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Abstract Research in the field of sign language recog-

nition has made significant advances in recent years. The

present achievements provide the basis for future applica-

tions with the objective of supporting the integration of

deaf people into the hearing society. Translation systems,

for example, could facilitate communication between deaf

and hearing people in public situations. Further applica-

tions, such as user interfaces and automatic indexing of

signed videos, become feasible. The current state in sign

language recognition is roughly 30 years behind speech

recognition, which corresponds to the gradual transition

from isolated to continuous recognition for small vocabu-

lary tasks. Research efforts were mainly focused on robust

feature extraction or statistical modeling of signs. How-

ever, current recognition systems are still designed for

signer-dependent operation under laboratory conditions.

This paper describes a comprehensive concept for robust

visual sign language recognition, which represents the

recent developments in this field. The proposed recognition

system aims for signer-independent operation and utilizes a

single video camera for data acquisition to ensure user-

friendliness. Since sign languages make use of manual and

facial means of expression, both channels are employed for

recognition. For mobile operation in uncontrolled envi-

ronments, sophisticated algorithms were developed that

robustly extract manual and facial features. The extraction

of manual features relies on a multiple hypotheses tracking

approach to resolve ambiguities of hand positions. For

facial feature extraction, an active appearance model is

applied which allows identification of areas of interest such

as the eyes and mouth region. In the next processing step, a

numerical description of the facial expression, head pose,

line of sight, and lip outline is computed. The system

employs a resolution strategy for dealing with mutual

overlapping of the signer’s hands and face. Classification is

based on hidden Markov models which are able to com-

pensate time and amplitude variances in the articulation of

a sign. The classification stage is designed for recognition

of isolated signs, as well as of continuous sign language. In

the latter case, a stochastic language model can be utilized,

which considers uni- and bigram probabilities of single and

successive signs. For statistical modeling of reference

models each sign is represented either as a whole or as a

composition of smaller subunits—similar to phonemes in

spoken languages. While recognition based on word

models is limited to rather small vocabularies, subunit

models open the door to large vocabularies. Achieving

signer-independence constitutes a challenging problem, as

the articulation of a sign is subject to high interpersonal

variance. This problem cannot be solved by simple feature

normalization and must be addressed at the classification

level. Therefore, dedicated adaptation methods known

from speech recognition were implemented and modified

to consider the specifics of sign languages. For rapid

adaptation to unknown signers the proposed recognition

system employs a combined approach of maximum like-

lihood linear regression and maximum a posteriori

estimation.
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1 Introduction

Sign language is a non-verbal language used by deaf and

hard of hearing people for everyday communication among

themselves. Information is conveyed visually, using a

combination of manual and non-manual means of expres-

sion. The manual parameters are hand shape, hand posture,

hand location, and hand motion. The non-manual param-

eters include head and body posture, facial expression,

gaze and mouth movements. The latter encode, e.g.,

adjectives and adverbials, contribute to grammar or provide

specialization of general items.

Some signs can be distinguished by manual parameters

alone, while others remain ambiguous unless additional

non-manual information is made available. Unlike panto-

mime, sign language does not include its environment.

Signing takes place in a three-dimensional space close to

the signer’s trunk and head, called signing space. Signs are

performed either one-handed or two-handed. For one-

handed signs the action of only one hand is required, where

a person generally uses the same hand, known as the

dominant hand.

The grammar of sign language is fundamentally differ-

ent from spoken language. The structure of a sentence in

spoken language is linear, one word followed by another,

whereas in sign language, a simultaneous structure exists

with a parallel temporal and spatial configuration. The

configuration of a sign language sentence carries rich

information about time, location, person, or predicate.

Spread all over the world, sign language is not universal.

Nationally different languages have evolved, such as

German Sign Language (DGS) or American Sign Lan-

guage (ASL). Just like in spoken language, there are

regional dialects in sign language. In contrast to the pro-

nunciation of words, however, there is no standard for

signs, and people may use an altogether different sign for

the same word. Even when performing identical signs, the

variations between different signers are considerable.

1.1 Applications for sign language recognition

Unfortunately, very few hearing people are able to com-

municate in sign language. The use of interpreters is often

prohibited by limited availability and high cost. This leads

to problems in the integration of deaf people into society,

and conflicts with an independent and self-determined

lifestyle. For example, many deaf people are unable to use

the World Wide Web and communicate by e-mail in the

way hearing people do, since they commonly have great

difficulties in reading and writing. The reason for this is

that hearing people learn and perceive written language as

a visual representation of spoken language. For deaf

people, however, this correspondence does not exist, and

letters—which encode phonemes—are just symbols with-

out any meaning.

In order to improve communication between deaf and

hearing people, research in automatic sign language rec-

ognition is needed. This work shall provide the technical

requirements for translation systems and user interfaces

that support the integration of deaf people into the hearing

society. The aim is the development of a mobile system,

consisting of a laptop equipped with a webcam that visu-

ally reads a signer’s gestures and facial expression, and

performs a translation into spoken language. This device is

intended as an interpreter in everyday life, e.g., at the post

office or in a bank. Furthermore, it allows deaf people

intuitive access to electronic media such as computers or

the Internet (Fig. 1).

Regarding the Internet, a barrier-free access also includes

technical facilities to search the Web for information in sign

language. Current search engines solely conduct a textual

analysis of websites, simply ignoring the visual information

contained in signed videos. Although the number of videos

is increasing, their contents cannot be searched and retrieved

like text due to missing automatic indexing methods. This

creates difficulties for deaf people to gather information on

their own. In this context, sign language recognition could

be utilized for the indexing task, providing the required basis

for sign language search engines.

Another envisaged application is the development of a

sign language tutor used in the areas of both education and

rehabilitation. It could support patients suffering from

hearing loss, deaf people with sign language deficiencies,

as well as interested hearing people, in learning sign lan-

guage. The user is first presented with the sign to be learnt

by means of a video. He then performs the sign himself,

imitating the signer on the screen. Subsequently, the user’s

Fig. 1 Laptop and webcam-based sign language recognition system
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signing is analyzed by the tutoring system which provides

feedback regarding the correctness of execution, such as

possibly required modifications of hand position and

posture.

Many further applications arise both inside and outside

the field of sign language. Research on human–computer

interaction could also benefit from gesture and mimic

analysis algorithms, originally developed for sign language

recognition systems. However, all mentioned applications

have in common that they must ensure highest usability

and user-friendliness. Visual non-intrusive approaches are

generally most suited to meet these requirements. Fur-

thermore, the recognition system should allow user-

independent operation in an uncontrolled environment.

1.2 State of the art in sign language recognition

The current state in automatic sign language recognition is

roughly 30 years behind speech recognition due to mani-

fold reasons. Processing and classification of two-

dimensional video signals are significantly more complex

than of one-dimensional audio signals. In addition, sign

language is by far not fully explored yet. Little is known

about syntax and semantics, and no dictionary exists. The

lack of national media—such as radio, TV, and telephone

for the hearing—leads to strong regional variation. For a

large number of signs there is not even a common

definition.

Sign language recognition has become the subject of

scientific publications only in the beginning of the 90s.

Most presented systems operate near real-time and require

up to 10 s of processing time after completion of the sign.

For video-based approaches, details on camera hardware

and resolution are rarely published, suggesting that pro-

fessional equipment, high resolution, low noise, and

optimal camera placement was used.

The method of data acquisition defines a user interface’s

quality and constitutes the primary feature for classification

of different works. The most reliable, exact, and at the

same time the simplest techniques are intrusive. Data

gloves measure the flexion of the finger joints, optical or

magnetic markers placed on face and hands facilitate a

straightforward determination of facial expression and

manual configuration. For the user, however, this is

unnatural and restrictive. Furthermore, data gloves are

unsuitable for practical applications due to their high cost.

Also most existing systems exploit manual features only;

so far facial features were rarely used [30].

Usability of video-based recognition systems is greatly

influenced by the robustness of its image processing stage,

i.e., its ability to handle inhomogeneous, dynamic, or

generally uncontrolled backgrounds and suboptimal

illumination. Many publications do not explicitly address

this issue, which—in connection with accordant illustra-

tion—suggests homogeneous backgrounds and strong

diffuse lighting. Another common assumption is that the

signer wears long-sleeved clothing that differs in color

from his skin, allowing color-based detection of hands and

face.

The majority of systems only support signer-dependent

operation, i.e., every user is required to train the system

before being able to use it. Signer-independent operation

requires a suitable normalization of features early in the

processing chain to eliminate dependencies of the features

on the signer’s position in the image, his distance from the

camera, and the camera’s resolution. This is rarely

described in publications; instead, areas and distances are

measured in pixels, which even for signer-dependent

operation would require an exact reproduction of the con-

ditions under which the training material was recorded.

Similar to the early days of speech recognition, most

researchers focus on isolated signs. While several systems

exist that process continuous signing, their vocabulary is

very small. Recognition rates of 90% and higher are

reported, but the exploitation of context and grammar—

which is sometimes rigidly fixed to a certain sentence

structure—aid considerably in classification. As in speech

recognition, coarticulation effects and the resulting ambi-

guities form the primary problem when using large

vocabularies.

Table 1 lists several important publications and the

described systems’ features. When comparing the indicated

performances, it must be kept in mind that, in contrast to

speech recognition, there is no standardized benchmark for

sign language recognition. Thus, recognition rates cannot

be compared directly. The compilation also shows that

most systems’ vocabularies are in the range of 50 signs.

Larger vocabularies have only been realized with the use

of data gloves. All systems are signer-dependent. All rec-

ognition rates are valid only for the actual test scenario.

Information about robustness in real-life settings is not

available for any of the systems. Furthermore, the exact

constellation of the vocabularies is unknown, despite its

significant influence on the difficulty of the recognition

task. In summary, it can be stated that none of the systems

currently found in literature meets the requirements for a

robust real world application.

1.3 Visual sign language recognition

This paper outlines the implementation of an existing

visual sign language recognition system for real world

applications, which surpasses the current state of the art in

many respects. The reader interested in a more detailed
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description of this recognition system or an in-depth

introduction to gesture and sign language recognition is

directed to [21]. Figure 2 shows a schematic of the process,

which can be divided into a feature extraction stage and a

subsequent classification stage.

The recognition system utilizes a single video camera

for data aquisition. The input image sequence is forwarded

to two parallel processing chains that extract manual and

facial features using a priori knowledge of the signing

process. Before the final classification is performed, a pre-

classification module restricts the active vocabulary to

reduce processing time. Manual and facial features are then

classified separately, and both results are merged to yield a

single recognition result.

This paper is structured as follows: Sect. 2 describes the

algorithms used for robust extraction of manual features in

uncontrolled environments. Section 3 explains how facial

features can be integrated into the sign language recogni-

tion process. The extracted features comprise facial

expression, head pose, line of sight, and lip outline. Sec-

tion 4 deals with the classification of isolated signs and of

continuous signing. Two approaches for statistical model-

ing of reference models will be introduced: word models

for small vocabularies and subunit models for large

vocabularies. Section 5 addresses the problem of high

interpersonal variance in the articulation of a sign. As a

solution, dedicated adaptation methods known from speech

recognition are applied for rapid adaptation to unknown

signers. Finally, Sect. 6 presents some performance eval-

uations for the presented recognition system.

2 Extraction of manual features

Sign language recognition constitutes a challenging field of

research in computer vision. Compared to gesture recog-

nition in controlled environments, recognition of sign

language in real world scenarios places significantly higher

demands on feature extraction and processing algorithms.

With regard to the two-dimensional input data, the fol-

lowing problems arise:

• While most gestures are one-handed, signs may be one-

or two-handed. The system must therefore not only be

able to handle two moving objects, but also to detect

whether the non-dominant hand is idle or move

together with the dominant hand.

• Since the hands’ position relative to the face carries a

significant amount of information in sign language, the

face must be included in the image as a reference point.

Table 1 Classifier

characteristics for user

dependent sign language

recognition

Author, Year Features Interface Vocabulary Language

Level

Recognition

rate in %

Vamplew, 1996 [40] Manual Data glove 52 Word 94.0

Holden, 2001 [15] Manual Optical

markers

22 Word 95.5

Yang, 2002 [46] Manual Video 40 Word 98.1

Murakami, 1991 [27] Manual Data glove 10 Sentence 96.0

Liang, 1997 [24] Manual Data glove 250 Sentence 89.4

Fang, 2002 [12] Manual Data glove 203 Sentence 92.1

Starner, 1998 [35] Manual Video 40 Sentence 97.8

Vogler, 1999 [42] Manual Video 22 Sentence 91.8

Parashar, 2003 [30] Manual and

facial

Video 39 Sentence 92.0

Fig. 2 Schematic of the sign

language recognition system
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This reduces image resolution available for the hands

and poses an additional localization task.

• Hands may occlude one another and/or the face (Fig. 3a,

b). Because of the two-dimensional projection in the

image plane, these objects appear as a single object. A

reliable segmentation of the individual objects is not

possible, resulting in a loss of information.

• When using color and/or motion to detect the user’s

hands and face, uncontrolled backgrounds as shown in

Fig. 4 may give rise to numerous false alarms that

require high-level reasoning to tell targets from

distractors.

