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ABSTRACT

P. Wintgen proved in [Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979)]
that the Gauss curvature G and the normal curvature KD of a surface in the Euclidean 4-space E4

satisfy
G+ |KD| ≤ ‖H‖2,

where ‖H‖2 is the squared mean curvature. A surface M2 in E4 is called a Wintgen ideal surface
if it satisfies the equality case of the inequality identically. Wintgen ideal surfaces in E4 form
an important family of surfaces; namely, surfaces with circular ellipse of curvature. In 1999, P. J.
De Smet, F. Dillen, L. Verstraelen and L. Vrancken gave a conjecture for Wintgen inequality on
Riemannian submanifolds in real space forms, which was well-known as the DDVV conjecture.
Later, the DDVV conjecture was proven by Z. Lu and by Ge and Z. Tang independently.
In this paper, we provide a comprehensive survey on recent developments in Wintgen inequality
and Wintgen ideal submanifolds.
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1. Introduction

For a surface M2 in a Euclidean 3-space E3, the well-known Euler inequality in classical differential geometry
is given by

G ≤ ‖H‖2, (1.1)

where G is the Gauss curvature of M2 and ‖H‖2 is the squared mean curvature of M2 in E3. Obviously, G = ‖H‖2
everywhere on M if and only if the surface M2 is totally umbilical in E3.

For an isometric immersion ψ : M2 → M̃4 of a surface M into a Riemannian 4-manifold M̃4, the ellipse of
curvature at a point p ∈M2 is defined as

Ep = {h(X,X) |X ∈ TpM2, ‖X‖ = 1}, (1.2)

where h denotes the second fundamental form of M2 in M̃4. The ellipse of curvature is the analogue of the
Dupin indicatrix of an ordinary surface in E3.

A surface ψ : M2 → M̃4 is called super-minimal if and only if, at each point p ∈M2, the ellipse of curvature
Ep is a circle with center 0 (see [74]). Simple examples of super-minimal surfaces in the Euclidean 4-space E4

are R-surfaces, i.e., graphs of holomorphic functions: {(z, f(z)) : z ∈ U}, where U ⊂ C ≈ R2 is an open subset
of the complex plane and f is a holomorphic function.

Th. Friedrich proved in 1984 that super-minimal surfaces are characterized by the property that the lift into
the twistor space is holomorphic and horizontal (see [74, 75] for details). When the ambient space M̃4 is a
space of constant curvature, O. Borůvka [18] proved in 1928 that the family of super-minimal immersions
ψ : M2 → M̃4 depends (locally) on two holomorphic functions. In [20], R. Bryant proved that every compact
Riemann surface admits a conformal super-minimal immersion into the ordinary 4-sphere S4. M. Dajczer and
R. Tojeiro established in [59] a representation formula for super-minimal surfaces in E4 in terms of pairs (g, h)
of conjugate minimal surfaces in E4. For further results on super-minimal surfaces we refer to §2 of my survey
article [41].

In 1979, P. Wintgen [137] proved a basic relationship between the intrinsic Gauss curvature G, the extrinsic
normal curvature KD, and squared mean curvature ‖H‖2 of any surface M2 in a Euclidean 4-space E4; namely,

G+ |KD| ≤ ‖H‖2, (1.3)

with the equality holding if and only if the curvature ellipse is a circle. Wintgen’s inequality was extended
in [83] by I. V. Guadalupe and L. Rodriguez to surfaces of arbitrary codimension in real space forms R2+m(c)
with m ≥ 2. Also, the present author extended Wintgen’s inequality in [38, 42] to surfaces in pseudo-Euclidean
4-space E4

2 with a neutral metric.
In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken proposed in [61] a conjecture of Wintgen

inequality for general Riemannian submanifolds in real space forms, which was later well-known as the DDVV
conjecture. This conjecture was proven to be true by Z. Lu [94] and by Ge and Z. Tang [78] independently.
Since then, the study of Wintgen’s inequalities and Wintgen ideal submanifolds has attracting more and more
researchers and a lot of interesting results have been achieved during the last 15 years.

The main purpose of this paper is to provide a comprehensive survey on recent developments in Wintgen
inequality and Wintgen ideal submanifolds done mainly in the last 15 years.
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2. Preliminaries

We follow the notations from [40, 45, 46, 109].

2.1. Basic definitions, formulas and equations

Let ψ : Mn → M̃m be an isometric immersion of an n-dimensional Riemannian manifold Mn into a
Riemannian m-manifold M̃m. Denote by ∇ and ∇̃ the Levi-Civita connections on Mn and M̃m, respectively,
and by 〈 , 〉 the inner product on Mn and M̃m. Let R and R̃ denote the Riemann curvature tensors of Mn and
M̃m, respectively, so that we have

R(X,Y )Z = ∇X∇Y −∇Y∇XZ −∇[X,Y ]Z.

For vector fields X,Y tangent to Mn and ξ normal to Mn, the formulas of Gauss and Weingarten are given
respectively by

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −AξX +DXξ, (2.2)

where h,A and D are the second fundamental form h, the shape operator A, and the normal connection D of
Mn in M̃m. The shape operator and the second fundamental form are related by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 .

The mean curvature vector is defined by
−→
H = 1

n traceh. The squared mean curvature ‖H‖2 is defined to be 〈
−→
H,
−→
H 〉.

For a submanifold Mn of a Riemannian m-manifold M̃m, we denote by (hrij) the coefficients of the second
fundamental form defined by

hrij = 〈h(ei, ej), ξr〉 , (2.3)

where {e1, . . . , en} and {ξ1, . . . , ξm−n} are is an orthonormal frames of the tangent bundle TMn and normal
bundle T⊥Mn, respectively.

The equations of Gauss, Codazzi and Ricci of Mn in M̃m are given respectively by

〈R(X,Y ), Z,W 〉 = 〈R̃(X,Y )Z,W 〉+ 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉 , (2.4)

(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X,Z), (2.5)

〈RD(X,Y )ξ, η〉 = 〈R̃(X,Y )ξ, η〉+ 〈[Aξ, Aη]X,Y 〉 (2.6)

for vector fields X,Y, Z tangent to M and ξ, η normal to M , where (R̃(X,Y )Z)⊥ is the normal component of
R̃(X,Y )Z, ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ), (2.7)

and RD is the curvature tensor associated with the normal connection D, i.e.,

RD(X,Y )ξ = DXDY ξ −DYDXξ −D[X,Y ]ξ. (2.8)

For a surface M2 in E4, the Gauss curvature G and the normal curvature KD of M2 are given by

G =
〈
RD(e1, e2)e2, e1

〉
, KD =

〈
RD(e1, e2)ξ2, ξ1

〉
. (2.9)

2.2. δ-invariants

Let Mn be a Riemannian n-manifold and a point p ∈Mn. Denote by K(π) the sectional curvature of Mn

associated with 2-plane section π ⊂ TpMn. For an orthonormal basis {e1, . . . , en} of TpMn, the scalar curvature
τ at p is defined by

τ(p) =
∑
i<j

K(ei ∧ ej). (2.10)
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If L is an r-dimensional subspace of TpMn with r ≥ 2 and if {e1, . . . , er} is an orthonormal basis of L, then
the scalar curvature τ(L) of L is defined by

τ(L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (2.11)

For two given integers n ≥ 3 and k ≥ 1, we denote by S(n, k) the finite set consisting of all k-tuples
(n1, . . . , nk) of integers satisfying

∑k
i=1 ni ≤ n with 2 ≤ ni < n. We put S(n) = ∪k≥1S(n, k).

For each (n1, . . . , nk) ∈ S(n) and each p ∈Mn, the author introduced the notion of δ-invariant δ(n1, . . . , nk)(p)
in [25, 30, 32] by

δ(n1, . . . , nk)(p) = τ(p)− inf{τ(L1) + · · ·+ τ(Lk)},

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpMn such that dimLj = nj , j = 1, . . . , k.

2.3. Basic inequalities and ideal submanifolds

The author proved the following optimal universal inequality in [30, 32] which relates the δ-invariants
δ(n1, . . . , nk) and the squared mean curvature ‖H‖2 for submanifolds in real space forms.

Theorem 2.1. Let Mn be an n-dimensional submanifold of a real space form Rm(c) of constant sectional curvature c.
Then, for each k-tuple (n1, . . . , nk) ∈ S(n), we have

δ(n1, . . . , nk) ≤ n2(n+ k − 1−
∑
nj)

2(n+ k −
∑
nj)

‖H‖2 +
1

2

(
n(n− 1)−

k∑
j=1

nj(nj − 1)
)
c. (2.12)

The equality case of inequality (2.12) holds at a point x ∈Mn if and only if there exists an orthonormal basis
{e1, . . . , em} at x such that the shape operators of Mn in Rm(c) at x with respect to {e1, . . . , em} take the following
form:

Ar =


Ar1 . . . 0
...

. . .
... 0

0 . . . Ark

0 µrI

 , r = n+ 1, . . . ,m, (2.13)

where I is an identity matrix and Arj is a symmetric nj × nj submatrix satisfying

trace (Ar1) = · · · = trace (Ark) = µr. (2.14)

The notions of ideal immersions and ideal submanifolds were introduced in the 1990s by the author in [30] as
follows. An n-dimensional submanifold Mn of a real space form Rm(c) is said to be δ(n1, . . . , nk)-ideal if it
satisfies the equality case of inequality (2.12) identically. And a submanifold Mn in Rm(c) is simply called an
ideal submanifold if it is a δ(n1, . . . , nk)-ideal for some (n1, . . . , nk) ∈ S(n).

Physical Interpretation of Ideal Immersions. “An isometric immersion φ : Mn → Rm(c) of a Riemannian n-
manifold into a real space form Rm(c) is an ideal immersion” means that Mn receives the least possible amount
of tension (given by ∆̂0(p)) from the surrounding space at each point in Mn. This is due to inequality (2.12) and
the well-known fact that the mean curvature vector field is exactly the tension field for isometric immersions.
For an isometric immersion, the squared mean curvature at each point on the submanifold simply measures
the amount of tension the submanifold receiving from the surrounding space at that point. For this reason,
sometime an ideal immersion is also called a best way of living (see, [30, 32, 33, 35, 40] for details).

2.4. Hopf fibration and Lagrangian submanifolds of complex space forms

We recall the Hopf fibration and the general method of H. Reckziegel [114] for constructing Lagrangian
submanifolds in complex projective spaces and in complex hyperbolic spaces.

Case (1): CPn(4). Let S2n+1(c) =
{
Z = (z1, . . . , zn+1) ∈ Cn+1 : 〈Z,Z〉 = 1

c > 0
}

be the hypersphere of Cn+1 with
constant sectional curvature c centered at the origin. Consider the complex structure J induced by i =

√
−1 and
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the inner product 〈 , 〉 on Cn+1. Let us consider the canonical Sasakian structure on S2n+1(1) consisting of φ
given by the projection of the complex structure J of Cn+1 on the tangent bundle of S2n+1(1) and the structure
vector field ξ = Jx with x being the position vector.

An isometric immersion f : Mn → S2n+1(1) is called C-totally real (or Legendrian) if ξ is normal to f∗(TMn)
and 〈J(f∗(TM

n)), f∗(TM
n)〉 = 0, where J denotes the canonical complex structure of Cn+1. Since vectors of

S2n+1(1) perpendicular to ξ at a point Z define the horizontal subspace Hz of the Hopf fibration

π : S2n+1(1)→ CPn(4),

the condition “ξ is normal to f∗(TMn)” means that f is horizontal.
The main results of [114] can be specialized as follows. Let f : Mn → CPn(4) be a Lagrangian isometric

immersion. Then there exists an isometric covering map τ : M̂ →Mn, and a C-totally real isometric immersion
f̂ : M̂ → S2n+1(1) such that f(τ) = π(f̂). Hence every Lagrangian immersion can be lifted locally (or globally if
we assume the manifold is simply connected) to a C-totally real immersion of the same Riemannian manifold.

Conversely, let f : M̂ → S2n+1(1) be a C-totally real isometric immersion. Then f = π(f̂) : Mn → CPn(4) is
again an isometric immersion, which is Lagrangian. Under this correspondence, the second fundamental forms
hf̂ and hf of f̂ and f satisfy π∗(hf̂ ) = hf . Moreover, hf̂ is horizontal with respect to π.

Case (2): CHn(−4). We consider the complex number space Cn+1
1 with the pseudo-Euclidean metric:

g0 = −dz1dz̄1 +

n+1∑
j=2

dzjdz̄j .

Put H2n+1
1 (c) =

{
Z = (z1, z2, . . . , zn+1) : 〈Z,Z〉 = 1

c < 0
}
, where 〈 , 〉 is the inner product on Cn+1

1 induced
from g0. We put T ′z = {Z ∈ Cn+1 : Re 〈U,Z〉 = Re 〈U, iZ〉 = 0} and H1

1 = {λ ∈ C : λλ̄ = 1}. Then we have an
H1

1 -action on H2n+1
1 (−1), Z 7→ λZ and at each point Z ∈ H2n+1

1 (−1), the vector iZ is tangent to the flow
of the action. Since the metric g0 is Hermitian, we have Re g0(iZ, iZ) = −1. Note that the orbit is given by
xt = (cos t+ i sin t)z and dxt/dt = iZt. Thus the orbit lies in the negative definite plane spanned by Z and
iZ. The quotient space H2n+1

1 /∼, under the identification from the action, is the complex hyperbolic space
CHn(−4) with constant holomorphic sectional curvature −4, with the complex structure J induced from the
canonical complex structure J on Cn+1

1 via the following Hopf fibration:

π : H2n+1
1 (−1)→ CHn(−4).

Just as in Case (1), let f : Mn → CHn(−4) be a Lagrangian isometric immersion. Then there exists an
isometric covering map τ : M̂ →Mn, and a C-totally real isometric immersion f̂ : M̂ → H2n+1

1 (−1) such that
f(τ) = π(f̂). Hence every totally real immersion can be lifted locally (or globally if we assume the manifold is
simply connected) to a C-totally real immersion.

Conversely, let f̂ : M̂ → H2n+1
1 (−1) be aC-totally real isometric immersion. Then f = π(f̂) : Mn → CHn(−4)

is again an isometric immersion, which is Lagrangian. Similarly, under this correspondence, the second
fundamental forms hf̂ and hf of f̂ and f satisfy π∗(hf̂ ) = hf . Moreover, hf̂ is horizontal with respect to π.

3. Wintgen’s inequality and Wintgen ideal surfaces in E4

3.1. The original Wintgen’s inequality

The result of P. Wintgen obtained in [137] is the following.

Theorem 3.1. Let M2 be a surface in Euclidean 4-space E4. Then we have

‖H‖2 ≥ G+ |KD| (3.1)

at any point x ∈M2. Moreover,
(i) IfKD ≥ 0 holds at a point x ∈M2, then the equality sign of (3.1) holds at x if and only if, with respect to some suitable
orthonormal basis {e1, e2, e3, e4} at x, the shape operators at x satisfies

Ae3 =

(
µ+ 2γ 0

0 µ

)
, Ae4 =

(
0 γ
γ 0

)
. (3.2)
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(ii) If KD < 0 holds at x ∈M2, then the equality sign of (3.1) holds at x if and only if, with respect to some suitable
orthonormal basis {e1, e2, e3, e4} at x, the shape operators at x satisfies

Ae3 =

(
µ− 2γ 0

0 µ

)
, Ae4 =

(
0 γ
γ 0

)
. (3.3)

Analogous to ideal submanifolds defined in §2, a surface M2 in E4 is called Wintgen ideal if it satisfies the
equality case of the Wintgen inequality (3.1) identically.

