excites a small number of streamwise Fourier modes and may compare

well with the first-order turbulence statistics derived from full DNS models at moderate

Reynolds numbers; this is achieved at significantly reduced computational cost (Bretheim

et al. 2015). However, the enforcement of quasilinearity in one direction does yield some un-

satisfactory comparisons with DNS including the scaling of streamwise wavenumber spectra

with the distance from the wall (Hernández et al. 2022b). Some of the shortcomings of QL

models may be alleviated by generalising the quasilinear approximation — as described in

the next section.

2.8. Generalized Quasilinear Approximation

The Quasilinear Approximation can be viewed as an extreme case of a series of approxima-

tions that removes triad interactions in pairs from the full dynamics (Kraichnan 1985). It

is naturally extended to allow for the inclusion of self-consistent interactions of large-scale

modes (Marston et al. 2016). To explain the extension, we discuss a fluid system in a

Cartesian domain with two homogeneous directions (x, y) (with translation symmetry in

those directions) and one inhomogeneous direction. The velocity and other variables are

then decomposed into large-scale and small-scale modes, i.e. we set u(x, y, z) = ul + uh,

where

ul =

Λx∑
k=−Λx

Λy∑
l=−Λy

ukl(z) e
ik′x+il′y uh = u− ul 7.

where k′ = 2πk/xm, l′ = 2πl/ym and the ul and uh are termed the ‘low’ and ‘high’

wavenumber modes respectively. Hence, when Λx = Λy = 0 the low modes are the hori-

zontally averaged (mean) modes and the high modes correspond to fluctuations about that

mean (as for the QL approximation).

As discussed earlier, for the QL approximation, the removal of triad interactions in

pairs is given by the interaction diagrams in Figure 2 characterised by the suppression

of certain mode interactions in the dynamics. We noted that this drastic approximation

ensured that only nonlocal (in wavenumber) elements of cascades or inverse cascades were

possible (Tobias et al. 2011). However, when Λx,Λy 6= 0 the Generalised Quasilinear

approximation differs from QL — the triad interactions that are retained and discarded

are given in Figure 3; the interactions low + low → low, high + high → low and low +

high → high are retained whilst all other interactions are discarded. This selection is made

so as to enable closure and preserve the relevant linear and quadratic conservation laws
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Retained

|k1 � k2|  ⇤
<latexit sha1_base64="ORzvXOgtXdJX5b6KZeGOt++WfJo=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tF8GJJimC9Fbx48FDB2kITwmazaZdsNnF3I5S0XnwVLx5UvPoY3nwbt20O2jqwMMx8w7ff+CmjUlnWt1FaWl5ZXSuvVzY2t7Z3zN29O5lkApM2Tlgiuj6ShFFO2ooqRrqpICj2Gen40eXE7zwQIWnCb9UwJW6M+pyGFCOlJc88GEWeDU9h5NVH0GHkHjrXOh0gz6xaNWsKuEjsglRBgZZnfjlBgrOYcIUZkrJnW6lycyQUxYyMK04mSYpwhPqkpylHMZFuPr1gDI+1EsAwEfpxBafq70SOYimHsa8nY6QGct6biP95vUyFDTenPM0U4Xi2KMwYVAmc1AEDKghWbKgJwoLqv0I8QAJhpUur6BLs+ZMXSbteu6jZN2fVZqNoowwOwRE4ATY4B01wBVqgDTB4BM/gFbwZT8aL8W58zEZLRpHZB39gfP4AmEeVPA==</latexit><latexit sha1_base64="ORzvXOgtXdJX5b6KZeGOt++WfJo=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tF8GJJimC9Fbx48FDB2kITwmazaZdsNnF3I5S0XnwVLx5UvPoY3nwbt20O2jqwMMx8w7ff+CmjUlnWt1FaWl5ZXSuvVzY2t7Z3zN29O5lkApM2Tlgiuj6ShFFO2ooqRrqpICj2Gen40eXE7zwQIWnCb9UwJW6M+pyGFCOlJc88GEWeDU9h5NVH0GHkHjrXOh0gz6xaNWsKuEjsglRBgZZnfjlBgrOYcIUZkrJnW6lycyQUxYyMK04mSYpwhPqkpylHMZFuPr1gDI+1EsAwEfpxBafq70SOYimHsa8nY6QGct6biP95vUyFDTenPM0U4Xi2KMwYVAmc1AEDKghWbKgJwoLqv0I8QAJhpUur6BLs+ZMXSbteu6jZN2fVZqNoowwOwRE4ATY4B01wBVqgDTB4BM/gFbwZT8aL8W58zEZLRpHZB39gfP4AmEeVPA==</latexit><latexit sha1_base64="ORzvXOgtXdJX5b6KZeGOt++WfJo=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tF8GJJimC9Fbx48FDB2kITwmazaZdsNnF3I5S0XnwVLx5UvPoY3nwbt20O2jqwMMx8w7ff+CmjUlnWt1FaWl5ZXSuvVzY2t7Z3zN29O5lkApM2Tlgiuj6ShFFO2ooqRrqpICj2Gen40eXE7zwQIWnCb9UwJW6M+pyGFCOlJc88GEWeDU9h5NVH0GHkHjrXOh0gz6xaNWsKuEjsglRBgZZnfjlBgrOYcIUZkrJnW6lycyQUxYyMK04mSYpwhPqkpylHMZFuPr1gDI+1EsAwEfpxBafq70SOYimHsa8nY6QGct6biP95vUyFDTenPM0U4Xi2KMwYVAmc1AEDKghWbKgJwoLqv0I8QAJhpUur6BLs+ZMXSbteu6jZN2fVZqNoowwOwRE4ATY4B01wBVqgDTB4BM/gFbwZT8aL8W58zEZLRpHZB39gfP4AmEeVPA==</latexit><latexit sha1_base64="ORzvXOgtXdJX5b6KZeGOt++WfJo=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tF8GJJimC9Fbx48FDB2kITwmazaZdsNnF3I5S0XnwVLx5UvPoY3nwbt20O2jqwMMx8w7ff+CmjUlnWt1FaWl5ZXSuvVzY2t7Z3zN29O5lkApM2Tlgiuj6ShFFO2ooqRrqpICj2Gen40eXE7zwQIWnCb9UwJW6M+pyGFCOlJc88GEWeDU9h5NVH0GHkHjrXOh0gz6xaNWsKuEjsglRBgZZnfjlBgrOYcIUZkrJnW6lycyQUxYyMK04mSYpwhPqkpylHMZFuPr1gDI+1EsAwEfpxBafq70SOYimHsa8nY6QGct6biP95vUyFDTenPM0U4Xi2KMwYVAmc1AEDKghWbKgJwoLqv0I8QAJhpUur6BLs+ZMXSbteu6jZN2fVZqNoowwOwRE4ATY4B01wBVqgDTB4BM/gFbwZT8aL8W58zEZLRpHZB39gfP4AmEeVPA==</latexit>