• Signs are often very similar (or even identical) in their

manual features and differ mainly (or exclusively) in

non-manual features (Fig. 3c, d). This makes automatic

recognition based on manual features difficult or, for

manually identical signs, even unfeasible.

Obviously, the segmentation of the signer’s hands and face

are computationally expensive and error-prone, because the

required knowledge and experience that comes natural to

humans is difficult to encode in machine-readable form. A

multitude of algorithms has been published that aim at the

solution of the above problems [10, 29, 47].

2.1 Global hand features: geometric features

This subsection focuses on the robust extraction of geo-

metric features describing the two-dimensional projection

of a hand in the image plane. The feature extraction stage is

extended as shown in Fig. 5. An image preprocessing stage

is added that applies low-level algorithms for image

enhancement, such as background modeling. High-level

knowledge is applied for the resolution of overlaps and to

support hand localization and tracking.

2.1.1 Image preprocessing

The preprocessing stage improves the quality of the input

images to increase the performance (in terms of processing

speed and accuracy) of the subsequent stages. High-level

information computed in those stages may be exploited, but

this bears the usual risks of a feedback loop, such as

instability or the reinforcement of errors. Low-level algo-

rithms, on the other hand, do not have this problem and can

often be used in a wide range of applications. A prominent

example is the modeling of the image background.

Background subtraction The detection of static back-

ground areas in dynamic scenes is an important step in

many pattern recognition systems. Background subtraction,

the exclusion of these areas from further processing, can

significantly reduce clutter in the input images and

decrease the amount of data to be processed in subsequent

stages.

If a view of the entire background without any

foreground objects is available, a statistical model can be

Fig. 3 Difficulties in sign language recognition: overlap of hands and

face (a), tracking of both hands in ambiguous situations (b), and

similar signs with different meaning (c, d)

Fig. 4 Examples for

uncontrolled backgrounds that

may interfere with the tracking

of hands and face
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calculated in a calibration phase. This approach is rather

impracticable in particular for mobile applications. In the

following, it is thus assumed that the only available input

data is the signing user, and that the signing process takes

about 1–10 s. Therefore, the background model is to be

created directly from the corresponding 25–250 frames

(assuming 25 fps) containing both background and fore-

ground, without prior calibration.

Median background model A simple yet effective method

to create a background model in the form of an image

Ibg(x,y) is to compute, for every pixel (x,y), the median

color over all frames I(x,y,t):

Ibgðx; yÞ ¼ medianfIðx; y; tÞj1� t� Tg ð1Þ

where the median of a set of vectors V = {v1, v2, ..., vn} is

the element for which the sum of Euclidian distances to all

other elements is minimal:

medianV ¼ argmin
v2V

Xn

i¼1

jvi � vj ð2Þ

When using RGB color space, each vector vi represents the

color of a single pixel as a 3-tuple (r, g, b) of scalar values

specifying the color’s red, green, and blue components.

For the one-dimensional case the median is equivalent to

the 50th percentile, which is significantly faster to compute,

e.g., by simply sorting the elements of V. Therefore, (2) is in

practice often approximated by the channel-wise median

Ibgðx; yÞ ¼
medianfrðx; y; tÞj1� t� Tg
medianfgðx; y; tÞj1� t� Tg
medianfbðx; y; tÞj1� t� Tg

0

@

1

A ð3Þ

The median background model has the convenient

property of not requiring any parameters, and is thus very

robust. Its only requirement is that the image background

must be visible at the considered pixel in more than 50% of

the input frames, which is a reasonable assumption in most

scenarios. A slight drawback might be that all input frames

need to be buffered in order to compute (1).

The application of the background model to a frame,

i.e., classification of a given pixel as background or fore-

ground, requires the definition of a suitable metric D to

quantify the difference between a background color vector

(rbg gbg bbg)
T and a given color vector (r g b)T:

D ðr g bÞT; ðrbg gbg bbgÞT
� �

� 0 ð4Þ

A sufficient implementation of D is the Euclidian

distance. Computing D for every pixel in an input image

I(x, y, t) and comparison with a motion sensitivity

threshold Hm yields a foreground mask Ifg,mask:

Ifg;maskðx; y; tÞ ¼ 1 if D Iðx; y; tÞ; Ibgðx; yÞ
� �

�Hm

0 otherwise

�

ð5Þ

Here Hm is chosen just large enough so that the

camera noise is not classified as foreground. Thus, while

the computation of the median background model is itself

parameter-free, its application involves the parameter

Hm.

Figure 6 shows four example images from an input

video sequence of 54 frames in total. Each frame of the

sequence contains at least one person in the background.

The resulting background model, as well as an exemplary

application to a single frame, is visualized in Fig. 7.

2.1.2 Feature extraction

Recognition systems that must operate in real world con-

ditions require sophisticated feature extraction approaches.

The extraction stage aims for the robust segmentation of

the signer’s hands and face (which is needed as a reference

point) from the input image sequence. Since a sign may be

one- or two-handed, it is impossible to know in advance

whether the non-dominant hand will remain idle or move

together with the dominant hand. Background subtraction

alone cannot be expected to isolate foreground objects

without errors or false alarms. Also, the face—which is

mostly static—has to be localized before background

subtraction can be applied.

Since the hands’ extremely variable appearance prevents

the use of shape or texture cues, it is common to exploit

only color for hand localization. This leads to the restric-

tion that the signer must wear long-sleeved, non-skin-

colored clothing to facilitate the separation of the hand

from the arm by means of color. By using a generic skin

color model such as the one presented in [20], user and

illumination independence can be achieved at the cost of a

high number of false alarms. This method therefore

requires high-level reasoning algorithms to handle these

ambiguities.

Fig. 5 Feature extraction extended by an image preprocessing stage.

High-level knowledge of the signing process is used for overlap

resolution and hand localization/tracking

Univ Access Inf Soc

123



Fig. 6 Four example frames from the British sign PEEL. The input video consists of 54 frames, all featuring at least one person in the

background

Fig. 7 Background model

computed for the input shown in

Fig. 6 (a), its application to an

example frame (b), and the

resulting foreground mask (c)

Univ Access Inf Soc

123



2.1.2.1 Hand tracking Performing simple hand localiza-

tion in every frame is not sufficiently reliable in complex

scenarios. The relation between temporally adjacent frames

has to be exploited in order to increase performance.

Localization is thus replaced by tracking, using information

from previous frames as a basis for finding the hand in the

current frame.

A common problem in hand tracking is the handling of

ambiguous situations where more than one interpretation is

plausible. For instance, Fig. 8a shows the skin color seg-

mentation of a typical scene (Fig. 7b). This observation

does not allow a direct conclusion as to the actual hand

configuration. Instead, there are multiple interpretations, or

hypotheses, as visualized in Fig. 8b, c, d.

Simple approaches weigh all hypotheses against each

other and choose the most likely one in every frame on the

basis of information gathered in preceding frames, such as,

for instance, a position prediction. All other hypotheses are

discarded. This concept is error-prone because ambiguous

situations that cannot reliably be interpreted occur fre-

quently in sign language. Robustness can be increased

significantly by evaluating not only preceding, but also

subsequent frames, before any hypothesis is discarded. It is

therefore desirable to delay the final decision on the hands’

position in each frame until all available data has been

analyzed and the maximum amount of information is

available.

These considerations lead to the implementation of a

multiple hypotheses tracking (MHT) approach [47]. In a

first pass of the input data, all conceivable hypotheses are

created for every frame. Transitions are possible from each

hypothesis at time t to all hypotheses at time t + 1,

resulting in a state space as shown exemplarily in Fig. 9.

The total number of paths through this state space equals
Q

t HðtÞ; where H(t) denotes the number of hypotheses at

time t. Provided that the skin color segmentation detected

both hands and the face in every frame, one of these paths

represents the correct tracking result. In order to find this

path (or one as close as possible to it), probabilities are

computed that indicate the likeliness of each hypothesized

configuration, pstate, and the likeliness of each transition,

ptransition (see Fig. 9).

The computation of pstate and ptransition is based on high-

level knowledge, encoded as a set of rules or learned in a

training phase. The following aspects, possibly extended by

application-dependent items, provide a general basis:

• The physical configuration of the signer’s body can be

deduced from position and size of face and hands.

Configurations that are anatomically unlikely or do not

occur in sign language reduce pstate.

• The three phases of a sign (preparation, stroke,

retraction), in connection with the signer’s handedness,

should also be reflected in the computation of pstate. The

handedness has to be known in order to correctly

interpret the resulting feature vector.

• Even in fast motion, the hand’s shape changes little

between successive frames at 25 fps. As long as no

Fig. 8 Skin color segmentation

of Fig. 7b (a) and a subset of the

corresponding hypotheses

(b, c, d; correct: d)
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overlap occurs, the shape at time t can therefore serve

as an estimate for time t + 1. With increasing deviation

of the actual from the expected shape, ptransition is

reduced. Abrupt shape changes due to overlap require

special handling.

• Similarly, hand position changes little from frame to

frame (at 25 fps), so that coordinates at time t may

serve as a prediction for time t + 1. Kalman filters [45]

may increase prediction accuracy by extrapolating on

the basis of all past measurements.

• Keeping track of the hand’s mean or median color

can prevent confusion of the hand with nearby distrac-

tors of similar size but different color. This criterion

affects ptransition.

For searching the hypothesis space, the Viterbi algorithm

is applied in conjunction with pruning of unlikely paths

[33].

The MHT approach ensures that all available informa-

tion is evaluated before the final tracking result is

determined. The tracking stage can thus exploit, at time t,

information that becomes available only at time t1[ t.

Errors are corrected retrospectively as soon as they become

apparent.

2.1.2.2 Overlap resolution In numerous signs both hands

overlap with each other and/or with the face. When two or

more objects overlap in the image, the skin color segmen-

tation yields only a single blob for all of them, rendering a

direct extraction of meaningful features impossible

(Fig. 10). Low contrast, low resolution, and the hands’

variable appearance usually do not allow a separation of the

overlapping objects by an edge-based segmentation either.

Most of the geometric features available for not overlapped

objects can therefore not be computed for overlapping

objects, and have to be interpolated.

However, the hand’s appearance is sufficiently constant

over several frames for template matching [34] to be

applied. Using the last not overlapped view of each over-

lapping object as a template, at least position features—

which carry much information—can be reliably computed

during overlap. The accuracy of this method decreases with

increasing template age. Fortunately, the same technique

can be used twice for a single period of overlap, the second

time starting with the first not overlapped view after the

cessation of the overlap, and proceeding temporally back-

wards. This effectively halves the maximum template age

and increases precision considerably.

2.1.3 Feature computation

The subsequent classification stage requires a numerical

description of the signer’s hand configuration in each

frame. For this purpose, several geometric features are

computed from the hand candidate border, as shown in

Fig. 11. These features, describing only the two-dimen-

sional projection of each hand in the image, plane are:

Fig. 9 Hypothesis space and probabilities for states and transitions

Fig. 10 Template matching for

overlap resolution: input image

(a), skin color segmentation (b),

last view before overlap (c), first

view after overlap (d), and

estimated hand centers (e)
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• Center coordinates x, y

• Area a

• Orientation a of main axis

• Ratio r of inertia along/perpendicular to main axis

• Compactness c

• Eccentricity e

Since a [[- 90�, 90�], the orientation is split into

o1 = sin 2a and o2 = cos a to ensure stability at the

interval borders. The derivatives _x; _y; and _a complete the

22-dimensional feature vector, which combines the fea-

tures of both hands:

xt ¼ ½x _x y _y a _a o1 o2 r c e
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

left hand

x _x y _y . . .
|fflfflfflfflffl{zfflfflfflfflffl}

right hand

� ð6Þ

During periods of overlap, template matching is

performed to accurately determine the center coordinates

x, y using preceding or subsequent not overlapped views.

All other features are linearly interpolated. If the hand is

not visible or remains static throughout the sign, its

features are set to zero.

For signer-independent mobile application, some of the

above features need to be normalized. For example, the

area a depends on image resolution and on the signer’s

distance to the camera. The hand coordinates x, y addi-

tionally depend on the signer’s position in the image. Using

the face position and size as a reference for normalization

can eliminate both translation and scale variance. The

center coordinates x, y are thus specified relative to the

corresponding shoulder position, which is estimated from

the width wF and position of the face. In addition, x,y are

normalized by wF, and a by w2
F.

2.2 Detailed hand features: hand posture recognition

Visual feature extraction of an unmarked hand constitutes a

challenging problem. A robust feature which can be

extracted using a simple skin color model is the hand’s

contour [18, 41]. However, the contour is not stable

because small changes in hand posture may greatly affect

it. At the same time, discarding texture entails yet another

loss of input information in addition to the 3D-to-2D pro-

jection. Many different hand postures result in the same

contour (e.g., a fist and a pointing index finger seen from

the pointing direction), rendering this feature problematic

for unrestricted posture recognition from arbitrary viewing

angles.

This section presents a very promising approach for

hand posture recognition in monocular image sequences

that allows measurement of joint angles, viewing angle,

and position in space [11, 48]. This model-based method

imposes no posture restrictions and requires no initializa-

tion or signer-dependent training. Because this approach

has been recently developed, it is not fully evaluated in

combination with the sign language recognition system

described in this paper. However, first experimental results

for hand posture recognition are provided at the end of this

section.

