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Abstract

While the first time-of-flight (TOF)-positron emission tomography (PET) systems were

already built in the early 1980s, limited clinical studies were acquired on these scanners.

PET was still a research tool, and the available TOF-PET systems were experimental. Due

to a combination of low stopping power and limited spatial resolution (caused by

limited light output of the scintillators), these systems could not compete with bismuth

germanate (BGO)-based PET scanners. Developments on TOF system were limited for

about a decade but started again around 2000. The combination of fast

photomultipliers, scintillators with high density, modern electronics, and faster

computing power for image reconstruction have made it possible to introduce this

principle in clinical TOF-PET systems. This paper reviews recent developments in

system design, image reconstruction, corrections, and the potential in new applications

for TOF-PET. After explaining the basic principles of time-of-flight, the difficulties in

detector technology and electronics to obtain a good and stable timing resolution are

shortly explained. The available clinical systems and prototypes under development are

described in detail. The development of this type of PET scanner also requires modified

image reconstruction with accurate modeling and correction methods. The additional

dimension introduced by the time difference motivates a shift from sinogram- to

listmode-based reconstruction. This reconstruction is however rather slow and

therefore rebinning techniques specific for TOF data have been proposed. The main

motivation for TOF-PET remains the large potential for image quality improvement and

more accurate quantification for a given number of counts. The gain is related to the

ratio of object size and spatial extent of the TOF kernel and is therefore particularly

relevant for heavy patients, where image quality degrades significantly due to increased

attenuation (low counts) and high scatter fractions. The original calculations for the

gain were based on analytical methods. Recent publications for iterative reconstruction

have shown that it is difficult to quantify TOF gain into one factor. The gain depends on

the measured distribution, the location within the object, and the count rate. In a

clinical situation, the gain can be used to either increase the standardized uptake value

(SUV) or reduce the image acquisition time or administered dose. The localized nature

of the TOF kernel makes it possible to utilize local tomography reconstruction or to

separate emission from transmission data. The introduction of TOF also improves the

joint estimation of transmission and emission images from emission data only. TOF is

also interesting for new applications of PET-like isotopes with low branching ratio for

positron fraction. The local nature also reduces the need for fine angular sampling,

which makes TOF interesting for limited angle situations like breast PET and online

dose imaging in proton or hadron therapy. The aim of this review is to introduce the
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reader in an educational way into the topic of TOF-PET and to give an overview of the

benefits and new opportunities in using this additional information.

Keywords: PET, Time-of-flight, Reconstruction

Introduction

Positron emission tomography (PET) is based on the principle of opposed 511-keV pho-

tons originating from the annihilation of emitted positron with a nearby electron. In

conventional PET coincidence electronics are used to determine along which line of

response (LOR) an annihilation has occurred. Time-of-flight (TOF)-PET goes one step

further, and we try to determine approximately the position of annihilation along the line

of annihilation (Fig. 1) using the measured difference in arrival times.

The principle of TOF has been proposed in the early days of PET technology (Fig. 1). It

has resulted in different developments of prototypes during the 1980s [1–7]. These sys-

tems used barium fluoride (BaF2) or cesium fluoride (CsF) as a scintillator. For complete

systems, timing resolutions around 500 ps were obtained. Due to the limited stopping

power of the used scintillators, these systems had limited spatial resolution and sensi-

tivity. Therefore, they were not competitive with the high-density scintillator bismuth

germanate (BGO)-based systems, which were developed in the same period. The major

technology used were block detectors based on pixelated BGO with light sharing to

large photomultiplier tubes (PMTs). These had better spatial resolution than the systems

Fig. 1 Compared to conventional PET, the estimated time-of-flight difference (�t) between the arrival times

of photons on both detectors in TOF-PET allows localization (with a certain probability) of the point of

annihilation on the line of response. In TOF-PET, the distance to the origin of scanner (�x) is proportional to

the TOF difference via the relation: �t: �x =
c�t

2 , where c is the speed of light. t1 is the arrival time on the

first detector, and t2 is the arrival time on the second detector
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based on CsF or BaF2, which used one-to-one coupling on PMTs (except the SuperPET

systems from TerPogossian in late 1980s based on BaF2). During the 1990s, the develop-

ments on TOF technology were limited and BGO was the dominant scintillator for PET

systems.

An important component in the revival of TOF developments during the last century

was the availability of lutetium oxyorthosilicate (LSO). This scintillator has good timing

resolution and has also excellent specifications for stopping power and energy resolution.

Together with the availability of fast photomultiplier tubes and improved electronics,

this has stimulated the development of new TOF-PET systems [8, 9]. The required cali-

bration techniques were further developed, and iterative reconstruction algorithms were

modified to incorporate TOF-specific corrections. Sufficient computing power for image

reconstruction is now achieved using parallel processing on small computer clusters.

Besides LSO (patented by Siemens) also lutetium-yttrium oxyorthosilicate (LYSO) [10]

(with similar properties as LSO) was introduced in the early 2000s. The combination of

these developments has led to the first commercially available TOF-PET scanner [11, 12]

in 2006, and several other commercial systems have recently become available [13, 14].

The main motivation for TOF-PET has always been the potential image quality

improvement or reduction in image acquisition time of TOF-PET [9, 15, 16]. This gain is

related to the object size, and the largest gain can be expected in heavy patients, which suf-

fer most from poor image quality. The gain has been mentioned and quantified in several

studies [12, 17]. Using simulated and measured data, different papers have more recently

shown the improved image quality [18–20], especially for heavy patients with lower con-

trast lesions [21], but also the dependency of the gain on the distribution and the location

in the body [22]. TOF-PET can be easily compared with PET data for the same study as the

TOF information can be ignored during reconstruction, modeling in the reconstruction

(point spread function (PSF) and/or TOF) can be turned off. For reconstruction of the

measured data, several options are available ranging from very fast, approximate methods

like rebinning [23–25], methods based on a limited number of histoprojections [26], or

histoimages and computationally intensive listmode reconstruction methods with min-

imal approximations [27]. Further progress on the readout and electronics is still being

made. Scintillators like lanthanum bromide, LaBr3, and improved light detectors (sili-

con photomultipliers (SiPMs)) have promising characteristics, that can lead to TOF-PET

systems with timing resolutions below 400 ps [28–30].

The goal of this review is to describe the recent developments (after 2000) on

TOF-PET. The paper reviews the different clinical and prototype systems and the

recent developments in image reconstruction and correction techniques. Afterwards,

an overview of the papers predicting and evaluating the image quality gain is

given. The final part of the review illustrates the potential of TOF-PET for new

applications.

Review

TOF-PET systems

The most current clinical TOF-PET-CT systems have a time of flight resolution in the

range of 500–600 ps. This timing resolution is determined by the different components

involved in the detection process: the scintillator, the photomultiplier tubes, and the

processing electronics. This is shown in Fig. 2.
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Fig. 2 A clinical TOF-PET scanner is a well-balanced combination of fast scintillators, readout hardware, and

accurate reconstruction and corrections

The first necessary component is the use of a sufficiently fast scintillator (and preferably

sufficiently high stopping power). The current available scintillators (which are avail-

able in large quantities) are LSO, LYSO, and LaBr3. LuI3 and LuAG (Ce or Pr) are new

scintillators, which have very promising characteristics for TOF but are now only avail-

able in smaller samples, and it will be very challenging to transition these to large-scale

quantities [31–34].

The specifications of these scintillators are given in Table 1; the specifications of LuI3

are not given because of the early stage of development of this scintillator.

The second component is a fast PMT with fast rise time, low transit-time spread (TTS),

and high quantum efficiency (QE) at the wavelength of the emitted photoelectrons. Also

the size, surface of the scintillator, and the light guide (integrated in the detector module)

have an important influence on the timing characteristics. Once a sufficiently fast scin-

tillator is used in combination with a fast PMT, it is necessary to avoid degradation of

timing accuracy in the electronics processing. A detailed description of the role and rela-

tive importance of each of these components are not within the scope of this review but

has been described in several other papers [35–39].