The following are some simple examples of Wintgen ideal surfaces in E4.

Example 3.1. Consider the Whitney sphere in the complex Euclidean plane C2 defined by

w(y0, y1, y2) =
1 + i y0

1 + y2
0

(y1, y2), (3.4)

with y2
0 + y2

1 + y2
2 = 1. The Whitney immersion w : S2 → C2 is a Lagrangian immersion of a sphere S2 into C2

which has a unique self-intersection point at w(−1, 0, 0) = w(1, 0, 0). The Whitney sphere satisfies the equality
case of (3.1) identically.

Example 3.2. The rotation surface of Vrănceanu is defined by the immersion f : R× (0, 2π)→ E4,

f(u, v) = r(u)(cosu cos v, cosu sin v, sinu cos v, sinu sin v), (3.5)

where r > 0 is a smooth real-valued function. The ellipse of curvature of the rotation surface of Vrănceanu
given by (3.5) is a circle if and only if either

r(u) =
A√

| cos(2u+ a)|
, A > 0, a ∈ R, or

r(u) = B
√
| cos(2u+ b)|, B > 0, b ∈ R.

In the first case the rotation surface of Vrănceanu is the tensor product of an equilateral hyperbola and a unit
circle and in the second case the tensor product of a lemniscate of Bernoulli and a unit circle (for the definition
of tensor products of immersions, see [26, 62]).

3.2. Wintgen ideal surfaces satisfying |G| = |KD|

The following result was given in [36].

Proposition 3.1. Let M2 be a Wintgen ideal surface in E4. Then M2 has constant mean curvature and constant Gauss
curvature if and only if M2 is totally umbilical.

The next theorem classifies all Wintgen ideal surfaces in E4 with equal Gauss and normal curvatures.

Theorem 3.2. [36] A Wintgen ideal surface M2 in E4 satisfies |K| = |KD| identically if and only if one of the following
four cases occurs:
(1) M2 is an open portion of a totally geodesic plane in E4.
(2) M2 is a complex curve lying fully in C2, where C2 is the Euclidean 4-space E4 endowed with some orthogonal almost
complex structure.
(3) Up to dilations and rigid motions on the Euclidean 4-space E4, M2 is an open portion of the Whitney sphere defined
by

ψ(u, v) =
sinu

1 + cos2 u

(
sin v, cos v, cosu sin v, cosu cos v

)
.
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(4) Up to dilations and rigid motions of the Euclidean 4-space E4, M2 is a surface with K = KD = 1
2‖H‖

2 defined by

ψ(x, y) =
2
√
y

5

√
cosx cos

(x
2

)
cos(ln y) cos

(
1

2
tanh−1

(
tan

x

2

))
×

(
tan

(
1

2
tanh−1

(
tan

x

2

))
(2− tan(ln y)) + tan

(x
2

)
(1 + 2 tan(ln y)),

tan

(
1

2
tanh−1

(
tan

x

2

))
(1 + 2 tan(ln y))− tan

(x
2

)
(2− tan(ln y)),

tan
(x

2

)
tan

(
1

2
tanh−1

(
tan

x

2

))
(1 + 2 tan(ln y)) + tan(ln y)− 2,

tan
(x

2

)
tan

(
1

2
tanh−1

(
tan

x

2

))
(tan(ln y)− 2)− 2 tan(ln y)− 1

)
.

Remark 3.1. To prove Theorem 3.2, the author had solved the following fourth order differential equation:

p(4)(x)− 2(tanx)p′′′(x) +

(
1 +

5

8
sec2 x

)
p′′(x) +

(
5

8
sec2 x− 2

)
(tanx)p′(x) +

185

256
(sec4 x)p(x) = 0. (3.6)

to obtain its exact solution:

p(x) =
√

cosx

{(
c1 cos

(x
2

)
+ c2 sin

(x
2

))
cos

(
1

2
tanh−1

(
tan
(x

2

)))
+
(
c3 cos

(x
2

)
+ c4 sin

(x
2

))
sin

(
1

2
tanh−1

(
tan
(x

2

)))}
Remark 3.2. It was proved by I. Castro in [22] that, up to rigid motions and dilations of C2, the Whitney sphere
is the only compact orientable Lagrangian super-minimal surface in C2.

3.3. Wintgen’s inequality for surfaces in real space forms

I. V. Guadalupe and L. Rodriguez [83] used ellipse of curvature to define the normal curvature KD for
oriented compact surfaces into oriented real space forms Rm(c) of constant curvature c. Further, they proved
the following.

Theorem 3.3. Let φ : M2 → Rm(c) be an isometric immersion of a compact oriented surface M2 into an orientable
m-dimensional real space form Rm(c) of constant curvature c. Then we have the following∫

M2

‖H‖2dv + cArea(M2) ≥ 2πχ(M) +
∣∣∣ ∫

M2

KDdv
∣∣∣ (3.7)

with equality if and only if KD does not change sign and the ellipse of curvature is a circle at every point. If in addition
M2 is homeomorphic to the 2-sphere S2, m = 4 and the mean curvature vector is parallel, then(

‖H‖2 + c
)

Area(M2) = 2π
(
χ(M2) +

∣∣χ(T⊥M2)
∣∣) , (3.8)

where χ(M2) and χ(T⊥M2) denote the Euler number of the M2 and the normal bundle T⊥M2 of M2.

A submanifold Mn of a Riemannian manifold M̃m is called semi-parallel if it satisfies R̄ · h = 0, where R̄ is the
curvature tensor of the van der Waerden–Bortolotti connection and h is the second fundamental form of Mn.
In [16], B. Bulca, K. Arslan studied the class of semi-parallel Wintgen ideal surfaces in Em and showed that
such surfaces are totally umbilical in Em.
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4. Wintgen type inequality for surfaces in indefinite real space form R4
2(c)

4.1. Pseudo-Riemannian space forms

Denote by Emt the pseudo-Euclidean m-space equipped with pseudo-Euclidean metric of index t given by

gt = −
t∑
i=1

dx2
i +

n∑
j=t+1

dx2
j , (4.1)

where (x1, . . . , xm) is a rectangular coordinate system of Emt . Let us put

Sks (c) =
{
x ∈ Ek+1

s : 〈x, x〉 =
1

c
> 0
}
, Hk

s (c) =
{
x ∈ Ek+1

s+1 : 〈x, x〉 =
1

c
< 0
}
, (4.2)

where 〈 , 〉 is the inner product associated with gt. It is well known that Sks (c) and Hk
s (c) are pseudo-

Riemannian manifolds of constant curvature c and with index s, which are known as a pseudo-Riemannian
k-sphere and a pseudo-hyperbolic k-space, respectively. The pseudo-Riemannian manifolds Eks , Sks (c) and Hk

s (c)
are called indefinite real space forms, simply denoted by Rks (c) (see, e.g., [40, 45, 109]).

A vector v is called space-like (resp., time-like) if 〈v, v〉 > 0 (resp., 〈v, v〉 < 0). A vector v is called light-like if
it is nonzero and it satisfies 〈v, v〉 = 0. Further, a submanifold Mn in a pseudo-Riemannian manifold is called
space-like if each nonzero tangent vector of Mn is a space-like vector.

An n-dimensional space-like submanifoldMn of a pseudo-Riemannian manifold is called a Chen submanifold
(see, e.g., [79, 80, 116]) if ∑

i,j

〈 h(ei, ej),
−→
H 〉h(ei, ej) (4.3)

is parallel to the mean curvature vector
−→
H , where h is the second fundamental form and {e1, . . . , en} is an

orthonormal frame of the submanifold Mn.

4.2. Wintgen type inequality for space-like surfaces in R4
2(c)

For oriented space-like surfaces in a 4-dimensional indefinite real space form R4
2(c) with neutral metric, the

author proved the following Wintgen type inequality in [38, 42].

Theorem 4.1. Let M2 be an oriented space-like surface in a 4-dimensional indefinite space form R4
2(c) of constant

curvature c and with index two. Then we have

G+KD ≥ ‖H‖2 + c (4.4)

at every point.
The equality sign of (4.4) holds at a point x ∈M2 if and only if, with respect to some suitable orthonormal frame

{e1, e2, e3, e4}, the shape operator at x satisfies

Ae3 =

(
µ+ 2γ 0

0 µ

)
, Ae4 =

(
0 γ
γ 0

)
. (4.5)

Similar as before, we call a space-like surface M2 in R4
2(c) a Wintgen ideal surface if it satisfies the equality

case of (4.4) identically.

Remark 4.1. Clearly, every totally geodesic space-like surface in R4
2(c) is a Wintgen ideal surface. Furthermore,

it follows from (4.3) and (4.5) that every Wintgen ideal surface surface in R4
2(c) is a Chen surface.

4.3. Wintgen ideal surfaces in E4
2 satisfying |G| = |KD|

The following classification theorem was proved in [42].

Theorem 4.2. Let M2 be a Wintgen ideal surface in a neutral pseudo-Euclidean 4-space E4
2. Then M2 satisfies

|G| = |KD| identically if and only if, up to dilations and rigid motions, M2 is one of the following three types of surfaces:
(i) A space-like complex curve in C2

1, where C2
1 denotes E4

2 endowed with some orthogonal complex structure;
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(ii) An open portion of a non-minimal surface defined by

sec2x
(

sinx sinh y,
√

2− sin2x cosh y, sinx cosh y,
√

2− sin2x sinh y
)

;

(iii) An open portion of a non-minimal surface defined by

coshx

6
√

2y

(
6
√

2

√√
2+(1−2 tanhx)

√
1+tanhx+ y2

√√
2+
√

1+tanhx, 6
√

2

√√
2+(2 tanhx−1)

√
1+tanhx

+ y2

√√
2+
√

1+tanhx
(√

2 coshx
√

1 + tanhx− ex
)
,

6
√

2

√√
2+(1−2 tanhx)

√
1+tanhx− y2

√√
2+
√

1+tanhx, 6
√

2

√√
2+(2 tanhx−1)

√
1+tanhx

− y2

√√
2+
√

1+tanhx
(√

2 coshx
√

1+tanhx− ex
))
.

4.4. Wintgen ideal surfaces in E4
2 satisfying KD = 2G

The following result was proved by the author and B. D. Suceavă in [52].

Theorem 4.3. For a real number c, let γ with 3γ2 > −c be a positive solution of the following second order partial
differential equation

∂

∂x

(
(3γ
√
c+ 3γ2 − c)(6γ + 2

√
3c+ 9γ2 )

√
3γx

2γ(c+ 3γ2)

)

− ∂

∂y

(
(3γ
√
c+ 3γ2 − c)γy

2γ(c+ 3γ2)(6γ + 2
√

3c+ 9γ2 )
√

3

)
= γ
√
c+ 3γ2

(4.6)

defined on a simply-connected domain D ⊂ R2. Then M2
γ = (D, gγ) with the metric

gγ =

√
c+ 3γ2

γ(6γ + 2
√

3c+ 9γ2 )
√

3

(
dx2 + (6γ + 2

√
3c+ 9γ2 )2

√
3dy2

)
(4.7)

admits a non-minimal Wintgen ideal immersion ψγ : M2
γ → R4

2(c) into a complete simply-connected indefinite space
form R4

2(c) satisfying KD = 2G identically.

The author and Suceavă [52] also proved the following result which classifies all Wintgen ideal surfaces in
R4

2(c) satisfying KD = 2G.

Theorem 4.4. Let M2 be a Wintgen ideal surface in a complete simply-connected indefinite space form R4
2(c) with

c = 1, 0 or −1. If M2 satisfies KD = 2K identically, then one of following three cases occurs:
(1) c = 0 and M2 is a totally geodesic surface in E4

2;
(2) c = −1 and M2 is a minimal surface in H4

2 (−1) congruent to an open part of ψB : ‖H‖2(− 1
3 )→ H4

2 (−1) ⊂ E5
3

defined by (
sinh

( 2s√
3

)
− t2

3
−
(

7

8
+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1

2
+

t2

2
e

2s√
3 , t+

(
t3

3
+

t

4

)
e

2s√
3 ,

sinh
( 2s√

3

)
− t2

3
−
(

1

8
+
t4

18

)
e

2s√
3

)
;

(3) M2 is a non-minimal surface in R4
2(c) which is congruent to an open part of ψγ : M2

γ → R4
2(c) associated with a

positive solution γ of the partial differential equation (4.6) as described in Theorem 4.3.
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5. Complex curves and space-like surfaces in E4
2

5.1. Complex curves and space-like surfaces satisfying KD = −G in E4
2

Lorentzian minimal surfaces in a pseudo-Euclidean space Ems was completely classified by the author in [39]
and by H. Anciux in [4] independently as follows.

Theorem 5.1. A Lorentzian surface in a pseudo-Euclidean m-space Ems is minimal if and only if locally the immersion
takes the form

L(x, y) = z(x) + w(y),

where z and w are null curves satisfying 〈z′(x), w′(y)〉 6= 0.

For space-like minimal surface in C2
1, the author proved the following result in [42] which provides a very

simple link between complex curves and space-like minimal surfaces satisfying KD = −G in C2
1.

Proposition 5.1. Let M2 be an oriented space-like minimal surface in E4
2. Then M2 is a complex curve in a Lorentzian

complex plane C2
1 (i.e. E4

2 equipped with a compatible orthogonal complex structure) if and only ifM2 satisfiesKD = −G
identically.

5.2. Space-like surfaces with constant Gauss curvature and null normal curvature

The next theorem of the author and Suceavă from [52] classifies some space-like surfaces with null normal
curvature in E4

2.

Theorem 5.2. Let M be a space-like surface in the pseudo-Euclidean 4-space E4
2. If M has constant mean and Gauss

curvatures and null normal curvature, then M is congruent to an open part of one of the following six types of surfaces:
(1) A totally geodesic plane in E4

2 defined by (0, 0, x, y);
(2) a totally umbilical hyperbolic plane H2(− 1

a2 ) ⊂ E3
1 ⊂ E4

2 given by
(
0, a coshu, a sinhu cos v, a sinhu sin v

)
, where a

is a positive number;
(3) A flat surface in E4

2 defined by 1√
2k

(
cosh(

√
2kx), cosh(

√
2ky), sinh(

√
2kx), sinh(

√
2ky)

)
where k is a positive

number;
(4) A flat surface in E4

2 defined by
(
0, 1

a cosh(ax), 1
a sinh(ax), y

)
, where a is a positive number;

(5) A flat surface in E4
2 defined by(

cosh(
√

2x)√
2kr

,
cosh(

√
2y)√

2k(2k − r)
,

sinh(
√

2x)√
2kr

,
sinh(

√
2y)√

2k(2k − r)

)
,

where k and r are positive numbers satisfying 2k > r > 0;
(6) A surface of negative curvature −b2 in E4

2 defined by(
1

b
cosh(bx) cosh(by),

∫ y

0

cosh(by) sinh

(
4
√
k2 − b2
b

tan−1
(

tanh
by

2

))
dy,

1

b
sinh(bx) cosh(by),

∫ y

0

cosh(by) cosh

(
4
√
k2 − b2
b

tan−1
(

tanh
by

2

))
dy

)
,

where b and k are real numbers satisfying 0 < b < k.

6. Space-like minimal surfaces in R4
2(c)

6.1. Space-like minimal surfaces in R4
2(c)

The following lemma follows immediately from the equation of Gauss.