2.2.1 System overview

Figure 12 shows an overview of the system. The user

wears a cotton glove equipped with six differently colored

visual markers, five covering approximately half of each

finger and the thumb, and another on the back of the hand.

This allows extracting descriptive and stable 2D features

from a monocular view. The markers’ geometry lends itself

to an elliptical approximation in the image plane, resulting

in a very compact representation. Hand posture recognition

is performed by matching a synthetic hand model featuring

identical markers to minimize deviation in feature space.

In an offline preparation phase the hand model is used to

generate a large number of postures seen from many dif-

ferent view angles. All postures are stored in an appearance

database in which each entry contains the 3D hand posture

parameters along with the 2D features that were extracted

from the corresponding synthetic image. For recognition a

database with 2.6 million entries is generated. This does

not include rotation in the image plane, which is computed

online.

Hand posture recognition can now be performed by

using the 2D features extracted from the input images as a

key for querying the database. Because feature extraction

relies on a color-based segmentation to detect the markers,

real-life images may yield several candidates per marker.

Therefore, for each frame, a fixed number of N postures

whose features have high similarity to the extracted fea-

tures are retrieved. For resolving ambiguities, multiple

hypotheses are pursued in parallel over time, computing

plausibility scores based on the candidates’ geometry and

Fig. 11 Geometric features computed for each hand
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their continuity in feature space. The winner hypothesis is

chosen at the end of the sequence, exploiting all available

information. Spline interpolation between successive

frames, considering match quality in each, finally yields a

smooth posture sequence not restricted to the discretized

posture space of the database.

2.2.2 Hand model

Regarding possible configurations of fingers and thumb,

the human hand has 21 degrees of freedom (DOF) [37].

Each finger has one DOF for each of its joints, plus a forth

DOF for sidewise abduction. The thumb requires five DOF

due to its greater flexibility. The hand model reduces this to

seven DOF by assuming dependencies between a finger’s

joints. Indices to little finger are modeled by a single

parameter each, ranging from 0.0 (fully outstretched) to 1.0

(maximum bending). The thumb is modeled similarly,

using two additional parameters to reflect its flexibility.

Besides dealing with finger bendings the model also

handles a posture’s viewing angle, i.e., the hand’s orien-

tation in space. On the surface of an imaginary sphere

around the hand (called the view sphere), each point cor-

responds to a specific view onto the hand. A view point is

therefore characterized by latitude and longitude. Addi-

tionally, for each view point a camera (or hand) rotation is

possible.

2.2.3 Experimental results

Real-life performance has been tested on sequences of

signed numbers. Figure 13 depicts some examples, each

showing a magnification of the actual input image and the

recognized posture. By visual comparison match quality is

Synthetic

Input Images

Real−life

Input Images

Extraction of

2D Features

Extraction of

2D Features

3D Hand Model

    Candidates

per Input Image

N

Disambiguation (Selection of

one Candidate per Image)

Posture

Parameters

− Posture Parameters

− 2D Features

Database:

Monocular
Camera

Application PhasePreparation Phase

2D Features

Search for Database Entries

with similar 2D Features

Recognized Postures

2D Features

Fig. 12 System overview for

extraction of detailed hand

features

Fig. 13 Real-life examples

showing four different signs

(a–d). For d the back-of-hand

marker has been removed

manually
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high. Figure 13d illustrates the system’s reaction to marker

detection failures. Using a standard PC with a 1.6 GHz

CPU and 1.25 GB RAM, processing speed is approxi-

mately 5 fps.

3 Extraction of facial features

Since sign languages are multimodal languages, several

channels for transferring information are used at the same

time. One basically differentiates between the manual/

gestical channels and the non-manual/facial channels and

their respective parameters [5]. In the following, first the

non-manual parameters are described in more detail, and

afterwards the extraction of facial features for sign lan-

guage recognition is presented.

3.1 Non-manual parameters

Non-manual parameters are indispensable in signs lan-

guage. They encode e.g. adjectives and adverbials and

contribute to grammar. In particular, some signs are iden-

tical with respect to gesturing and can only be differentiated

by making reference to non-manual parameters [6]. This is,

e.g., the case for the signs NOT and TO in German Sign

Language, which can only be distinguished by making

reference to head motion (Fig. 14). Similarly, in British

Sign Language (BSL) the signs NOW and TODAY need lip

outline for disambiguation (Fig. 15). In the following the

most important non-manual parameters will be described in

more detail.

Upper body posture The torso generally serves as refer-

ence of the signing space. Spatial distances and textual

aspects can be communicated by the posture of the torso.

The signs REJECTING or ENTICING, e.g., show a slight

inclination of the torso towards the rear and in forward

direction. Likewise, grammatical aspects as, e.g., indirect

speech, can be coded by torso posture.

Head pose The head pose also supports the semantics of

sign language. For example, questions, affirmations, deni-

als, and conditional clauses are communicated with the

help of head pose. In addition, information concerning time

can be coded. Signs which refer to a short time lapse are,

e.g., characterized by a minimal change of head pose, while

signs referring to a long lapse are performed by turning the

head clearly into the direction opposite to the gesture.

Fig. 14 The German signs

NOT (NICHT) (a) and TO

(BIS) (b) are identical with

respect to manual gesturing

but vary in head movement

Fig. 15 The British signs NOW

(a) and TODAY (b) are

identical with respect to manual

gesturing but vary in lip outline
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Line of sight Two communicating deaf persons usually

establish a close visual contact. However, a brief change of

line of sight can be used to refer to the spatial meaning of a

gesture. In combination with torso posture, line of sight can

also be used to express indirect speech, e.g., by re-enacting

a conversation between two absent persons.

Facial expression Facial expressions essentially serve the

transmission of feelings (lexical mimics). In addition,

grammatical aspects may be encoded as well. A change of

head pose combined with the lifting of the eye brows

corresponds, e.g., to a subjunctive.

Lip outline Lip outline represents the most pronounced

non-manual characteristic. Often it differs from voicelessly

expressed words in that part of a word is shortened. Lip

outline solves ambiguities between signs (BROTHER vs.

SISTER), and specifies expressions (MEAT vs. HAM-

BURGER). It also provides information redundant to

gesturing to support differentiation of similar signs.

3.2 System overview

The approach for facial feature extraction corresponds with

that described in [4] to which the reader is directed for

details. Figure 16 shows a schematic of the process, that

can be divided into an image preprocessing stage and

a subsequent feature extraction stage. Since the input

image sequence covers the entire signing space, the sign-

er’s face region must be initially localized in each image.

Afterwards this region is cropped and upscaled for further

processing.

In order to localize areas of interest such as the eyes and

mouth, a face graph is iteratively matched to the face

region using a user-adapted active appearance model.

Afterwards, a numerical description of the facial expres-

sion, head pose, line of sight, and lip outline is computed.

For each image of the sequence, the extracted features are

merged into a feature vector, which in the next step is used

for classification.

3.3 Image preprocessing

In the context of facial analysis image, preprocessing aims

to the robust localization of the face region which corre-

sponds to the rectangle bounded by bottom lip and the

eyebrows. With regard to processing speed, image analysis

is limited to a small search mask. This mask is devised to

find skin colored regions with suitable movement patterns

only. The largest skin colored object is selected and sub-

sequently limited by contiguous, non skin colored regions

(Fig. 17). Additionally, the general skin color model is

adapted to each individual.

For reducing influences of the environment, in particular

reflections and different lighting conditions, general

methods of image processing, such as gray world color

constancy, are applied to the image sequence beforehand

[34]. Furthermore, a reduction of shadow and glare effects

is performed as soon as the face has been located [8].

Fig. 16 Processing chain for

facial feature extraction

Fig. 17 Search mask composed

of skin color (left) and motion

filter (right)
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Face localization Face localization is generally simpli-

fied by exploiting a-priori knowledge, either with respect to

the whole face or to parts of it. Analytical or feature-based

approaches make use of local features such as edges,

intensity, color, movement, contours and symmetry, apart

or in combination, to localize facial regions. Holistic

approaches consider regions as a whole.

The approach described here is holistic by finding bright

and dark facial regions and their geometrical relations.

Eyebrows, e.g., are characterized by vertically alternating

bright and dark horizontal regions. Holistic face localiza-

tion makes use of three separate modules. The first module

transforms the input image in an integral image for efficient

calculation of features. The second module supports the

automatic selection of suitable features which describe

variations within a face, using Ada-Boosting. Finally, the

third module is a cascade classifier that sorts out insignif-

icant regions and analyzes in detail the remaining regions.

For side view images of faces, however, the described

localization procedure yields only uncertain results. There-

fore, an additional module for tracking suitable points in

the facial area is applied, using the algorithm of Tomasi

and Kanade [39].

3.4 Feature extraction

The interpretation of facial expression is based on so called

Action Units which represent the muscular activity in a

face. In order to classify these units, areas of interest, such

as the eyes, eyebrows, and mouth (in particular the lips) as

well as their spatial relation to each other, have to be

extracted from the images. For this purpose, the face is

modeled by an active appearance model (AAM), a statis-

tical model which combines shape and texture information

about human faces. Based on an eigenvalue approach the

amount of data needed is reduced, hereby enabling real-

time processing.

Since facial appearance is subject to high variability, the

trained appearance model must be adapted to the signer.

For adaptation a front view image of the signer’s face is

taken and applied to an artificial 3D head model. After

texture matching, different synthetic views are generated in

order to create a new user-specific appearance model which

is then used for facial feature extraction and analysis.

Both the active appearance model approach and the

adaptation of these models to a new signer is described

below in more detail. With regard to the aforementioned

processing chain, the localized face region is first cropped

and upscaled (Fig. 18, top). Afterwards, AAMs are utilized

to match the user-adapted face graph serving the extraction

of facial parameters, such as lip outline, eyes, and brows.

3.4.1 Active appearance models

Active appearance models contain two main components: a

statistical model describing the appearance of an object and

an algorithm for matching this model to an example of the

object in a new image [9]. In the context of facial analysis,

the human face is the object and the AAM can be visual-

ized as a face graph that is iteratively matched to a new

face image (Fig. 18, bottom). The statistical models were

generated by combining a model of face shape variation

with a model of texture variation of a shape-normalised

face. Texture denotes the pattern of intensities or colors

across an image patch.

3.4.1.1 Shape model The training set consists of anno-

tated face images where corresponding landmark points

have been marked manually on each example. In this

framework, the appearance models were trained on face

images of 16 objects, each labelled with 70 landmark

points at key positions (Fig. 19).

For statistical analysis all shapes must be aligned to the

same pose, i.e., the same position, scaling, and rotation.

This is performed by a Procrustes analysis which considers

the shape in a training set and minimizes the sum of dis-

tances with respect to the average shape. After alignment,

the shape point sets are adjusted to a common coordinate

system.

For dealing with redundancy in high dimensional point

sets, AAMs employ a principal component analysis (PCA).

The PCA is a means for dimensionality reduction by first

identifying the main axes of a cluster. Therefore, it

involves a mathematical procedure that transforms a

number of possibly correlated parameters into a smaller

number of uncorrelated parameters, called principal com-

ponents. The first principal component accounts for as

much of the variability in the data as possible, and each

succeeding component accounts for as much of the

remaining variability as possible.

With the calculated principal components it is possible

to reconstruct each example of the training data. New

shape instances can be approximated by deforming the

mean shape x using a linear combination ps of the eigen-

vectors of the covariance matrix Us as follows

x ¼ xþ Us � ps ð7Þ

Essentially, the points of the shape are transformed into

a modal representation where modes are ordered according

to the percentage of variation that they explain. By varying

the elements of the shape parameters ps the shape x may be

varied as well. Figure 20 depicts the average shape and

exemplary landmark variances.
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The eigenvalue ki is the variance of the ith parameter psi
over all examples in the training set. Limits are set in order

to make sure that a newly generated shape is similar to the

training patterns. Empirically, it was found that a maxi-

mum deviation for the parameter psi should be no more

than �3
ffiffiffiffi
ki

p
(Fig. 21).

3.4.1.2 Texture model Data acquisition for shape models

is straightforward, since the landmarks in the shape vector

constitute the data itself. In the case of texture analysis, one

needs a consistent method for collecting the texture infor-

mation between the landmarks, i.e., an image sampling

function needs to be established. Here, a piece-wise affine

Fig. 18 Processing scheme of

the face region cropping and the

matching of an adaptive face

graph

Fig. 19 Face graph with 70

landmark points (left) and its

application to a specific user

(right)
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warp based on the Delaunay triangulation of the mean

shape is applied.

Following the warp from an actual shape to the mean

shape, a normalization of the texture vector set is per-

formed to avoid the influence from global linear changes in

pixel intensities. Hereafter, the analysis is identical to that

of the shapes. By applying PCA, a compact representation

is derived to deform the texture in a manner similar to what

is observed in the training set

g ¼ gþ Ut � pt ð8Þ

where g is the mean texture, Ut denotes the eigenvectors of

the covariance matrix and finally pt is the set of texture

deformation parameters.