|k1 + k2|  ⇤
<latexit sha1_base64="AatbAfPBgyN2I28Zh6qCBFGpxeI=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tFEISSFMF6K3jx4KGCtYUmhM1m0y7ZbOLuRihpvfgqXjyoePUxvPk2btsctHVgYZj5hm+/8VNGpbKsb6O0tLyyulZer2xsbm3vmLt7dzLJBCZtnLBEdH0kCaOctBVVjHRTQVDsM9Lxo8uJ33kgQtKE36phStwY9TkNKUZKS555MIo8G57CyKuPoMPIPXSudTpAnlm1atYUcJHYBamCAi3P/HKCBGcx4QozJGXPtlLl5kgoihkZV5xMkhThCPVJT1OOYiLdfHrBGB5rJYBhIvTjCk7V34kcxVIOY19PxkgN5Lw3Ef/zepkKG25OeZopwvFsUZgxqBI4qQMGVBCs2FAThAXVf4V4gATCSpdW0SXY8ycvkna9dlGzb86qzUbRRhkcgiNwAmxwDprgCrRAG2DwCJ7BK3gznowX4934mI2WjCKzD/7A+PwBlR2VOg==</latexit><latexit sha1_base64="AatbAfPBgyN2I28Zh6qCBFGpxeI=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tFEISSFMF6K3jx4KGCtYUmhM1m0y7ZbOLuRihpvfgqXjyoePUxvPk2btsctHVgYZj5hm+/8VNGpbKsb6O0tLyyulZer2xsbm3vmLt7dzLJBCZtnLBEdH0kCaOctBVVjHRTQVDsM9Lxo8uJ33kgQtKE36phStwY9TkNKUZKS555MIo8G57CyKuPoMPIPXSudTpAnlm1atYUcJHYBamCAi3P/HKCBGcx4QozJGXPtlLl5kgoihkZV5xMkhThCPVJT1OOYiLdfHrBGB5rJYBhIvTjCk7V34kcxVIOY19PxkgN5Lw3Ef/zepkKG25OeZopwvFsUZgxqBI4qQMGVBCs2FAThAXVf4V4gATCSpdW0SXY8ycvkna9dlGzb86qzUbRRhkcgiNwAmxwDprgCrRAG2DwCJ7BK3gznowX4934mI2WjCKzD/7A+PwBlR2VOg==</latexit><latexit sha1_base64="AatbAfPBgyN2I28Zh6qCBFGpxeI=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tFEISSFMF6K3jx4KGCtYUmhM1m0y7ZbOLuRihpvfgqXjyoePUxvPk2btsctHVgYZj5hm+/8VNGpbKsb6O0tLyyulZer2xsbm3vmLt7dzLJBCZtnLBEdH0kCaOctBVVjHRTQVDsM9Lxo8uJ33kgQtKE36phStwY9TkNKUZKS555MIo8G57CyKuPoMPIPXSudTpAnlm1atYUcJHYBamCAi3P/HKCBGcx4QozJGXPtlLl5kgoihkZV5xMkhThCPVJT1OOYiLdfHrBGB5rJYBhIvTjCk7V34kcxVIOY19PxkgN5Lw3Ef/zepkKG25OeZopwvFsUZgxqBI4qQMGVBCs2FAThAXVf4V4gATCSpdW0SXY8ycvkna9dlGzb86qzUbRRhkcgiNwAmxwDprgCrRAG2DwCJ7BK3gznowX4934mI2WjCKzD/7A+PwBlR2VOg==</latexit><latexit sha1_base64="AatbAfPBgyN2I28Zh6qCBFGpxeI=">AAACAHicbVDNSsNAGNzUv1r/ol4EL4tFEISSFMF6K3jx4KGCtYUmhM1m0y7ZbOLuRihpvfgqXjyoePUxvPk2btsctHVgYZj5hm+/8VNGpbKsb6O0tLyyulZer2xsbm3vmLt7dzLJBCZtnLBEdH0kCaOctBVVjHRTQVDsM9Lxo8uJ33kgQtKE36phStwY9TkNKUZKS555MIo8G57CyKuPoMPIPXSudTpAnlm1atYUcJHYBamCAi3P/HKCBGcx4QozJGXPtlLl5kgoihkZV5xMkhThCPVJT1OOYiLdfHrBGB5rJYBhIvTjCk7V34kcxVIOY19PxkgN5Lw3Ef/zepkKG25OeZopwvFsUZgxqBI4qQMGVBCs2FAThAXVf4V4gATCSpdW0SXY8ycvkna9dlGzb86qzUbRRhkcgiNwAmxwDprgCrRAG2DwCJ7BK3gznowX4934mI2WjCKzD/7A+PwBlR2VOg==</latexit>

|k1 + k2| > ⇤
<latexit sha1_base64="kLJEE4Xm+upOK12YDwD5Qtj7jc0=">AAAB/XicbVDLSsNAFL3xWesrKq7cDBZBEEpSBOtGCm5cuKhgbKENYTKZtEMnD2YmQkkL/oobFypu/Q93/o3TNgttPTBwOOce7p3jp5xJZVnfxtLyyuraemmjvLm1vbNr7u0/yCQThDok4Ylo+1hSzmLqKKY4baeC4sjntOUPrid+65EKyZL4Xg1T6ka4F7OQEay05JmHo4FnozM08GojdIW6tzoaYM+sWFVrCrRI7IJUoEDTM7+6QUKyiMaKcCxlx7ZS5eZYKEY4HZe7maQpJgPcox1NYxxR6ebT88foRCsBChOhX6zQVP2dyHEk5TDy9WSEVV/OexPxP6+TqbDu5ixOM0VjMlsUZhypBE26QAETlCg+1AQTwfStiPSxwETpxsq6BHv+y4vEqVUvq/bdeaVRL9oowREcwynYcAENuIEmOEAgh2d4hTfjyXgx3o2P2eiSUWQO4A+Mzx/5jZO8</latexit><latexit sha1_base64="kLJEE4Xm+upOK12YDwD5Qtj7jc0=">AAAB/XicbVDLSsNAFL3xWesrKq7cDBZBEEpSBOtGCm5cuKhgbKENYTKZtEMnD2YmQkkL/oobFypu/Q93/o3TNgttPTBwOOce7p3jp5xJZVnfxtLyyuraemmjvLm1vbNr7u0/yCQThDok4Ylo+1hSzmLqKKY4baeC4sjntOUPrid+65EKyZL4Xg1T6ka4F7OQEay05JmHo4FnozM08GojdIW6tzoaYM+sWFVrCrRI7IJUoEDTM7+6QUKyiMaKcCxlx7ZS5eZYKEY4HZe7maQpJgPcox1NYxxR6ebT88foRCsBChOhX6zQVP2dyHEk5TDy9WSEVV/OexPxP6+TqbDu5ixOM0VjMlsUZhypBE26QAETlCg+1AQTwfStiPSxwETpxsq6BHv+y4vEqVUvq/bdeaVRL9oowREcwynYcAENuIEmOEAgh2d4hTfjyXgx3o2P2eiSUWQO4A+Mzx/5jZO8</latexit><latexit sha1_base64="kLJEE4Xm+upOK12YDwD5Qtj7jc0=">AAAB/XicbVDLSsNAFL3xWesrKq7cDBZBEEpSBOtGCm5cuKhgbKENYTKZtEMnD2YmQkkL/oobFypu/Q93/o3TNgttPTBwOOce7p3jp5xJZVnfxtLyyuraemmjvLm1vbNr7u0/yCQThDok4Ylo+1hSzmLqKKY4baeC4sjntOUPrid+65EKyZL4Xg1T6ka4F7OQEay05JmHo4FnozM08GojdIW6tzoaYM+sWFVrCrRI7IJUoEDTM7+6QUKyiMaKcCxlx7ZS5eZYKEY4HZe7maQpJgPcox1NYxxR6ebT88foRCsBChOhX6zQVP2dyHEk5TDy9WSEVV/OexPxP6+TqbDu5ixOM0VjMlsUZhypBE26QAETlCg+1AQTwfStiPSxwETpxsq6BHv+y4vEqVUvq/bdeaVRL9oowREcwynYcAENuIEmOEAgh2d4hTfjyXgx3o2P2eiSUWQO4A+Mzx/5jZO8</latexit><latexit sha1_base64="kLJEE4Xm+upOK12YDwD5Qtj7jc0=">AAAB/XicbVDLSsNAFL3xWesrKq7cDBZBEEpSBOtGCm5cuKhgbKENYTKZtEMnD2YmQkkL/oobFypu/Q93/o3TNgttPTBwOOce7p3jp5xJZVnfxtLyyuraemmjvLm1vbNr7u0/yCQThDok4Ylo+1hSzmLqKKY4baeC4sjntOUPrid+65EKyZL4Xg1T6ka4F7OQEay05JmHo4FnozM08GojdIW6tzoaYM+sWFVrCrRI7IJUoEDTM7+6QUKyiMaKcCxlx7ZS5eZYKEY4HZe7maQpJgPcox1NYxxR6ebT88foRCsBChOhX6zQVP2dyHEk5TDy9WSEVV/OexPxP6+TqbDu5ixOM0VjMlsUZhypBE26QAETlCg+1AQTwfStiPSxwETpxsq6BHv+y4vEqVUvq/bdeaVRL9oowREcwynYcAENuIEmOEAgh2d4hTfjyXgx3o2P2eiSUWQO4A+Mzx/5jZO8</latexit>