Lemma 6.1. Let M2 be a space-like minimal surface in R4
2(c). Then we have G ≥ c. In particular, if G = c holds

identically, then M is totally geodesic.
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For space-like minimal surfaces M2 in R4
2(c), it follows from [117, Theorem 1] that M2 has constant Gauss

curvature if and only if it has constant normal curvature.
We recall the following result of M. Sasaki from [117].

Theorem 6.1. Let M2 be a space-like minimal surface in R4
2(c). If M2 has constant Gauss curvature G, then either

(1) G = c and M2 is a totally geodesic surface in R4
2(c);

(2) c < 0, G = 0 and M2 is locally congruent to the minimal surface defined by 1√
2

(coshu, cosh v, 0, sinhu, sinh v) , or

(3) c < 0, G = c/3 and M2 is isotropic.

Now, consider a space-like minimal surface in H4
2 (−1) as follows. Let R2 be a plane with coordinates s, t.

Consider a map B : R2 → E5
3 given by

B(s, t) =

(
sinh

( 2s√
3

)
− t2

3
−
(

7

8
+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1

2
+

t2

2
e

2s√
3 , t+

(
t3

3
+

t

4

)
e

2s√
3 ,

sinh
( 2s√

3

)
− t2

3
−
(

1

8
+
t4

18

)
e

2s√
3

)
.

(6.1)

The author proved in [37] that the map B defines a full isometric parallel immersion

ψB : H2(− 1
3 )→ H4

2 (−1) (6.2)

of the hyperbolic plane H2(− 1
3 ) of curvature − 1

3 into the pseudo-hyperbolic 4-space H4
2 (−1).

The next result was also obtained by the author in [37].

Theorem 6.2. Let ψ : M2 → H4
2 (−1) be a parallel full immersion of a space-like surface M2 into H4

2 (−1). Then M2 is
minimal in H4

2 (−1) if and only if M2 is locally congruent to the surface defined by(
sinh

( 2s√
3

)
− t2

3
−
(

7

8
+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1

2
+

t2

2
e

2s√
3 , t+

(
t3

3
+

t

4

)
e

2s√
3 ,

sinh
( 2s√

3

)
− t2

3
−
(

1

8
+
t4

18

)
e

2s√
3

)
.

By combining Theorem 6.1 and Theorem 6.2, we obtain the following (see [37]).

Theorem 6.3. Let M2 be a non-totally geodesic space-like minimal surface in H4
2 (−1). If M2 has constant Gauss

curvature K, then either
(1) G = 0 and M2 is congruent to an open part of the surface defined by 1√

2
(coshu, cosh v, 0, sinhu, sinh v) , or

(2) G = − 1
3 and M2 is is congruent to an open part of the surface defined by(

sinh
( 2s√

3

)
− t2

3
−
(

7

8
+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1

2
+

t2

2
e

2s√
3 , t+

(
t3

3
+

t

4

)
e

2s√
3 ,

sinh
( 2s√

3

)
− t2

3
−
(

1

8
+
t4

18

)
e

2s√
3

)
.

6.2. Applications to minimal Wintgen ideal surfaces in R4
2(c)

A function f on a space-like surface M2 is called logarithm-harmonic, if ∆(ln f) = 0 holds identically on M2,
where ∆ is the Laplacian. A function f on M2 is called subharmonic if ∆f ≥ 0 holds everywhere on M2.

The author proved the following results.

Theorem 6.4. [38] Let ψ : M2 → H4
2 (−1) be a non-totally geodesic, minimal immersion of a space-like surface M2 into

H4
2 (−1). Then

G+KD ≥ −1 (6.3)
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holds identically on M2.
If G+ 1 is logarithm-harmonic, then the equality sign of (6.3) holds identically if and only if ψ : M2 → H4

2 (−1) is
congruent to an open portion of the immersion ψφ : H2(− 1

3 )→ H4
2 (−1) which is induced from the map φ : R2 → E5

3

defined by

φ(s, t) =

(
sinh

( 2s√
3

)
− t2

3
−
(

7

8
+
t4

18

)
e

2s√
3 , t+

(
t3

3
− t

4

)
e

2s√
3 ,

1

2
+

t2

2
e

2s√
3 , t+

(
t3

3
+

t

4

)
e

2s√
3 ,

sinh
( 2s√

3

)
− t2

3
−
(

1

8
+
t4

18

)
e

2s√
3

)
.

(6.4)

Corollary 6.1. [38] Let ψ : M2 → H4
2 (−1) be a minimal immersion of a space-like surface M2 of constant Gauss

curvature into H4
2 (−1). Then the equality sign of (6.3) holds identically if and only if one of the following two statements

holds.
(1) G = −1,KD = 0, and ψ is totally geodesic.
(2) KD = 2G = − 2

3 and ψ is congruent to an open part of the minimal surface ψφ : H2(− 1
3 )→ H4

2 (−1) induced from ψ
defined by (6.4).

Proposition 6.1. [38] Let ψ : M2 → E4
2 be a minimal immersion of a space-like surface M2 into the pseudo-Euclidean

4-space E4
2. Then

G ≥ −KD (6.5)

holds identically on M2. Further, if M2 has constant Gauss curvature, then the equality sign of (6.5) holds identically if
and only if M2 is a totally geodesic surface.

Proposition 6.2. [38] Let ψ : M2 → E4
2 be a minimal immersion of a space-like surface M2 into E4

2. Then
(1) If the equality sign of (6.3) holds identically, then K is a non-logarithm-harmonic function.
(2) If M2 contains no totally geodesic points and the equality sign of (6.5) holds identically on M2, then lnG is a
subharmonic function.

Proposition 6.3. [38] Let ψ : M2 → S4
2(1) be a minimal immersion of a space-like surface M2 into the neutral pseudo-

sphere S4
2(1). Then

G+KD ≥ 1 (6.6)

holds identically on M2. Further, if M2 has constant Gauss curvature, then the equality sign of (6.6) holds identically if
and only if M2 is a totally geodesic surface.

Proposition 6.4. [38] Let ψ : M2 → S4
2(1) be a minimal immersion of a space-like surface M2 into S4

2(1). We have
(1) If the equality sign of (6.6) holds identically, then G− 1 is non-logarithm-harmonic.
(2) If M2 contains no totally geodesic points and if the equality case of (6.6) holds, then ln(G− 1) is subharmonic.

7. DDVV conjecture and theorem

7.1. DDVV conjecture

Suppose that Mn is a submanifold of a real space form Rm(c). Then the normalized scalar curvature ρ of Mn

is defined by

ρ =
2

n(n− 1)

∑
i<j

〈R(ei, ej)ej , ei〉 , (7.1)

where R is the Riemann curvature tensor of Mn and {e1, . . . , en} is an orthonormal frame of the tangent bundle
TMn.
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P. J. De Smet, F. Dillen, L. Vrancken and L. Verstraelen defined the normalized normal scalar curvature ρ⊥ of
Mn in [61] as

ρ⊥ =
2

n(n− 1)

√ ∑
1≤i<j≤n;1≤r<s≤m−n

〈R⊥(ei, ej)ξr, ξs〉2, (7.2)

where R⊥ is the normal connection of Mn, and {e1, . . . , en} and {ξ1, . . . , ξm−n} are orthonormal frames of the
tangent and normal bundles of Mn, respectively.

In 1999, De Smet, Dillen, Vrancken and Verstraelen [61] formulated the following conjecture as the
(generalized) Wintgen’s inequality in general case which is well-known as the DDVV conjecture.

Conjecture 1. Let φ : Mn → Rm(c) be an isometric immersion of an Riemannian n-manifold Mn into a real space form
Rm(c) of constant curvature c. Then

ρ ≤ ‖H‖2 − ρ⊥ + c (7.3)

holds at each point p ∈Mn.

For normally flat submanifolds, i.e.,RD = 0, the normal scalar curvature vanished. In this case, the inequality
(7.3) was proved earlier in 1996 by the author in [27]. Hence, the DDVV conjecture holds true for hypersurfaces
of real space form [27]. Further, this conjecture was also proved by De Smet et. al. for submanifolds with
codimension 2 in real space forms Rn+2(c) in [61].

7.2. The Solution of DDVV conjecture by Z. Lu, J. Ge and Z. Tang

The DDVV conjecture was finally settled for general case by Z. Lu [94] and J. Ge and Z. Tang [78]
independently. Consequently, we have the following.

Theorem 7.1. The Wintgen inequality (7.3) holds for every submanifold Mn, n ≥ 2, in any real space form Rm(c) with
m ≥ 4.

The equality case of (7.3) holds at p ∈Mn if and only if there exists an orthonormal basis {e1, · · · , en} of the tangent
space TpMn and an orthonormal basis {n1, · · · , nm−n} of the normal space T⊥p Mn, such that the shape operators
{Ar, r = 1, · · · ,m− n} take the form as below:

A1 =


λ1 µ0 0 · · · 0
µ0 λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

, A2 =


λ2+µ0 0 0 · · · 0

0 λ2−µ0 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

,
A3 = λ3In, As = 0 (s = 4, . . . ,m− n),

(7.4)

where In is the identity matrix.

In the following, the inequality (7.3) is also called the Wintgen inequality and a submanifoldMn of a real space
form Mm(c) is called a generalized Wintgen ideal submanifold (or simply a Wintgen ideal submanifold) if it satisfies
the equality case of the Wintgen inequality (7.3) identically.

It follows from Theorem 7.1 that, for a non-totally umbilical Wintgen ideal submanifold Mn, there exists a
special 2-dimensional distribution spanned by e1, e2 such that the shape operators ofMn takes the special form
(7.4). We denote this special 2-dimensional distribution by D2 so that we have

D2 = Span {e1, e2}. (7.5)

8. Some properties of Wintgen ideal submanifolds

In this section, we present some general results for Wintgen ideal submanifolds in real space forms.
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8.1. Wintgen ideal submanifolds of real space forms are Chen submanifolds

The following general property of Wintgen ideal submanifold was proved by S. Decu, M. Petrović-Torgašev
and L. Verstraelen in [70],

Theorem 8.1. Every Wintgen ideal submanifold of arbitrary dimension and arbitrary codimension in a real space form
is a Chen submanifold.

8.2. Ricci and Casorati principal directions of Wintgen ideal submanifolds

For a submanifold Mn in a real space form M̃m(c) of constant sectional curvature c, the Casorati curvature C
and the Casorati operator of Mn are defined respectively by

C =
1

n

m∑
r=n+1

(
n∑

i,j=1

(hrij)
2

)
, AC =

m∑
r=n+1

A2
r. (8.1)

The eigenvectors and eigenvalues of Casorati operatorAC are called the principal Casorati directions and principal
Casorati curvatures, respectively, so that the principal Casorati curvatures C1, . . . , Cn satisfy C = C1 + · · ·+ Cn.

By contraction, it follows from the equation (2.6) of Gauss that the Ricci tensor S satisfies

Ric(Y,Z) = (n− 1) c g(Y, Z) + ng(A−→
H

(Y ), Z)− g(AC(Y ), Z). (8.2)

In terms of Casorati operator, (8.2) can be simply expressed as

S(X) = c(n− 1)X + nAHX −AC(X), (8.3)

where S is the Ricci operator defined by 〈S(X), Y 〉 = Ric(X,Y ).

The following general property of Wintgen ideal submanifold was proved by S. Decu, M. Petrović-Torgašev,
A. Šebeković and L. Verstraelen in [68].

Theorem 8.2. On every Wintgen ideal submanifold in a real space form the Casorati and the Ricci principal directions
do coincide.

Remark 8.1. S. Decu, S. Haesen and L. Verstraelen [64] introduced in 2007 the notion of δ-curvature invariants.
The study of δ-Casorati curvatures is another very active research subject during the last decade. For a
comprehensive survey on results in δ-Casorati curvatures, we refer to a very recent survey article [47].

8.3. Some classification theorems for Wintgen ideal submanifolds

The following three classification results for Wintgen ideal submanifolds of codimension two were obtained
by De Smet, Dillen, Vrancken and Verstraelen in [61].

Theorem 8.3. Let φ : Mn → Rn+2(c) be an isometric immersion realizing at every point the equality in (7.3). If Mn has
constant nonzero mean curvature, then Mn is totally umbilical.

Theorem 8.4. Let φ : Mn → Rn+2(c), n ≥ 3 be an isometric immersion realizing at every point x ∈Mn the equality in
(7.3). If ρ⊥ is a nonzero constant, then φ is minimal.

Theorem 8.5. Let φ : Mn → Rn+2(c), n ≥ 3 and c ∈ {−1, 0, 1}, be an immersion realizing at every point the equality
in (7.3). If Mn has constant nonzero normal curvature, then n = 3, c = 1 and φ is (locally) congruent to the lift of
the holomorphic curve of constant curvature 2 in a complex projective plane CP 2(4) of constant holomorphic sectional
curvature 4 with Hopf’s fibrations (see [114] or [40]).

For Wintgen ideal submanifolds of codimension ≥ 3, Z. Xie [139] obtained the following results.

Theorem 8.6. Let φ : Mn → Rm(c) be a Wintgen ideal submanifold with n ≥ 3 and m ≥ n+ 3. If the mean curvature
of Mn is constant, then locally
(1) φ is a totally umbilical submanifold, or
(2) φ is a minimal Wintgen ideal submanifold of Rm(c), or
(3) φ lies in an umbilical hypersurface of Rm(c) as a minimal Wintgen ideal submanifold.
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Theorem 8.7. Suppose φ : Mn → Rm(c) is a Wintgen ideal submanifold with n ≥ 3 andm ≥ n+ 2. If the normal scalar
curvature ρ⊥ is constant, then locally
(1) φ is a totally umbilical submanifold; or
(2) φ is Möbius equivalent to a cone, cylinder, or rotational submanifold generated by a super-minimal surface in low
dimensional space form; or
(3) n = 3 and φ is a minimal Wintgen ideal submanifold of dimension three in Rm(c) with c > 0; or

(4) n = 3 and φ lies in an umbilical hypersurface R̃m−1(c̃) ofRm(c) as a minimal Wintgen ideal submanifold of dimension
three with c̃ > 0.

Theorem 8.8. Let φ : Mn → Rm(c) be a Wintgen ideal submanifold with n ≥ 3 and m ≥ n+ 2. If the scalar curvature
ρ is constant, then locally
(1) φ is a totally umbilical submanifold; or
(2) φ is Möbius equivalent to a cone, cylinder, or rotational submanifold generated by a super-minimal surface in low
dimensional space form; or
(3) n = 3 and φ is a minimal Wintgen ideal submanifold in Rm(c) with c > 0; or

(4) n = 3 and φ lies in an umbilical hypersurface R̃m−1(c̃) of Rm(c) as a minimal Wintgen ideal submanifold with c̃ > 0.

Remark 8.2. For more results of Wintgen ideal submanifolds in Möbius geometry, see §14.

9. Wintgen ideal submanifolds in Kaehler manifolds

Let M̃m(4c) be a complex space form of constant holomorphic sectional curvature 4c. Then the Riemannian
curvature tensor field R̃ takes the following expression:

R̃(X,Y, Z,W ) = c{g(X,Z)g(Y,W )− g(X,W )g(Y,Z) + g(JX,Z)g(JY,W )

− g(JX,W )g(JY, Z) + 2g(JX, Y )g(JZ,W )},

for vector fields X,Y, Z,W tangent to M̃m(4c), where J denotes the almost complex structure on M̃m(4c).

According to the behavior of the tangent spaces under the action of J , we distinguish three fundamental
classes of submanifolds in a complex space form.