3.4.1.3 Appearance model The appearance of any

example face can thus be summarised by the shape and

texture model parameters ps and pt. In order to remove

correlation between both parameters (and to make the

model representation even more compact) a further PCA is

performed. The combined model obtains the form

x ¼ xþ Qs � c ð9Þ
g ¼ gþ Qt � c ð10Þ

where c is a vector of appearance parameters controlling

both shape and texture of the model, and Qs and Qt are

matrices describing the modes of combined appearance

variations in the training set. Figure 22 presents example

appearance models for variations of the first five eigen-

vectors between 3
ffiffiffi

k
p

; 0;�3
ffiffiffi

k
p

:

A face can now be synthesized for a given c by gener-

ating the shape-free intensity image from the vector g and

warping it using the control points described by x.

3.4.1.4 Active appearance model search This paragraph

outlines the basic idea of AAM search. The reader inter-

ested in a detailed description is directed to [9]. In AAMs,

search is treated as an optimization problem. Given a facial

appearance model as described above and a reasonable

starting approximation, the difference qI between the

synthesized model image Im and the new image Ii is to be

minimized

oI ¼ Ii � Im ð11Þ

By adjusting the model parameter c the model can

deform to match the image in the best possible way.

The search algorithm exploits the locally linear rela-

tionship between model parameter displacements and the

residual errors between model instance and image. This

relationship can be learnt during a training phase. For this

purpose, a model instance is randomly displaced from the

optimum position in a set of training images. The differ-

ence between the displaced model instance and the image

is recorded, and linear regression is used to estimate the

Fig. 20 Average outline and exemplary landmark variances
Fig. 21 Outline models for variations of the first three eigenvalues

/1, /2 and /3 between 3
ffiffiffi

k
p

; 0 and �3
ffiffiffi

k
p
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relationship between this residual and the parameter

displacement.

During image search, the model parameters must be

found that minimize the difference between image and

synthesised model instance. An initial estimate of the

instance is placed in the image and the current residuals are

measured. The relationship is then used to predict the

changes to the current parameters which would lead to a

better match. A good overall match is obtained in a few

iterations, even from poor starting estimates.

3.4.2 Person-adaptive active appearance models

Since facial appearance models are based on training sets

in which the current signer is not included, it often happens

that the face graph does not match accurately. In addition,

special user groups, e.g., persons wearing a beard or eye-

glasses, make matching difficult. For producing better

results it is helpful to create a user-specific model by

synthesized views. This requires a training step in which a

front view image of the user is taken and applied to an

artificial 3D head with an anatomic correct muscle model

[7]. The muscle model also allows generating different

facial expressions (Fig. 23).

In order to use the artificial head model for facial feature

extraction, such model has to adapt both shape and texture

information of the signer’s face. In the first step of adap-

tation the head model is manipulated with simple

transformations, such as scaling and translation. After that,

inner vertices are weighted by the distance to the nearest

feature vertex and moved with the weight in the x–y-layer.

The z-coordinate is unchanged, because there is no infor-

mation about depth by a monocular camera system. After

geometric adaptation, the texture has also to be matched to

the head model. If the size of the texture does not match

exactly to the model, it has to be rescaled and shifted, so

that the texture feature vertex has the exact same position

as the head model feature vertex.

Now with the 3D head model it is possible to generate

different views of the signer’s face by varying head pose,

facial expression, and even lighting condition. The syn-

thetic views are then used to create a new person-adapted

appearance model, which is individually adapted to the

current signer.

3.5 Feature computation

After matching the face graph to the signer’s face in the

input image, sequence areas of interest such as his eyes,

eyebrows, and mouth (in particular the lips), as well as

their spatial relation to each other, can be easily extracted.

Geometric features describing forms and distances serves

for encoding the facial expression. These features are

computed directly from the matched face graph and are

divided into three groups (Fig. 24). At first, the lip outline

is described by width, height and form-features like

invariant moments, eccentricity and orientation. The sec-

ond group contains the distances between eyes and mouth

Fig. 22 Appearance for variations of the first five eigenvectors c1, c2,

c3, c4 and c5 between 3
ffiffiffi

k
p

; 0;�3
ffiffiffi

k
p

Fig. 23 The artificial model of a human head can produce different

facial expressions by changing the parameters of the muscle model
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corners, whereas the distances between eyes and eye brows

are in the third group.

More complicated is the computation of the other facial

parameters: head pose, line of sight, and lip outline. These

parameters cannot be extracted directly. Therefore, special

algorithms were developed [7], which nevertheless rely on

information derived from the face graph. These algorithms

are described in the following subsections. Finally, an

overlap resolution for partially overlapping of the face by

the signer’s hands is presented.

With regard to the processing chain for each image of

the sequence, the extracted facial parameters are merged

into a feature vector, which in the next step is used for

classification.

3.5.1 Head pose estimation

For estimation of the head pose two approaches are

pursued in parallel (Fig. 25). In the first approach, roll

and pitch angle of the head are determined analytically.

Calculation is done by a linear back transformation of

the distorted face place on an undistorted frontal view of

the face. The second, holistic approach makes use of a

projection into a so-called pose eigenspace for comparing

the unknown head pose with known reference poses.

Finally, the results of the analytic and the holistic

approach are compared. In case of significant differences,

the actual head pose is estimated by utilizing the last

correct result combined with a prediction involving the

optical flow.

3.5.1.1 Analytic approach The analytical approach is

based on the face plane, a trapezoid described by the outer

corners of the eyes and mouth. These four points are taken

from a matched face graph.

In a frontal view the face plane appears to be sym-

metrical. If, however, the view is not frontal, the area

between eyes and mouth will be distorted. In order to

calculate roll r and pitch angle s, the distorted face plan is

transformed into a frontal view (Fig. 26). A point x on the

distorted plane is transformed into an undistorted point x0

by

x0 ¼ Uxþ t ð12Þ

where U is a linear transformation matrix and t a transla-

tion. The matrix U can be decomposed into an isotropic

scaling, a scaling in the direction of s, and a rotation around

the optical axis of the virtual cam.

Roll and pitch angles are always ambiguous due to the

implied trigonometric functions, i.e., the trapezoid descri-

bed by mouth and eye corners is identical for different head

poses. This problem can be solved by considering an

additional point such as, e.g., the nose tip, to fully deter-

mine the system.

Fig. 24 Representation of facial parameters suited for sign language

recognition

Fig. 25 Head pose is derived

by a combined analytical

and holistic approach
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3.5.1.2 Holistic approach The holistic approach makes

use of the PCA, which transforms the face region into a

data space of eigenvectors that results from different ref-

erence poses. This data space is called pose eigenspace

(PES). The reference poses are generated by means of a

rotating virtual head and are distributed equally between

- 60 and 60 degrees yaw angle. Here the face region is

derived from the convex hull that contains all nodes of the

face graph.

Before projection into PES, the monochrome images

used for reference are first normalized by subtracting the

average intensity from individual pixels and then dividing

the result by the standard deviation. Variations resulting

from different illuminations are averaged. After transfor-

mation the reference image sequence corresponds to a

curve in the PES. This is illustrated by Fig. 27, where only

the first three eigenvectors are depicted.

Now, if the pose of a new view is to be determined, the

corresponding face region is projected into the PES as well,

and subsequently the reference point with the smallest

Euclidean distance is identified.

3.5.2 Determination of line of sight

Because the line of sight is defined by the position of both

irides, they have to be localized first. For iris localization

the circle Hough transformation is used, which supports the

reliable detection of circular objects in an image [17].

Finally, the line of sight is determined by comparing the

intensity distributions around the iris with trained reference

distributions using a maximum likelihood classifier. In

Fig. 28 the entire concept for line of sight analysis is

illustrated.

Since the iris contains little red hue, only the red channel

is extracted from the eye region which contains a high

contrast between skin and iris. In this channel, a gradient-

map is computed in order to emphasize the amplitude and

phase between iris and its environment. The Hough trans-

formation is applied on a search mask which is based on a

threshold segmentation of the red channel image. Local

maxima in the Hough space then point to circular objects in

the original image. The iris by its very nature represents a

homogeneous area. Hence the local extremes are being

validated by verifying the filling degree of the circular area

with an expected radius in the red channel.

For line of sight identification the eyes’ sclera is ana-

lyzed. Following iris localization, a concentric circle is

described around it with the double of its diameter. The

resulting annulus is divided into eight circular arc seg-

ments. The intensity distribution of these segments then

indicates the line of sight. This is illustrated by Fig. 29,

where distributions for two different lines of sight are

presented, which are similar for both eyes but dissimilar for

different lines of sight. A particular line of sight associated

with an intensity distribution is then identified with a

maximum likelihood classifier. For classifier training a

sample of 15 different lines of sights were collected from

ten subjects.

Fig. 26 Back transformation of a distorted face plane (right) on an

undistorted frontal view of the face (left) which yields roll r and pitch

angle s. Orthogonal vectors a (COG eyes—outer corner of the left

eye) and b (COG eyes—COG mouth corners)

Fig. 27 Holistic approach making use of the principal component analysis. Top Five of 60 synthesized views. Middle Masked faces. Bottom

Cropped faces. Right Projection into the pose eigenspace
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3.5.3 Determination of lip outline

The extraction of lip outlines is based on an active shape

model (ASM), an iterative algorithm for matching a sta-

tistical model of object shape to a new image. Though

related to active appearance models, ASMs do not incor-

porate any texture information. The statistical model is

given by a point distribution model (PDM) which repre-

sents the shape and its possible deformation of the lip

outline. For ASM initialization the lip borders must be

segmented from the image as accurately as possible.

3.5.3.1 Lip region segmentation Segmentation of the lip

region makes use of four different feature maps which all

emphasize the lips from the surrounding by color and

gradient information (Fig. 30).

The first two maps enhance the contrast between lips

and surrounding skin by exploiting different color spaces.

For this purpose, several color spaces were investigated.

The results showed that the nonlinear LUX (Logarithmic

hUe eXtention) color space [26] and the I1I2I3 color space

are most suited.

The third map represents the probability that a pixel

belongs to the lips. The required ground truth, i.e., lip color

histograms, has been derived from 800 images segmented

by hand. The a posteriori probabilities for lips and back-

ground are then calculated using the Bayes theorem.

The fourth map utilizes a Sobel operator that emphasizes

the edges between the lips and skin- or beard-region. This

Fig. 28 Line of sight is

identified based on amplitude

and phase information in the red

channel image. An extended

Hough transformation applied

to a search mask finds circular

objects in the eye region

Fig. 29 Line of sight

identification by analyzing

intensities around the pupil
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gradient map serves the union of single regions in cases

where upper and lower lips are segmented separately, due

to dark corners of the mouth or to teeth. The filter mask is

convoluted with the corresponding image region.

Finally, the four different feature maps need to be

combined for establishing an initialization mask. For

fusion, a logical OR without individual weighting was

selected, as weighting did not improve the results.

3.5.3.2 Lip modeling For the collection of ground truth

data, mouth images were taken from 24 subjects with the

head filling the full image format. Each subject had to

perform 15 visually distinguishable mouth forms under two

different illumination conditions. Subsequently, upper and

lower lip, mouth opening, and teeth were segmented

manually in these images. Then 44 points were equally

assigned on the outline with point 1 and point 23 being the

mouth corners.

Since the segmented lip outlines vary in size, orienta-

tion, and position in the image, all points have to be

normalized accordingly. The average form of training lip

outlines, their eigenvector matrix and variance vector, form

the basis for the PDMs. The resulting models are depicted

in Fig. 31, where the first four eigenvectors have been

varied in a range between 3
ffiffiffi

k
p

; 0;�3
ffiffiffi

k
p

:

3.5.4 Overlap resolution

In case of partially overlapping of the face by one or both

hands, an accurate fitting of the active appearance models

is usually no longer possible. Furthermore, it is problematic

that the face graph is often computed astounding precisely,

even if there is not enough face texture visible. In this case,

a determination of the features in the affected regions is no

longer possible. For compensation of this effect, an addi-

tional module is involved, that evaluates all specific

regions separately with regard to hands’ overlappings.

In Fig. 32 two typical cases are presented. In the first

case, one eye and the mouth are hidden, so the feature-

vector of the facial parameters is not used for classification.

In the second case, the overlapping is not critical for

classification. Hence the facial features are consulted for

the classification process.

The hand tracker indicates a crossing of one or both

hands with the face once the skin colored surfaces touch

each other. In these cases it is necessary to decide whether

the hands affect the shape substantially. Therefore, an

ellipse for the hand is computed by using the manual

parameters. In addition, an oriented bounding box is drawn

around the lip contour of the active appearance shape. If

the hand ellipse touches the bounding box, the Mahalan-

obis distance of the shape fitting determines the decision. If

this is too large, the shape is marked as invalid. Since the

Mahalanobis distance of the shapes depends substantially

on the trained model, not an absolute value is used here, but

a proportional worsening. Experiments have shown that a

good overlapping recognition can be achieved if 25% of

the face is hidden.

4 Statistical classification

Having discussed the feature extraction stage in detail, this

section focuses on statistical classification methods suited

Fig. 30 Identification of lip

outline with an active shape

model. Four different features

contribute to this process
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for isolated and continuous sign language recognition.