|k1|  ⇤
<latexit sha1_base64="sNITDSHupWtO9gszZYXUZkjWvFQ=">AAAB+nicbVDLSsNAFJ34rPUV69LNYBFclUQE667gxoWLCsYWmhAmk5t26OThzEQsaX/FjQsVt36JO//GaZuFth4YOJxzD/fOCTLOpLKsb2NldW19Y7OyVd3e2d3bNw9q9zLNBQWHpjwV3YBI4CwBRzHFoZsJIHHAoRMMr6Z+5xGEZGlyp0YZeDHpJyxilCgt+WZtPPTtMXY5PGD3RudC4pt1q2HNgJeJXZI6KtH2zS83TGkeQ6IoJ1L2bCtTXkGEYpTDpOrmEjJCh6QPPU0TEoP0itntE3yilRBHqdAvUXim/k4UJJZyFAd6MiZqIBe9qfif18tV1PQKlmS5goTOF0U5xyrF0yJwyARQxUeaECqYvhXTARGEKl1XVZdgL355mThnjcuGfXtebzXLNiroCB2jU2SjC9RC16iNHETRE3pGr+jNmBgvxrvxMR9dMcrMIfoD4/MHd/iTlw==</latexit><latexit sha1_base64="sNITDSHupWtO9gszZYXUZkjWvFQ=">AAAB+nicbVDLSsNAFJ34rPUV69LNYBFclUQE667gxoWLCsYWmhAmk5t26OThzEQsaX/FjQsVt36JO//GaZuFth4YOJxzD/fOCTLOpLKsb2NldW19Y7OyVd3e2d3bNw9q9zLNBQWHpjwV3YBI4CwBRzHFoZsJIHHAoRMMr6Z+5xGEZGlyp0YZeDHpJyxilCgt+WZtPPTtMXY5PGD3RudC4pt1q2HNgJeJXZI6KtH2zS83TGkeQ6IoJ1L2bCtTXkGEYpTDpOrmEjJCh6QPPU0TEoP0itntE3yilRBHqdAvUXim/k4UJJZyFAd6MiZqIBe9qfif18tV1PQKlmS5goTOF0U5xyrF0yJwyARQxUeaECqYvhXTARGEKl1XVZdgL355mThnjcuGfXtebzXLNiroCB2jU2SjC9RC16iNHETRE3pGr+jNmBgvxrvxMR9dMcrMIfoD4/MHd/iTlw==</latexit><latexit sha1_base64="sNITDSHupWtO9gszZYXUZkjWvFQ=">AAAB+nicbVDLSsNAFJ34rPUV69LNYBFclUQE667gxoWLCsYWmhAmk5t26OThzEQsaX/FjQsVt36JO//GaZuFth4YOJxzD/fOCTLOpLKsb2NldW19Y7OyVd3e2d3bNw9q9zLNBQWHpjwV3YBI4CwBRzHFoZsJIHHAoRMMr6Z+5xGEZGlyp0YZeDHpJyxilCgt+WZtPPTtMXY5PGD3RudC4pt1q2HNgJeJXZI6KtH2zS83TGkeQ6IoJ1L2bCtTXkGEYpTDpOrmEjJCh6QPPU0TEoP0itntE3yilRBHqdAvUXim/k4UJJZyFAd6MiZqIBe9qfif18tV1PQKlmS5goTOF0U5xyrF0yJwyARQxUeaECqYvhXTARGEKl1XVZdgL355mThnjcuGfXtebzXLNiroCB2jU2SjC9RC16iNHETRE3pGr+jNmBgvxrvxMR9dMcrMIfoD4/MHd/iTlw==</latexit><latexit sha1_base64="sNITDSHupWtO9gszZYXUZkjWvFQ=">AAAB+nicbVDLSsNAFJ34rPUV69LNYBFclUQE667gxoWLCsYWmhAmk5t26OThzEQsaX/FjQsVt36JO//GaZuFth4YOJxzD/fOCTLOpLKsb2NldW19Y7OyVd3e2d3bNw9q9zLNBQWHpjwV3YBI4CwBRzHFoZsJIHHAoRMMr6Z+5xGEZGlyp0YZeDHpJyxilCgt+WZtPPTtMXY5PGD3RudC4pt1q2HNgJeJXZI6KtH2zS83TGkeQ6IoJ1L2bCtTXkGEYpTDpOrmEjJCh6QPPU0TEoP0itntE3yilRBHqdAvUXim/k4UJJZyFAd6MiZqIBe9qfif18tV1PQKlmS5goTOF0U5xyrF0yJwyARQxUeaECqYvhXTARGEKl1XVZdgL355mThnjcuGfXtebzXLNiroCB2jU2SjC9RC16iNHETRE3pGr+jNmBgvxrvxMR9dMcrMIfoD4/MHd/iTlw==</latexit>

|k2|  ⇤
<latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit>

|k2|  ⇤
<latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit><latexit sha1_base64="EeJGQ0MyozshgutwfgFSk4ktAYU=">AAAB+nicbVDLSsNAFL2pr1pfsS7dDBbBVUmKYN0V3LhwUcHYQhPCZDJph04ezkzE0vZX3LhQceuXuPNvnLZZaOuBgcM593DvnCDjTCrL+jZKa+sbm1vl7crO7t7+gXlYvZdpLgh1SMpT0Q2wpJwl1FFMcdrNBMVxwGknGF7N/M4jFZKlyZ0aZdSLcT9hESNYack3q5Oh35ggl9MH5N7oXIh9s2bVrTnQKrELUoMCbd/8csOU5DFNFOFYyp5tZcobY6EY4XRacXNJM0yGuE97miY4ptIbz2+folOthChKhX6JQnP1d2KMYylHcaAnY6wGctmbif95vVxFTW/MkixXNCGLRVHOkUrRrAgUMkGJ4iNNMBFM34rIAAtMlK6rokuwl7+8SpxG/bJu357XWs2ijTIcwwmcgQ0X0IJraIMDBJ7gGV7hzZgaL8a78bEYLRlF5gj+wPj8AXmJk5g=</latexit>

|k1| > ⇤
<latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit>

|k1| > ⇤
<latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit><latexit sha1_base64="QZTDhVeEewy8inLTpoZRtPTBAHo=">AAAB93icbVBNS8NAFHzxs9aPRj16WSyCp5KIYL1IwYsHDxWMLbQhbDbbdulmE3Y3Qk37S7x4UPHqX/Hmv3Hb5qCtAwvDzBve2wlTzpR2nG9rZXVtfWOztFXe3tndq9j7Bw8qySShHkl4ItshVpQzQT3NNKftVFIch5y2wuH11G89UqlYIu71KKV+jPuC9RjB2kiBXRkPA3eMrlD31oQiHNhVp+bMgJaJW5AqFGgG9lc3SkgWU6EJx0p1XCfVfo6lZoTTSbmbKZpiMsR92jFU4JgqP58dPkEnRolQL5HmCY1m6u9EjmOlRnFoJmOsB2rRm4r/eZ1M9+p+zkSaaSrIfFEv40gnaNoCipikRPORIZhIZm5FZIAlJtp0VTYluItfXibeWe2y5t6dVxv1oo0SHMExnIILF9CAG2iCBwQyeIZXeLOerBfr3fqYj65YReYQ/sD6/AHgwZIZ</latexit>