(a) A submanifold Mn is said to be a complex submanifold if J(TxM
n) = TxM

n, at any point x ∈Mn (cf. [106]).
(b) A submanifold Mn is called totally real if J(TxM

n) ⊂ T⊥x Mn, at any point x ∈Mn. In particular,
a totally real submanifold of maximum dimension (n = m) is called Lagrangian (see [40, 51]).

(c) A submanifold Mn of a complex space form M̃m(4c) is calledslant if for any point x ∈Mn and any nonzero
vector X ∈ TxMn, the angle between JX and TxM

n is a constant θ (see [23, 24]).

9.1. Normal scalar curvature for complex submanifolds

For a complex submanifold Mn in a complex space form M̃m(c), let τ and τ⊥ denote the (non-normalized)
scalar curvature and (non-normalized) normal scalar curvature of Mn so that

τ =
n(n− 2)

2
ρ, τ⊥ =

n(n− 2)

2
ρ⊥.

In [71], F. Dillen, J. Fastenakels, J. Van der Veken proved the following inequalities for complex submanifolds
in the complex space forms.

Theorem 9.1. Let M2n be an invariant submanifold of a complex space form M̃m(c). Then we have
[(i)] 4n(τ⊥)2 ≥ [n(n+ 2)c− 2τ ]2 + n2(m− n− 1)c2 holds, with equality holding identically if and only if M2n is an
Einstein manifold, and
[(ii)] 4(τ⊥)2 ≤ [(n2 + n+ 1)c− 2τ ]2 + (mn− n2 − 1)c2 holds, with equality holding identically if and only if the
complex rank of A =

∑2m
α=1A

2
α is at most 1.

Theorem 9.1 implies the following.

Corollary 9.1. For an invariant submanifold Mn of a complex Euclidean m-space Cm, we have ρ ≤ −ρ⊥.

21 www.iejgeo.com

http://www.iej.geo.com


Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds

9.2. Wintgen inequality for totally and Lagrangian submanifolds

I. Mihai shown in [103] that Theorem 7.1 holds true for totally real submanifolds in a complex space form
of constant holomorphic sectional curvature 4c. On the other hand, for Lagrangian submanifolds in complex
space forms, I. Mihai proved the following inequality.

Theorem 9.2. [101] Let Mn be a Lagrangian submanifold of a complex space form M̃m(4c). Then we have

(ρ⊥)2 ≤ (‖H‖2 − ρ+ c)2 +
4

n(n− 1)
(ρ− c)c+

2c2

n(n− 1)
. (9.1)

The equality case holds identically if and only if, with respect to suitable orthonormal frames {e1, . . . , en} and
{ξ1, . . . , ξm−n}, the shape operators of Mn in M̃m(4c) take the forms

Aξ1 =


λ1 µ 0 · · · 0
µ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

 , Aξ2 =


λ2 + µ 0 0 · · · 0

0 λ2 − µ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

 ,

Aξ3 = λ3In, Aξ4 = · · · = Aξ2m−n
= 0,

where λ1, λ2, λ3 and µ are real functions on Mn.

Theorem 9.2 implies the following.

Corollary 9.2. [101] Any Wintgen ideal Lagrangian submanifold of a complex space form is a Chen submanifold.

Remark 9.1. Let f : M2 → S5 be a minimal isometric Legendrian immersion of a surface M2 in the 5-
dimensional sphere S5 and define

x : (0,
π

2
)×cos tM

2 ×sin t S
n−3 → S2n+1, (t, p, q) 7→ (cos t)f(p) + (sin t)q.

Then its image under the Hopf fibration π : S2n+1 → Pn(C) satisfies the equality case of (9.1) in Theorem 2.3
because their shape operators have the desired forms (see [48]).
Remark 9.2. We have:
(a) The inequality (9.1) in Theorem 9.2 with n = 3 was established by A. Mihai [98].
(b) The inequality in Corollary 9.2 with n = 3, 4 was given by Dillen, Fastenakels and Van der Veken in [72].

9.3. Wintgen inequality for slant and CR-submanifolds

The following Wintgen type inequality for slant submanifolds was obtained by I. Mihai.

Theorem 9.3. [101] Let Mn be an n-dimensional θ-slant submanifold of a complex space form M̃m(4c). Then we have

‖H‖2 ≥ ρ+ ρ⊥ − c− 3c

n− 1
cos2 θ.

The next corollary from [101] follows immediately from Theorem 9.3.

Corollary 9.3. Let Mn be an n-dimensional θ-slant submanifold of Cm. Then

‖H‖2 ≥ ρ+ ρ⊥.

A submanifold Mn of a Kaehler manifold (M̃m, g̃, J) is called a CR-submanifold if there exist a holomorphic
distribution D and a totally real distribution D⊥ on Mn such that TMn = D ⊕D⊥, where TMn denotes the
tangent bundle of Mn. The notion of CR-submanifolds was introduced by A. Bejancu (cf. [13]).

For CR-submanifolds of a complex space form M̃m(4c), A. Mihai and I. Mihai proved the following result in
[99].

Theorem 9.4. Let Mn be an n-dimensional CR-submanifold of a complex space form M̃m(4c). Then

‖H‖2 ≥ ρ+ ρ⊥ − c− 6αc

n(n− 1)
,

where α = rankC(D).
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9.4. Bi-slant submanifolds in locally conformal Kaehler space forms

A locally conformally Kaehler manifold (M̃, J, g) (or simply an LCK-manifold) is a Hermitian manifold (M̃, J, g)

which is locally conformal to a Kaehler manifold. Equivalently, there exists an open cover {Ui}i∈I of M̃ and a
family {fi}i∈I of real-valued differentiable functions fi : Ui → R such that gi = e−fig|Ui

is a Kaehlerian metric
on Ui, i.e.,∇∗J = 0, where J is the almost complex structure, g is the Hermitian metric, and∇∗ is the covariant
differentiation with respect to g (see, e.g., [73]).

A typical example of a compact LCK-manifold is a Hopf manifold which is diffeomorphic to S1 × S2n−1 and
it admits no Kaehler structure (see [132]).

A locally conformal Kaehler manifold with constant holomorphic sectional curvature c is called a locally
conformal Kaehler space form and it is denoted by Ñ (c). The curvature tensor R̃ of a locally conformal Kaehler
space form of constant holomorphic sectional curvature c is given (see, e.g., [88, 97])

R̃(X,Y ;Z,W ) =
c

4
{g(X,W )g(Y,Z)− g(X,Z)g(Y,W )}

+
c

4
{g(JX,W )g(JY, Z)− g(JX,Z)g(JY,W )− 2g(JX, Y )g(JZ,W )}

− 3

4
{g(Y,Z)P̄ (X,W )− g(X,Z)P̄ (Y,W ) + g(X,W )P̄ (Y, Z)− g(Y,W )P̄ (X,Z)},

(9.2)

where P̄ is a hybrid tensor field on Ñ (c), i.e., a (0, 2)-tensor field satisfies

P̄ (JX, Y ) + P̄ (X, JY ) = 0

for any vector fields X,Y tangent to M̃ .
Remark 9.3. Compact locally conformal Kaehler space forms of zero curvature were classified by I. Vaisman in
[132] (see also [73, Theorem 6.8]).

A submanifold Mn of an almost Hermitian manifold M̃m is called bi-slant if there exist two orthogonal
distributions D1 and D2 such that the following three conditions are satisfied (see [21]):
(i) TMn admits the orthogonal direct decomposition i.e., TMn = D1 ⊕D2.
(ii) JD1 ⊥ D2 and JD2 ⊥ D1

(iii) D1 and D2 are the slant distribution with slant angle θ1 and θ2, respectively.
Remark 9.4. A bi-slant submanifold is a CR-submanifold (resp., semi-slant; hemi-slant; or slant submanifold) if
we have θ1 = 0, θ2 = π

2 (resp., θ1 = 0, 0 < θ2 <
π
2 ; θ1 = π

2 , 0 < θ2 <
π
2 ; or D1 = {0} and D2 6= {0}).

For bi-slant submanifolds in locally conformal Kaehler space forms, M. Aquib, M. S. Lone and M. A. Lone
obtained the following result in [5].

Theorem 9.5. Let Mn be an n-dimensional bi-slant submanifold of a locally conformal Kaehler space form Ñm(c). Then

ρ⊥ ≤‖H‖2 − (ρ− c)− 3

n− 1
trace(P̄ ) +

c

2n(n− 1)

(
d1 cos2 θ1 + d1 cos2 θ2

)
− 3

2n(n− 1)

∑
1≤i<j≤n

g(Jei, ej)P̄ (Jei, ej),
(9.3)

where di = 1
2 rank(Di) (i = 1, 2) and {e1, . . . , en} is an orthonormal frame of TMn.

10. Wintgen ideal submanifolds in Sasakian space forms

10.1. Almost contact metric manifold and Sasakian space forms

A Riemannian (2n+ 1)-manifold (M
2n+1

, g) is called an almost contact metric manifold (see [14]) if there exist
a (1, 1) tensor field ϕ, a vector field ξ (called the structure vector field), and a 1-form η on M

2n+1
such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)
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for vector fieldsX,Y tangent toM
2n+1

. An almost contact metric manifold (M
2n+1

, ϕ, ξ, η, g) is called a Sasakian
manifold if it satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X.

A Sasakian manifold is called Sasakian space form if it has constant ϕ-sectional curvature. The curvature tensor
R of a Sasakian space form of constant M

2n+1
(c) constant ϕ-sectional curvature c is given by

R(X,Y )Z =
c+ 3

4

{
g(Y, Z)X − g(X,Z)Y

}
+
c− 1

4

{
g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ

}
+
c− 1

4

{
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

}
for X,Y, Z tangent to M̄2n+1.

Sasakian space forms M
2n+1

(c) can be modeled based on c > −3, c = −3 or c < −3. For instance, R2m+1 has
constant ϕ-sectional curvature −3, while S2m+1(1) is of constant ϕ-sectional curvature one.

10.2. Invariant submanifolds in Sasakian space forms

A (2n+ 1)-dimensional submanifold M2n+1 of a (2m+ 1)-dimensional Sasakian manifold (M
2n+1

, ϕ, ξ, η, g)
is called invariant if the structure vector field ξ is tangent to M2n+1 and ϕ(TxM

2n+1) ⊂ TxM2n+1 for any
x ∈M2n+1. It is well-known that every invariant submanifold of a Sasakian manifold with the induced
structure tensors is again a Sasakian manifold.

Analogous to Theorem 9.1, F. Dillen, J. Fastenakels and J. Van der Veken proved the following inequalities
for invariant submanifolds in Sasakian space forms.

Theorem 10.1. [71] Let M2n+1 be an invariant submanifold of a Sasakian space form M
2m+1

(c) of constant ϕ-
holomorphic sectional curvature c. Then
(i) 4n(τ⊥)2 ≥ (n(n+ 2)c+ 3n2 − 2τ)2 + n2(m− n− 1)(c− 1)2 holds, with equality holding identically if and only if
M2n is η-Einstein, and
(ii) 4(τ⊥)2 ≤ [(n2 + n+ 1)c+ (3n2 + n− 1)− 2τ ]2 + (mn− n2 − 1)(c− 1)2 holds, with equality holding identically if
and only if the complex rank of A =

∑2m
α=1A

2
α is at most 2.

Theorem 10.1 implies the following.

Corollary 10.1. For an invariant submanifold M2n+1 of S2m+1(1), we have ρ ≤ 1− ρ⊥.

10.3. C-totally real, Legendrian and slant submanifolds in Sasakian space forms

An n-dimensional submanifold Mn of a almost contact metric manifold (M̃2m+1, ϕ, ξ, η, g) is called C-
totally real if the structure vector field ξ is normal to Mn. It follows that ϕ(TxM

n) ⊂ T⊥x Mn for C-totally real
submanifolds. A C-totally real submanifold is called Legendrian if n = m. Thus, a Legendrian submanifold is a
C-totally real submanifold with the smallest possible codimension.

For C-totally real submanifolds, I. Mihai [104] proved the following.

Proposition 10.1. Let Mn be an n-dimensional C-totally real submanifold of a (2m+ 1)-dimensional Sasakian space
form M

2m+1
(c). Then we have

‖H‖2 +
c+ 3

4
≥ ρ+ ρN . (10.1)

The equality case of (10.1) holds identically if and only if, with respect to suitable orthonormal frames {e1, . . . , en} and
{ξ1, . . . , ξ2m−n+1} with ξ2m−n+1 = ξ, the shape operators of Mn in M

2m+1
(c) take the forms of (7.4).

For Legendrian submanifolds, Mihai [104] proved the following Wintgen type inequality.

Theorem 10.2. Let Mn be a Legendrian submanifold of a Sasakian space form M
2n+1

(c). Then

(ρ⊥)2 ≤
(
‖H‖2 − ρ+

c+ 3

4

)2

+
4

n(n− 1)

(
ρ− c+ 3

4

)
· c− 1

4
+

(c− 1)2

8n(n− 1)
.
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The following are some easy consequences of Proposition 10.1 and Theorem 10.2.

Corollary 10.2. Let Mn be a minimal Legendrian submanifold of S2n+1(1). Then ρ ≤ 1− ρ⊥.

Corollary 10.3. Any Wintgen ideal Legendrian submanifold of a Sasakian space form is a Chen submanifold.

Recall that a submanifold Mn tangent to ξ of a Sasakian space form M
2m+1

(c) is said to be a contact slant
submanifold if for any p ∈Mn and X ∈ TpMn linearly independent on ξp, the angle between ϕX and TpM

n is
a constant θ, called the slant angle of Mn.

For slant submanifolds, Mihai [104] proved the following.

Theorem 10.3. LetMn be an n-dimensional contact θ-slant submanifold of a (2m+ 1)-dimensional Sasakian space form
M

2m+1
(c). Then

ρ+ ρN ≤ ‖H‖2 +
c+ 3

4
+

(3 cos2 θ − 2)(c− 1)

4n
.

In particular, Theorem 10.3 implies the following.

Corollary 10.4. Let Mn be an n-dimensional contact slant submanifold of S2m+1(1). Then ρ+ ρ⊥ ≤ ‖H‖2 + 1.

Remark 10.1. A Lorentzian manifold Mn together with a unit time-like concircular vector field ξ, its associated
1-form η and a (1, 1)-tensor field ϕ is called a Lorentzian concircular structure manifold (or simply a LCS-manifold).
A. N. Siddiqui and K. Ahmad derived in [124] a Wintgen type inequality for totally real submanifolds and
C-totally real submanifolds in LCS-manifolds with respect to the Levi-Civita connection as well as quarter
symmetric metric connection.

10.4. C-totally real, Legendrian and bi-slant submanifolds in Kenmotsu space forms

An almost contact metric manifold (M
2m+1

, ϕ, ξ, η, g) is called a Kenmotsu manifold if it satisfies

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

where ∇ is the Levi-Civita connection of M̄2m+1. Any Kenmotsu manifold can be obtained locally as follows
(see [77, Proposition 3.2]): Let (M0, g0, J) be an almost Hermitian manifold. Put M = M0 ×R, ḡ = e2tg0 +
dt2, ξ̄ = ∂

∂t and define ϕ by ϕX = JX for X tangent to M and ϕξ̄ = 0. Then we have

(1) The triple (ḡ, ϕ, ξ̄) is an almost contact metric structure on M .
(2) (M0, g0, J) is a Kaehler manifold if and only if (ḡ, ϕ, ξ̄) is a Kenmotsu structure on M .