Clinical TOF-PET/CT and TOF-PET/MRI systems

The different companies in the domain of medical imaging have now all introduced

time-of-flight technology in their whole body PET/CT and some in their PET/magnetic

resonance imaging (MRI) systems.

Table 1 Properties of scintillators used in TOF systems

Property LYSO (10 % Y) LSO LaBr3

Attenuation coefficient (cm−1) 0.86 0.90 0.47

Decay time (ns) 40 40 27

Light output (photons/MeV) 25–30,000 25–30,000 60,000
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The Philips Gemini TF scanner [11] was the first clinical TOF-PET/CT scanner and has

been installed (since 2006) at a large number of hospitals. This scanner operates in 3D

mode and has the following reported specifications: 11.5 % energy resolution and a timing

resolution of 585 ps. The LYSO crystals have a 4 × 4 × 22 mm3 size, and the measured

spatial resolution of the system (at 1 cm) is 4.7 mm both transversely and axially. The

PET sensitivity at the center is 7 cps/kBq (NEMA 2001). The peak noise equivalent count

rate (NECR, a global metric, that accounts for the propagation of noise due to scatter and

random correction, related to image signal-to-noise) is about 110 kcps (NEMA 2001). The

lower energy threshold of this system is 440 keV, and the width of the coincidence window

is 6 ns. Compared to other PET systems, this design is based on a continuous light guide

and anger logic detection scheme. The timing resolution (at low count rates) of the first

version was 550 ps. From amore recent big bore version of this scanner (oriented towards

radiotherapy) with improved electronics, timing resolutions were measured at low rates

around 500 ps. The transverse Field-Of-View (FOV) of this scanner is 85 cm instead of

the conventional 70 cm. The sensitivity is equal, but due to the reduced shielding, the

PET peak NECR is reduced to 94 kcps. These systems acquire and reconstruct data in

listmode format. The TOF information in the listmode file is stored with an accuracy of

25 ps (TOF bin size 25 ps). This system is also the basis of the new Philips Ingenuity TF

PET-CT, which has a reported TOF resolution of 502 ps [40].

Table 2 gives an overview of the specifications of the different TOF-PET/CT systems

published in recent studies. These values are based on specifications provided by the com-

panies and the following publications for the GE system [14], the Siemens [13], and the

Philips systems [41, 42]. Table 2 also summarizes features of new TOF-PET/CT scanners.

CelesteionTM has been recently introduced in the US market (FDA clearance 2014) by

Toshiba as a clinical big bore TOF-PET/CT system. The system is based on a combina-

tion of lutetium-based scintillator with PMT-based readout. The reported TOF resolution

(improved by using shorter crystals) at low count rates at the module level is ∼410 ps

[43]. Another most recent TOF-PET/CT system, Vereos Digital, is developed by Philips.

It is based on very new digital SiPM (dSiPM) photodetectors [44] developed and put into

practice by Philips Digital Photon Counting in 2009. This is the first system with one-

to-one coupling of LYSO crystals with the surface of 4 × 4 mm2 to dSiPMs of about the

same size. This leads to very high count-rate capability and the Vereos reaches the tim-

ing resolution of < 316 ps. The differences in sensitivity between the presented systems

are determined by the crystal length and the length of the axial FOV. Differences in TOF

resolution depend on crystal length, electronic front end, time digitizer, detector architec-

ture (panel or block), crystal assembly, crystal surface and reflector, etc. The performance

of all systems are quite close to each other with the Siemens Biograph mCT, excelling in

sensitivity (due to its longer axial FOV), and the Philips Vereos in TOF resolution (due to

its one-to-one coupling and dSiPMs).

The first simultaneous PET/MR (Siemens mMR) was based on APD readout and there-

fore not capable of TOF [45]. The two other competitors have introduced TOF in their

PET/MR scanners [42, 46]. The Philips Ingenuity TF PET/MRI scanner [42] is a clinical

scanner already installed at several hospitals. The TOF-PET and the 3TMR are separated

with a rotating bed in-between them, and due to this distance and additional shielding

of the PMTs, the PET can still work with PMT-based readout. The PET component [47]

of this system is based on the Gemini TF. To limit the influence of MR field, the PET
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Table 2 Specifications of commercially available and recently introduced new clinical TOF-PET/CT

systems. Not all specifications are already available

Company

Philips Siemens GE Philips Toshiba

System name

Ingenuity Biograph Discovery Vereos Celesteion

TF [40] mCT [13] 690 [14] Digital [41] [43]

Scintillator LYSO LSO LYSO LYSO LYSO

Photo-detector PMT PMT PMT dSiPM PMT

Crystal size, mm3 4×4×22 4×4×20 4.2×6.3×25 4×4×19 4×4×12

Total crystals 28,336 32,448 13,824 23,040 30,720

Patient bore, cm 71.7 78 70 70 88

Axial length, cm 18 21.8 15.7 16.4 19.6

Resolution, mm

Transaxial

at 1 cm/10 cm 4.8/5.1 4.4/4.95 4.7/5.06 4.1/4.5 5.1/5.1

Axial

at 1 cm/10 cm 4.73/5.23 4.4/5.9 4.74/5.55 3.96/4.3 5.0/5.4

Energy resolution, % 11.1 11.5 12.4 11.1 NA

Lower Ethr , keV 440 435 425 450 NA

Higher Ethr , keV 665 650 650 NA NA

Scatter fraction, % 36.7 33.2 37 30 42.7

Sensitivity, cps/kBq 7.3 9.7 7.4 5.7 NA

Coincidence window, ns 4.5 4.1 4.9 4 NA

Peak NEC,

kcps at kBq/mL 124 at 20.3 180 at 28 139 at 29 171 at 50 153 at NA

TOF bin size, ps 25 312 NA NA NA

TOF resolution, ps 502 527.5 544.3 316 ∼410

NA (Not Available)

component is placed at a relatively large distance. Additional shielding of the system and

individual PMTs make it possible to use the existing readout technology in this system

with the magnet on. The scanner electronics is based on the electronics of Philips Gemini

TF PET/CT [11], but with necessary changes for the performance in the vicinity of strong

magnetic fields (3T). The same as Gemini TF, the Ingenuity TF design is based on a

continuous light guide and anger logic detection scheme. TOF measurements are also

available on the new GE system, the Signa PET/MRI. The readout of this system is based

on analog SiPMs and on a pixelated Lutetium-Based Scintillator (LBS) (Table 3).

Prototype systems

Besides clinical systems based on LSO or LYSO, there are also new TOF-PET prototypes

developed by research institutions.

PMT-based systems One of the longest ongoing developments is the LaBr3 prototype

scanner at the University of Pennsylvania. Based on simulation results described in [18],

a scanner was designed. This PMT-based scanner is composed of 24 large modules pro-

duced by the scintillator manufacturer Saint Gobain. The crystals in this system are

4 × 4 × 30 mm3 and the system has an axial FOV of 25 cm (60 rings). Preliminary

NEMA NU2-2001 measurements were performed with the axial FOV of 19.35 cm, due

to the number of available electronic channels and with five instead of six axial PMT

rows [48]. The reported system timing resolutions is 375 ps (with upgraded electronics
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Table 3 Specifications of commercially available TOF-PET/MR systems

Company

Philips GE

Ingenuity TF Signa

PET/MR [42] PET/MR

Scintillator LYSO LBS

Photo-detector PMT SiPM

Scintillator size (mm3) 4×4×22 4×5.3×25

Total detector elements 28,336 20,160

Bore/detector diameter (cm) 70.7/90.3 60/

Axial length (cm) 18 25

Resolution (in mm)

Transaxial at 1 cm/10 cm (mm) 4.7/5.15 4.2/5.2

Axial at 1 cm/10 cm (mm) 4.6/5.0 5.8/7.1

Energy resolution (%) 11.6 11

Lower energy threshold (keV) 460 425

Scatter fraction (%) 26 43.6 at peak NECR

Sensitivity (cps/kBq) 7.0 21

Coincidence window (ns) 6 4.57

Peak NEC (kcps at kBq/mL) 88.5 at 13.7 210 at 17.5

TOF bin size (ps) 25 NA

TOF resolution (ps) 525 400

NA (Not Available)

and improved calibration). The highlight output of this scintillator results in an excellent

energy resolution of 7.5 % (the system level). This makes it possible to have a lower energy

threshold at 470 keV and to reduce the NEMA-2001 scatter fraction to 25 %. The thicker

crystals and longer axial FOV of this scanner compensate for the reduced stopping power

of LaBr3, and the predicted sensitivity (6 cps/kBq) of this system, once the full system

electronics are completed, is quite close to the one of commercial systems.