|k2| > ⇤
<latexit sha1_base64="O0ZN2N1TCAB+cRck/iEveUd5rJs=">AAAB93icbVDLSsNAFL2pr1ofjbp0M1gEVyUpgnUjBTcuXFQwttCGMJlM2qGTBzMToab9EjcuVNz6K+78G6dtFtp6YOBwzj3cO8dPOZPKsr6N0tr6xuZWebuys7u3XzUPDh9kkglCHZLwRHR9LClnMXUUU5x2U0Fx5HPa8UfXM7/zSIVkSXyvxil1IzyIWcgIVlryzOpk5DUm6Ar1b3UowJ5Zs+rWHGiV2AWpQYG2Z371g4RkEY0V4VjKnm2lys2xUIxwOq30M0lTTEZ4QHuaxjii0s3nh0/RqVYCFCZCv1ihufo7keNIynHk68kIq6Fc9mbif14vU2HTzVmcZorGZLEozDhSCZq1gAImKFF8rAkmgulbERligYnSXVV0Cfbyl1eJ06hf1u2781qrWbRRhmM4gTOw4QJacANtcIBABs/wCm/Gk/FivBsfi9GSUWSO4A+Mzx/iT5Ia</latexit><latexit sha1_base64="O0ZN2N1TCAB+cRck/iEveUd5rJs=">AAAB93icbVDLSsNAFL2pr1ofjbp0M1gEVyUpgnUjBTcuXFQwttCGMJlM2qGTBzMToab9EjcuVNz6K+78G6dtFtp6YOBwzj3cO8dPOZPKsr6N0tr6xuZWebuys7u3XzUPDh9kkglCHZLwRHR9LClnMXUUU5x2U0Fx5HPa8UfXM7/zSIVkSXyvxil1IzyIWcgIVlryzOpk5DUm6Ar1b3UowJ5Zs+rWHGiV2AWpQYG2Z371g4RkEY0V4VjKnm2lys2xUIxwOq30M0lTTEZ4QHuaxjii0s3nh0/RqVYCFCZCv1ihufo7keNIynHk68kIq6Fc9mbif14vU2HTzVmcZorGZLEozDhSCZq1gAImKFF8rAkmgulbERligYnSXVV0Cfbyl1eJ06hf1u2781qrWbRRhmM4gTOw4QJacANtcIBABs/wCm/Gk/FivBsfi9GSUWSO4A+Mzx/iT5Ia</latexit><latexit sha1_base64="O0ZN2N1TCAB+cRck/iEveUd5rJs=">AAAB93icbVDLSsNAFL2pr1ofjbp0M1gEVyUpgnUjBTcuXFQwttCGMJlM2qGTBzMToab9EjcuVNz6K+78G6dtFtp6YOBwzj3cO8dPOZPKsr6N0tr6xuZWebuys7u3XzUPDh9kkglCHZLwRHR9LClnMXUUU5x2U0Fx5HPa8UfXM7/zSIVkSXyvxil1IzyIWcgIVlryzOpk5DUm6Ar1b3UowJ5Zs+rWHGiV2AWpQYG2Z371g4RkEY0V4VjKnm2lys2xUIxwOq30M0lTTEZ4QHuaxjii0s3nh0/RqVYCFCZCv1ihufo7keNIynHk68kIq6Fc9mbif14vU2HTzVmcZorGZLEozDhSCZq1gAImKFF8rAkmgulbERligYnSXVV0Cfbyl1eJ06hf1u2781qrWbRRhmM4gTOw4QJacANtcIBABs/wCm/Gk/FivBsfi9GSUWSO4A+Mzx/iT5Ia</latexit><latexit sha1_base64="O0ZN2N1TCAB+cRck/iEveUd5rJs=">AAAB93icbVDLSsNAFL2pr1ofjbp0M1gEVyUpgnUjBTcuXFQwttCGMJlM2qGTBzMToab9EjcuVNz6K+78G6dtFtp6YOBwzj3cO8dPOZPKsr6N0tr6xuZWebuys7u3XzUPDh9kkglCHZLwRHR9LClnMXUUU5x2U0Fx5HPa8UfXM7/zSIVkSXyvxil1IzyIWcgIVlryzOpk5DUm6Ar1b3UowJ5Zs+rWHGiV2AWpQYG2Z371g4RkEY0V4VjKnm2lys2xUIxwOq30M0lTTEZ4QHuaxjii0s3nh0/RqVYCFCZCv1ihufo7keNIynHk68kIq6Fc9mbif14vU2HTzVmcZorGZLEozDhSCZq1gAImKFF8rAkmgulbERligYnSXVV0Cfbyl1eJ06hf1u2781qrWbRRhmM4gTOw4QJacANtcIBABs/wCm/Gk/FivBsfi9GSUWSO4A+Mzx/iT5Ia</latexit>

Omitted
Figure 3: Triad interactions in wavevector space that are retained and discarded in the

generalized quasi-linear (QGL) approximation. Wavenumber cutoff Λ separates low- and

high-wavenumber modes that are indicated in the diagrams by respectively long- and short-

wavelength oscillations. In the retained diagrams, low wavenumber modes interact fully non-

linearly, whilst high wavenumber modes only interact quasilinearly with the low wavenubmer

modes. Λ = 0 corresponds to quasilinear dynamics and fully nonlinear dynamics is recov-

ered in the Λ → ∞. The GQL interpolates systematically between the QL approximation

and DNS.

(Marston et al. 2016). We note that the retention of this set of interactions is consistent

with QL when Λ = 0. Furthermore as Λx,Λy → ∞ the GQL system consists solely of

fully interacting low modes and returns to fully NL Direct Numerical Simulation, albeit

not necessarily monotonically. In particular, if the cutoff Λ is large (but not infinite) it is

possible that high modes will be stable and (unphysically) not have any energy (Hernández

et al. 2022a). GQL like QL is a conservative approximation but one that systematically

interpolates between QL and NL.

The utility of the GQL approximation compared with that of QL has been tested on

a number of paradigm turbulent fluid problems and MHD. These include the stochastic

driving of jets on a spherical surface and β-plane (Marston et al. 2016), three dimensional

plane Poiseuille and rotating Couette flow (Kellam 2019, Hernández et al. 2022a,b, Tobias &

Marston 2017), convectively driven zonal flows in a rotating annulus (Tobias et al. 2018) and
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the helical magnetorotational instability that is crucial to angular momentum transport in

disks (Child et al. 2016). Depending on the nature of the problem — in particular the degree

of non-normality of the linear operator (see below) — the QL and GQL approximations may

perform well or poorly in describing the statistics of the full system. However, what is clear

is that in almost all cases GQL constitutes an upgrade on QL in reproducing both mean

flows and low-order statistics (even for those systems that are fairly well represented by QL

approximations). The reason for this can be found in eddy-scattering. In this process energy

may be scattered between different small-scale wavenumbers (i.e. high modes) through an

interaction with a large-scale flow (i.e. a low mode); for example a k = 8 mode may scatter

energy into a k = 9 mode through interaction with a k = 1 mode. This interaction is allowed

in all forms of GQL, but forbidden in QL since there all non-zero wavenumber modes are

high modes and the high+high → high interactions are removed.

Recall that for any system the fluctuations can either act to modify the (weakly dis-

sipative) mean flow or, alternatively, interact with each other in a cascade and eventually

dissipate the energy via turbulent dissipation. The partitioning of the energy between these

two channels is system dependent and the ratio is linked to the Kubo number. The QL

approximation assumes that all of the energy in the fluctuations is involved in interactions

with the mean, and so the system saturates via a return to marginality. GQL does allow

some dissipation through the non-local cascade in wavenumber space and so allows one

to move away from the small Kubo number limit. The relative importance of these two

mechanisms is explored via an extended Orr-Sommerfeld stability analysis in (Markeviciute

& Kerswell 2022).

These properties of QL and GQL lead to the hypothesis that QL dynamics can be

utilised to bound transport in turbulent flows such as convection and wall-bounded tur-

bulence. Because QL removes the eddy + eddy → eddy interactions and hence minimises

the cascades that lead to dissipation, the solutions bound the transport. For example, we

hypothesise that QL solutions of convection act as bounds for the Nusselt number as a

function of Rayleigh number — numerical solutions certainly seem to suggest this. It re-

mains to be seen how tight these bounds can be made and whether the bounding can be

formalised.

2.9. What can we learn from the case where the mean state is independent of
time?

In this section we focus on cases where the averaging is temporal, leading to a mean state

u that is independent of time. This is the simplest case for which to describe many of the

phenomena, such as the role of noise and non-normality; though many of the considerations

will carry over to other methods of averaging. Hence for the fluid equations described

schematically by Equations 3 and 4, the mean equation simplifies to

0 = L[u] +N [u,u] +N [u′,u′]. 8.

In this paradigm the Reynolds stress term can be thought of as that external force required

for the mean field to be a stationary solution. The equation for the perturbations, which

takes the form

∂tu
′ = Lu[u′] + G[u′,u′], 9.
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is again quasilinear on the neglect of G[u′,u′], and for a mean state that is independent of

time can be solved by proposing solutions u′(x, t) = û′(x) exp(σ + iω)t, where

(σ + iω) û′ = Lu[û′]. 10.

There exists a special class of solutions to Equation (10) by σ = 0, ω 6= 0. For these

solutions, the perturbations are marginally stable to the quasilinear interaction with the

mean flow. Furthermore, if the basic state has the form of a periodic orbit (po) with period

Tpo = 2π/ωpo, then the averaging that yields a time-independent mean is an average over

a period of oscillation of the periodic orbit, and the limit cycle is said to satisfy the RZIF

property if ω = ωpo (and σ = 0) (see e.g. Barkley 2006, Turton et al. 2015) We stress

here that equations (8) and (10) are not closed, since the mean state has been supposed —

further elaborations to the theory are needed.