For C-totally real submanifolds in Kenmotsu space forms, M. Aquib and M. H. Shahid proved the following
results in [6].

Proposition 10.2. Let Mn be an n-dimensional C-totally real submanifold of a (2m+ 1)-dimensional Kenmotsu space
form M̃2m+1(c). Then we have

ρ+ ρN ≤ ‖H‖2 +
c− 3

4
+
c+ 1

2n
.

The equality case holds identically if and only if, with respect to suitable orthonormal frames {e1, . . . , en} and
{en+1, . . . , e2m, e2m+1 = ξ}, the shape operators of Mn in M̃2m+1(c) take the forms of (7.4).

For Legendrian submanifolds, Aquib and Shahid [6] proved the following.

Theorem 10.4. Let Mn be a Legendrian submanifold of a Kenmotsu space form M̃2n+1(c). Then

(ρ⊥)2 ≤
{
‖H‖2 −

(
ρ− c− 3

4

)
+
c+ 1

2n

}2

+
2

n(n− 1)

(
c+ 1

4

)2

+
c+ 1

n2(n− 1)2

{
(n(n− 1)

(
ρ− c− 3

4

)
+
c+ 1

2
(n− 1)

}
.

A submanifold Mn of an almost contact metric manifold is said to be a bi-slant submanifold, if there exist
two orthogonal distributions D1 and D2, such that (1) TMn admits the orthogonal direct decomposition
TMn = D1 ⊕D2 ⊕ Span{ξ} and (2) D1 and D2 are slant distributions with slant angle θ1 and θ2, respectively.
We put di = 1

2 rank(Di), i = 1, 2.
For bi-slant submanifolds, Aquib and Shahid [6] proved the following.
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Theorem 10.5. Let Mn be a bi-slant submanifold of a Kenmotsu space form M̃2n+1(c). Then

(ρ⊥)2 ≤‖H‖2 −
(
ρ− c− 3

4

)
− c+ 1

2n
+

3(c+ 1)

2n(n− 1)
(d1 cos θ1 + d2 cos θ2).

In particular, Theorem 10.5 implies the following.

Corollary 10.5. Let Mn be an invariant submanifold of of a Kenmotsu space form M̃2n+1(c). Then

ρ⊥ ≤ ‖H‖2 −
(
ρ− c− 3

4

)
− c+ 1

2n
+

3(c+ 1)

4(n− 1)
.

Corollary 10.6. Let Mn be an anti-invariant submanifold of of a Kenmotsu space form M̃2n+1(c). Then

ρ⊥ ≤ ‖H‖2 −
(
ρ− c− 3

4

)
− c+ 1

2n
.

Corollary 10.7. Let Mn be a θ-slant submanifold of of a Kenmotsu space form M̃2n+1(c). Then

ρ⊥ ≤ ‖H‖2 −
(
ρ− c− 3

4

)
− c+ 1

2n
+

3(c+ 1)

4n(n− 1)
cos θ.

Corollary 10.8. Let Mn be a CR-submanifold of of a Kenmotsu space form M̃2n+1(c). Then

ρ⊥ ≤ ‖H‖2 −
(
ρ− c− 3

4

)
− c+ 1

2n
+

3(c+ 1)

2n(n− 1)
d1.

10.5. Legendrian submanifolds in generalized Sasakian-space-forms

The notion of a generalized Sasakian space form was introduced by P. Alegre, D. E. Blair and A. Carriazo
in [1] as follows. A (2m+ 1)-dimensional manifold M

2m+1
equipped with an almost contact metric structure

(ϕ, ξ, η, g) is called a generalized Sasakian space form if there exist three functions f1, f2, f3 on M
2m+1

such that
the Riemann curvature tensor R of M

2m+1
satisfies

R(X,Y )Z = f1

{
g(Y, Z)X − g(X,Z)Y

}
+ f2

{
g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ

}
+ f3

{
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

}
.

We denote such a manifold by M
2mn+1

(f1, f2, f3). The generalized Sasakian space form M
2m+1

(f1, f2, f3) is a
Sasakian space form if f1 = c+3

4 and f2 = f3 = c−1
4 , where c is a constant. Note that a Kenmotsu space form is a

generalized Sasakian space form with f1 = c−3
4 and f2 = f3 = c+1

4 .

Besides the Levi-Civita connection, S. Gola̧b introduced the notion of quarter symmetric connections in [81].
The Schouten–van Kampen connection was introduced in [118] for the study of non-holomorphic manifolds.
The Tanaka–Webster connection is the canonical affine connection defined on a non-degenerate pseudo-
Hermitian CR-manifold (see [129]). S. Tanno defined in [130] the Tanaka–Webster connection on contact metric
manifolds.

In [86], S. K. Hui, R. S. Lemence and P. Mandal proved some Wintgen type inequalities for C-totally real
and Legendrian submanifolds of M

2m+1
(f1, f2, f3) with respect to quarter symmetric metric connection, the

Schouten-van Kampen connection, and the Tanaka-Webster connection, respectively.

11. Wintgen ideal submanifolds in quaternionic space forms

11.1. Quaternionic Kaehler manifold and quaternionic space forms

A quaternionic Kaehler manifold is a Riemannian 4m-manifold whose Riemannian holonomy group is
a subgroup of Sp(m) · Sp(1). An almost quaternionic Hermitian manifold (M̂, ĝ,Σ) is a Riemannian manifold
equipped with a rank 3-subbundle Σ of End(TM̂) with local basis {J1, J2, J3} satisfying

ĝ(JαX,JαY ) = ĝ(X,Y ), J2
α = −I, JαJα+1 = −Jα+1Jα = Jα+2, X, Y ∈ TM̂,
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for all α ∈ {1, 2, 3}, where I is the identity transformation on TM̂ and the indices are taken from {1, 2, 3}modulo
3. Moreover, if the bundle Σ is parallel with respect to the Levi-Civita connection of ĝ, then (M̂, ĝ,Σ) is said to
be a quaternionic Kaehler manifold (see [87]).

Let X be a nonzero vector tangent to a quaternionic Kaehler manifold (M̂, ĝ.Σ). Then the 4-plane Q(X)
spanned by {X, J1X, J2X, J3X}, is called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic
plane. The sectional curvature of a quaternionic plane is called a quaternionic sectional curvature. A quaternionic
Kaehler manifold is called a quaternionic space form if its quaternionic sectional curvatures are equal to a
constant. We denote by M̂(c) a quaternionic space form of constant quaternionic sectional curvature c.

It is well known that the curvature tensor R̂ of a quaternionic space form M̂(c) of constant quaternionic
sectional curvature c satisfies

R̂(X,Y )Z =
c

4
{ĝ(Z, Y )X − ĝ(X,Z)Y +

3∑
α=1

[ĝ(Z, JαY )JαX − ĝ(Z, JαX)JαY + 2ĝ(X, JαY )JαZ]}.

Let Mn be a submanifold of a quaternionic Kaehler manifold M̂4m of real dimension 4m. For any vector
X ∈ TxMn, we put

JαX = PαX + FαX, PαX ∈ TxM, FαX ∈ T⊥x Mn.

The squared norm of Pα is

‖Pα‖2 =

n∑
i,j=1

ĝ(Pαei, ej)
2,

where {e1, . . . , en} is an orthonormal basis of TxMn.

11.2. Lagrangian and slant submanifolds in quaternionic space forms

A submanifoldMn of a quaternionic Kaehler manifold M̂4m of real dimension 4m is called a θ-slant or simply
a slant submanifold if for each nonzero vectorX ∈ TxMn, the angle θ(X) between Jα(X) and TxMn, α ∈ {1, 2, 3},
is a global constant, so that it is independent of the choice of p ∈Mn and of X ∈ TxMn. A slant submanifold
of a quaternionic Kaehler manifold is called proper (or proper θ-slant) if 0 < θ < π

2 . A θ-slant submanifold of a
quaternionic Kaehler manifold is called totally real if θ = π

2 . And an n-dimensional totally real submanifold Mn

of a quaternionic Kaehler manifold M̂4m is said to be a Lagrangian submanifold if n = m.
For Lagrangian submanifolds of a quaternionic space form M̂4m(c), G. Macsim and V. Ghisoiu proved the

following inequality in [96].

Theorem 11.1. Let Mn be a Lagrangian submanifold of a quaternionic space form M̂4m(c) of constant quaternionic
sectional curvature c. Then

(ρ⊥)2 ≤
(
‖H‖2 − ρ+ c

)2
+

6

n(n− 1)
c2 +

4

n(n− 1)
c(ρ− c).

For slant submanifolds of M
4m

(c), Macsim and Ghisoiu [96] obtained the following.

Theorem 11.2. Let Mn be a θ-slant submanifold of a quaternionic space form M̂4m(c). Then

‖H‖2 ≥ ρ+ ρ⊥ − c− 9c

n− 1
cosθ .

11.3. Wintgen ideal inequality for quaternionic CR-submanifolds

M. Barros, B.-Y. Chen and F. Urbano defined the notion of quaternionic CR-submanifolds of quaternionic
Kaehler manifolds in [12] as a generalization of both quaternionic and totally real submanifolds. According to
[12], a submanifold Mn of a quaternionic Kaehler manifold (M̂, ĝ,Σ) is said to be a quaternionic CR-submanifold
if there exists two orthogonal complementary distributions D and D⊥ on Mn such that D is invariant under
quaternionic structure andD⊥ is totally real. It is obvious that a quaternionic CR-submanifold of a quaternionic
Kaehler manifold reduces to a quaternionic submanifold (resp., to a totally real submanifold) if dimD⊥x = 0,
x ∈Mn (resp., dimDx = 0, x ∈M ).
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A quaternionic CR-submanifold Mn is called proper if it is neither a quaternionic submanifold nor a totally
real submanifold. In general, if Mn is a quaternionic CR-submanifold of a quaternionic Kaehler manifold
(M̂, ĝ,Σ), then it is clear that the real dimension ofDx is divisible by 4. Let us put rankHD = p and rankRD⊥ = q.

For quaternionic CR-submanifolds, H. Alodan, B.-Y. Chen, S. Deshmukh, G.-E. Vilcu proved the following
Wintgen’s type inequality in [2].

Theorem 11.3. LetMn be a quaternionic CR-submanifold of a quaternionic space form M̂4m(c) of constant quaternionic
sectional curvature c. Then

ρ ≤ ‖H‖2 − ρ⊥ +
c

4
+

9pc

n(n− 1)
,

where p = rankH(D).
Moreover, the equality sign holds in the above inequality at some point x ∈Mn if and only if there exists an orthonormal

basis {e1, . . . , en} of TxMn and an orthonormal basis {ξ1, . . . , ξ4m−n} of T⊥x Mn such that the shape operators Ar ≡ Aξr ,
r = 1, . . . , 4m− n, take the forms of (7.4).

The following three corollaries are immediate consequence of Theorem 11.3.

Corollary 11.1. Let Mn be a quaternionic CR-submanifold of the quaternionic Euclidean space Hm. Then

‖H‖2 ≥ ρ+ ρ⊥.

Corollary 11.2. Let Mn be a quaternionic CR-submanifold of the quaternionic projective space HPm(4) of constant
quaternionic sectional curvature 4. Then

‖H‖2 ≥ ρ+ ρ⊥ − 1− 36p

n(n− 1)
,

where p = rankHD.

Corollary 11.3. Let Mn be a quaternionic CR-submanifold of the quaternionic hyperbolic space HHm(−4) of constant
quaternionic sectional curvature -4. Then

‖H‖2 ≥ ρ+ ρ⊥ + 1 +
36p

n(n− 1)
,

where p = rankHD.

For quaternionic CR-submanifolds of a quaternionic space form with minimal codimension, the following
result was also obtained in [2].

Theorem 11.4. Let Mn be a quaternionic CR-submanifold of a quaternionic space form M̂4m(c) with minimal
codimension. If the dimension of Mn is n = 4p+ q, where p = rankHD and q = rankRD⊥, then the following inequality
holds true: (

ρ⊥
)2 ≤ [‖H‖2 − ρ+

c

4
+

9pc

n(n− 1)

]2

+
3q(q − 1)c2

8n2(n− 1)2
+

cq(q − 1)

n2(n− 1)2

(
ρD⊥ −

c

4

)
,

where ρD⊥ denotes the normalized scalar curvature of the totally real distribution D⊥.
Moreover, the equality sign holds in the above inequality at some point x ∈Mn if and only if there exists an orthonormal

basis {e1, . . . , en} of TxMn and an orthonormal basis {ξ1, . . . , ξ3n} of T⊥x Mn such that the shape operators Ar ≡ Aξr ,
r = 1, . . . , 3q, take the forms of (7.4).

Theorem 11.4 implies immediately the following.

Corollary 11.4. Let Mn be a quaternionic CR-submanifold of the quaternionic Euclidean space Hm. Then

ρ⊥ ≥
∣∣‖H‖2 − ρ∣∣.

12. Wintgen ideal submanifolds in golden Riemannian space forms

A tensor field F of type (1, 1) on a Riemannian manifold (M̃, g̃) is called an almost product structure if it satisfies
F 2 = I . A Riemannian manifold (M̃, g̃) endowed with an almost product structure F is called an almost product
Riemannian manifold if it satisfies g̃(FX, Y ) = g̃(X,FY ).
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12.1. Locally Golden product space forms

Let (M̃, g̃) be a Riemannian m-manifold. A (1, 1)-tensor field φ on M̃ is called a golden structure if it satisfies

φ2 − φ− I = 0. (12.1)

If the metric g̃ and a golden structure φ on M̃ are compatible, i.e.,

g̃(φX, Y ) = g̃(X,φY )

for any X,Y ∈ TM̃ , then (M̃, g̃, φ) is called a golden Riemannian manifold [58]. The real positive root ψ of the
equation x2 − x− 1 = 0, i.e., ψ = 1+

√
5

2 , is called the golden proportion.
Let Mn be a submanifold of a golden Riemannian manifold (M̃, g̃, φ). For any X ∈ TMn we put

φX = PX +QX, (12.2)

where PX and QX denotes the tangent and normal components of φX .
It was proved by M. Crasmareanu and C. Hretcanu in [58] that an almost product structure F on a

Riemannian manifold (M̃, g̃) induces a Golden structure φ given by φ = 1
2 (I +

√
5F ). Conversely, any golden

structure φ on M̃ induces an almost product structure F = 1√
5
(2φ− I). Consequently, every locally product

Mp(cp)×Mq(cq) of two real space forms Mp(cp) and Mq(cq) of constant sectional curvature cp and cq is a
golden Riemannian manifold, which is called a locally product golden space form.

The Riemannian curvature tensor R̃ of a locally product golden space form Mp(cp)×Mq(cq) is derived by
N. Ö Poyraz and E. Yaşar [113] as follows:

R̃(X,Y )Z =

(
(ψ − 1)cp + ψcq

2
√

5

)
{g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY }

−
(

(1− ψ)cp + ψcq
4

)
{g(φY,Z)X − g(φX,Z)Y + g(Y,Z)φX − g(X,Z)φY },

where ψ = 1+
√

5
2 is the golden proportion.

12.2. C-totally real submanifolds of a locally Golden product space form

A submanifold Mn of a Golden Riemannian manifold (M̃, g̃, φ) is called a C-totally real submanifold if φ maps
each tangent space of Mn into the correspondent normal space, i.e., φ(TxM

n) ⊂ T⊥x Mn for x ∈Mn.
The following result on C-totally real submanifolds of a golden product space form is obtained by M. A.

Choudhary, O. Bahadir and H. Alsulami in [57].