From the same group, an alternative readout with analog SiPMs has been investigated.

Recentmeasurements are done with the 4×4×30mm3 LaBr3 crystals coupled with SiPMs

optimized for the near-ultraviolet (NUV) scintillation light emission. Such arrangement

showed energy resolution of 6.8 % for 511 keV photons and 245 ps TOF resolution [49],

demonstrating the potential of one-to-one coupling with solid-state photodetectors.

Another TOF-PET prototype based on multi-anode high-quantum efficiency (33 % at

420 nm) PMTs (MA-PMTs) is build and evaluated at Seoul National University [50]. This

system presents 40 detectors arranged in a single-ring geometry. Each detector is a 15×15

array of 3 × 3 × 20 mm3 L0.95 GSO crystals. The measured transverse and axial spatial

resolutions at 1 cm offset from the center of the FOV are 2.15 and 2.41 mm Full-Width

at Half-Maximum (FWHM), respectively. This multichannel readout has the potential

to provide very good timing, but the technology will very likely not become commer-

cially viable, while SiPMs are already entering the market now in the high-end TOF-PET

systems.

Currently, a clinical evaluation of the whole-body PoleStar m660 TOF-PET/CT scan-

ner is carried out [51]. The system is based on 3.63 × 3.63 × 20 mm3 LYSO scintillators

arranged into detector modules (14 × 14 crystals). The detector modules are then com-

bined into the total of 24 detector buckets (2 × 4 detector modules) forming a four-ring

scanner. The timing resolution of PoleStar is ∼434 ps FWHM. The NEMA NU 2-2007
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measurements show 3.76 and 3.64 mm FWHM spatial resolution in transverse and axial

directions, respectively, at 1 cm offset from the center FOV, the 10.9-cps/kBq sensitivity

at the center of the FOV (425–650 keV energy acceptance window) and the 224.6 kcps at

29.0 kBq/mL peak NECR.

These systems all use similar scintillator shapes (conventional pixelated scintillators), as

the current systems and do not aim to estimate depth-of-interaction (DOI) information.

Several groups have started working on the combined estimation of DOI and TOF. A new

four-layer DOI detector for TOF-PET has been proposed by a group in Japan [52]. They

have shown that using the DOI information, and using a timing correction dependent on

the depth, can improve time resolution. An improvement in timing resolution (measured

in combination with fast BaF2) from 730 to 477 ps in FWHMwasmeasured and was com-

bined with four-layer DOI information. The ignorance of DOI leads to a degradation of

TOF (different path lengths of light photons) and, therefore the extraction of DOI infor-

mation can be used to improve TOF resolution. A LaBr3 PET detector with good TOF

resolution and two-level DOI discrimination was constructed in [53]. The single-ended

readout of scintillator stacks with various cerium dopant concentrations (including pure

cerium bromide (CeBr3)) was investigated and timing resolutions in the range of 150–200

ps were obtained in combination with two-level DOI.

SiPM-based systems More recent developments are oriented towards MR-compatible

TOF-PET system. The goal of the EU-FP7Hyperimage and Sublima project (http://cordis.

europa.eu/project/rcn/87568_en.html) is to develop a simultaneous whole-body PET-MR

system based on a completely different readout scheme with MR-compatible SiPMs and

electronics. This readout system should significantly reduce the pile-up effects of cur-

rent PET systems and also enable TOF measurements. One of the other challenge in

this design is the limited space associated with a simultaneous PET-MR. This is accom-

plished by designing a very compact detector stack. The first version was based on analog

SiPM readout. The second version, called Hyperion-IID [54], is a PET insert, which allows

simultaneous operation in a clinical MRI scanner, but is based on digital SiPMs. The sys-

tem has small pixels (with a pitch of 1 mm) and a bore close to 21 cm in diameter (suitable

for imaging up to a rabbit). In the best results (trigger level 1), a timing resolution of

260 ps was obtained and benefits of TOF are demonstrated in a small object of 11 cm in

diameter.

Also with SiPMs, efforts have been made to estimate DOI and TOF simultaneously.

Most efforts have beenmade on alternative detection systems, like continuous PET detec-

tors with readout (SiPMs) from one or more sides [55]. This enables DOI measurements

with the accuracy around 2–4 mm FWHM. Reading out on both sides improves the accu-

racy of the DOI and makes it possible to correct for DOI-dependent effects in the timing

uncertainty.

Other detection systems Alternative TOF-PET systems can be built using other detec-

tion mechanisms [56] than scintillators. The resistive plate chamber (RPC) detector

is based on the converter-plate principle. These are low-cost detectors with very

good timing characteristics. The limitation of these detectors is their low detec-

tion efficiency compared to scintillators. This significant disadvantage can be par-

tially compensated by extending the axial FOV as proposed in [57]. The reported

http://cordis.europa.eu/project/rcn/87568_en.html
http://cordis.europa.eu/project/rcn/87568_en.html
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coincidence time resolution of these systems is around 300 ps FWHM. The first

imaging results showed that the scanner is capable to achieve spatial resolution of

0.4 mm FWHM [58]. There are however also other disadvantages of this technique

(like limited scatter rejection), and scintillator-based systems remain the preferred

technology.

Some groups are also investigating to use the prompt Cherenkov light [59–61],

produced by the absorption of the annihilation photon in the crystal, to improve the

measurements of arrival time difference. It has been demonstrated that with low-cost

PbF2 crystals [59], as well as with PbWO4 (PWO) [60], it is possible to reach coinci-

dence resolving time of <100 ps. Additionally, certain Cherenkov detectors intrinsically

reject most of the scattered events. That is because a gamma photon must have energy

significantlly higher than the binding energy of an electron to be able to free it and pro-

duce Cherenkov light by multiple electron scattering. Normally, energy of annihilation

photons (511 keV) is enough to produce electrons to overcome the Cherenkov thresh-

old. In contrast, photons that underwent Compton scattering are not able to do it and

thus are not detected. Obviously, the ability to reject scattered events highly depends

on such properties of the Cherenkov detector as refractive index and atomic num-

ber. One of the major challenges is that quite low amount of photons are generated

via the gamma absorption process thus leading to poor energy resolution. Therefore,

the Cherenkov technique requires the use of very efficient light detectors with high

atomic number, suitable refractive index, and good optical transmission properties for

visiblelight.

Reconstruction and corrections for TOF-PET

Once the measured data is available, reconstruction is used to calculate the image given

the available data. In a perfect TOF-PET system (TOF resolution →0, thus TOF kernel

to a delta function), image reconstruction would become not necessary due to the fact

that the exact (i.e., as exact as physics laws allow) position of any e+e− annihilation

point can be calculated from its LOR coordinates and time difference information using

the equation shown in Fig. 1. However, in current systems, image reconstruction is

still a necessary step to obtain the final image. The additional information provided by

the TOF measurement adds extra complexity to the process of image reconstruction.