One avenue for progress is to attempt to restore some modelling of the “pain in the

neck term”. This has been implemented in the resolvent analysis of (McKeon & Sharma

2010). In this framework the nonlinear term is regarded as input for the linear operator

(iω − Lu)−1. Consider Equation (10) with σ = 0; solutions to this are in the kernel of

(iω − Lu). The resolvent operator approach studies the dynamics of the singular vectors

of (iω −Lu)−1 which are strongly amplified by this non-normal operator. Further analysis

involves identifying the frequency of the forcing that leads to the optimal growth of per-

turbations when supplied to the operator. In this framework the nonlinear terms in the

fluctuation equation are subdominant and act solely as the source of perturbations to a

singular linear operator (which is itself marginally stable to exponential growth because of

the saturation of the mean flow). Fluctuations about the mean state are caused solely by

transient amplification of the noise supplied by the nonlinear interactions of the fluctua-

tions themselves. Of course the fluctuations have played a role in saturating the mean; the

mean can be determined by temporally averaging a fully non-linear calculation (McKeon &

Sharma 2010) or by self-consistently solving the coupled set of equations

0 = L[u] +N [u,u] +N [u′,u′], 11.

(iω − Lu)û′ = f exp iωt. 12.

Note the difference in philosophy of the two approaches. In the first, where the mean

flow is taken as the average of a full simulation, it is known that the mean flow is, on

average, marginally stable. The fluctuations calculated by optimising the growth in Equa-

tion (12) contribute to the dynamics about that mean, but do not self-consistently drive

the mean. If the coupled system (11-12) is solved then the fluctuation is both optimal (in

terms of transient growth) and self-consistently drives the mean used in the operator of

the resolvent analysis. However, because the nonlinear term in the fluctuation equation

has been neglected the self-consistent mean flow is not that obtained from a fully nonlinear

simulation of the system — any differences can be ascribed to the replacement of the correct

nonlinearity with a periodic function.

Another solution procedure that yields self-consistent fluctuations and mean flows is

the SCM (self-consistent method) (Mantic-Lugo et al. 2015). In this paradigm, one solves

self-consistently for the mean flow and the leading order eigenmode of the system (uscm).

A return to marginality hypothesis further assumes that the resultant mean flow (Uscm) is

marginally stable (and so has an eigenvalue with zero real part). The resulting system is
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given by

0 = L[Uscm] +N [Uscm,Uscm] +N [uscm,u
∗
scm], 13.

0 = (iωscm − LUscm)uscm, 14.

where LUscm [·] = L[·] + N [· ,Uscm] + N [Uscm, ·]. This ansatz can be extended to higher

order (see e.g. Meliga 2017, Bengana & Tuckerman 2021). This takes the form

0 = L[U] +N [U,U] +
∑

1≤|m|≤M

N [um,u−m], 15.

(inω − LU)un =
∑

1≤|m|≤M
1≤|n−m|≤M

N [um,un−m], 16.

for 1 ≤ n ≤M . Although this procedure in the temporal domain is somewhat reminiscent of

the GQL approximation for spatial partitioning described above it is important to note that

in this ansatz, nonlinear interactions between the perturbation terms that do not contribute

to the evolution of the mean are included (Bengana & Tuckerman 2021).

A final approach to modelling the nonlinear term is to consider the response of the

equations linearised about the mean (in time) flow to stochastic forcing. It is now well

established that such linear models with white noise stochastic excitation can yield the

spatiotemporal features reminiscent of both fully-developed and transitional turbulence (see

e.g. Farrell & Ioannou 1993, Hwang & Cossu 2010a,b). Despite this success, it is clear that

modelling the nonlinear term as a white-in-time stochastic excitation does not reproduce the

correct statistics of the fluctuating velocity field, as perhaps might be expected (see e.g. Zare

et al. 2017, and the references therein). However, utilising the linearised equations renders

the system susceptible to the advanced methods of modern robust control (Zare et al. 2017),

so the question of the preferred form of the stochastic driving of the linearised equations may

be turned into one of optimisation, using a maximum entropy formulation together with a

regularization that serves as a proxy for rank minimization. (Zare et al. 2017) demonstrate

that the fully nonlinear and coloured-in-time stochastically driven linearized NS equations

can be made equivalent at the level of second-order statistics, for turbulent channel flow if

a suitable coloured-in-time stochastic driving is utilised.

3. QUASILINEAR STATISTICAL THEORIES AND DIRECT STATISTICAL
SIMULATION

Many quasilinear approximations have exact closures in terms of low-order statistical mo-

ments or cumulants, enabling their Direct Statistical Simulation (DSS) – that is, bypassing

numerical simulation of the QL EOMs to solve directly for their statistics. The first, sec-

ond and third cumulants are centered moments. (Fourth and higher cumulants differ from

centered moments. For example, the fourth cumulant vanishes for a normal distribution

whereas the fourth centered moment does not (Marston et al. 2019).) Introducing the first

and second equal-time cumulants

c(r) ≡ u(r),

c(r1, r2) ≡ u′(r1)⊗ u′(r2), 17.
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forcing. However, in QL and NL simulations, fluctua-
tions excite the damped manifold of modes predicted by
the S3T analysis to exist at subcritical forcing amplitudes.
This observation confirms the reality of the manifold of
S3T stable modes.
In NL and QL simulations, these stable modes pre-

dicted by S3T are increasingly excited as the critical
bifurcation point in parameter space is approached,
because their damping rate vanishes at the bifurcation.
The associated increase in zonal-mean-flow energy on
approach to the bifurcation point obscures the exact
location of the bifurcation point in NL and QL simula-
tions compared to the fluctuation-free S3T simulations
for which the bifurcation is exactly coincident with the
inception of the S3T instability (i.e., Fig. 14).

10. Verification in NL of the multiple jet equilibria
predicted by S3T

As is commonly found in nonlinear systems, the finite-
amplitude equilibria predicted by S3T are not necessarily

unique and multiple equilibria can occur for the same
parameters. S3T provides a theoretical framework for
studying these multiple equilibria, their stability, and bi-
furcation structure. An example of two such S3T equi-
libria is shown inFig. 17 togetherwith their associatedNL
simulations. As the parameters change, these equilibria
may cease to exist or become S3T unstable. Similar
multiple equilibria have been found in S3T studies of
barotropic beta-plane turbulence (Farrell and Ioannou
2003, 2007; Parker and Krommes 2014) and in S3T
studies of baroclinic turbulence (Farrell and Ioannou
2008, 2009c), and the hypothesis has been advanced
that the existence of such multiple jet equilibria may
underlie the abrupt transitions found in the record of
Earth’s climate (Farrell and Ioannou 2003; Wunsch
2003).

11. Conclusions

In this work, predictions of S3T for jet formation and
equilibration in barotropic beta-plane turbulence were
critically compared with results obtained using QL and
NL simulations. The qualitative bifurcation structure
predicted by S3T for emergence of zonal jets from a ho-
mogeneous turbulent state was confirmed by both the
QL and NL simulations. Moreover, the finite-amplitude
equilibrium jets in NL andQL simulations were found to
be as predicted by the fixed-point solutions of S3T. Dif-
ferences in jet formation bifurcation parameter values
between NL and QL–S3T were reconciled by taking ac-
count of the fact that the spectrum of turbulence is sub-
stantially modified in NL. Remarkably, the modification
of the spectrum in NL could be traced in large part to the
emergence of nonzonal structures through S3T insta-
bility. When account is taken of the modification of the
turbulent spectrum resulting substantially from these
nonzonal structures, S3T also provides quantitative
agreement with the threshold values for the emergence
of jets in NL. The influence of the background eddy
spectrum on the S3T dynamics was found to be im-
mediate, in the sense that in spinup simulations, jets
emerge in accordance with the instability calculated on
the temporally developing spectrum. The fact that jets
are prominent in observations is consistent with the
robust result that when a jet structure emerges, it has
primacy over the nonzonal structures, so that even if
the jet eigenfunction is not the most linearly S3T un-
stable eigenfunction, the jet still emerges at finite am-
plitude as the dominant structure.
These results confirm that jet emergence and equili-

bration in barotropic beta-plane turbulence results from
the cooperative quasi-linear mean flow–eddy instability
that is predicted by S3T. These results also establish that

FIG. 16. Hovm€oller diagrams of intermittent jet structure in NL
and QL simulations at subcritical forcing « 5 0.8«c. Shown are
U(y, t) for (a) NL and (b) QL simulations, and (c) the U(y, t) that
results from random excitation of the S3T damped modes. These
plots were obtained using IRFn with r 5 0.1 and rm 5 0.01. This
figure shows that the manifold of S3T damped modes are revealed
by being excited in the fluctuating NL and QL simulations. Plan-
etary vorticity gradient is b 5 10.