Theorem 12.1. Let Mn be an n-dimensional C-totally real submanifold of a locally product golden space form
M̃m = (Mp(cp)×Mq(cq), g̃, φ). Then

ρ⊥ ≤ ‖H‖2 − 2ρ− 2

(
(1− ψ)cp − ψcq

2
√

5

)
, (12.3)

where ψ = 1+
√

5
2 is the golden proportion.

Moreover, the equality holds in (12.3) if and only if there exists an orthonormal frame {e1, . . . , en, ξ1, . . . , ξm−n} such
that with respect to this frame the shape operators take the form of (7.4).

12.3. Slant and invariant submanifolds of a locally Golden product space form

A submanifold Mn of a golden Riemannian manifold (M̃, g̃, φ) is called a slant submanifold if, for each
0 6= X ∈ TxMn, x ∈Mn, the angle θ(X) between φX and TxM

n is constant, that is, θ(X) is independent of
the choice of x ∈Mn and of X ∈ TxMn. If the slant angle θ of a slant submanifold Mn satisfies θ = 0 (resp.,
θ = π

2 ), then Mn is called φ-invariant (resp., φ-anti-invariant). A slant submanifold which is neither invariant
nor anti-invariant is called proper slant.

For proper slant submanifolds of a golden product space form, Choudhary, Bahadir and Alsulami proved
the following result in [57].
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Theorem 12.2. Let Mn be an n-dimensional proper θ-slant submanifold of a locally product golden space form
M̄m = (Mp(cp)×Mq(cq), g̃, φ). Then

ρ⊥ ≤ ‖H‖2 − 2ρ− 2

(
(1− ψ)cp − ψcq

2
√

5

){
1 +

trace2 φ

n(n− 1)

}
+ 2(cos2 θ)

(
(1− ψ)cp − ψcq

2
√

5

){
1

n− 1
+

traceP

n(n− 1)

}
−
(

(1− ψ)cp + ψcq
4

)
4

n
traceφ.

For invariant submanifolds of a golden product space form, Choudhary, Bahadir and Alsulami [57] proved
the following.

Theorem 12.3. Let Mn be an n-dimensional invariant submanifold of a locally product golden space form M̄m =
(Mp(cp)×Mq(cq), g̃, φ). Then

ρ⊥ ≤ ‖H‖2 − 2ρ− 2

(
(1− ψ)cp − ψcq

2
√

5

){
1 +

trace2φ

n(n− 1)

}
+ 2

(
(1− ψ)cp − ψcq

2
√

5

){
1

n− 1
+

traceP

n(n− 1)

}
−
(

(1− ψ)cp + ψcq
4

)
4

n
traceφ.

13. Wintgen ideal submanifolds for statistical submanifolds

The notion of statistical manifolds was introduced by S. Amari [3] in 1985, which provided a setting for
the field of information geometry and it also associates a dual connection (known as conjugate connection).
The nice applications of statistical manifolds in applied science and engineering have attracted the attention
of many geometers. The theory of statistical model as statistical manifold is a fast growing research subject in
differential geometry. Many articles have been published in the setting of statistical manifold in recent years.

13.1. Statistical manifolds

Let (M̃, g̃) be a Riemannian manifold with Levi-Civita connection ∇̃0. For a torsion-free affine connection ∇̃
on (M̃, g̃), let ∇̃∗ be the torsion-free connection defined by

Zg̃ (X,Y ) = g̃
(
∇̃ZX,Y

)
+ g̃
(
X, ∇̃∗ZY

)
, (13.1)

which is called the dual connection of ∇̃ with respect to g̃. It is easily shown that (∇̃∗)∗ = ∇̃. The Riemannian
manifold (M̃, g̃) equipped with a such pair of torsion-free affine connections ∇̃, ∇̃∗ is called a statistical manifold.
And the pair (∇̃, g̃) is called a statistical structure on M̃ . If (∇̃, g̃) is a statistical structure on M̃ , then (∇̃∗, g̃) is
also a statistical structure.

For the statistical manifold, we have

∇̃+ ∇̃∗ = 2∇̃0, (13.2)

In particular, (M̃, ∇̃, g̃) is called a trivial statistical manifold whenever ∇̃ = ∇̃∗.
A statistical structure (∇̃, g̃) is said to be of constant curvature c if

R̃∇̃(X,Y )Z = c{g̃(Y,X)X − g̃(X,Z)Y } (13.3)

holds, where R̃∇̃ denotes the curvature tensor associated with ∇̃. A statistical structure (∇̃, g̃) of constant
curvature 0 is called a Hessian structure (cf. e.g., [50, 76]).

Since the curvature tensor R̃∇̃ and R̃∇̃
∗

of the dual connections ∇̃ and ∇̃∗ on M̃ satisfy

g(R̃∇̃
∗
(X,Y )Z,W ) = −g̃(Z, R̃∇̃(X,Y )W ),

it follows that if (∇̃, g̃) is a statistical structure of constant curvature c, then (∇̃∗, g̃) is also a statistical structure
of constant curvature c. In particular, if (∇̃, g̃) is Hessian, then (∇̃∗, g̃) is also Hessian (see [123]).
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13.2. Statistical submanifolds in statistical manifolds

Let Mn be an n-dimensional submanifold of a statistical m-manifold (M̃m, g̃), then (Mn, g) is also a statistical
manifold with the induced connection ∇ and the induced metric g. The fundamental equations for statistical
submanifolds have been derived by P. W. Vos [133] in 1989 as follows. For tangent vector fields X,Y of Mn the
Gauss formulas are

∇̃XY = ∇XY + h(X,Y ), ∇̃∗XY = ∇∗XY + h∗(X,Y ),

where h, h∗ are symmetric and bilinear, called the second fundamental forms (see [10]) or the imbedding curvature
tensors (see [65]). We put

h0 =
1

2
(h+ h∗).

Since h and h∗ are bilinear, there exist linear transformations Aξ and A∗ξ on TMn, known as the shaper
operators, defined by

g(AξX,Y ) = g̃(h(X,Y ), ξ), g(A∗ξX,Y ) = g̃(h∗(X,Y ), ξ),

for any normal vector field ξ of Mn. Further, the corresponding Weingarten formulas of Mn are given by

∇̃Xξ = −AξX +∇⊥Xξ, ∇̃∗Xξ = −A∗ξX +∇∗⊥X ξ.

Let {e1, ..., en} and {ξ1, ..., ξm−n} be orthonormal tangent and normal frames on Mn, respectively. Then the
corresponding mean curvature vector fields H and H∗ are given respectively by

H =
1

n

n∑
i=1

h(ei, ei) =
1

n

m−n∑
r=1

(
n∑
i=1

hrii

)
ξr, H∗ =

1

n

n∑
i=1

h∗(ei, ei) =
1

n

m−n∑
r=1

(
n∑
i=1

h∗rii

)
ξr,

for 1 ≤ i, j ≤ n and 1 ≤ r ≤ m− n, where hrij = g̃(h(ei, ej), ξr) and h∗rij = g̃(h∗(ei, ej), ξr).
Let R̃ and R be the curvature tensor of ∇̃ and ∇, respectively. Then the corresponding Gauss, Codazzi and

Ricci equations are given respectively by [133]

g̃(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g̃(h(X,Z), h∗(Y,W ))− g̃(h∗(X,W ), h(Y, Z)), (13.4)

(R̃(X,Y )Z)⊥ = ∇⊥Xh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ)− {∇⊥Y h(X,Z)− h(∇YX,Z)− h(X,∇Y Z)}, (13.5)

g̃(R̃⊥(X,Y )ξ, η) = g̃(R(X,Y )ξ, η) + g([A∗ξ , Aη]X,Y ), (13.6)

for any X,Y, Z,W tangent to Mn and ξ, η normal to Mn, where R̃⊥ is the Riemannian curvature tensor on the
normal bundle T⊥Mn.

Similarly, let R̃∗ and R∗ denote respectively the curvature tensor fields with respect to ∇̃∗ and ∇∗. We can
obtain the duals of all equations (13.4)-(13.6) with respect to ∇̃∗ and ∇∗. Also,

S̃ =
1

2
(R̃+ R̃∗) and S =

1

2
(R+R∗)

are respectively the curvature tensor fields of M̃m and Mn. Thus, the sectional curvature K∇,∇
∗

on Mn of M̃m

is defined by [107, 108]

K∇,∇
∗
(X ∧ Y ) = g(S(X,Y )Y,X) =

1

2
{g(R(X,Y )Y,X) + g(R∗(X,T )Y,X)}

for any orthonormal vectors X,Y ∈ TxMn, x ∈Mn.
Let {e1, . . . , en} and {ξ1, . . . , ξm−n} be respectively orthonormal basis of TpMn and T⊥p M

n for x ∈Mn. Then
the normalized scalar curvature of Mn is defined as

ρ =
1

n(n− 1)

∑
1≤i<j≤n

{g(R(ei, ej)ej , ei) + g(R∗(ei, ej)ej , ei)} .

The normalized normal scalar curvature of Mn in M̃m is defined as

ρ⊥ =
1

n(n− 1)

{ ∑
1≤r<s≤m−n

∑
1≤i<j≤n

g(R⊥(ei, ej)ξr, ξs) + g(R∗⊥(ei, ej)ξr, ξs)

}1/2

.
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13.3. Wintgen type inequalities of statistical submanifolds in statistical space forms

Let M̃m(c) be an m-dimensional statistical manifold of constant curvature c. Consider a statistical surface
(M2,∇) of the statistical 4-manifold M̃4(c). Denote the Gauss curvature and the normal curvature of M2

with respect to ∇ by G and G⊥, respectively, and denote the Gauss curvature with respect to the Levi-Civita
connection ∇0 by G0. Similarly, we denote the mean vector field, the dual mean curvature and the sectional
curvature with respect to the Levi-Civita connection by H, H∗ and K̃0, respectively.

The following Wintgen type inequality for statistical surfaces in 4-dimensional statistical space forms was
obtained by M. E. Aydin and I. Mihai in [7].

Theorem 13.1. Let M2 be a statistical surface in a 4-dimensional statistical space form M̃4(c) of constant curvature c.
Then

G+
∣∣G⊥∣∣+ 2G0 ≤ 1

2

(
‖H‖2 + ‖H∗‖2

)
− c+ 2K̃0 (e1 ∧ e2) .

In particular, Theorem 13.1 implies the following result for c = 0.

Corollary 13.1. Let M2 be a statistical surface of a Hessian 4-dimensional statistical manifold M̃4(c) of Hessian
curvature 0. Then

G+
∣∣G⊥∣∣+ 2G0 ≤ 1

2

(
‖H‖2 + ‖H∗‖2

)
.

For higher dimensional submanifolds in statistical space forms, M. E. Aydin, A. Mihai, I. Mihai proved in [8]
the following.

Theorem 13.2. Let Mn be a submanifold in a statistical manifold M̃m(c) of constant curvature c. Then

ρ⊥ + 3ρ ≤ 15

2

(
‖H‖2 + ‖H∗‖2

)
+ 12g (H,H∗)− 3c+ 30

(
ρ̃0 − ρ0

)
,

where

ρ̃0 =
2

n (n− 1)

∑
1≤i<j≤n

R̃0 (ei, ej , ei, ej) , ρ0 = ρ̃0 +
2

n(n− 1)

m−n∑
r=1

∑
1≤i<j≤n

[
h0r
ii h

0r
jj −

(
h0r
ij

)2]
.

13.4. Totally real statistical submanifolds in holomorphic statistical space forms

Let M
m

be a Kaehler manifold of complex dimension m equipped with an almost complex structure J and a
Kaehlerian metric g. A quadruple (M

m
,∇, g, J) is called a holomorphic statistical manifold (see, e.g., [125, 127]) if

(a) (∇, g) is a statistical structure on M
m

and
(b) the fundamental 2-form ω on M

m
given by ω(X,Y ) = g(X, JY ) is ∇−parallel, that is, ∇ω = 0.

A statistical submanifold Mn of a holomorphic statistical manifold M
m

is said to be totally real if the almost
complex structure J of M

m
carries each tangent space of Mn into its corresponding normal space. A totally

real statistical submanifold of maximal dimension is called Lagrangian statistical submanifold.

For Lagrangian statistical submanifolds in a holomorphic statistical space form M
m

(c), A. N. Siddiqui, N.
Aliya and M. H. Shahid proved the following two results in [127].

Theorem 13.3. Let Mn be a Lagrangian statistical submanifold in a holomorphic statistical manifold M
m

(c) of constant
holomorphic sectional curvature c. Then

n(n− 1)(ρ⊥)2 +
c

n(n− 1)

(
‖H‖2 + ‖H∗‖2

)
≥
(

2ρ

n(n− 1)
− c

2

)2

+
4c

n(n− 1)
‖H0‖2.

Theorem 13.4. Let Mn be a Lagrangian statistical submanifold in a holomorphic statistical manifold M
n
(c) of constant

holomorphic sectional curvature c. Then

ρ ≥ c

4
+

n

n− 1
g(H,H∗)− 1

n(n− 1)
‖h‖ · ‖h∗‖.
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13.5. Statistical submanifolds of statistical manifolds with quasi-constant curvature

The notion of a quasi-constant curvature Riemannian manifold was introduced by the author and K. Yano in [55]
as a Riemannian manifold (M̃, g) equipped with a unit vector field P such that its curvature tensor R̃ satisfies
the condition:

R̃(X,Y )Z = a[g̃(Y,Z)X − g̃(X,Z)Y ] + b{T (Y )T (Z)X − g̃(X,Z)T (Y )P

+ g̃(Y, Z)T (X)P − T (X)T (Z)Y },
(13.7)

where a, b are scalar functions and T is a 1-form defined by the musical isomorphism: T (X) = g(X,P ).
Similarly, a statistical structure (∇̃, g̃) on M

m
is said to be of quasi-constant curvature if the curvature tensor R̃ of

∇̃ satisfies the same condition (13.7) (see [9]). In particular, if b = 0, then M
m

is simply a statistical manifold of
constant curvature.

In [9], H. Aytimur, C. Ozgur proved the following Wintgen type inequality for statistical submanifolds of a
statistical manifold with quasi-constant curvature.

Theorem 13.5. Let Mn be a statistical submanifold of a statistical manifold M
m

of quasi-constant curvature. Then we
have

ρ⊥ ≤ 3

2

(
‖H‖2 + ‖H∗‖2

)
+ 24

∥∥H0
∥∥2

+ 3ρ− 3a− 6

n
b+ 30(ρ̃0 − ρ0),

where ρ̃0 and ρ0 denote the normalized scalar curvatures of the Levi-Civita connection ∇̃0 and the induced Levi-Civita
connection ∇0, respectively, and ρ⊥ is the normalized normal scalar curvature of the statistical manifold (Mn,∇, g).

13.6. Wintgen type inequalities for submanifolds in statistical warped products

Let B and F be two Riemannian manifolds with Riemannian metrics gB and gF , respectively, and f be a
positive differentiable function on B. The warped product B ×f F is the product manifold B × F equipped
with the Riemannian metric g = gB + f2gF . The function f is called the warping function. A warped product is
said to be proper if its warping function is non-constant. In [131], L. Todjihounde provided a method to equip a
dualistic structure on the warped product manifold B ×f F .

In [105], C. Murathan and B. Şahin investigated statistical submanifolds Mn of a statistical warped product
I ×f M̃m(c), where M̃m(c) is a statistical manifold of constant curvature c so that the metric of I ×f M̃m(c) is
given by

g = dt2 + f(t)2g
M̃m(c)

,

where g
M̃m(c)

is the metric of M̃m(c).