Statistical classification requires that, for each sign of the

vocabulary to be recognized, a reference model must be

build beforehand. Depending on the linguistic concept, a

reference model represents a single sign either as a whole

or as a composition of smaller subunits—similar to pho-

nemes in spoken languages. The corresponding models are

therefore called word models and subunit models,

respectively.

The choice of the recognition approach generally

depends on the vocabulary size and the availability of

sufficient training data for creating effective reference

models. While the application of recognition systems based

on word models is limited to rather small vocabularies,

systems based on subunit models are able to handle larger

vocabularies. This limitation results from the following

training problem. In order to adequately train a set of word

models, each word in the vocabulary must appear several

times in different contexts. For large vocabularies, this

implies a prohibitively large training set. Moreover, the

recognition vocabulary may contain words which had not

appeared in the training phase. Consequently, some form of

word models compositions technique is required to gen-

erate models for those words which have not been seen

sufficiently during training.

According to the different classification concepts for

sign language recognition, this section is divided into two

parts: the first covers recognition based on word models for

small vocabularies (Sect. 4.1), and the second deals with

recognition based on subunit models for large vocabularies

(Sect. 4.2).

4.1 Recognition using word models

The components of a sign language recognition system

based on word models are shown in Fig. 33. For each

frame of the input image sequence, the feature extraction

stage creates a feature vector that reflects the manual and

facial parameters. Due to the nature of sign language, the

following additional processing step is advisable. Cropping

leading and/or trailing frames in which both hands are idle

speeds up classification and prevents the classifier from

processing input data that carries no information.

The recognition system operates in two different modes.

In training mode, the presented sign is known. The feature

vectors received from the feature extraction stage are used

to build statistical models which represent the knowledge

regarding how signs were performed. Training results in a

model database containing one word model for each sign in

the vocabulary. When the system is switched to recognition

Fig. 31 Point distribution

models for variations of the first

four Eigenvectors /1, /2, /3, /4

between 3
ffiffiffi

k
p

; 0;�3
ffiffiffi

k
p

Fig. 32 During the overlapping of the hands and face several regions

of the face are evaluated separately. If e.g. mouth and one eye could

be hidden (left), no features of the face are considered. However, if

eyes and mouth are located sufficiently the won features could be

used for the classification (right)
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mode, the word models allow identification of an unknown

sign by means of a comparison of its features.

However, similar to speech, the articulation of a sign

generally varies in speed and amplitude. Even if the same

person performs a same sign twice, small differences in

manual configuration and facial expression will occur.

Hidden Markov models (HMMs) are suited to solve these

problems of sign language recognition. The ability of

HMMs to compensate time and amplitude variances of

signals has been proven in the context of speech and

character recognition [32].

This subsection is structured as follows. At first, the

basic theory of HMMs is summarized. The reader inter-

ested in a deep introduction is directed to [16, 31].

Afterwards, the classification methods for both isolated and

continuous sign language recognition are described in more

detail.

4.1.1 Hidden Markov models

A hidden Markov model is a finite state machine which

makes a state transition once every time instant, and each

time a state is entered, an observation vector is generated

according to a probability density function associated with

that state. Transitions between states are also modeled

probabilistically describing another stochastic process.

Since only the output and not the state itself is visible to an

external observer, the state sequence is hidden to the out-

side. More briefly, an HMM is a doubly embedded

stochastic process with an underlying stochastic process

that is not observable.

Using a compact notation, an HMM k can be completely

described by its parameters k = (A, B, P). Each parameter

specifies a different probability distribution as follows. The

matrix A = {aij} represents the state transition probability

distribution, where aij is the probability of taking a tran-

sition from state si to state sj. The parameter B = {bj(ot)}

defines the output probability distribution, with bj(ot)

denoting the probability of emitting an observation vector

ot at time instant t when state sj is entered. This probability

is usually expressed by a continuous distribution function,

which is in many cases a mixture of Gaussian distributions.

Finally, the vector P = {pi} defines the initial state dis-

tribution, whose elements describe the probability of

starting in state si.

For reducing computational cost, several assumptions

are commonly made in practice. The Markov assumption

states that the transition probabilities are modeled as a first

order Markov process, i.e., the probability of taking a

transition to a new state only depends on the previous state

and not on the entire state sequence. Moreover, stationarity

is assumed, i.e., the transition probabilities are independent

of the actual time at which the transition takes place.

Another assumption, called the output-independence

assumption, expresses that an observation only depends on

the current state and is thus statistically independent of the

previous observations.

Although many different types of HMMs exist, only

some of them are suited to model signals whose charac-

teristics change over time in a successive manner. One

prominent example is the Bakis model, which is widely

used in the field of speech recognition. The Bakis model

has the property that it can compensate different speeds of

articulation. The underlying topology allows transitions to

the same state, to the next state and to the one after the next

state (Fig. 34).

Given the definition of HMMs above, there are three

basic problems that have to be solved [32]:

• The evaluation problem: Given the model k = (A,B,P)

and the observation sequence O = o1,o2,...,oT, the

problem is how to compute P(O|k), the probability that

this observed sequence was produced by the model.

• The estimation problem: This problem concerns how to

adjust the model parameters k = (P,A,B) to maximize

P(O|k) given one or more observation sequences O.

The parameters must be optimized so as to best

describe how the observations have come out.

• The decoding problem: Given the model k and the

observation sequence O, what is the most likely state

sequence q = q1,q2,...,qT with qi[{s1,...,sN} according to

some optimality criterion? This relates to recovery of

the hidden part of the model.

The decoding problem can be solved efficiently by means

of the Viterbi algorithm, a formal technique for finding the

Fig. 33 Components of the

training/classification process

for word models
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best state sequence. The former two problems are dealt

with next when describing the training and classification

module of the recognition system.

4.1.2 Classification of isolated signs

Classification requires that for each sign of the vocabulary

an HMM ki must be build beforehand. This is performed by

a prior training process. The training process is also out-

lined for completeness.

4.1.2.1 Training The training of hidden Markov models

corresponds with the estimation problem mentioned above.

There is no known way to analytically solve for the model

parameter set (A, B, P) that maximizes the probability of

the observation sequence in a closed form. However, the

parameter set can be chosen such that its likelihood P(O|k)

is locally maximized using an iterative procedure, such as

the Baum-Welch algorithm [33].

In most practical applications a different approach, called

the Viterbi training, is employed. It produces practically the

same estimation, but is computationally less expensive.

Given a set of observation sequences O the model parame-

ters are iteratively adjusted until convergence. In each

iteration, the most likely path through the associated HMM

ki is calculated by the Viterbi algorithm. This path represents

the new assignment of the observation vectors ot to the states

qt. Afterwards the transition probabilities aij, the means and

variances of all components of the output probability dis-

tributions bj(ot) of each state sj are reestimated. With a

sufficient convergence the parameters of the HMM ki are

available, otherwise a new iteration is requested.

The Viterbi training requires the following initialization

step. Firstly, the number of states have to be determined for

each HMM ki representing different articulations of the

same sign. A fixed number of states for all HMMs ki is not

suitable, since the training corpus usually contains signs of

different lengths, e.g., very short signs and longer signs at

the same time. Even the length of one sign can vary

considerably. Therefore, the number of observation vectors

in the shortest training sequence is chosen as the initial

number of states for the HMM ki of the corresponding sign.

After that, the system assigns the observation vectors ot of

each sequence O evenly to the states sj and initialises the

matrix A, i.e., all transitions are set equally probable.

4.1.2.2 Classification The classification problem can be

viewed as follows. Given several competing HMMs

K = {ki} and an observation sequence O, how is the model

ki chosen which was most likely to generate that obser-

vation? Considering the case where the observation

sequence is known to represent a single sign from a limited

set of possible signs (the vocabulary V), the task is actually

to compute

k̂ ¼ argmax
ki2K

PðkijOÞ ð13Þ

which is the probability of model ki given the observation

O. That means the model k̂ with the highest probability

P(ki|O) is chosen as recognition result. Using Bayes’ rule

PðkijOÞ ¼ PðOjkiÞ � PðkiÞ
PðOÞ ð14Þ

the task can be reduced to determining the likelihood

P(O|ki) assuming that P(ki) is constant, or can be computed

from a language model using a priori knowledge, and that

P(O) does not affect the choice of model ki.

The classification problem therefore corresponds to the

evaluation problem mentioned before. The likelihood is

obtained by summing the joint probability over all possible

state sequences q of length T, denoted by the set QT,

resulting

PðOjkiÞ ¼
X

q2QT

PðO; qjkiÞ

¼
X

q2QT

pq1 � bq1ðo1Þ
YT

t¼2

aqt�1;qt � bqtðotÞ
ð15Þ

where T is the length of the given observation sequence O.

However, a brute force evaluation of (15) is intractable for

realistic problems, as the number of possible state

sequences is typically extremely high. The evaluation can

be accelerated enormously using the efficient forward-

backward algorithm which calculates P(O|ki) in an iterative

manner [33].

4.1.3 Classification of continuous sign language

In the following, the training and classification process are

outlined, along with necessary modifications for continu-

ous sign language recognition. In this context, continuous

Fig. 34 Illustration of a four-state Bakis model with accompaying

state transition probabilities
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sign language means that signs within a sentence are not

separated by a pause. All possible sentences which are

meaningful and grammatically well-formed are allowed.

Furthermore, there are no constraints regarding a specific

sentence structure.

4.1.3.1 Training Training HMMs on continuous sign

language is very similar to training isolated signs. Hidden

Markov modeling has the beneficial property that it can

absorb a wide range of boundary information of models

automatically for continuous sign language recognition.

The training aims to the estimation of the model parame-

ters for entire signs (not sentences), which are later used for

the recognition procedure.

Since entire sentence HMMs are trained, variations

caused by preceding and subsequent signs are incorporated

into the model parameters. The model parameters of the

single signs must be reconstructed from this data after-

wards. The overall training is partitioned into the following

components: the estimation of the model parameters for the

complete sentence, the detection of the sign boundaries and

the estimation of the model parameters for the single signs.

For the training of the model parameters for both the entire

sentence and single signs the Viterbi training is employed.

After performing the training step on sentences, an

assignment of feature vectors to single signs is clearly

possible, and with that the detection of sign boundaries.

4.1.3.2 Classification In continuous sign language rec-

ognition a sign may begin or end anywhere in a given

observation sequence. As the sign boundaries cannot be

detected accurately, all possible beginning and end points

have to be accounted for. Furthermore, the number of signs

within a sentence is unknown at this time.

The former problem is illustrated in Fig. 35. Different

paths exist to reach the boundary of a sign. One possible

path needs the first three observation vectors ot to get to the

sign boundary, while within another assignment all obser-

vation vectors are used for reaching the sign boundary.

This converts the linear search, as necessary for isolated

sign recognition, to a tree search. Obviously, a full search

is not feasible because of its computational complexity for

continuous sign recognition. Therefore a suboptimal search

algorithm, called the beam search, is employed [19].

Instead of searching all paths, a threshold is used to con-

sider only a group of likely candidates. These candidates

are selected in relation to the state with the highest prob-

ability. Depending on that value and on a variable B0 the

threshold for each time step is defined. Every state with a

calculated probability below this threshold is discarded

from further considerations. The variable B0 influences the

recognition time. Having many likely candidates, i.e., a

low threshold is used, recognition needs more time than

considering less candidates. B0 must be determined by

experiments.

4.2 Recognition using subunit models

As already mentioned, sign language recognition is a rather

young research area compared to speech recognition.

While phoneme based speech recognition systems repre-

sent today’s state of the art, the early speech recognizers

dealt with words as a model unity. A similar development

can be observed for sign language recognition. First steps

towards subunit based recognition systems have been

undertaken only recently [2, 43]. This section outlines a

sign language recognition system based on automatic

generated subunits of signs.

4.2.1 Subunit models for signs

It is yet unclear in sign language recognition which part of

a sign sentence serves as a good underlying model. Thus,

most sign language recognition systems are based on word

models where one sign represents one model in the model

database. However, this leads to some drawbacks:

• The training complexity increases with vocabulary size.

• A future enlargement of the vocabulary is problematic

as new signs are usually signed in context of other signs

for training (embedded training).

Instead of modeling entire signs, it is more beneficial to

model each sign as a concatenation of subunits, which is

similar to modeling speech by means of phonemes.

Subunits are small segments of signs, which emerge from

the subdivision of signs. Figure 36 illustrates an example

of the above mentioned different possibilities for model

unities in the model database. The number of subunits

Sign Boundary

o8

i

o1 o7o6o5o4o3o2

Fig. 35 Two possible paths to reach the boundary of a sign
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should be chosen in such a way that any sign can be

composed with subunits. The advantages are:

• The amount of necessary training data will be reduced,

as every sign consists of a limited set of subunits.

• A further enlargement of the vocabulary is achieved by

composing a new sign through concatenation of

existing subunit models.

• The general vocabulary size can be enlarged.

4.2.1.1 Modifications to the recognition system A sub-

unit based sign language recognition system needs an

additional knowledge source, where the coding (also called

transcription) of a sign is itemized into subunits. This

knowledge source is called sign-lexicon and contains the

transcriptions of the entire vocabulary. Both training and

classification processes are based on this sign-lexicon. The

accordant modifications to the recognition system are

depicted in Fig. 37.