1836 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 71

Figure 4: Hovmöller diagrams of stochastically forced barotropic flows showing that tran-

sient jets can be reproduced in quasilinear dynamics. Figure adapted with permission from

(Constantinou et al. 2014b) ©American Meteorological Society 2014.

and using the identity

u′(r1) =

∫
δ(r1 − r2) I u′(r2) dr2, 18.

where I is the identity matrix, the average of the nonlinear term in Equation 3 may be

rewritten in such a way that the two appearances of u′ on the RHS may be brought together

to form the second cumulant, so that the evolution equation for the mean can be written

∂tu = L[u] +N [u,u] +

∫
N [u′(r1)⊗ u′(r2), δ(r1 − r2) I]dr2. 19.

This may now be expressed in terms of the first and second cumulants as:

∂tc(r1) = L[c(r1)] +N [c(r1), c(r1)] +

∫
N [c(r1, r2), δ(r1 − r2)I]dr2, 20.
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where it is understood that N acts only on r1 and its associated vector in second cumulant

Equation 17; the second coordinate r2 and vector come along for the ride. The EOM for the

second cumulant may be found by multiplying Equation (4) by u′(r2) followed by averaging.

This yields:

∂tc(r1, r2) = Lc(r1)[c(r1, r2)] + Lc(r2)[c(r1, r2)],

= 2{Lc(r1)[c(r1, r2)]} 21.

where the operator Lc(r1), introduced in Equation 4, acts only upon the r1 coordinate.

Here we have introduced the short-hand notation {} for symmetrization that maintains the

invariance of the statistics under interchanges of the field points c(r1, r2) = c(r2, r1); explic-

itly, {c(r1, r2)} ≡ 1
2
[c(r1, r2) + c(r2, r1)]. The equations of motion for the two cumulants,

Equations 20 and 21, are closed because the “pain in the neck” term has been dropped.

Had it been included, the second cumulant would have coupled to the third cumulant, the

third to the fourth, and it would be turtles all the way down the hierarchy of cumulants

(Marston et al. 2019). One might assume that closure at second order implies Gaussian

statistics but this is not the case. The decoupling of the first and second cumulants from

the third and higher cumulants in the quasi-linear approximation does not mean that the

higher cumulants necessarily vanish but only that they do not affect the first two cumulants.

Highly non-Gaussian statistics can appear in quasilinear approximations (see Section 3.4

below).

The CE2 closure, based as it is upon quasilinear dynamics, is a conservative approxi-

mation and also realizable: The second cumulant is a positive-definite matrix (Kraichnan

1980) or more precisely positive-definiteness may be enforced. The rank instability (see

Section 3.2) may lead to negative eigenvalues that should be projected out to ensure stabil-

ity. The statistical formulation has several limitations. It is not obvious how higher-order

nonlinearities such as step functions (for instance to account for latent heat release) may be

incorporated. Correlations between fields at two different times would seem to be excluded

despite the fact that lagging correlations may be stronger than equal-time correlations.

Stochastic forcing may however be included in this statistical formulation by adding the

covariance matrix to the RHS of Equation 21 so long as the noise is delta-correlated in time.

Stochastic Structural Stability Theory (SSST / S3T), part of a program of Statistical

State Dynamics (SSD), is related to CE2. CE2 and S3T differ, however, as S3T usually

includes small-scale stochastic forcing that is delta-function correlated in time to represent

the missing eddy + eddy → eddy scattering. Energy injected by the random forcing is

balanced by damping. S3T is also often applied to mean flows which do not have linearly

unstable modes as it focuses on non-normal growth and decay of the stable modes that

are driven by stochastic forcing. S3T has been used to study zonostrophic instabilities in

barotropic flows (Bakas & Ioannou 2011, 2013), the evolution of jets (Farrell & Ioannou

2003, 2007, Constantinou et al. 2014a), and non-zonal (Bakas & Ioannou 2014) coherent

structures.

CE2 has often been applied to flows with instabilities. In the geophysical and astrophys-

ical context this includes (Marston et al. 2008, Marston 2010, 2012, Plummer et al. 2019).

It also takes a different approach than S3T by not attempting to parameterizing eddy–

eddy interactions. The absence of an adjustable parameter means that CE2 has greater

predictive power than S3T but is also more likely to fail to reproduce NL dynamics. These

failures can be quite instructive (See (Tobias & Marston 2013) and Figure 7). CE2 has

been used in problems as ambitious as three-dimensional plasmas (Squire & Bhattacharjee
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2015). The “curse of dimensionality” becomes pressing as the spatial dimension increases

from 2 to 3 and methods to tame it may be required (see Section 3.5).

3.1. Methods of solution for fast/slow QL equations

Having derived quasilinear equations (sometimes via an asymptotic procedure), it is sensible

to exploit the structure of the equations in their solution. Usually the system takes the

form of equations that admit solutions for the mean that are relatively slowly varying

and equations for either the fluctuations (for QL) or for the evolution of the correlation

functions (for statistical theories (DelSole & Farrell 1996)). Different strategies for solution

may be needed for the two different cases, since the fluctuations evolve on a much more rapid

timescale than their correlation functions (which usually evolve on the same timescale as the

mean flows for a QL theory). For QL DNS, strategies may be developed that make use of the

separation of timescales, either by utilizing a HMM-like solver that combines a macrosolver

with a large integration timestep for the slow (mean) dynamics and a microsolver for the

fast dynamics (see e.g. Tretiak et al. 2022) or by exploiting the linearity of the equations

for the fluctuations (Michel & Chini 2019). Whilst the first method is a general tool that

works well for general situations where the timescales are well separated, even for the case

where the fast dynamics is inherently nonlinear, the second method utilizes the linearity of

the fast system, and therefore the fact that the slow field must stay close to a state of near

marginality to achieve additional efficiency. For quasilinear DSS (CE2), both equations

evolve on a slow manifold and large timesteps are possible using implicit Krylov subspace

methods (Saad 2003). Indeed, here the ultimate attractor for the statistics can sometimes

be found directly using minimisation techniques (Li et al. 2021a,b), though it is unclear

when these are competitive with the timestepping methods described above.

3.2. Rank of the Second Cumulant

As discussed above in Subsection 3 the equations of motion for equal-time cumulants close

exactly at second order in the quasilinear approximation. One might be tempted to conclude

that statistics thus obtained should agree exactly with those found from averaging the

quasilinear dynamics. Surprisingly this turns out not to not always be the case (Nivarti

et al. 2022). Because the second cumulant has more degrees of freedom than the dynamical

fields themselves (for instance in Equation 17 the second cumulant depends on two spatial

coordinates) there can be instability in rank even when it is initialized to be unit rank as

in Equation 17. For the case of zonal or spatial averaging, the rank instability may then

lead to a difference in the distribution of spectral power at different zonal wavenumbers.

We illustrate the rank instability here on the unit radius sphere with fully spectral

code2. The time evolution of the radial component of the relative vorticity ζ ≡ r̂ · (∇× u)

is given by

∂tζ = J [ψ, ζ] + ν∇2ζ + F (θ), 22.

where u is the velocity, J [ψ, ζ] is the Jacobian on the sphere and the streamfunction ψ ≡
∇−2ζ. Kolmogorov-like forcing is chosen to be F (θ) = a(P2(cos θ) + 8P8(cos θ)), where

P` are Legendre polynomials and θ is the co-latitude. Figure 5 shows that while there is

2The macOS app “GCM” that implements the simulations shown in Figures 5, 6, and 7 can be
downloaded at URL https://apps.apple.com/us/app/gcm/id592404494?mt=12
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Figure 5: Power spectra of QL simulations (left) and CE2 (right). The zonal wavenumber

m is plotted on the vertical axis, and the spherical wavenumber ` is along the horizontal

axis. Top: With weak forcing, QL and CE2 agree. Bottom: For strong forcing, QL has

energy in zonal mode m = 3 not found in CE2 due to a rank instability (see Section 3.2).

perfect agreement between QL and CE2 for gentle forcing (a = 0.25), the power spectra

disagree at strong forcing (a = 1.0) with QL showing energy at zonal wavenumber m = 3

whereas no such energy is found in CE2. Note that the second cumulant, as calculated

from zonal averaging snapshots of the QL flow, always has a rank of 0 or 1 at each zonal

wavenumber. Here by contrast the rank of the second cumulant obtained from CE2 is

greater than 1 for the zonal wavenumbers with energy.