In [105], they proved the following Wintgen type inequality for such submanifolds.

Theorem 13.6. Let Mn be a statistical submanifold of a statistical warped product I ×f M̃m(c), where M̃m(c) is a
statistical manifold of constant curvature c. Then

ρ⊥ ≤ − 12ρ0 + 3ρ+ 9

(
c

f2
− f ′2

f2

)(
1− 2

n
‖T‖2

)
− 18f ′′

nf
‖T‖2 + 6‖H0‖2 +

3

2

(
‖H‖2 + ‖H∗‖2

)
,

where T = ∂/∂t−
∑m−n

r=1 arξr is a tangent vector field of Mn and {ξ1, . . . , ξm−n} is a local orthonormal frame of the
normal bundle T⊥Mn.

13.7. Wintgen type inequality for Legendrian submanifolds of Sasakian statistical manifolds

If a statistical manifold (M̃m, g̃, ∇̃) has an almost contact metric-like structure (ϕ, ξ, η), then (M̃m, g̃, ∇̃, ϕ, ξ, η)
is known as almost contact metric-like statistical manifold. In particular, if (ϕ, ξ, η) is a Sasakian structure, then
(M̃m, g̃, ∇̃, ϕ, ξ, η) is called Sasakian statistical manifold. Further, a Sasakian statistical manifold is called a Sasakian
statistical space form if it has constant ϕ-sectional curvature.

In [19], M. N. Boyom, Z. Jabeen, M. A. Lone, M. S. Lone and M. H. Shahid proved the following Wintgen
type inequality for Legendrian submanifold in Sasakian statistical space forms.

Theorem 13.7. Let Mn be a Legendrian submanifold of a Sasakian statistical space form of constant ϕ-sectional
curvature c. Then we have

ρ⊥ ≤ 6
(
‖H‖2 + ‖H∗‖2 + 16‖H0‖2

)
− 12ρ− 9 + 3c+ 120(ρ̄− ρ0).
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13.8. Statistical submanifolds of Kenmotsu statistical manifolds

For a statistical structure (∇̃, g̃) on a manifold M̃ , put K̃ = ∇̃ − ∇0. Then K̃ satisfies (cf. [65]).

K̃XY = K̃YX, g̃(KXY,Z) = g̃(Y,KXZ).

Let (K̃, g̃, ϕ̃, ξ̃, η̃) be a Kenmotsu manifold and assume that (∇̃, g̃) is a statistical structure on K̃. Then the
quadruple (∇̃, g̃, ϕ̃, ξ̃) is called a Kenmotsu statistical structure on M̃ if

K̃(X, ϕ̃Y ) + ϕ̃K̃(X,Y ) = 0. (13.8)

holds for any vector fields X,Y tangent to K̃. A manifold equipped with a Kenmotsu statistical structure is
called a Kenmotsu statistical manifold. A Kenmotsu statistical manifold (K̃, g̃, ϕ̃, ξ̃, η̃) is called a Kenmotsu statistical
space form if it has constant ϕ̃-sectional curvature.

For a statistical submanifold Mn of a Kenmotsu statistical manifold K2m+1, the Carasoti curvatures C and C∗
of Mn are defined respectively by

C =
1

n

∑
1≤i<j≤n

2m+1−n∑
s=1

(hsij)
2 =
‖h‖2

n
, C∗ =

1

n

∑
1≤i<j≤n

2m+1−n∑
s=1

(h∗sij )2 =
‖h∗‖2

n
.

For statistical submanifolds of a Kenmotsu statistical space form, P. Bansal, S. Uddin and M. H. Shahid
proved the following Wintgen type inequality.

Theorem 13.8. [11] Let Mn be a statistical submanifolds of a Kenmotsu statistical space form K2m+1(c) of constant
ϕ-sectional curvature c. Then

ρ⊥ −
√

3ρ ≤ 5
√

3

2

(
‖H‖2 + ‖H∗‖2

)
+ 4
√

3g(H,H∗)−
√

3

(
c− 3

2

)
− 20

√
3

n(n− 1)

∑
1≤i<j≤n

2m+1−n∑
s=1

[
h0s
ii h

0s
jj − C0

]
−
(√

3(c+ 1)

2n(n− 1)

)(
3‖ϕ‖2 − 2(n− 1)

)
,

where C0 = 1
2 (C + C∗) and h0s

ij = 1
2 (hsij + h∗sij ).

In particular, if the statistical submanifold Mn is totally geodesic with respect to ∇0, then Theorem 13.8
implies the following.

Corollary 13.2. Let Mn be a statistical submanifolds of a Kenmotsu statistical space form K2m+1(c) such that Mn is
totally geodesic with respect to ∇0. Then

ρ⊥ −
√

3ρ ≤ 5
√

3

2

(
‖H‖2 + ‖H∗‖2

)
+ 4
√

3g(H,H∗)−
√

3

(
c− 3

2

)
−
(√

3(c+ 1)

2n(n− 1)

)(
3‖ϕ‖2 − 2(n− 1)

)
.

One may consider the local version of any Kenmotsu manifold. Let (M0, g0, J) be an almost Hermitian
manifold (see §10.4). Let us consider N = M0 ×R, g̃ = e2tg0 + (dt)2, the structure vector field ξ = ∂

∂t , and the
structure tensor field ϕ on N . Then we have:
(1) The triple (g̃, ϕ, ξ) is an almost contact metric structure on N .
(2) The pair (g, J) is a Kaehler structure on M0 if and only if the triple (g̃, ϕ, ξ) is a Kenmotsu structure on N .

Remark 13.1. Let N = M0 ×R with a statistical structure (∇̃ = ∇g̃ + K̃, g̃). If(
N = M0 ×R, ∇̃ = ∇g̃ + K̃, g̃, ϕ, ξ

)
is a Kenmotsu statistical manifold of constant ϕ-sectional curvature c, then c = −1 and (M0,∇ = ∇g0 +K, g0, J)
is a Kenmotsu statistical manifold of constant holomorphic sectional curvature 0 (see [11, Remark 4]).

In [11], P. Bansal, S. Uddin and M. H. Shahid also obtained the following.
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Theorem 13.9. Let (N = M0 ×R, ∇̃ = ∇g̃ + K̃, g̃, ϕ, ξ) be the Kenmotsu statistical space form of constant ϕ-sectional
curvature c as given in Remark 13.1. If Mn is a statistical submanifolds of N , then

ρ⊥ −
√

3ρ ≤ 5
√

3

2

(
‖H‖2 + ‖H∗‖2

)
+ 4
√

3g(H,H∗) + 2
√

3 − 20
√

3

n(n− 1)

∑
1≤i<j≤n

2m+1−n∑
s=1

[
h0s
ii h

0s
jj − C0

]
.

In particular, if the statistical submanifold Mn is totally geodesic with respect to ∇0, then Theorem 13.9
implies the following.

Corollary 13.3. Let (N = M0 ×R, ∇̃ = ∇g̃ + K̃, g̃, ϕ, ξ) be the Kenmotsu statistical space form of constant ϕ-sectional
curvature c as given in Remark 13.1. If a statistical submanifold Mn is totally geodesic in N with respect to ∇0, then

ρ⊥ −
√

3ρ ≤ 5
√

3

2

(
‖H‖2 + ‖H∗‖2

)
+ 4
√

3g(H,H∗) + 2
√

3.

13.9. Legendrian submanifolds of almost Kenmotsu statistical manifolds

Let (M̃, g̃, ∇̃, ∇̃∗) be a statistical manifold. If M̃ is an almost contact metric manifold, then M̃ is called almost
contact metric statistical manifold; and if (M̃, g̃, J) is an almost Hermitian manifold, then (M̃, g̃, J, ∇̃, ∇̃∗) is
called almost Hermitian statistical manifold. In particular, if (M̃, g̃, J) is an (almost) Kaehler manifold, then
(M̃, g̃, J, ∇̃, ∇̃∗) is called (almost) Kaehler statistical manifold.

Let (Ñ ,∇, g, J) be an almost Hermitian statistical manifold and let (R, dt, R∇) be trivial statistical manifold.
Consider the warped product M̃ = R×f Ñ with warping function f > 0 and with the warped product metric

g̃ = dt2 + f2fÑ .

Let ξ = ∂
∂t be the structure vector field on M̃ and put η = dt. Then, for an arbitrary vector field X on M̃ , we

may put

X = X̃ − η(X̃)ξ.

By applying the almost complex structure J , we may define a tensor field ϕ of type (1, 1) on M̃ given by
ϕX̃ = JX for any tangent vector field X̃ on M̃ . Now, it is direct to verify that (M̃, g̃, ϕ, ξ, η) is an almost contact
metric manifold. It was proved in [82, Theorem 4.1] that (Ñ ,∇, g, J) is an almost Kaehler statistical manifold if
and only if the warped product (M̃ = R×f Ñ , g̃, ϕ, ξ) is an almost (− ln f)′-Kenmotsu statistical manifold.

For Legendrian submanifold of the statistical warped product manifolds M̃ = R×f Ñ(c), R. Goriunus, I. K.
Erken, A. Yazla and C. Murathan [82] the following.

Theorem 13.10. Let (R, dt, R∇) be a trivial statistical manifold and Ñ(c) be a holomorphic statistical space form. If Mn

is a Legendrian submanifold of the statistical warped product manifolds M̃ = R×f Ñ(c), then

ρ⊥ ≤ 2ρ− 8ρ0 +
1

4f2
(2f |c| − c+ 4(f ′)2) + ‖H‖2 + ‖H∗‖2 + 4‖H0‖2.

Theorem 13.10 implies the following two corollaries.

Corollary 13.4. Let (R, dt, R∇) be a trivial statistical manifold and Ñ(0) = Cm be a holomorphic statistical space form.
If Mn is a Legendrian submanifold of the statistical warped product manifolds M̃ = R×et Cm, then

ρ⊥ ≤ 2ρ− 8ρ0 + ‖H‖2 + ‖H∗‖2 + 4‖H0‖2 + 1.

Corollary 13.5. Let (R, dt, R∇) be a trivial statistical manifold and Ñ(c) be a holomorphic statistical space form. If Mn

is a Legendrian submanifold of the statistical cosymplectic manifolds M̃ = R× Ñ(c), then

ρ⊥ ≤ 2ρ− 8ρ0 + ‖H‖2 + ‖H∗‖2 + 4‖H0‖2 +
1

4
(2|c| − c).
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14. Möbious geometry and Wintgen ideal submanifolds

A diffeomorphism ψ : Sm → Sm which takes roundm-spheres into itself is called a Möbius transformation. All
Möbius transformations form a transformation group, called the Möbius transformation group of Sm, denoted
by M(Sm). It is well known that the Möbius group M(Sm) coincides with the conformal group C(Sn+1m)
for m ≥ 2. Möbius geometry has a long history. On the other hand, Möbius geometry of submanifolds was
only studied extensively during the past 15 years. In particular, a complete Möbius invariant system for a
submanifold ϕ : Mn → Sm was obtained by Changping Wang in [134]. Also, based on a result of F. Dillen,
J. Fastenakels and J. Van der Veken in [72], M. Dajczer and R. Tojeiro [60] observed an important property
that the Wintgen inequality, as well as the equality case, are invariant under Möbius transformations of the
ambient space. Consequently, it is important to investigate Wintgen ideal submanifolds in the framework of
Möbius geometry.

14.1. Submanifold theory in Möbius geometry

In this subsection, we provide the complete Möbius invariant system developed by Changping Wang in [134]
as follows. The Lorentz inner product between Y = (Y0, Y1, · · · , Yn+p+1) andZ = (Z0, Z1, · · · , Zn+p+1) ∈ En+p+2

1

is given by
〈Y,Z〉 = −Y0Z0 + Y1Z1 + · · ·+ Yn+p+1Zn+p+1.

Let φ : Mn → Sn+p ⊂ En+p+1 be a submanifold without umbilical points. Take {ei, . . . , en} as the tangent
frame with respect to the induced metric I = dφ · dφ, and {θ1, . . . , θn} as the dual 1-forms. Let {ξ̂1, . . . , ξ̂p} be
orthonormal frame for the normal bundle.

The second fundamental form and the mean curvature of φ are

II =
∑

ij,r
hrijθi ⊗ θj ξ̂r, H =

1

n

∑
j,r
hrjj ξ̂r =

∑
r
Hr ξ̂r, (14.1)

respectively. Define the Möbius position vector Y : Mn → En+p+2
1 of f by

Y = ρ(1, φ), ρ =

√
n

n− 1

∣∣∣II − 1

n
trace(II)I

∣∣∣ (14.2)

which is called the canonical lift of φ.
Two submanifolds φ, φ̄ : Mn → Sn+p are said to be Möbius equivalent if there exists T in the Lorentz group

O(n+ p+ 1, 1) in En+p+2
1 such that Ȳ = Y T. It follows immediately that

g = 〈dY, dY 〉 = ρ2dφ · dφ (14.3)

is a Möbius invariant, called the Möbius metric of φ. Denote by ∆ the Laplacian with respect to g.
Define

N = − 1

n
∆Y − 1

2n2
〈∆Y,∆Y 〉Y. (14.4)

Let {E1, · · · , En} be a local orthonormal frame for (Mn, g) with dual 1-forms {ω1, · · · , ωn}. We define the
tangent frame Yj = Ej(Y ) and the normal frame

ξr = (Hr, ξ̂r +Hrφ).

Then {Y,N, Yj , ξr} is a moving frame of En+p+2
1 along Mn, which is orthonormal except

〈Y, Y 〉 = 0 = 〈N,N〉, 〈N,Y 〉 = 1 .

Consider the range of indices as below: 1 ≤ i, j, k ≤ n; 1 ≤ r, s ≤ p. The structure equations are then given by

dY =
∑

i
ωiYi,

dN =
∑

ij
AijωiYj +

∑
i,r
Cri ωiξr,

dYi = −
∑

j
AijωjY − ωiN +

∑
j
ωijYj +

∑
j,r
Brijωjξr,

dξr = −
∑

i
Cri ωiY −

∑
i,j
ωiB

r
ijYj +

∑
s
θrsξs,

(14.5)
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where ωij denotes the connection 1-forms of the Möbius metric g and θrs are the normal connection 1-forms.
The tensors

A =
∑

i,j
Aijωi ⊗ ωj , B =

∑
i,j,r

Brijωi ⊗ ωjξr, Φ =
∑

j,r
Crjωjξr (14.6)

are called the Blaschke tensor, the Möbius second fundamental form and the Möbius form of ϕ, respectively (see
[134]).

The integrability conditions for the structure equations are given by

Aij,k −Aik,j =
∑

r
(BrikC

r
j −BrijCrk), (14.7)

Cri,j − Crj,i =
∑

k
(BrikAkj −BrjkAki), (14.8)

Brij,k −Brik,j = δijC
r
k − δikCrj , (14.9)

Rijkl =
∑

r
(BrikB

r
jl −BrilBrjk) + δikAjl + δjlAik − δilAjk − δjkAil, (14.10)

R⊥rsij =
∑

k
(BrikB

s
kj −BsikBrkj). (14.11)

Here the covariant derivatives Aij,k, Brij,k, C
r
i,j are defined as usual and R and R⊥ are the the curvature tensor

of g and the normal curvature tensor, respectively. The tensor B satisfies the following identities∑
j
Brjj = 0,

∑
i,j,r

(Brij)
2 = 4. (14.12)

All coefficients in the structure equations are determined by {g,B} and the normal connection {θαβ}. These are
the complete set of Möbius invariants given by Changping Wang derived in [134].