While the first developments in the 1980s were making use of analytical reconstruc-

tion techniques, nearly all systems are now using exclusively iterative reconstruction

methods. Analytical methods however still have benefits in terms of speed and the

potential for more consistent (not dependent on iteration number or distribution) quan-

tification. Iterative methods also suffer from low bias in low-count situations due to

the non-negativity constraint which is typical for Maximum Likelihood Expectation

Maximization (MLEM) (i.e, image voxels never have negative values due to the mul-

tiplicative nature of MLEM and the fact that the initial image is not negative). The

main reason to use iterative methods is their better noise behavior when compared

to FBP. Current computing power enables the use of the computationally demand-

ing listmode reconstruction methods, but it remains a challenge to keep track with

the faster acquisition times (down to 1 min per bed position). Rebinning techniques

are therefore still interesting to limit the data size and to reduce the reconstruction

time.
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Data formats

The most natural format for TOF-PET is to store the data as a list of events, with the

necessary details of each event (called listmode data). This allows to use 3D listmode

TOF MLEM. Normalization, dead time, and attenuation correction [62] can be done

using multiplicative correction factors. Additive correction for scattered and random

events is more complex compared to sinogram-based reconstruction. First, a coarse sino-

gram is created containing a random or scatter distribution. Based on this distribution,

an additive factor (representing the random or scatter fraction per listmode event) is

calculated and then added to the forward projection of the current estimate. Listmode

reconstruction algorithm is quite slow, as it processes event per event, and it results in a

reconstruction time dependent on the number of events recorded. Because the listmode

events are not geometrically sorted, it is almost necessary to use on-the-fly calculation

for forward and back projection, which is significantly slower than pre-calculated projec-

tion and back projection. To make the slow reconstruction acceptable in clinical routine,

commercial systems use a parallel version implemented on a small cluster with typically

10–20 nodes [62]. Furthermore, speedup factors are obtained by integrating only along a

short segment of the LOR around the most likely point. Kernel truncation can increase

the speed of reconstruction up to a factor two but should be done carefully as contrast

loss can be introduced by too much truncation [63].

During a typical 3D multi-bed whole-body PET study, with the most recent systems,

100–1000 million coincidences, are acquired. If each event needs to be stored in the

listmode data set, one has to try to store each event as compact as possible. Even a com-

pact representation (e.g., 4 bytes per event) will easily lead to files of several gigabytes

per patient study. To store this information, only a limited number of bits is available.

TOF difference is therefore typically stored as multiples of a certain minimal unit, e.g.,

in the Gemini TF, 25 ps units are used, which is surely fine enough considering that the

TOF resolution is 500–550 ps. Eight bits leads therefore to a range of 6.4 ns, adequate

to cover the entire FOV. These data are preserved and are reconstructed using a fully

3D relaxed listmode ordered subset expectation maximization (OSEM) reconstruction

algorithm [64].

Another approach is to create TOF sinograms, which are sinograms with an additional

dimension for the TOF information. The Siemens scanner uses 13 different TOF sino-

grams (312 ps per sinogram). Each projection element in a conventional 3D PET scanner

corresponds to a radial distance, a transverse angle, and an axial detector pair (or axial

position + angle). Compared to the PET format, the TOF bin adds another dimension to

this data set. These relatively large bins cause some accuracy loss, but the use of 3D TOF

sinograms has also advantages: it results in a fixed storage size per study and is the basis

format for advanced rebinning techniques (like Fourier rebinning (FORE)). For gated and

dynamic studies, the sinogram format is however a significant drawback as the sinogram

size multiplies with the number of phases or time frames. In listmode data, this requires

just an additional field in the listmode format.

To further reduce the size of the data sets, several papers have also described hybrid

reconstruction methods. These methods reduce the data to 2D data, which are then

reconstructed by fast 2D reconstruction algorithms. TOF-PET data contain redundant

information, and several methods can be used to reduce the dimension of the datasets.

One can re-bin the data into a lower dimensional format: 2D TOF, 3D non-TOF, or 2D
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non-TOF [65]. Even rebinning to non-TOF sinograms, and using the conventional PET

reconstruction, can be done with a significant preservation of the TOF gain in signal-to-

noise ratio (SNR) [65]. The SSRB-TOF [23] is a very simple method, which uses the TOF

information to determine the most likely slice and reduces the number of axial angles due

to localized nature of TOF. The TOF information can also be used to reduce the number

of transverse angles and mashes the 2D data with a limited loss in information [25]. This

rebinning can be done on-the-fly (without the intermediate step of 3D sinograms) and is

therefore also interesting to implement in hardware [66]. These methods can make use of

Fourier-based projection techniques [67], which further reduce the reconstruction time

and open up the possibility of hardware-based image reconstruction. Other approaches

like exact or approximate FORE-TOF [24, 68, 69] require sorting of listmode events into

sinograms before rebinning.

TOF-specific corrections

To transfer the additional information measured by TOF-PET into effective image qual-

ity gains, it is necessary to have an accurate modeling of the system and to implement

different corrections specific for time-of-flight. These are also needed to obtain quantita-

tive images. The corrections are still being optimized as more experience is obtained with

these scanners in clinical routine.

There are two different effects. The first effect that needs to be corrected for is timing

offset. Assume we have a point source in the center of the scanner and we consider coin-

cident crystal pairs. As this point source is at equal distance to the two crystals (involved

in a coincidence detection), the average TOF difference between two coincident pairs

should therefore be equal to zero. However, there are differences in time delays due to the

PMTs coming from delays and variations in PMT gain and electronic triggering. Addi-

tionally, the relative position of each crystal from the center of a PMT will introduce a

certain delay. Similar effects take place in other photodetectors as well. For instance, there

is always some uncertainty in timing with scintillators coupled with SiPMs. The nature of

these uncertainties is beyond the scope of this paper, but normally they depend on such

factors as applied bias voltage, temperature, and triggering threshold of SiPMs. The goal

of TOF-offset correction is to minimize these effects. These TOF offset corrections are

typically implemented as crystal-based corrections.

The second difficulty is the TOF kernel used in image reconstruction. This kernel

should represent the probability distribution of the annihilation point along the TOF

direction for a zero time difference. Typically, it is assumed to be a Gaussian distribution.

When reconstructing images from data, one should always set the kernel width equal to

the TOF resolution of the PET scanner with which this data is acquired. An illustration of

what happens when a wrong kernel is used in reconstruction is given in Fig. 3. Here, the

data is simulated with a PET scanner which has 400 ps TOF resolution. The top image is

the true image of the scanned object. Figure 3 illustrates that if the chosen kernel width is

smaller (200 ps) than the TOF resolution of the system, the reconstructed activity tends

to concentrate at the center of the imaged object (left image). Alternatively, if the chosen

kernel width is bigger (800 ps) than the TOF resolution, the reconstructed activity con-

centrates towards the edge of the object (right image). Correctly chosen kernel width (400

ps in this case) results in reconstructed activity distribution that is as close as possible to

the real one (center image at the bottom).
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Fig. 3 Using a wrong TOF kernel in reconstruction can lead to undershoot (too small TOF kernel) or

overshoot (too wide TOF kernel) in the reconstructed image

TOF offset correction The timing offset between coincidence pairs must be known

accurately to be able to reconstruct correctly. Coincidence time alignment is also per-

formed in conventional PET scanners to correct for variations in propagation time.

The accuracy needed for TOF-PET is of course higher, as this information is used in

reconstruction to center the Gaussian profile in forward and back projection.

A time alignment probe (a radioactive source embedded in a plastic scintillator coupled

with a PMT) has been proposed for this purpose [70], but this requires a modifica-

tion of the existing systems and has therefore not been implemented on commercial

systems. Other methods make use of positron sources that are introduced in the FOV.

To be able to calculate the offset, the exact location of the source needs to be known.

Therefore, sources like point, line, plane, or uniform cylindrical sources are used. Dif-

ferent methods have been proposed to measure these offsets. A radioactive line source

rotating close to the crystals irradiates all crystal pairs after one rotation (Fig. 4a) [71].

In conventional PET scanners, this was easy to implement as rotating line sources were

used for transmission scanning, but it would require modifications to the PET-CT scan-

ner. An alternative approach is to use a point source in a scattering object (Fig. 4b)

[71]. This object generates coincidence events between pixel pairs, which are not on the

same line as the point. This technique is used to determine timing offsets in the Philips

Gemini TF.