The possible presence of the rank instability for stochastically forced models, or for

ensemble averaging, are questions for further investigation. Both QL and CE2 are approx-

imations to the full dynamics so the existence of the rank instability does not necessarily

mean that CE2 is less accurate than statistics obtained from QL. Indeed the initial con-

dition for CE2 is often chosen to have a maximal rank second cumulant (sometimes this

is called the “maximal ignorance” initial condition) and thus it may be the case that CE2

offers an advantage over QL as the choice of initial condition amounts to a form of ensemble

averaging that may be carried out alongside spatial averaging.

3.3. Generalized Cumulant Expansion

An attractive feature of GQL is that, like QL, the equations for the equal-time statistics

close exactly at second order. This closure, the Generalized Cumulant Expansion (GCE2)

leverages the linearity of the EOM for the high wavenumber GQL modes, given by Eqn. (7).

Therefore, in the GQL approximation, the EOM for the two-point statistic uh(r1) uh(r2)

closes and can be evolved in time with no further approximation beyond the one already

made in GQL. (The low-wavenumber modes ul(r) continue to evolve fully nonlinearly as in

GQL.) GCE2 is automatically realizable because it is an exact closure of the GQL dynamics,
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Figure 6: Top: Stress exerted on a component of the mean flow by eddies forced with

stochastic Gaussian white noise exhibits large excursions. Bottom: The invariant measure

of the Reynold’s stress is highly non-Gaussian and well approximated by two exponentials.

The distribution for the dynamically-evolving mean flow of the quasilinear approximation

is, in this case, agrees well with a simulation in which the mean-flow is frozen at its time-

mean value. The generating functional for the statistics can be found by solving the Ricatti

equation, a non-linear generalization of the Lyapunov equation, matching simulation well

(not shown; see (Bouchet et al. 2018)).

and should give a more accurate reprentation of the true statistics than CE2. An as-yet

unanswered question is to what extent the rank instability discussed in Section 3.2 affects

GCE2.

3.4. Large Deviations

The statistical description of a flow is more than just its low-order moments. Large Devia-

tion Theory (Touchette 2009) provides access to rare events and large departures from the

mean. For example, the statistics of the stress exerted on the mean-flow of a stochastically-

driven jet can be recovered analytically, in the limit of a slowly-changing mean-flow, by

solving a non-linear version of the Lyapunov equation called the Ricatti equation (Bouchet

et al. 2018). Because the equations of motion for the equal-time cumulants close at sec-

ond order, it may seem surprising that highly non-Gaussian statistics appear, as evident in

Figure 6. This can, however, be understood as a consequence of the averaging operation

which is a spatial average in one (zonal) direction and not an ensemble average. Large
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deviation theory has been used to access rare transitions in barotropic flows (Bouchet et al.

2014, Laurie & Bouchet 2015) but it is currently not known how to apply it to quasilinear

dynamics with rapidly fluctuating mean flows (Figure 4), nor to deterministically driven

flows. This could be a fruitful direction for future research.

3.5. Dimensional Reduction via Machine Learning

Power spectra produced by quasilinear dynamics typically show that fewer wave modes are

excited than in fully nonlinear simulations. This facet has been explored by combining the

quasilinear approximation proper orthogonal decomposition (POD; equivalent to principle

component analysis or PCA, and empirical orthogonal functions or EOFs) (Allawala et al.

2020, Skitka et al. 2020-03, Nikolaidis et al. 2021). Nowadays POD is often called a form of

unsupervised machine learning despite its venerable history that predates machine learning.

The reduced dimensionality of the QL approximation can be quantified by POD of the

second cumulant. Quasilinear approximations and second order cumulant expansions of

reduced dimensionality may then continue to capture the important features of the flows,

with reduced computational work.

A new basis of lower dimensionality that optimally represents the second cumulant may

be found by Schmidt decomposition of the zonally-averaged second moment:

c(r1, r2) =
∑
i

λi vi(r1)⊗ vi(r2) . 23.

Here vi(r) is an eigenvector of the second cumulant with eigenvalue λi that should be both

real and non-negative (Kraichnan 1980). Retention of only the eigenvectors with eigenvalues

that exceed a preset threshold yields a new basis for reduced QL or CE2. Application of

POD to forms of DSS such as CE2 is particularly attractive because low-order statistics are

typically much smoother than instantaneous dynamics (Allawala et al. 2020) and thus it is

natural to work directly with the EOMs for the statistics themselves.

Areas for future exploration include the use of neural networks such as autoencoders

for dimensional reduction (Spears et al. 2018) as well as the use of machine learning to

adaptively evolve the optimal basis for DSS.

3.6. Reduced Models for Deeper Understanding

Perhaps as important as the reduction in computational complexity is the use of reduced

statistical models to identify the important modes, leading to physical insight not apparent

in the fully nonlinear dynamics. For example, jet formation as a problem of pattern forma-

tion has seen progress in the work of Parker and Krommes (Parker & Krommes 2013, 2014)

who used the CE2 framework to derive a real Landau-Ginzburg equation for the study of

jet bifurcations near the threshold for jet formation.

A richer system that is still not fully understood is the classic problem of fluid flowing

through a pipe with a circular cross section. A pressure difference between the two ends of

the pipe drives a volume flux. As the pressure gradient is increased, so does the difference

in velocity between the center of the flow and its edges. The increasing importance of

inertial forces relative to viscous forces is described by an increasing Reynolds number. At

a critical value of the Reynolds number the flow undergoes a subcritical transition from a

smooth laminar state to intermittent turbulence characterized by puffs of turbulence flow

separated by laminar regions. Further increases of the Reynolds number leads eventually
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to turbulence throughout the pipe. Note that all this turbulent dynamics occurs when the

laminar profile is linearly stable against small perturbations; laminar flow is only disrupted

and driven turbulent by a significant disturbance.

Experiments and simulations now provide strong evidence that the transition to tur-

bulence in pipe flow is a second-order phase transition in the universality class of directed

percolation, with the same critical exponents (Shih et al. 2015, Barkley 2016). This nat-

urally raises the question as to whether a map can be found between pipe flow and flow

through a porous material. Two possible routes have been suggested for constructing such

a map. (Barkley 2016) summarizes a body of work that exploits a deep connection between

pipe flow and excitable and bistable media, and is based on the interplay between the mean

shear and turbulence. (Shih et al. 2015) suggest thinking in terms of predator - prey ecol-

ogy, with the turbulence (prey) generated by an instability acting to drive a zonal flow

(predator) that, when large enough, suppresses the turbulence, resulting in Lotka-Volterra

type dynamics. Ultimately, these kinds of maps could provide a tool for determining when

a flow of any scale transitions from laminar to turbulent, while avoiding computationally

intensive simulations. It would be interesting to determine whether or not either of these

simplified models emerge from dimensionally-reduced quasilinear simulations of pipe flow

(Willis & Kerswell 2007).

4. BEYOND QUASILINEARITY

Quasilinear theories include a broad range of different approximations. Averages can be

taken over space, time, or ensembles. The spatial mean itself can be generalized to include

long-wavelength fluctuations (GQL). Discarded interactions can be parameterized by the

introduction of stochastic forcing. An important lesson that can be drawn from the body of

literature is that frequently we learn more about fluids when the quasilinear approximation

breaks down, than when it works well.

Nevertheless it can also be enlightening to push statistical theories beyond quasilinearity.

Extending the cumulant expansion beyond second order is relatively straightforward, and

brings in the neglected “pain in the neck” eddy + eddy → eddy processes neglected at

second order. Figure 7 shows a comparison of the zonal mean flow generated by rotating

barotropic flow on the sphere stirred by stochastic forcing as calculated in the various

approximations discussed in this review (see Figure 1).