Modification for training The training process aims to the

estimation of the subunit model parameters. The example

in Fig. 37 shows that ‘Sign 1’ consists of the subunits (SU)

SU4, SU7, and SU3. The parameters of the associated

hidden Markov models are trained on the recorded data of

‘Sign 1’ by means of the Viterbi algorithm.

Modification for classification After completion of the

training process, a database is filled with all subunit models

which serve as a base for the classification process.

However, the aim of the classification is not the recognition

of subunits, but of complete signs. Hence, again the

information contained in the sign-lexicon regarding which

sign consists of which subunits is needed.

4.2.2 Transcription of sign language

Subunit based recognition assumes that a sign-lexicon is

available, i.e., the subunits which compose a sign are

already known. This however is not the case. The subdi-

vision of a sign into suitable subunits still poses difficult

problems. In addition, the semantics of subunits have yet to

be determined. The following section provides an overview

of possible approaches to linguistic subunit formation.

4.2.2.1 Linguistics-orientated transcription of sign lan-

guage In speech recognition subunits are mostly

linguistically motivated and are typically syllables, half-

syllables or phonemes. The base of this breakdown of

speech is rather similar to the speech’s notation system: a

written text with the accordant orthography is the standard

notation system for speech. Nowadays, huge speech-lexica

are available consisting of the transcription of speech into

subunits. These lexica are usually the base for today’s

speech recognizer.

When transferring this concept of linguistic breakdown

to sign language recognition, one is confronted with a

variety of options for notation, which all are unfortunately

not yet standardized as is the case of speech. An equally

accepted notation system does not exist for sign language.

However, some known notation systems are examined

below, especially with respect to its applicability in a

recognition system. Corresponding to the term phonemes,
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Fig. 36 The signed sentence

‘TODAY I COOK’ (‘HEUTE

ICH KOCHEN’) in German
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the term cheremes (derived from the Greek term for

‘manual’) is used for subunits in sign languages.

Notation system by Stokoe Stokoe was one of the first to

conduct research in the area of sign language linguistic in

the sixties [36]. He defined three different types of che-

remes. The first type describes the configuration of

handshape and is called dez for designator. The second type

is sig for signation and describes the kind of movement of

the performed sign. The third type is the location of the

performed sign and is called tab for tabula. Stokoe devel-

oped a lexicon for American Sign Language by means of

the above mentioned types of cheremes. The lexicon con-

sists of nearly 2500 entries, where signs are coded in

altogether 55 different cheremes (12 ‘tab’, 19 ‘dez’ and 24

different ‘sig’). An example of a sign coded in the Stokoe

system is depicted in Fig. 38 [36].

The employed cheremes seem to qualify as subunits for a

recognition system. However, their practical employment in

a recognition system turns out to be difficult. Even though

Stokoe’s lexicon is still in use today and consists of many

entries, not all signs are included in this lexicon. Also most

of Stokoe’s cheremes are performed in parallel, whereas a

recognition system expects subunits in subsequent order.

Furthermore, none of the signations cheremes (encoding the

movement of a performed sign) are necessary for a recog-

nition system, as movements are modeled by HMMs.

Hence, Stokoe’s lexicon is a very good linguistic break-

down of signs into cheremes. However, without manual

alterations, it is not useful as a base for a recognition

system.

Notation system by Liddell and Johnson Another notation

system was proposed by Liddell and Johnson [25]. They

break signs into cheremes by a so called Movement-Hold

model, which was introduced in 1984 and further devel-

oped since then. In this case, the signs are divided in

sequential order into segments. Two different kinds of

segments are possible: ‘movements’ are segments, where

the configuration of a hand is still in move, whereas for

‘hold’-segments no movement takes place, i.e., the con-

figuration of the hands is fixed. Each sign can be modeled

as a sequence of movement and hold-segments. In addition,

each hold-segment consists of articulatory features [3].

These describe the handshape, the position and orientation

of the hand, movements of fingers, and rotation and ori-

entation of the wrist. Figure 39 depicts an example of a

notation of a sign by means of movement- and hold-

segments.

Whereas Stokoe’s notation system is based on a mostly

parallel breakdown of signs, in the approach by Liddell and

Johnson a sequence of short segments is produced, which is

better suited for a recognition systems. However, similarly

to Stokoe’s notation system, no comprehensive lexicon is

available where all signs are encoded. Moreover, the

detailed coding of the articulatory features might cause

additional problems. The video-based feature extraction of

the recognition system might not be able to reach such a

high level of detail. Hence, the Movement-Hold notation

system is not suitable for a sign-lexicon within a recogni-

tion system without manual modifications or even manual

transcription of signs.

Fig. 37 Components of the

recognition system based

on subunits

Fig. 38 Notation of the sign THREE in American Sign Language by

Stokoe (from [38])
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4.2.2.2 Visually-orientated transcription of sign lan-

guage The visual1 approach of a notation (or transcri-

ption) system for sign language recognition does not rely on

any linguistic knowledge about sign languages—unlike the

two approaches described before. Here, the breakdown of

signs into subunits is based on a data-driven process, i.e., no

other knowledge source except the data itself is required. In

a first step each sign of the vocabulary is divided sequen-

tially into different segments, which have no semantic

meaning. A subsequent process determines similarities

between the identified segments. Similar segments are then

pooled and labeled. They are deemed to be one subunit.

Each sign can now be described as a sequence of the con-

tained subunits, which are distinguished by their labels.

This notation is also called fenonic baseform [19].

Figure 40 depicts as an example the temporal horizontal

progression (right hand) of two different signs.

The performed signs are initially rather similar. Conse-

quently, both signs are assigned to the same subunit (SU3).

However, the further progression differs significantly.

While the gradient of ‘Sign 2’ is going upwards, the slope

of ‘Sign 1’ decreases. Hence, the subsequent transcription

of both signs differs.

4.2.3 Sequential and parallel breakdown of signs

The example in Fig. 40 illustrates only one aspect of the

performed sign: the horizontal progression of the right

hand. Regarding sign language recognition and their fea-

ture extraction, this aspect would correspond to the

x-coordinate of the right hand’s location. However, for a

complete description of a sign, one feature is not sufficient.

In fact, a recognition system must handle many more

features which are merged in so called feature groups. The

composition of these feature groups must take the linguistic

sign language parameters into account, which are hand

location, hand shape, and hand orientation.

Further details in this section refer to an example of

separation of a feature vector into a feature group ‘pos’,

where all features regarding the position (pos) of the two

hands are grouped. Another group represents all features

describing the ‘size’ of the visible part of the hands (size),

whereas the third feature group ‘dist’ comprises all features

regarding distances between all fingers (dist). The latter two

groups stand for the sign parameter hand shape and orien-

tation. Note that these are only examples of how to model a

feature vector and its accordant feature groups. Many other

ways of modeling sign language are conceivable, and the

number of feature groups also may vary. To demonstrate the

general approach, this example makes use of the three

feature groups ‘pos’, ‘size’ and ‘dist’ mentioned above.

Following the parallel breakdown of a sign, each

resulting feature group is segmented in sequential order

into subunits. The identification of similar segments is not

carried out on the entire feature vector, but only within

each of the three feature groups. Similar segments finally

stand for the subunits of one feature group. Pooled seg-

ments of the feature group ‘pos’, for example, now

represent a certain location independent of any specific

hand shape and orientation. The parallel and sequential

breakdown of the signs finally yields three different sign

lexica, which are combined to one (see also Fig. 41).

Fig. 42 shows examples of similar segments of different

signs according to specific feature groups.
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Fig. 39 Notation of the sign

FATHER in American Sign

Language by means of the

Movement–Hold model

(from [43])
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Fig. 40 Example for different transcriptions of two signs

1 For speech-recognition the accordant name is acoustic subunits. For

sign language recognitions the name is adapted.
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4.2.4 Modification to parallel hidden Markov models

The breakdown of signs into feature groups means that the

sequential feature vector sequence is split in several

parallel signals. Since conventional HMMs are suited to

handle sequential signals, a different statistical approach is

required for modeling sign language. However, handling of

parallel signals can be achieved by using multiple HMMs

in parallel, one for each feature group. This concept is

known as parallel hidden Markov models (PaHMMs) [14].

The parallel HMMs, each called a channel, are independent

from each other, i.e., the state probabilities of one channel

do not influence any of the other channels.

Figure 43 depicts an example PaHMM with three

channels. The last state, called a confluent state, combines

the probabilities of the different channels to one probabil-

ity, valid for the entire sign. The combination of

probabilities is determined by the following equation:

PðOjkÞ ¼
YJ

j¼1

PðOjjkjÞ ð16Þ

The term Oj stands for the relevant observation

sequence of one channel, which is evaluated for the

accordant segment.

Modeling sign language by means of PaHMMs For rec-

ognition based on subunit models, each of the feature

groups is modeled by one channel of the PaHMMs. The

sequential subdivision into subunits is then conducted in

each feature group separately. Figure 44 depicts the mod-

eling of the DGS sign ‘HOW MUCH’ (WIEVIEL) with its

three feature groups. The figure shows the word model of

the sign, i.e., the sign and all its contained subunits in all

three feature groups. Note that it is possible and highly

probable that the different feature groups of a sign contain

different numbers of subunit models. This is the case if, as

in this example, the position changes during the execution

of the sign, whereas the hand shape and orientation remains

the same.

Figure 44 also illustrates the specific topology for a

subunit based recognition system. As the duration of one

subunit is quite short, a subunit HMM consists merely of

two states. The connection of several subunits in one sign

depends however on Bakis topology.
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4.2.5 Classification

Determining the most likely sign sequence Ŵ which fits a

given feature vector sequence O best results in a

demanding search process. The recognition decision is

carried out by jointly considering the visual and linguistic

knowledge sources. Following [1], where the most likely

sign sequence is approximated by the most likely state

sequence, a dynamic programming search algorithm can be

used to compute the probabilities P(O|W)�P(W). Simulta-

neously, optimization over the unknown sign sequence is

applied. Sign language recognition is then solved by

matching the input feature vector sequence to all the

sequences of possible state sequences, and finding the most

likely sequence of signs using the visual and linguistic

knowledge sources. The different steps are described in

more detail in the following subsections.

4.2.5.1 Classification of isolated signs Before dealing

with continuous sign language recognition based on sub-

unit models, the general approach will be demonstrated

through a simplified example of single sign recognition

with subunit models. The extension to continuous sign

language recognition is then described in the next section.

The general approach is the same in both cases. The

classification example is depicted in Fig. 45. Here, the sign

consists of three subunits for feature group ‘size’, four

subunits for ‘pos’ and eventually two for feature group

‘dist’. It is important to note that the depicted HMM is not

a random sequence of subunits in each feature group, nor is

it a random parallel combination of subunits. The combi-

nation of subunits—in parallel as well as in sequence—

depends on a trained sign, i.e., the sequence of subunits is

transcribed in the sign-lexicon of the corresponding feature

group. Furthermore, the parallel combination, i.e., the

transcription in all three sign-lexica codes the same sign.

Hence, the recognition process does not search any best

sequence of subunits independently.

The signal of the example sign of Fig. 45 has a total

length of 8 feature vectors. In each channel an assignment

of feature vectors (the part of the feature vector of the

accordant feature group) to the different states happens

entirely independently from each other by time alignment

(Viterbi algorithm). Only at the end of the sign, i.e., after

the 8th feature vector is assigned, the so far calculated

probabilities of each channel are combined. Here, the first

and last states are confluent states. They are not emitting

any probability, as they serve as a common beginning and

end state for the three channels. The confluent end state can

only be reached by the accordant end states of all channels.

In the depicted example, this is the case only after feature

vector o8, even though the end state in channel ‘dist’ is

already reached after 7 times steps. The corresponding

equation for calculating the combined probability for one

model is:
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PðOjkÞ ¼ PðOjkposÞ � PðOjksizeÞ � PðOjkdistÞ ð17Þ

The decision on the best model is reached by a

maximisation over all models of the signs of the

vocabulary:

k̂ ¼ argmax
ki2K

PðOjkiÞ ð18Þ

After completion of the training process, a word model

ki exists for each sign wi, which consists of the hidden

Markov models of the accordant subunits. This word model

will serve as reference for recognition.

4.2.5.2 Classification of continuous sign language In

principle, the classification procedure for continuous and

isolated sign language recognition is identical. However, in

contrast to the recognition of isolated signs, continuous

sign language recognition is concerned with a number of

further difficulties, such as:

• A sign may begin or end anywhere in a given sequence

of feature vectors.

• It is ambiguous how many signs are contained in each

sentence.

• There is no specific order of given signs.

• Transitions between subsequent signs must be detected

automatically.

All these difficulties are strongly linked to the main

problem, the detection of sign boundaries. Since these can

not be detected accurately, all possible beginning and end

points have to be accounted for.

As introduced in the last section, the first and last state

of a word model is a confluent common state for all three

channels. Starting from the first state, the feature vector is

divided into feature groups for the different channels of the

PaHMM. From the last joint confluent state of a model a

transition exists to the first confluent states of all other

models. This scheme is depicted in Fig. 46.