The authors of [72] assessed the influence of local TOF kernel miscalibrations on the

contrast to noise ratio and proposed a third method for TOF offset calibration. They

investigated the TOF offset calibration on a clinical system using a stationary solid source,

with an annulus shape and a diameter only a few centimeters smaller than the diameter
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Fig. 4 The acquisition methods for obtaining TOF offset calibration data. a Using a rotating line source. An

emission from the line source (red) is detected by crystal pairs connecting via straight line through the point.

b Using a scattering phantom (indicated in blue) and a point source. An emission from point source (red) is

detected after scattering at 1 or 2. c Using an annulus shape source. The set of close LORs (in black) is

averaged and used to calculate the average offset per detector pixel

of the FOV (Fig. 4c). After averaging close LORs, the offset per detector pixel was calcu-

lated. They found that performance of the clinical system would benefit from a regular

calibration for TOF offset. In their study, they also assessed that an underestimation of

the TOF kernel of the system has a higher probability for deteriorating image quality than

an overestimation.

Due to the high number of crystal pairs (several millions) in a PET scanner, timing off-

sets are determined per crystal. A timing offset for each detector crystal pixel is obtained

by calculating the average offset values of each crystal pixel with the opposing pixels. This

corrects for trigger variations, crystal differences, and for photomultiplier (PMT) tim-

ing differences. The final result is a look-up table with offsets per detector crystal. This

correction is then introduced in the listmode data or offline in image reconstruction by

adding the offsets of each of the crystals in the pair.

In a paper by the University of Pennsylvania [73], a timing calibration technique is pre-

sented that eliminates the need for a specialized data acquisition and can even enable

retroactive calibration of datasets where the calibration is missing. This method works on

the patient data directly. It can in principle be updated daily and can therefore be used

to compensate for shifts in the calibration, to minimize the possibilities of image quality

degradation.

One of the questions remaining is, how often this calibration has to be repeated and how

a quality control method for this effect has to be established and integrated in conven-

tional NEMA routines. Recent measurements by our group have shown significant drifts

on one module (200–300 ps offsets) after 1 year of using the Philips Gemini TF. These

were easy to correct but not detected by the company software. The reason are slow drifts

in PMT gains that also affect timing and therefore some systems tweak the calibration on

a daily basis (only gains on PMTs) and then measure and report the energy and timing

resolution of a point source. The effect of drifting offsets on contrast recovery and image

quality has been studied by simulations in [74]. They introduced random offsets in 200 ps

TOF datasets and showed the reduction in contrast recovery due to these offsets.

Concerning SiPMs, similar to PMTs, they require a periodic TOF offset calibration.

However, behavior of the gain drifts for SiPM photodetectors at the system level is not yet

published.
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TOF kernel modeling One of the other difficulties in reconstruction is the modeling of

the right kernel in the forward and back projection. It has been reported [11] that the

kernel width depends on count rate, and different papers have shown that wrong kernels

lead to incorrect reconstructions [22, 75, 76]. Too small kernels lead to reconstructions

with reduced contrast and unrestored edges. Increased contrast can be obtained with

larger TOF kernels but at the expense of background uniformity. Reconstructions of sim-

ulated data clearly indicate, that only the correct kernel should be used to reconstruct the

data. Therefore, being able to estimate the TOF kernel from the data itself [75] or from

additional measurements can be useful.

The effect seems however less pronounced in measured data, where a relatively wide

range of kernels result in similar contrast recovery [63]. The current approach to control

this effect in the Philips Gemini TF is to use a kernel, which depends on the measured

singles count rate. Recent data from the new Siemens system [13] with advanced Pico

electronics show a very minor effect of the count rate on timing resolution (less than 50

ps over the full relevant range), these are however measured using a line source, which

has a much higher coincidence to singles fraction than the point source with two extra

cylinders.

Scatter and random correction Nowadays, scatter correction is calculated onmost sys-

tems using fast Monte Carlo techniques based on the emission distribution and a density

map obtained from the CT data. The standard single scatter simulation (SSS) algorithm

[77] simulates the scatter distribution based on a first reconstruction of the emission

distribution and the density map. This scatter estimate is then used to correct the next

iteration for scatter (using an additive factor in iterative reconstruction). In contrast to the

random distribution, the scatter distribution does depend on the TOF difference as scat-

tered events are originating from the same decay (or annihilation). A dedicated TOF-SSS

algorithm [78, 79] uses the same scatter distribution as calculated by SSS and does not

sum this distribution into projection data but blurs it by the expected TOF kernel. This

scatter distribution is then added to the forward projection in iterative reconstruction

(given the TOF information of the event).

The randoms can be estimated using the conventional delayed window method. To

determine a random fraction per measured event, randoms (measured by the delayed

coincidence window method) are first stored on a coarse grid. The correction is then

performed in the same way as the scatter. Random events originate from different inde-

pendent decays. Therefore, measured TOF difference of such events does not give any

information about the source position. For this reason, there is not a special random

correction method for TOF data.

Attenuation correction Just as the correction for random events, the implementation of

attenuation correction is not TOF dependent. When an attenuation map for attenuation

correction in PET image reconstruction is absent, it is possible to simultaneously recon-

struct emission and transmission images from PET emission data only. The maximum

likelihood reconstruction of activity and attenuation (MLAA) is an iterative reconstruc-

tion algorithm that uses interleaved updating of emission and attenuation maps [80]. The

method, as originally proposed, did not use TOF information and, therefore, the algo-

rithm had a non-unique solution. Consequently, the MLAA reconstruction algorithm
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suffers from cross-talk between attenuation and emission images. The MLAA method

(with or without TOF) is limited to tracers, which have uptake in the full object, because

attenuation values can only be recovered in regions with sufficient emission.

However, the use of TOF information can reduce the cross-talk as it is shown theo-

retically by [81] and experimentally by [82]. The authors of [81] proved that the TOF

information stabilizes the joint estimation problem of MLAA, and that the attenua-

tion sinogram in TOF-PET can be determined up to a constant scaling factor. In image

space, this means that emission maps show a global scaling factor, whereas attenuation

maps have a position-dependent scaling. It was suggested to solve the scaling problem

in TOF MLAA by incorporating prior knowledge of the attenuation values by using for

instance an external transmission source. Additionally, using a transmission source solves

the restriction of MLAA to regions of sufficient tracer uptake. The MLAA method in

TOF-PET, with additional information about the attenuation image from an external

positron source, was investigated by [83, 84] and (Mollet P, Vandenberghe S: Compari-

son of transmission- and emission-based attenuation correction for 1091 TOF-PET/MRI,

unpublished). The authors of [83] use a rotating rod source on a TOF-PET/CT scanner to

refine the CT-based attenuation map. The papers (Mollet P, Vandenberghe S: Compari-

son of transmission- and emission-based attenuation correction for 1091 TOF-PET/MRI,

unpublished) and [84] show a simulation study and patient study, respectively, where the

authors use an annulus-shaped source on a TOF-PET/MR system. The simulation study

(Mollet P, Vandenberghe S: Comparison of transmission- and emission-based attenua-

tion correction for 1091 TOF-PET/MRI, unpublished) showed that the TOF information

could also be used to discern events originating from the patient and events originating

from the transmission source in a simultaneous acquisition. They showed that the extrac-

tion of transmission events based on TOF information allows accounting for the scaling

problem of MLAA even better, by reconstructing an attenuation map prior to MLAA

reconstruction.

Image quality gain with TOF-PET

Factors responsible for the TOF gain

The use of the TOF difference in reconstruction reduces the noise propagation along the

LOR during forward and back projection of the data. The reduced noise propagation is

related to the physical extent of the TOF kernel and the object size as shown in Fig. 5. A

recent paper [54] shows gains due to the TOF in even 11-cm-big objects.

Since the early papers describing the potential gain of TOF-PET, several studies were

performed to validate this gain. The effective sensitivity gain was described in [4] as the

ratio between the object size D and the spatial FWHM of the TOF kernel △x. Another

paper (taking into account image reconstruction) by Tomitani predicts a smaller gain

of D
1.6△x

. A recent lesion detectability study [20] using simulated data found the gain

in non-pre whitening SNR (NPW-SNR) to correlate well with the gain predicted by

Tomitani.