4.1. Higher-order Cumulant Expansions

Closure at third-order, CE3, is achieved by discarding the contribution to the tendencies of

the cumulants from the 4th and higher cumulants. The approximation is no longer realizable

unless further measures are taken (Marston et al. 2019), but may be made realizable by

assuming that the third cumulant evolves rapidly in comparison with the first and second

cumulant. This assumption, in combination with the introduction of an eddy-damping

time τ to parameterize the missing 4th cumulant, means that the prognostic equation for

the third cumulant may be promoted to a diagnostic one. A further simplification that

leads to faster computation involves the neglect of all contributions involving the first order

cumulant in the equation for the third cumulant. The third order cumulant is then given

diagnostically by a product of two second order cumulants coupled together by the quadratic
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Figure 7: Hovmöller plots of the zonal mean zonal velocity of a stochastically forced

barotropic jet on a rotating sphere. A detailed description of the model can be found

in (Marston et al. 2019). Time averaging commences at 400 days as indicated by the black

vertical line. The different approximations correspond to those shown in the schematics of

Figure 1. For CE2.5 the eddy damping time is chosen to be τ = 2 days; for GQL and

GCE2 the wavenumber cutoff Λ = 1, the minimal extension beyond QL and CE2. Note

that counterflow is not found at high latitudes in the QL approximation and its closure

(CE2) due to the absence of eddy + eddy → eddy interactions that are responsible for the

transport of angular momentum away from low latitudes. This defect of the quasilinear

approximation is corrected in the GQL, GCE2 and CE2.5 approximations.

nonlinearity:

1

τ
c(r1, r2, r3) = {N [c(r1, r2), c(r1, r3)]} . 24.

In the cumulant hierarchy, the third cumulant then drives the tendency of the second cumu-

lant much like the covariance matrix of stochastic forcing. This is the CE2.5 approximation

(Marston et al. 2019, Li et al. 2021b) and it is often found to be the case that the statistics

are insensitive to the precise value of τ , suggesting that further reductions in computational

intensity may be achievable. CE2.5 may be regarded as a generalization of the eddy-damped

quasi-normal Markovian (EDQNM) approximation (Orszag 1970, 1977) to treat anisotropic

and inhomogeneous flows Legras (1980-01).
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4.2. Fokker-Planck Equation and Direct Interaction Approximation

Expansions in equal-time cumulants beyond second order require a sharp increase in com-

putational power as the third and higher cumulants involve more and more coordinates and

thus have increaingly high dimension. This “curse of dimensionality” becomes acute for

more ambitious forms of DSS, such as the Fokker-Planck equation that, for continuous fluid

systems, takes the form of a functional differential equation (Venturi 2018). The stationary

solution of the Fokker-Planck equation is the probability distribution function or invariant

measure that includes information about all equal-time correlations, and thus cumulants,

as well as rare events. As it is a linear equation, the stationary state of the Fokker-Planck

equation may be found by numerical linear algebra algorithms (Allawala & Marston 2016).

A recent effort to reduce the dimensionality of the functional equation may show some

promise (Chen & Majda 2017).

By contrast the Direct Interaction Approximation (DIA) (Kraichnan 1959, 1961, 1964)

encodes information about non-equal time correlations but thus far only limited progress

has been made on anisotropic (Domaradzki & Orszag 1987-09) and inhomogeneous (Okane

& Frederiksen 2004, Frederiksen & Okane 2018) turbulence, though see also the excellent

review by (Yokoi 2019) who also discusses such elaborations as the extension of the DIA

approximation to two scales. This nevertheless may be an interesting avenue for future ex-

ploration, especially for wave-dominated dynamics for which correlations at different times

can be large.

4.3. Functional Renormalization Group

The success of the renormalization group approach to understanding equilibrium critical

phenomena led to enthusiastic efforts in the 1980s to try to understand power law scaling

seen in fluids experiments and in simulations of homogeneous and isotropic turbulence but

these ran into many technical difficulties. The functional renormalization-group approach

(Dupuis et al. 2021) that generalizes ordinary renormalization group calculations to track

the flow of entire functionals of the fields appearing in the effective action, instead of a small

set of coupling constants, shows promise in surmounting some of these difficulties, going

beyond K41 theory (Yaglom 1994) to describe intermittency (Canet et al. 2016). The ap-

proach not only quantifies how energy cascades from lengthscale to lengthscale, as predicted

by Kolmogorov scaling, but may also describe physics that goes beyond Kolmogorov theory.

Most effort has been focused on the problem of homogeneous and isotropic turbulence for

which the correlations have the highest symmetry, but it appears that the approach may be

amenable to treating inhomogeneous and anisotropic turbulence. The overview presented

here suggests that technical difficulties encountered due to the reduced symmetry of such

flows may be compensated by the existence of systematic expansion parameters that could

be exploited.

5. CONCLUSION

This review has summarised historical and current efforts to provide a theoretical and

computational framework for inhomogeneous and anisotropic turbulence interacting with

mean flows or magnetic fields. The underlying interactions for such systems differ markedly

from the oft-studied, but less oft-observed, paradigm case of homogeneous, anisotropic flows

— and the methods employed are likewise qualitatively different. Many open questions
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remain and further progress is anticipated.

We have discussed how quasilinear models (and generalisations thereof) can yield a

first-order approximation for the relevant dynamics and may also lead to the development

of statistical theories for the evolution of the low-order statistics. Such theories may be ex-

tended to treat nonlinearities more fully via the inclusion of more of the triadic interactions

(GQL and GCE2) or higher cumulants (CE3 / CE2.5). These extensions rapidly becomes

computationally expensive owing to the curse of dimensionality and the goal then becomes

one of constructing computationally efficient algorithms via model reduction. Some early

progress along this line was sketched.

We predict that future research will involve the incorporation of data-driven methods

into this statistical framework — for example via learning the low-order statistics from local

models to enable the efficient integration of global models. We also believe that the local

nature of the statistical framework will naturally lend itself to GPU, and possibly quantum,

computation.
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6. TERMS AND DEFINITIONS

1. CE2: Second-order cumulant expansion.

2. CE2.5: Closure with third cumulant determined diagnostically from second cumu-

lants.

3. CE3: Third-order cumulant expansion.

4. DIA: Direct interaction approximation.

5. DNS: Direct numerical simulation.

6. DSS: Direct statistical simulation.

7. EDQNM: Eddy-damped quasi-normal Markovian approximation.

8. EOM: Equation of motion.

9. GCE2: Generalized second order cumulant expansion.

10. GQL: Generalized quasilinear.

11. NL: (Fully) Nonlinear.

12. POD: Proper Orthogonal Decomposition

13. QL: Quasilinear.

14. RDT: Rapid distortion theory.

15. RNL: Restricted non-linear approximation.
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16. S3T / SSST: Stochastic structural stability theory.

17. SSD: Statistical state dynamics.
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Zare A, Jovanović MR, Georgiou TT. 2017. Colour of turbulence. Journal of Fluid Mechanics

812:636–680

Zhang C, Lawrence A, Marston B, Kushner PJ. 2019. Infinite u(1) symmetry of the quasi-linear

28 Marston & Tobias



approximation, In 22nd Conference on Atmospheric and Oceanic Fluid Dynamics. AMS

Zhou Y. 2021. Turbulence theories and statistical closure approaches. Physics Reports 935:1–117

Zhu Z, Li C, Marston JB. 2021. Topology of rotating stratified fluids with and without background

shear flow. arXiv:2112.04691

www.annualreviews.org • Anisotropic and Inhomogeneous Turbulence 29


	1 INTRODUCTION
	2 QUASILINEAR DYNAMICS
	2.1 Historical Perspective
	2.2 Choices for Averaging
	2.3 Nature of the Quasilinear Approximation
	2.4 Asymptotic theories that lead to QL systems
	2.5 Infinite U(1) Symmetry
	2.6 Waves of Topological Origin
	2.7 Three Dimensional Quasilinear Models
	2.8 Generalized Quasilinear Approximation
	2.9 What can we learn from the case where the mean state is independent of time?

	3 QUASILINEAR STATISTICAL THEORIES AND DIRECT STATISTICAL SIMULATION
	3.1 Methods of solution for fast/slow QL equations
	3.2 Rank of the Second Cumulant
	3.3 Generalized Cumulant Expansion
	3.4 Large Deviations
	3.5 Dimensional Reduction via Machine Learning
	3.6 Reduced Models for Deeper Understanding

	4 BEYOND QUASILINEARITY
	4.1 Higher-order Cumulant Expansions
	4.2 Fokker-Planck Equation and Direct Interaction Approximation
	4.3 Functional Renormalization Group

	5 CONCLUSION
	6 TERMS AND DEFINITIONS