Detection of sign boundaries At the time of classification,

the number of signs in the sentence, as well as the transi-

tions between these signs, are unknown. In order to find the

correct sign transitions all models of signs are combined, as

depicted in Fig. 46. The generated model constitutes one

comprehensive HMM. Inside a sign model there are still

three transitions (Bakis-Topology) between states. The last

confluent state of a sign model has transitions to all other

sign models. The Viterbi algorithm is employed to deter-

mine the best state sequence of this three-channel PaHMM.

The assignment of feature vectors to different sign models

becomes obvious and with it the detection of sign

boundaries.

4.3 Stochastic language modeling

The classification of sign language usually depends on two

knowledge sources: the visual model and the language

model. Visual modeling is carried out by using HMMs as

described above. Language modeling is discussed in this

section. Without any language model technology, the

transition probabilities between two successive signs are

equal. Knowledge about a specific order of the signs in the

training corpus is not utilised during recognition.
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In contrast, a statistical language model takes advantage

of the knowledge that pairs of signs, i.e., two successive

signs, occur more often than others. The following equa-

tion gives the probability of so called bigram models:

PðwÞ ¼ Pðw1Þ �
Ym

i¼2

Pðwijwi�1Þ ð19Þ

The equation estimates the probability that a given

sequence of m successive signs wi occurs. During the

classification process, the probability of a subsequent sign

changes, depending on the classification result of the

preceding sign. By this method, typical sign pairs receive a

higher probability. The estimation of these probabilities

requires however a huge training corpus. Unfortunately,

since training corpora do not exist for sign language, a

simple but efficient enhancement of the usual statistical

language model is introduced next.

Enhancement for sign language recognition The

approach of an enhanced statistical language model for sign

language recognition is based on the idea of dividing all

signs of the vocabulary into different sign groups (SG) [2].

The probabilities of occurrence are calculated between

these sign groups and not between specific signs. If a

combination of different sign groups is not seen in the

training corpus, this is a hint that signs of these specific sign

groups do not follow each other. This approach does not

require that all combinations of signs occur in the data base.

If the sequence of two signs of two different sign groups

SGi and SGj is observed in the training corpus, any sign of

sign group SGi followed by any other sign of sign group

SGj is allowed for recognition. For instance, if the sign

sequence ‘I EAT’ is contained in the training corpus, the

probability that a sign of group ‘verb’ (SGverb) occurs when

a sign of sign group ‘personal pronoun’ (SGperspronoun) was

already seen, is increased. Therefore, the occurrence of the

signs ‘YOU DRINK’ receives a high probability even

though this sequence does not occur in the training corpus.

On the other hand, if the training corpus does not contain a

sample of two succeeding ‘personal pronoun’ signs (e.g.,

‘YOU WE’), it is a hint that this sequence is not possible in

sign language. As a consequence, the recognition of these

two succeeding signs is excluded from the recognition

process.

By this modification, a good compromise between sta-

tistical and linguistic language modeling is achieved. The

assignment to specific sign groups is mainly motivated by

word categories known from speech grammar. Sign groups

are ‘nouns’, ‘personal pronouns’, ‘verbs’, ‘adjectives’,

‘adverbs’, ‘conjunctions’, ‘modal verbs’, ‘prepositions’ and

two additional groups, which take the specific character-

istics of sign languages into account.

5 Signer adaptation

Current sign language recognition systems face the prob-

lem that they achieve excellent performance for signer-

dependent operation, but their recognition rates decrease

significantly if the signer’s articulation deviates from the

training data.

The performance drop in the case of signer-independent

recognition results from the broad interpersonal variability

in production of sign languages. Even within the same

dialect, considerable variations are commonly present.

Figure 47 shows different articulations of an example sign

in British Sign Language. Analysis of the hand motion

reveals that the variation between different signers is much

higher than within one signer. Other manual features, such

as hand shape, posture, and location, exhibit analogue

variability.

As the problem of interpersonal variance cannot be

solved by simple feature normalization, it must be

addressed at the classification level. The most obvious

solution is to increase the number of training signers.

However, the recording of training data is very time-con-

suming, in particular for large vocabularies. Furthermore,

increasing the training population usually results in lower

recognition performance compared to signer-dependent

systems. Hidden Markov models tend to become less

accurate when covering more and more different articula-

tions of the same sign.

Better results can be achieved with dedicated adaptation

methods known from speech recognition. Such methods

allow enhancing the recognition performance back to the

level of signer-dependent systems. This section outlines

how the sign language recognition system presented in this

paper can be extended for rapid adaptation to unknown

signers. A combination of maximum likelihood linear

regression (MLLR) and maximum a posteriori (MAP)

estimation is introduced, along with necessary modifica-

tions for signer adaptation.

5.1 System overview

Selected adaptationmethods known from speech recognition

are modified for the use in sign language recognition tasks to

improve the performance of the signer-independent recog-

nizer. Figure 48 shows a schematic representation of the

adaptive recognition system described in this section [44].

Initially, a set of adaptation data consisting of isolated

signs is collected from the unknown signer, either super-

vised with known transcription or unsupervised. In the

latter case, the signer-independent recognizer estimates a

transcription, using a confidence measure to assess the
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quality of the recognition result. Based on the adaptation

data, the adaptation process then reduces the mismatch

between signer-independent models and observations from

the unknown signer.

5.2 Choice of adaptation methods

Various adaptation methods have already been investigated

in the context of speech recognition. Due to the obvious

similarities between speech and sign language recognition,

some are applicable to signer adaptation. There are gen-

erally two different adaptation approaches. While feature-

based methods, such as vocal tract length normalization,

require knowledge from the speech production domain,

model-based approaches are well suited for adapting the

recognition system.

Model-based adaptation alters the parameters of the

underlying HMMs based on the given adaptation data. In

the following two methods are evaluated: maximum like-

lihood linear regression and maximum a posteriori

estimation. Both are employed in current speech recogni-

tion systems and have proven to perform excellently in the

speech domain. These two approaches are introduced and

modified to consider the specifics of sign languages, such

as one-handed signs.

5.3 Maximum likelihood linear regression

The mixture components of the signer-independent HMMs

are clustered into a set of regression classes C = 1,...,R

such that each Gaussian component m belongs to one class

c [ C. A linear transformation Wc for each class c is then

estimated from the adaptation data. Estimation of the

transformation matrices follows the maximum likelihood

paradigm, so the transformed models best explain the

adaptation sequences. Reestimation formulae for Wc based

on the iterative expectation maximization algorithm are

presented in [13].

The Gaussian mean lm of each component m from class

c is then transformed with the corresponding matrix Wc,

yielding the adapted parameter

~lm ¼ Wc � �lm ð20Þ

where �lm is the extended mean vector

�lTm ¼ ½1 lTm� ð21Þ

A component from a model which has not been

observed in adaptation data can thus be trans-

formed based on the observed components from the

same class.

As proposed in [13], a regression class tree is used to

improve the clustering of the mixture components, where

the number of regression classes depends on the available

amount of adaptation data. Each node c of the tree corre-

sponds to a regression class and a transformation Wc is

associated to the node. The root contains all mixture

components, yielding a global transformation W. The sons

of a node form a partition of the father class, so deeper

nodes yield more specialized transformations derived from

fewer components. As more adaptation sequences become

available, deeper transformations can be robustly

estimated.

This approach is adapted to sign language recognition

using explicit handling of signs that are only performed

with one hand and a method for transforming models that

have not been observed in the adaptation data.

Fig. 47 The sign TENNIS in

British Sign Language

performed five times by two

different native signers using

the same dialect. Position of the

hands are visualized as motion

traces for comparison

Fig. 48 Schematic of the adaptive sign language recognition system

Univ Access Inf Soc

123



5.3.1 One-hand transformations

The corpus contains several signs where only the dominant

hand is active during the entire sequence. It is presumed

that the right hand is always dominant, as features from

left-handed signers are mirrored. Thus, feature extraction

yields a feature vector sequence [x1,...,xT], where for sin-

gle-handed signs the entries of the non-dominant hand of

each feature vector xt 2 RDþD equal zero:

xt ¼ ½0. . .0 xt;1. . .xt;D� ð22Þ

Here, xt,d is the dth feature of the dominant hand. If

HMMs are trained with such sequences, the mean vectors

of the resulting mixture components have the same special

form. As the adapted models should be of the same form,

dedicated one-hand transformations are introduced.

Each class of the regression class tree containing only

one-hand mixture components is marked as a one-hand

class. The sons of such a class again represent one-hand

classes as they form a partition of the father node. Thus

each one-hand class defines a one-hand subtree containing

only one-hand classes.

A sample regression class tree is shown in Fig. 49. The

root node contains all components, represented by their

mean vectors. These are either collected from one-hand or

two-hand models. If a created node contains only one-hand

means during tree construction, the whole subtree defined

by that node will contain only one-hand classes. Such one-

hand subtrees can make up a large part of the whole

regression class tree.

The first half of a Gaussian parameter corresponding to a

one-hand mixture component contains only zero entries,

and is therefore ignored during the adaptation process.

Transformations for classes that are part of a one-hand

subtree are estimated from the one-hand versions of the

corresponding Gaussian parameters, consisting only of the

second half of mean and variance.

The use of one-hand transformations guarantees that the

features for the passive hand remain passive after the

transformation. Complexity of the estimation process is

halved in the one-hand case due to the dimensionality

reduction.

5.3.2 Handling of unseen signs

Sign models are called seen or unseen, depending on

whether they are observed in adaptation data or not. The

mixture components of an unseen HMM are transformed

based on the seen components of the regression class they

belong to. Although this works for large and general

regression classes near the root of the tree, specialized

transformations for small classes towards the tree leaves

tend to produce unsatisfying results. Since the transfor-

mations are highly optimized for the seen components, the

unseen components are not adapted well.

Reducing the tree size would result in broader regression

classes at the tree leaves and the most special possible

transformations would still be applied to a large amount of

mixture components. If these general transformations are

used even if more adaptation sequences become available,

the effect of MLLR saturates after a certain amount of data.

Thus, a special handling of the unseen components is

proposed.

Not updating the unseen components at all degrades the

quality of the adapted models in terms of recognition

accuracy. After the transformation, the mean parameters of

seen components are much closer to the range of the

observations from the unknown signer than the parameters

of unseen components. Thus, the Viterbi score of a model

corresponding to a seen sign is likely to be higher than the

score of an unseen model, so the recognizer prefers seen

models in general.

This can be solved by using general transformations

only for unseen components. The seen components are

adapted using the most special transformation that can be

robustly estimated using the regression class tree, while

unseen components are adapted using a global transfor-

mation estimated at the root node of the tree.

5.4 Maximum a posteriori estimation

The maximum a posteriori estimate ~lMAP for the Gaussian

mean lm of a mixture component m is a linear interpola-

tion between a-priori knowledge derived from the signer-

independent model and the observations from the

Fig. 49 One-hand classes as part of the regression class tree
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adaptation sequences. During Viterbi alignment of an

adaptation sequence with its corresponding model, the

feature vectors mapped to a certain component can be

recorded, yielding the empirical mean �xm of the mapped

vectors. According to [22], the MAP estimate is

~lMAP ¼ s

sþ N
� lm þ 1� s

sþ N

� 	

� �xm ð23Þ

where N is the number of feature vectors aligned to com-

ponent m, and s is a weight for the influence of the a-priori

knowledge. If N approaches infinity, the influence of the

signer-independent model approaches zero and the adapted

parameter equals the empirical mean. Thus MAP performs

well on large sets of adaptation data, but its pure form can

only be used to update seen components. This can be

solved by using the MLLR-adapted model as prior

knowledge, replacing the signer-independent mean by the

already transformed mean.

6 Performance evaluation

This section provides some performance data that has

been achieved with the visual sign language recognition

system presented in this paper. Performance evaluation is

concerned with recognition based on word models and

subunit models. In both cases recognition performance

was evaluated for both isolated signs and continuous sign

language.

Recognition performance for continuous sign language

is typically described in terms of sign accuracy, SA, defined

as:

SA ¼ 1� NS þ ND þ NI

NA

ð24Þ

where NA is the total number of signs in the test set, and NS,

ND, and NI are the total number of substitutions, deletions,

and insertions respectively.

6.1 Training and test corpora

For evaluating the proposed sign language recognition

system, numerous videos containing either isolated signs or

continuous sign sentences were recorded and stored in two

databases. According to the underlying sign language, the

databases are referred to as BSL-Corpus and DGS-Corpus

in the following. Each database is divided into two inde-

pendent subsets, called the training and test set. While the

training set is used for training the recognition system, the

test set serves for performance evaluation.

In order to facilitate feature extraction, recordings were

conducted under laboratory conditions, i.e., in a controlled

environment with diffuse lighting and a unicolored back-

ground. The signers wear dark clothes with long sleeves

and perform from a standing position (Fig. 50). Moreover,

each signer was instructed to move her/his hands from a

resting position beside the hips to the signing location and

after signing back to the same resting position. The hands

are visible throughout the whole sequence, and their start

and end positions are constant and identical, which sim-

plifies tracking.

All video clips were initially recorded on video tape and

then transferred to hard disk. Image resolution is

384 9 288 pixels at 25 fps. For quick random access to

individual frames, each clip is stored as a sequence of

images.

6.1.1 BSL-Corpus

The BSL-Corpus was primarily built to evaluate the signer-

independent recognition performance for isolated signs.