As the SNR is proportional to the square root of the number of detected counts, there

will be an improvement in SNR equal to the square root of the gain factor. Both relation-

ships describe the gain of noise reduction by TOF on true coincidences only. Both scatter

and randoms [85] have also the same factor, due to the reduced noise propagation caused

by the localized nature of the TOF kernel. The effect of TOF is however more complex.



Vandenberghe et al. EJNMMI Physics  (2016) 3:3 Page 16 of 30

Fig. 5 TOF gain is proportional to the ratio of object size to the spatial TOF kernel width. This calculation [4]

assumes analytical reconstruction and a simple uniform cylinder of activity

First of all, the good timing resolution reduces significantly the negative effect of randoms

on the NEC performance.

The better the TOF resolution, the better one can discriminate randoms from true

events. That is because random events with a time difference often result in a position

outside the imaged object. Therefore, these events do not contribute to image noise in the

object because they are not being forward and back projected over this object. A TOF-

PET scanner has an effective coincidence window width, which depends on the object

size. For scattered events, this is only a minor effect as the TOF difference of most scat-

tered events (which originate from the same positron decay) will place the event back into

the object.

Currently, systems are often compared using the global NEC metric, which takes the

positive effect of the trues and the propagation of noise from removed random and scatter

event into account. The additional TOF information is not taken into account into this

metric. A modified version taking TOF into account has been proposed [85]. Before it

can be included into NEMA guidelines, more validation and a standardizedmeasurement

technique are necessary. A more extensive description of introduction of TOF gain into

NEC can be found in [86].

How to evaluate TOF gain?

The combination of the different effects described above makes it difficult to determine

one single TOF gain for a specific scanner. The gain will depend on the number of ran-

doms and the count rate. When using iterative reconstruction methods, a straightforward

evaluation becomes even more complex due to the non-linearity of iterative methods

and the different convergence of TOF and non-TOF reconstruction. In most objects,

TOF reconstruction converges much faster than PET reconstruction. Therefore, less iter-

ations are needed to obtain the same contrast. This effect seems more pronounced for
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smaller lesions. Object-dependent convergence can make it even impossible to deter-

mine matching iterations between TOF and non-TOF reconstruction for the whole

image.

The gain can be quantified using a variety of methods. First of all, one can choose

between simulated or measured data, where simulated data and measured phantom

studies have the advantage of knowing the true distribution. Another advantage of

simulations is the controlled environment: one can select either the true, scattered, and

random coincidences from the dataset, which allows separation of the different effects.

The exact TOF kernel is also known and effects of count rate can be avoided. Measure-

ments on the other hand are more realistic. A quantitative comparison of measured data

reconstructed with and without TOF also requires optimal corrections for both recon-

structions. Secondary effects like kernel widening (due to increasing count rate) canmake

it difficult to evaluate pure TOF effects. Mixtures between simulated data and measured

data [21, 87, 88] can also serve as interesting evaluation data sets. The general truth (the

activity and position of the lesion) is known, and the background is more realistic with

regards to structure and attenuation.

The evaluated figure of merit also varies between different studies. Relatively, simple

evaluation on single phantoms can be done using contrast-noise curves, more complex

evaluation like NPW-SNR, channelized hotelling SNR (CHO-SNR), and observer stud-

ies require multiple datasets. The evaluation on patient data is more complex as the true

distribution is not known, background is not uniform, and noise is difficult to evalu-

ate. Therefore, relative measures as the change in contrast are used for patient studies.

Observer studies require a large number of datasets and extensive reviewing time by

nuclear medicine physicians and/or radiologists.

Evaluation on simulated ormeasured phantoms

Most recent papers focused on the gain obtained with iterative reconstruction methods.

The first studies were based on simulated data (modeling a LaBr3 system) as no clinical

scanner was available. In [89], data were simulated with different timing resolutions (from

300 ps to non-TOF-PET). The detectability (based on NPW-SNR) was also improving

with better TOF. These results were obtained using hot spots of different sizes in a uni-

form cylinder of 27 cm in diameter. It was shown that contrast recovery improves with

better timing resolution.

This simulation work was extended towards different phantoms (20, 27, and 35 cm

diameter). The contrast recovery coefficient (CRC) versus noise results indicate a gain,

equal to the ratio between the object size D, and the spatial FWHM of the TOF kernel

△x. The NPW-SNR results correlate better with the smaller gain predicted by Tomitani.

In [90], measurements with a 20- and 35-cm-diameter phantom were performed on the

first Gemini TF. It was shown that TOF and PET reconstructions of the small phantom at

equal NEC are very similar, while they were quite different for the larger phantom. Small

1-cm spheres were difficult to detect on the PET images, while clearly visible on TOF-

PET reconstructions. The CHO-SNR was also clearly higher for TOF at the same NEC

rates.

These studies all used uniform phantoms to evaluate the gain. A more recent study

[91] used a more realistic anthropomorphic phantom. This was scanned multiple times

on a Siemens Biograph system, and different spherical lesions were inserted. The goal of
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the study was to evaluate the relative gain of accurate point spread function modeling

(called PSF) and TOF reconstruction and a combination of both. Because of different

convergence properties, the optimal settings for the four different algorithms (OSEM,

OSEM + PSF, OSEM + TOF, and OSEM + PSF + TOF) needs to be determined first. The

optimal combination of iteration number and post-filter was determined using LROC

analysis. The lowest detection probability was obtained without modeling, the inclusion

of TOF resulted in a somewhat larger improvement compared to system modeling. The

combination of both resulted in the highest improvement.

Evaluation on patient studies

In [12], the change in contrast was validated using phantom studies and patient data. It

was shown that there was a significant TOF gain. However, this gain is difficult to quantify

into one single factor, because TOF improves imaging performance of a PET scanner in

several ways comparing to non-TOF-PET:

• Increases effective sensitivity;

• Increases rate of reconstruction algorithm convergence;

• Makes convergence more uniform;

• Improves contrast recovery at matched noise; and

• Benefits even greater for larger patients.

The evaluation on patient data was performed by matching PET and TOF-PET recon-

structions, using iterations with equal noise levels in the liver. The gain in contrast was

higher for heavier patients. The average gains increased from 15 (light-weight patients)

to 40 % (140-kg patients). Results [21] used a mixture of normal patients and simulated

hot spots to enable efficient observer studies. These hot spots were inserted at different

locations in the body (liver, lung). The data were processed using mathematical observers.

TOF delivered an increase in CHO-SNR of 7.7 % in the liver and and a higher gain of

14.3 % in the lungs. The gain was also higher for patients with BMI larger than 30. The

same data were also presented [87] to experienced human observers, and similar find-

ings were reported. This work was extended in a more recent study [88]. In this study, the

accuracy (bias) and precision of embedded lesions in the liver and lung of six patients was

evaluated for TOF and non-TOF PET. In the lung, an increase of the average uptake with

50 % and in the liver with 20 % was obtained by using TOF. There was also a reduction in

variability.

In the paper [91] mentioned before, two patient scans were also processed. It was shown

that improved SNR could be obtained at lower noise levels. Visual improvements for

lesions in the liver were also noticeable. Evidence of improved SNR is presented in the

following research [12, 17].

The improvement in clinical reality is now mostly used to reduce the imaging time.

Other options are the reduction of injected dose. Both will result in a lower cost per study.

The final goal of improvement of image quality in oncology is to improve the detection

of tumors. For follow-up studies, it is important to improve the quantification accuracy.

To better evaluate the effective gain, multicenter studies should be performed. These can

be performed using TOF-PET data reconstructed with and without TOF information.

The same should be done for cardiac and brain studies, as the gain will be different for

these areas.
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Use of the gain in clinical scans

One can benefit in different ways from the time-of-flight information in a daily clinical

environment. By keeping the acquisition time constant, time-of-flight information leads

to increased contrast recovery due to faster convergence. This is especially noticed for the

smallest lesions. One can also use the information to reduce the acquisition time resulting

in a higher patient throughput per day. Finally, it is also possible to limit the injected dose.

This will result in a reduced cost per scan (especially important for sites not owning a

cyclotron) and less radiation dose for the patient. This becomes an important concern as

the relative dose of PET in PET-CT has been increased by the introduction of low-dose

CT scans.

To obtain more consistent image quality over the patient population, a patient-

dependent protocol acquisition is recommendable. This should be dependent on the

weight, BMI, or torso size of the patient and can include both injected dose and acquisi-

tion time. Although TOF is showing a larger gain in heavier patients, one should take into

account that the effect of attenuation remains a major factor in the image quality loss in

interior regions. A recent protocol has suggested a range of acquisition times from 1 min

per bed position (for light patients) up to 3 min for heavier patients [92]. A typical proto-

col will be based on the body mass index: 90 s for a BMI below 30, 2 min for a BMI in the

range of 30–35, and 3 min for patients with a BMI larger than 35.

TOF-PET has further evolved during the last years towards better TOF resolution

(300–400 ps). The goal is to do this with limited loss in sensitivity and spatial resolu-

tion. The progress will be gradual as all the different components need to improve further

to obtain better TOF resolution. In clinical reality, this should result in better detection

and improved quantitative accuracy of small lesions. Cold defects in cardiac imaging may

also benefit from the improvement with TOF, but we can not directly infer the degree of

improvement from studies of hot lesions.The expected improvements by TOF will lead to

a better accuracy of quantification, and the improved detectability of smaller hot spots.

Therefore, it should have a positive effect on patient management. A good example is

the follow-up of the effect of radio/chemotherapy using quantitative PET data, which will

become more accurate and may therefore be used more frequently.

Other advantages of TOF

Besides the conventional image quality gain, different researchers have also reported on

other benefits due to the local nature of TOF. In general, the use of TOF reduces the effect

of object size (and surrounding activity) on the convergence. This is shown in Fig. 6.

There is also a more uniform convergence (less dependent on surrounding activity)

due to TOF. This improved convergence by iterative reconstruction is especially strong

in cold regions like the lung, which was shown using simulated data [93] and measured

data [94]. This can be explained by the limited effect of surrounding activity due to the

short range kernel. Higher gain in image quality was also predicted in the cold regions

by a detailed study [22]. These results also help to explain the results reported in [88] in

which the uptake of embedded lesions in the lung is lower than those embedded in the

liver. It also illustrates the challenge of characterizing the benefit of TOF on real data with

simple metrics as those proposed in [4, 85].

In general, TOF also helps to improve consistency of reconstruction and makes it

less prone to inconsistencies between emission data and corrections [95]. This applies
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Fig. 6 The use of better TOF information leads to reduced dependency of convergence on the object size

to inconsistent normalization, absence of scatter correction, and mismatched attenua-

tion correction (in PET-CT often present in the case of respiratory motion). One can

also use this to iteratively solve for efficiency factors from an arbitrary distribution [96].

This property also has advantages in PET/MR, where attenuation correction is only

approximately known. Table 4 summarizes the impact of TOF imaging on the different

levels.

New applications with TOF-PET

Most publications reported the optimization or gain of TOF for lesion studies with FDG

on the existing clinical PET systems. Due to its local properties and higher effective

sensitivity, there are also new applications that can benefit from TOF-PET.

Table 4 Impact of TOF imaging on the different levels

PET performance Image reconstruction Image quality Clinical performance

Reduced effect Reduced impact of Reduced image Reduced acquisition
of randoms small errors in noise time or dose

data correctionb

Higher NEC Better algorithm Higher SNRa Gain in heavy
convergence patients

Better convergence Better small lesions Improved lesion
uniformity quantitative accuracy detectability

Better overall image More accurate
qualitya quantification

aEspecially for heavy patients
b Inconsistent normalization, absence of scatter correction, and mismatched attenuation correction (e.g., due to motion)
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Local tomography

The potential of local tomography for TOF-PET was illustrated in [97]. They investigated

the reconstruction of ROIs (from 1 pixel to 144 mm) using truncated projections. Trun-

cated 2D TOF-PET (700 ps) could be used to reconstruct ROIs of single pixels, which was

not possible with 2D PET data. Visually, the images obtained with TOF-PET are much

closer to the correct distribution. This property can be interesting if there is only a lim-

ited area of interest (e.g., cardiac imaging) and fast reconstruction is necessary. Other

applications mentioned in the above reference are local motion compensation.

Separation of events based on their origin

The localized nature of TOF-PET also allows to separate events based on their origin

in image space. One particular interesting application of this is to distinguish between

events, coming from the emission object and from a transmission source [35] (Fig. 7).

Once these are separated in image space by 1–2 TOF-FWHM, they should be almost

perfectly identifiable. Simultaneous transmission and emission is not useful for current

PET-CT scanners, as the transmission data are not measured with 511 keV but are

obtained from a scaling of the CT image. For dedicated brain scanners and future PET-

MR however, this property may be interesting. Other applications of this property are

the separation of two different emission objects well separated in image space: examples

of this are the scanning of multiple animals on human systems. Once these are sepa-

rated by 1 to 2 TOF-FWHM, the listmode dataset can be split into different sets for

each animal, and they can all be separately reconstructed (using the same attenuation

map!).

MR artifact reduction by TOF

Recent simulation [98] and clinical [99] studies have also illustrated that attenuation

artifacts due to metal and respiration are less visible in TOF reconstructions. In PET

scanners, a normalization scan is used to minimize the effect (on the final reconstructed

image) of the different performance of crystals. It was noticed that there was less influence

in image space due to errors in these normalizationmaps whenTOF image reconstruction

is used [95].

This has now a particular advantage for TOF-PET-MR. Since the advent of PET/MR,

great efforts have been made to optimize MR-based attenuation correction. The MR-

Fig. 7 TOF-based extraction of transmission data on a particular LOR for a threshold radius τ
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based attenuation correction methods all suffer from MR-related difficulties, from

which some can be reduced when using TOF information. A recent study on the

impact of TOF on quantification errors in PET/MR is presented in [100]. The study

shows that especially in the lung and bone, TOF PET reduces the influence of MR

segmentation errors compared to non-TOF PET. In the same paper, the influence of

TOF on metal-susceptibility artifacts is discussed. Their findings are in agreement with

[98], where the authors proved with a simulation study that TOF information reduces

the influence of metal artifacts in PET images. Furthermore, [100] assessed the influ-

ence of TOF on respiratory phase mismatch in PET/MR and for this MR artifact,

too, a reduction of bias is observed when using TOF. The authors of [100] foresee

that MR-based attenuation correction will improve as TOF resolution increases in the

future.

MR-less attenuation correction in PET/MRwith TOF

Due to the limitations associated with MR-based attenuation correction in PET/MR

[101], the option of performing attenuation correction without the MR information is

being investigated. As such, there is a renewed interest in external positron sources for

transmission scanning. The TOF information makes it feasible to separate events based

on their spatial origin and therefore to perform a simultaneous acquisition of transmission

and emission events [102]. The transmission data, together with a blank scan of the source

without object, can be reconstructed to obtain an attenuation coefficient distribution, for

instance, by a maximum likelihood reconstruction of the transmission data (MLTR) [80]

(Fig. 8). Compared to MR-based attenuation correction, the transmission-based attenu-

ation correction has the additional advantages of not suffering from MR artifacts, MR

truncation, segmentation errors, or the need for attenuation templates for MR coils and

patient bed. The TOF resolution of current clinical PET systems (∼600 ps) however does

not allow for complete separation of transmission and emission events, as was reported

in [103]. The contamination of emission events in the transmission data may result in a

non-uniform scaling in the reconstructed attenuation map. It is expected however that

with future improvement of TOF resolution, this issue will become less prominent.

Low count studies

The majority of PET studies are done with FDG or other F-18-based molecules (choline,

FLT). The positron decay fraction of F-18 is nearly 100 %. In general, these molecules

result in relative high sensitivity studies, and TOF is used to reduce imaging time or

improve the signal. For certain molecules, other isotopes are easier to use. Isotopes with

very short half-lives like 15O, 13N , and 82Rb or short half-lives like 11C are often injected in

high doses hitting the limits of PET electronics, leading to a high random fraction. Their

short half-life however limits the acquisition time and the number of counts. Therefore,

these can also benefit from the increased effective sensitivity of TOF-PET.