For this purpose, a vocabulary of about 263 signs in British

Sign Language has been recorded. The corpus consists of a

base vocabulary of 153 signs and about 110 additional

signs representing variations and dialects of this base

vocabulary. The vocabulary comprises news items and

Fig. 50 Example frames taken

from the BSL-Corpus (left) and

from the DGS-Corpus (right),

respectively
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navigation commands and was not selected for discern-

ability. As required for signer-independent recognition,

most signs were performed by different native signers.

While the base vocabulary was performed by 4 signers, the

additional signs were articulated only by a subset of these

signers. For both signer-dependent and -independent rec-

ognition, multiple productions (5–10) of each sign were

recorded in order to capture typical variance and charac-

teristic properties. The total number of video clips, each

showing an isolated sign, is about 8100.

6.1.2 DGS-Corpus

The DGS-Corpus was built with the objective of evalu-

ating the signer-dependent recognition performance for

isolated and continuous sign language. The vocabulary

comprises 152 signs in German Sign Language repre-

senting seven different word types such as nouns, verbs,

adjectives, etc. The signs were chosen from the domain

‘shopping in a supermarket’. The entire corpus was per-

formed by one person. The native language of the signing

person is German, but she is working as an interpreter for

DGS and therefore did not learn the signs explicitly for

this task.

The corpus consists of a large number of videos showing

each sign of the vocabulary as a single isolated sign, as

well as in context of continuous signing. Based on the

vocabulary, overall 631 different continuous sentences

were constructed and recorded. Each sentence ranges from

two to nine signs in length. No intentional pauses are

placed between signs within a sentence, but the sentences

themselves are separated. There are no constraints

regarding a specific sentence structure. All sentences of the

sign database are meaningful and grammatically well-

formed. For modeling variance in articulation, each iso-

lated sign and sentence was performed 10 times.

Training set preparation focused on the construction of

sign sentences with a great number of different transitions

between the signs. However, these transitions are still

different from those seen in the independent test set. In

order to evaluate the recognition performance for different

vocabulary sizes, the corpus is divided into three subcor-

pora simulating a vocabulary of 52, 97, and 152 signs

respectively.

6.2 Recognition using word models

This section reports some performance data for sign lan-

guage recognition based on word models. Results were

obtained for isolated signs and continuous sign language.

6.2.1 Classification of isolated signs

Based on the BSL-Corpus, recognition performance for

isolated signs was evaluated for both signer-dependent and

signer-independent operation. In the latter case, recognition

rates are given for single signs under controlled laboratory

condition, as well as under real world condition. Unless

otherwise stated, only manual features were used for

classification.

6.2.1.1 Signer-dependent recognition Table 2 presents

the signer-dependent recognition performance from a

leaving-one-out test for four signers and various video

resolutions under controlled laboratory conditions. The

training resolution was always 384 9 288. The vocabu-

lary size is specified separately for each signer as the

number of recorded signs varies slightly. Interestingly, hand

coordinates alone accounted for approximately 95% rec-

ognition of a vocabulary of around 230 signs. On a 2 GHz

PC, processing took an average of 11.79s/4.15s/3.08s/2.92s

per sign, depending on resolution. Low resolutions caused

only a slight decrease in recognition rate, but reduced pro-

cessing time considerably. So far a comparably high

performance has only been reported for intrusive systems.

Under the same conditions head pose, eyebrow position,

and lip outline were employed as non-manual features. The

recognition rates achieved on the vocabularies presented in

Table 2 varied between 49.3 and 72.4% among the four

signers, with an average of 63.6%. Hence, roughly two of

Table 2 Signer-dependent

isolated sign recognition with

manual features in controlled

environments

Test video

resolution

Features Signer, vocabulary size

Ben, 235

signs (%)

Michael, 232

signs (%)

Paula, 219

signs (%)

Sanchu, 230

signs (%)

£ 229

signs (%)

384 9 288 All 98.7 99.3 98.5 99.1 98.9

192 9 144 All 98.5 97.4 98.5 99.1 98.4

128 9 96 All 97.7 96.5 98.3 98.6 97.8

96 9 72 All 93.1 93.7 97.1 95.9 94.1

384 9 288 x; _x; y; _y 93.8 93.9 95.5 96.1 94.8
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three signs were recognized just from non-manual features,

a result that emphasizes the importance of facial expres-

sions for sign language recognition.

6.2.1.2 Signer-independent recognition Table 3 shows

the results for signer-independent recognition. Since the

signers used different signs for some words, the vocabulary

has been chosen as the intersection of the test signs with the

union of all training signs. No selection has been performed

otherwise, and no minimal pairs have been removed. As

expected, performance drops significantly. This is caused

by strong interpersonal variance in signing, as visualized in

Fig. 47 by hand motion traces for identical signs done by

different signers. Recognition rates are also affected by the

exact constellation of training/test signers, and do not

necessarily increase with the number of training signers.

Signer-independent performance in uncontrolled envi-

ronments is difficult to measure, since it depends on

multiple parameters (signer, vocabulary, background,

lighting, camera). Furthermore, noise and outliers are

inevitably introduced in the features when operating in real

world settings. Despite the large interpersonal variance,

signer-independent operation is feasible for small vocabu-

laries, as can be seen in Table 4. Each test signer was

recorded in a different real-life environment, and the

selection of signs is representative of the complete

vocabulary (it contains one-handed and two-handed signs,

both with and without overlap).

6.2.2 Classification of continuous sign language

The continuous sign language recognition experiments

were conducted on the DGS-Corpus described above.

Table 5 present results for vocabulary sizes of 52, 97, and

152 signs, each with different employed language model.

Analysing the results, it can be stated that the proposed

system is able to recognize continuous sign language.

Depending on the vocabulary size, sign accuracy ranges

between 89.2 and 94.0% without language modeling (zer-

ogram). In all cases, the utilization of uni- and bigram

models can slightly improve recognition performance.

Interestingly, increasing the vocabulary size by a factor of

three does not worsen sign accuracy significantly.

Looking closer at the results, it is obvious that the sys-

tem discriminates most of the minimal pairs, where the

location, movement and orientation of the dominant hand

are very similar. Another important aspect is the fact that

the unseen sign successions in the test set are recognised in

a good manner. Furthermore, the achieved recognition

performance indicates that the system is able to handle the

free order of signs within a sentence. Therefore, the system

can be used for all aspects of sign language.

6.3 Recognition using subunit models

Performance evaluation of signer-dependent sign language

recognition based on subunit models was carried out on the

DGS-Corpus. Throughout all experiments only the manual

features were employed. As already mentioned, recogni-

tion of continuous sign language requires a prohibitive

amount of training material if signed sentences are used.

Therefore the automated transcription of signs to subunits

described in [2] was used here, which is expected to reduce

the effort required for vocabulary extension to a minimum.

Transcription was performed for 52 isolated signs, which

resulted in 184 (pos), 187 (size) and 187 (dist) subunits

respectively. The subsequent training is solely based on 5

repetitions of these isolated signs used for transcription.

Table 3 Signer-independent isolated sign recognition with manual

features in controlled environments. The n-best rate indicates the

percentage of results for which the correct sign was among the n signs

deemed most similar to the input sign by the classifier. For n = 1 this

corresponds to what is commonly specified as the recognition rate

Training signer(s) Test

signer

Vocabulary

size

n-Best rate

1 (%) 5 (%) 10 (%)

Michael Sanchu 205 36.0 58.0 64.9

Paula, Sanchu Michael 218 30.5 53.6 63.2

Ben, Paula, Sanchu Michael 224 44.5 69.3 77.1

Ben, Michael, Paula Sanchu 221 54.2 79.4 84.5

Ben, Michael, Sanchu Paula 212 37.0 63.6 72.8

Michael, Sanchu Ben 206 48.1 70.0 77.4

Table 4 Signer-independent recognition rates in real-life environments

Vocabulary

size

Test signer

Christian

(%)

Claudia

(%)

Holger

(%)

Jörg

(%)

Markus

(%)

Ulrich

(%)

£

(%)

6 96.7 83.3 96.7 100 100 93.3 95.0

18 90.0 70.0 90.0 93.3 96.7 86.7 87.8

Table 5 Signer-dependent recognition of continuous sign language

using different language models (according to Sect. 4.3)

Vocabulary size Language modeling

Zerogram

(m = 0)

Unigram

(m = 1)

Bigram

(m = 2)

52 94.0% 94.7% 95.4%

97 91.8% 92.0% 93.2%

152 89.2% 89.6% 91.1%
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The obtained recognition results for isolated and continu-

ous sign language are reported below.

6.3.1 Classification of isolated signs

In order to evaluate the automatic transcription of signs to

subunits two different experiments were conducted

(Table 6). In the first experiment recognition performance

was tested for the 52 isolated signs used for transcription. It

should be noted that the test set consists of the remaining

five repetitions and thus differs from the training set, i.e.,

HMMs for subunits are trained with data of repetitions of

the sign different from these used during this test. The

recognition rate is 93.1%.

The second experiment simulates a later extension of the

existing vocabulary by 100 additional signs. No data of any

repetition was used to train HMMs for subunits. As these

are signs which were newly included into the vocabulary,

their transcriptions were determined after the completion of

the training. The performed classification test for these

signs synthesized from the identified subunits yields 90.4%

correct recognition. This result shows that the automatic

segmentation of signs produced reasonable subunits.

6.3.2 Classification of continuous sign language

The experiments carried out for continuous sign language

recognition are based on a test set of 100 sentences. These

sentences were chosen from the DGS-Corpus in such a way

that they only comprise the 52 signs used for transcription.

Each sentence ranges from two to nine signs in length.

After eliminating coarticulation effects and considering a

bigram model according to the statistical probability of

sign order, a recognition rate of 87.7% was achieved.

Without language model, accuracy drops to 80.3%. This

finding is very essential since it solves the problem of

vocabulary extension without additional training.

6.4 Experimental results for signer adaptation

The performance evaluation for signer adaptation is limited

to supervised adaptation only. The undertaken experiments

were conducted on the base vocabulary of the BSL-Corpus.

Three signers were used for training the signer-independent

model, and one signer served for testing. Four repetitions

were used for static adaptation with different amounts of

adaptation data while one repetition was reserved for

testing. All results given are average values from the four

possible combinations of signers (leaving-one-out tests).

Only the Gaussian means were updated by MLLR and

MAP, variances and mixture weights remain unchanged as

the mean covers most of the variability between the signers

[23]. The results below are derived using Gaussian single

densities, experiments with Gaussian mixtures show the

same behavior due to the small training population.

Explicit one-hand transformations were used in all MLLR

experiments.

Figure 51 illustrates the effect of the proposed methods

for handling mixture components from unseen signs. Seen

components were adapted with the most special transform

Table 6 Signer-dependent recognition based on subunit models

Vocabulary size Recognition rate (%)

52 (previously trained) 93.1

100 (previously not trained) 90.4
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from the regression class tree in all three experiments. As

described, transforming the unseen components with a

global transformation outperforms the conventional

approach and is superior to ignoring the unseen compo-

nents during adaptation. Therefore, the MLLR approach is

suited for rapid signer adaptation using only a small

amount of adaptation data.

Combining the modified MLLR approach with standard

MAP, as shown in Fig. 52, results in the same effect which

has been observed in the field of speech recognition: the

rapid adaptation using MLLR is preserved, while its satu-

ration is compensated by MAP.

Table 7 summarizes the adaptation experiments, show-

ing the recognition performance of adapted models using

the different methods. MLLR followed by MAP yields the

best models, regardless of the number of adaptation

sequences. Using class-based MLLR, rapid adaptation to

an unknown signer is possible without covering the entire

vocabulary during adaptation, as described in [28].

7 Conclusions

This paper has described a comprehensive approach to

robust visual sign language recognition which reflects

recent developments in this field. The proposed recognition

system aims to signer-independent operation and utilizes a

single video camera for data acquisition to ensure user-

friendliness. In order to cover all aspects of sign languages,

sophisticated algorithms were developed that robustly

extract manual and facial features, also in uncontrolled

environments. The classification stage is designed for

recognition of isolated signs as well as of continuous sign

language. For statistical modeling of reference models, a

single sign can be represented either as a whole or as a

composition of smaller subunits—similar to phonemes in

spoken languages. In order to overcome the problem of

high interpersonal variance, dedicated adaptation methods

known from speech recognition were implemented and

modified to consider the specifics of sign languages.

Remarkable recognition performance has been achieved

for signer-dependent classification and medium sized

vocabularies. Furthermore, the presented recognition

system is suitable for signer-independent real world

applications where small vocabularies suffice, as, e.g., for

controlling interactive devices. Breaking down signs into

smaller subunits allows the extension of an existing

vocabulary without the need of large amounts of training

data. This constitutes a key feature in the development of

sign language recognition systems supporting large

vocabularies. Methods for signer adaptation yields signifi-

cant performance improvements. While the modified

maximum likelihood linear regression approach serves for

rapid adaptation to unknown signers, the combined maxi-

mum a posteriori estimation results in high accuracy for

larger sets of adaptation data.
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Untereinheiten-Modellen. Shaker Verlag, Aachen (2003)

3. Becker, C.: Zur Struktur der deutschen Gebärdensprache. WVT
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