There is also a wide variety of isotopes for PET, which only have a small proportion

of the decays leading to positron emission (called low branching ratio). This evidently

reduces the effective sensitivity of PET. In some cases, they also have singles emitted

close to 511 keV and spurious coincidences (singles associated with a positron decay).

Two of these isotopes are I-124 (23 % branching ratio) and Y-86 (32 % branching ratio)

and others are available. In general, these emission properties result in larger fraction of
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Fig. 8 MLTR: the attenuation correction method based on the TOF separation of the transmission and the

emission data

contaminating coincidences (combinations of singles from the positron annihilation with

non-annihilation gammas). TOF will also for these isotopes result in a better SNR for the

same number of counts. An additional benefit is the reduction of the number of effec-

tive randoms and scatters. Only random and scattered coincidences positioned by TOF

inside or close to the object will contribute noise to the reconstructed image. Specific cor-

rections are always needed for isotopes suffering from contamination. The TOF nature

may require adapted corrections like I-124 [104]. An extreme example of these isotopes

is Y-90 (the most common isotope used for radionuclide therapy). Due to a very small

positron fraction (36 ×10−4 %), it is challenging to use it for PET imaging. In the case of

radio-embolisation of liver tumors, the amount of administered tracer is high and very

localized. First promising results for Y-90 TOF-PET have been presented recently in [105].

Another typical example of PET scan with extremelly low counts (< 105 true events) is

a dosimetry scan right after hadron therapy. Work [106], performed with a phantom, also

shows that image quality in the case of therapy monitoring with an immediate PET scan

can be improved by using TOF-PET and point-spread function modeling even at random

fraction as high as > 95 %. More research is needed to determine the potential gain of

TOF for the different isotopes.
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Limited angle tomography

Image reconstruction is based on the use of projections from a range of angles, which is

typically 0° to 180° or up to 360°. In general, PET systems are composed of complete ring

detectors and data from all angles is available to obtain an accurate reconstruction. The

problem of obtaining accurate reconstructions from a limited number of projections is

more difficult to solve. The situation can appear in some scanners, where not a complete

ring system can be used to collect data.

Dedicated breast imaging Different dedicated breast PET systems have been proposed

during the last years. One of the reasons to use dedicated devices is the lower cost of

these systems, their higher sensitivity, improved spatial resolution, and reduced attenu-

ation. Designing a complete ring dedicated breast scanner is difficult and limited angle

systems are preferable as they have more flexibility in placement around the patient. A

partial (split) ring instrument also allows an integration of PETwith eithermammography

or tomosynthesis to provide complementary imaging, see Fig. 9. This design is however

inherently limited by longitudinal blurring in the direction orthogonal to the detector due

to uncompleted data. The number of required angles to obtain the same image resolution

is reduced, as better TOF information is available [25]. The availability of TOF informa-

tion reduces also the influence of missing angles on the reconstructed image. The first

simulated data of a breast scanner design based on TOF-PET [107] has shown the reduc-

tion of blurring by the incorporation of TOF information and was evaluated using a hot

lesion phantom [108]. In [109], it was shown that 600 ps is appropriate for providing a

tomographic image in a 2/3 angular coverage design. With 300 ps, similar precision was

obtained as in a non-TOF scanner with full coverage.

In-beam PET Another application of TOF-PET is in-beam PET [110] for hadron

therapy.

It is a promising technology for determining the dose delivered to the target and to sur-

rounding tissues. During the hadron therapy, patients are irradiated inside a PET scanner.

Positron emitters are created by the (p, n) or (p, 2n) interactions of the incoming protons

with C12 and O16 inside the body. In the case of irradiation with carbon ions, positron

emitters are created by fragmentation of the carbon projectile.

This is a typical situation where PET images have to be generated with a limited

amount of counts and within a short time frame to allow feedback. The isotopes

Fig. 9 A limited angle design for a breast TOF-PET scanner. From left to right: the schematic of detectors

(with compression paddles) and limited angle acquisition, physical detector modules in lab (evaluated with

phantoms and illustration of integration of PET with X-ray used for tomosynthesis imaging
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generated by this type of therapy are C11, O15, C10, and N13. These isotopes have

short half-lives of 20 min, 2 min, 20 s, and 10 min making in-beam PET almost nec-

essary. To integrate a PET into a treatment center, the system has to be a limited

angle scanner. Normally, such systems result in poor spatial resolution in certain direc-

tions thus limiting the measured accuracy of the derived dose. TOF information helps

to decrease these image degrading effects. Furthermore, the localization provided by

TOF-PET also reduces the effect of outside FOV activity by reducing the amount of

random.

Within the Envision project (http://envision.web.cern.ch/ENVISION/), two different

technologies have been investigated for implementing TOF-PET for in-beam imaging. For

crystal-based systems, cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) was

chosen as the best and cost-effective scintillation material. These were readout by SiPMs

[111] and TOF resolutions of about 235 ps CRT FWHM for two teflon-wrapped LYSO:Ce

crystals (15-mm thick) were obtained [112]. As an alternative low-cost detector tech-

nology, multigap RPC (MRPC) detectors were investigated [113]. These are composed

of six thin glass plates acting as a mechanical separator for electrodes and, addition-

ally, creating several gas gaps in between them. The gamma detection principle of RPC

is the following. Firstly, 511-keV gamma photons interact with the electrodes produc-

ing energetic electrons. The electron might reach the gas gap and, in the case of success,

initiates avalanche multiplication thus producing a signal. The bigger the number of

the electrodes, the higher the detection efficiency of the RPC. Therefore, geometry of

the MRPC allows to place many electrodes in a compact volume thus providing high

detection efficiency for 511 keV gammas. Experimentally, TOF resolution of 560 ps CRT

FWHMwere obtained. These hardware studies were complemented by an extensive sim-

ulation study to investigate the limits of both technologies. The simulation [114] results

indicate a superior performance of crystal-based detectors due to their higher stop-

ping power, resulting in higher sensitivity. The results show that both systems can be

used to detect 3-mm-big deviation in the expected location of Bragg peak in intended

proton therapy dose. These deviations can arise due to errors in patient positioning

or/and calculations of proton stopping power from CT-provided attenuation coefficients.

They cause insufficient dose delivery to the tumor and extra dose expose of healthy

tissues.

In order to collect data directly during particle therapy, new designs of limited-angle

in-beam TOF-PET system (Fig. 10), such as a PET scanner with an axial gap and a axi-

ally skewed complete ring, have been proposed. Both geometries allow the beam to pass

through the patient without hitting the detectors of the PET scanner. Such systems have

the advantage of generating complete data in the area of irradiation [115].

Conclusions

TOF is now available on the high-end PET systems of the different major companies in

medical imaging. The combination of fast scintillators, PMTs, and electronics has enabled

these systems to reach timing resolutions in the range of 300–600 ps and to reliably per-

form in the clinic. New electronics (like waveform sampling), better PMTs, or solid-state

detectors like SiPMs can even further improve the timing resolution. New prototypes,

which aim to improve TOF resolution or/and build simultaneous PET/MR hybrids, are

also under development.

http://envision.web.cern.ch/ENVISION/
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Fig. 10 Open ring design of in-beam PET

Calibration and TOF reconstruction techniques have been improved in the last 10

years after the introduction of the first commercial TOF-PET scanners. There is still

room for improvement by better kernel modeling and offset corrections. Different stud-

ies have characterized TOF gain using simulated or measured phantoms and evaluations

on patient studies have also been performed, to assess how the gain translates to a clinical

benefit. The large availability of these systems will enable to collect more patient studies,

extend the evaluation towards larger groups, and determine the potential clinical impact

on health outcome. New applications for PET, such as dedicated breast imaging, PET

with isotopes which have low branching ratio and in-beam PET, should benefit from bet-

ter image quality, which is achieved by making use of the higher effective sensitivity, the

reduced influence of scattered and random events, and the reduced effects of limited

angle data.
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