14.2. Wintgen ideal submanifolds with a two-dimensional integrable distribution

For a Wintgen ideal submanifold Mn in a real-space form Rm(c), let D2 be the 2-dimensional distribution
defined by (7.5).

In [91], T. Li, X. Ma and C. Wang proved the following two classification theorems.

Theorem 14.1. Let φ : Mn → En+p, n ≥ 3, be a Wintgen ideal submanifold with integrable canonical distribution
D2 = Span{e1, e2}. Then, φ is locally Möbius equivalent to one of the following:
(a) a cone over a minimal Wintgen ideal surface in the sphere S2+p;
(b) or a rotational submanifold over a minimal Wintgen ideal surface in hyperbolic space H2+p;
(c) or a cylinder over a minimal Wintgen ideal surface in E2+p.

In the case where the canonical distribution D2 is not integrable, T. Li, X. Ma and C. Wang considered the
3-dimensional distribution D3 = Span{e1, e2, [e1, e2]} and obtained the following.

Theorem 14.2. Let φ : Mn → En+p, n ≥ 4, be a Wintgen ideal submanifold. If D2 is not integrable, but D3 is integrable,
then φ is locally Möbius equivalent to one of the following:
(1) a cone over a 3-dimensional minimal Wintgen ideal submanifold in S3+p; or
(2) a rotational submanifold over a 3-dimensional minimal Wintgen ideal submanifold in H3+p; or
(3) a cylinder over a 3-dimensional minimal Wintgen ideal submanifold in E3+p.

14.3. Mean curvature spheres and Wintgen ideal submanifolds of codimension two

Put
Qn+2

+ = {[Z] ∈ CPn+3 : 〈Z,Z〉 = 0,
〈
Z, Z̄

〉
> 0}

be in the complex quadric Qn+2 of a complex projective (n+ 3)-space CPn+3.
Let Mn be a submanifold of a round (n+ p)-sphere Sn+p. By definition, the mean curvature sphere at one

point x ∈Mn is the unique round n-sphere tangent to Mn at x which shares the same mean curvature vector
with Mn at x. In the codimension two case, this assigns a (oriented) space-like 2-space SpanR{ξ1, ξ2} in the
Lorentzian space Ln+4 = E4

1 which is also identified with the isotropic complex line SpanC{ξ1 − iξ2} ∈ CPn+3

(with respect to the C-linear extension of the Lorentz metric). When the base point x varies alongMn, this gives
the mean curvature sphere congruence, which is also represented as a Gauss map (see [92] for details)

[ξ] , [ξ1 − iξ2] : Mn → Qn+2
+ , (14.13)
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which is called the conformal Gauss map (see [92]).
A key observation made in [92] is that under the hypothesis of being Wintgen ideal, this n-sphere congruence

is indeed a 2-parameter family, and its envelope not only recoversMn, but also extends it to a submanifold as a
sphere bundle over a Riemann surface M

2
(a holomorphic curve). The underlying surface M

2
comes from the

quotient surfaceM
2

= Mn/Γ (at least locally), where Γ is the foliation ofMn by the integral submanifolds of the
distribution D⊥ = Span{e3, . . . , en}. Moreover, the mean curvature sphere [ξ1 − iξ2] determines a holomorphic,
1-isotropic curve in Qn+2

+ , and all codimension two Wintgen ideal submanifolds can be constructed by such
curves in Qn+2

+ .
T. Li, X. Ma, C. Wang and Z. Xie proved the following main result of [92] which describes Wintgen ideal

submanifold of codimension two via holomorphic isotropic curves in Qn+2
+ .

Theorem 14.3. The mean curvature spheres [ξ] , [ξ1 − iξ2] ∈ Qn+2
+ of a Wintgen ideal submanifold of codimension two

is a holomorphic and 1-isotropic curve, i.e.,
ξz̄‖ξ, 〈ξz, ξz〉 = 0.

Conversely, given a holomorphic isotropic curve

[ξ] : M
2 → Qn+2

+ ⊂ CPn+3

the envelope M̂n of the corresponding 2-parameter family spheres is an n-dimensional Wintgen ideal submanifold (at the
regular points).

T. Li, X. Ma, C. Wang and Z. Xie also pointed out in [92] that, via a complex stereographic projection,
their characterization of Wintgen ideal submanifolds given above is equivalent to M. Dajczer and R. Tojeiro’s
description of such submanifolds in terms of minimal surfaces in the Euclidean space given in [60].

Remark 14.1. Several nice properties of mean curvature spheres of Wintgen ideal surfaces were also obtained
by B. Rouxel in [115] (see also [41, Theorems 2.1–2.3]).

14.4. Möbius homogenous surfaces in S4

Let x, y, z be the natural coordinates of E3 and u1, . . . , u5 that of E5. The mapping defined by

u1 =
yz√

3
, u2 =

xz√
3
, u3 =

xy√
3
, u4 =

x2 − y2

2
√

3
, u5 =

1

6
(x2 + y2 − 2z2)

gives rise to an isometric immersion of S2( 1
3 ) of curvature 1

3 into S4(1). Two points (x, y, z) and (−x,−y,−z) of
S2( 1

3 ) are mapped into the same point. Thus, this mapping defines an embedding of the real projective plane
RP 2( 1

3 ) into S4(1), known as the Veronese surface.
A submanifold φ : Mn → Sn+p is called a locally Möbius homogeneous submanifold if for any two points x, y ∈

Mn there exists a Möbius transformation γ ∈M(Sn+p) which takes φ(x) to φ(y) and takes a neighborhood U
of φ(x) in φ(Mn) to a neighborhood V of φ(y) in φ(Mn).

In [135], C. Wang and Z. Xie obtained a complete classification of the Möbius homogenous surfaces in S4

given as follows.

Theorem 14.4. Any locally Möbius homogeneous surface in S4 is Möbius equivalent to an open part of one of the
following Möbius homogenous surfaces:
(1) a round 2-sphere in S4;
(2) the Veronese surface in S4;
(3) the inverse of the stereographic projection of the surface {(sin v, cos v, av, u) : (u, v) ∈ E2} ⊂ E4, a ∈ R;

(4) the inverse of the stereographic projection of the surface{
eε1u+ε2v

(
a sin(ι1u+ ι2v), a cos(ι1u+ ι2v), b sin(δ1u+ δ2v), bcos(δ1u+ δ2v)

)
: (u, v) ∈ E2

}
⊂ E4,

where εi, ιi, δi (i = 1, 2) and a, b are constants such that a2 + b2 = 1 and (ε1, ι1, δ1) is not parallel to (ε2, ι2, δ2);
(5) the inverse of the stereographic projection of the surface

{(
ae−ru sinu, ae−rucosu, be−ru, v

)
(u, v) ∈ E2

}
⊂ E4 where

r, a, b are constants which satisfy r 6= 0 and a2 + b2 = 1.
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14.5. Wintgen ideal submanifolds with vanishing Möbius form

In [138] Z. Xie studied Wintgen ideal submanifolds with vanishing Möbius form and obtained the following
two classification theorems.

Theorem 14.5. Let φ : Mn → Sn+p (n ≥ 3, p ≥ 1) be an umbilical-free Wintgen ideal submanifold. If its Möbius form
vanishes, then φ is locally Möbius equivalent to one of the following:
(1) a cone over a Veronese surface in S2k (k ≥ 2); or
(2) a cone over a flat super-minimal surface in S2k+1 (k ≥ 2); or
(3) a cone over a flat super-minimal surface in S3+p.

Theorem 14.6. Let φ : Mn → Sn+2 (n ≥ 3) be a umbilical-free Wintgen ideal submanifold. If its Möbius form vanishes„
then φ is locally Möbius equivalent to
(a) a cone over the Veronese surface in S4; or
(b) a cone over the 3-dimensional minimal Wintgen ideal submanifold

x : SO(3)→ S5; (u, v, u× v) 7→ 1√
2

(u, v),

which can also be seen as coming from Hopf bundle over the Veronese surface in CP 2.

14.6. Conformal Gauss map and Möbius geometry of Wintgen ideal submanifolds

Let φ : Mn → Sn+p be a submanifold of Sn+p. Via the light-cone model of Möbius geometry, the submanifold
φ : Mn → Sn+p can be lifted to a submanifold in the Lorentz space En+p+2

1 of dimension n+ p+ 2; at the same
time, the normal bundle Span{ξ̂1, ..., ξ̂p}, corresponds to Span{ξ1, ..., ξp} where {ξr} are orthonormal space-like
vectors in En+p+2

1 . The mapping

Ξ : M
2 → Gr(p,En+p+2

1 ) (14.14)

from x ∈Mn to the space-like subspace Span{ξ1(x), ..., ξp(x)} is called the conformal Gauss map of φ.
For the conformal Gauss map of a Wintgen ideal submanifold φ : Mn → Sn+p, X. Ma and Z. Xie proved the

following two results in [95].

Theorem 14.7. For a Wintgen ideal submanifold φ : Mn → Sn+p of dimension n ≥ 3, the conformal Gauss map Ξ

factors as a projection map π : Mn →M
2

(which is a Riemannian submersion up to a constant), and a super-conformal
harmonic map from a Riemann surface Ξ : M

2 → Gr(p,En+p+2
1 ). In other words, Ξ(Mn) is a super-minimal surface

M
2 ⊂ Gr(p,En+p+2

1 ) (endowed with the induced metric).

Theorem 14.8. For a Wintgen ideal submanifold ϕ : Mn → Sn+p and the envelope M̂n, we have the following
conclusions:
(1) There is a fiber bundle structure Sn−2 → M̂n →M

2
over a Riemann surface. The fibers are all round spheres of the

ambient space.

(2) The projection π : M̂n →M
2

is a Riemannian submersion up to a constant.

(3) As a natural extension of Mn, M̂n is still a Wintgen ideal submanifold.

14.7. Classification of Wintgen ideal submanifolds via Möbius geometry

Via Möbius geometry, Z. Xie, T. Li, X. Ma and C. Wang gave in [141] a coarse classification of all Wintgen
ideal submanifolds into three classes:

Class 1. The reducible cases: Mn is a cone, a cylinder or a rotational submanifold over a low dimensional minimal
Wintgen ideal submanifold M̂` in the space form S`+p,E`+p or H`+p, respectively.
Class 2. The irreducible minimal cases: Mn is Möbius equivalent to a minimal Wintgen ideal submanifold in a space
form; at the same time it is not of Class 1.
Class 3. The generic case: Mn is neither Möbius equivalent to a minimal Wintgen ideal submanifold nor reducible to
such an example of lower dimension.

39 www.iejgeo.com

http://www.iej.geo.com


Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds

Consequently, the investigation of Wintgen ideal submanifolds is reduced to the study of minimal ones and
the generic (irreducible) ones.

In [141], Z. Xie, T. Li, X. Ma and C. Wang also obtained the following reduction theorem.

Theorem 14.9. Let φ : Mn → En+p (n ≥ 3, p ≥ 2) be a Wintgen ideal submanifold without umbilical points and let D
denote the minimal integrable distribution containing D2. If dimD = `, then φ is locally Möbius equivalent to
(a) a cone over a `-dimensional minimal Wintgen ideal submanifold in S`+p;
(b) or a submanifold of revolution over a `-dimensional minimal Wintgen ideal submanifold in H`+p;
(c) or a cylinder over a `-dimensional minimal Wintgen ideal submanifold in E`+p.

15. Symmetry of Wintgen ideal submanfiolds

15.1. Deszcz’s pseudo-symmetry

Let us assume that Mn is an Riemannian n-manifold with metric tensor g. The endomorphism X ∧ Y of the
Lie algebra of vector fields of Mn is defined by

(X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y, (15.1)

for vector fields X,Y ∈ X(Mn), where X(M) is Lie algebra of vector fields on Mn. Let∇ denote the Levi-Civita
connection of (Mn, g). Then

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

is called the curvature operator of (Mn, g).
A Riemannian manifold (Mn, g) is called semi-symmetric if, for all vector fields X,Y ∈ X(Mn), we have

R ·R = 0, (15.2)

in which the curvature operator R on the left-hand side of (15.2) acts as a derivation on the second R.
In [69], R. Deszcz generalized the concept of semi-symmetry and introduced the notion of pseudo-symmetric

manifolds as follows: For a (0, k)-tensor T on Mn, the following (0, k + 2)-tensor Q(g, T ) was defined by S.
Tachibana in [128].

Q(g, T )(X1, . . . , Xk;X,Y ) = ((X ∧ Y ) · T )(X1, . . . , Xk)

= −T ((X ∧ Y )X1, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧ Y )Xk).

A manifold Mn is called pseudo-symmetric if its curvature tensor R has the property (see [69])

R ·R = LRQ(g,R) (15.3)

for some function LR : Mn → R.
Pseudo-symmetric manifolds are natural generalizations of local symmetric and semi-symmetric manifolds.

These manifolds arose from studies on totally umbilical submanifolds of semi-symmetric spaces and also from
studies on geodesic mappings onto semi-symmetric manifolds. Similarly, a Riemannian manifold Mn (n ≥ 3)
is said to be Ricci pseudo-symmetric in the sense of Deszcz, or simply Deszcz Ricci-symmetric if it satisfies

R · S = LSQ(g, S) (15.4)

for some function LS : Mn → R, where S denotes the Ricci tensor of Mn. Further a Riemannian manifold
Mn (n ≥ 3) is said to have a pseudo-symmetric conformal Weyl tensor C if, in the same notations as before,

C · C = LCQ(g, C) (15.5)

for some function LC : Mn → R.

www.iejgeo.com 40

http://www.iej.geo.com


B.-Y. Chen

15.2. Pseudo-symmetry of Wintgen ideal submanifolds in real space forms

The following results were proved by S. Decu, M. Petrović-Torgašev, A. Šebeković and L. Verstraelen in [70].

Theorem 15.1. Let Mn (n ≥ 4) be a Wintgen ideal submanifold codimension 2 in a real space form Rn+q(c) (q ≥ 2)
of constant curvature c. Then Mn is Deszcz symmetric if and only if Mn is totally umbilical in Rn+q(c) in which case
LR = 0, or Mn is minimal in Rn+q(c) in which case LR = c.

Theorem 15.2. LetMn (n ≥ 4) be a Wintgen ideal submanifold of a real space formRn+q(c) (q ≥ 2). ThenMn is Deszcz
Ricci-symmetric if and only if Mn is Deszcz symmetric.

Theorem 15.3. Every Wintgen ideal submanifold Mn (n ≥ 4) of a real space form Rn+q(c) (q ≥ 2) is a Riemannian
manifold with pseudo-symmetric conformal Weyl tensor.

Theorem 15.4. Let Mn (n ≥ 4) be a Wintgen ideal submanifold of a real space form Rn+q(c) (q ≥ 2). Then Mn is
minimal if and only if the pseudo-symmetric conformal Weyl tensor C is given by

LC =
n− 3

(n− 1)(n− 2)
(c− inf K).

Remark 15.1. When the codimension of Mn is 3 (resp., codimension of Mn is 2), Theorems 15.1-15.4 were
obtained earlier in [70] (resp., in [112]).

15.3. Pseudo-psymmetry of Wintgen ideal Lagrangian submanifolds in complex space forms

Recall that the Wintgen type inequality was established by I. Mihai in [101] for Lagrangian submanifolds in
complex space forms (see Theorem 9.2).

In [111], M. Petrović-Torgašev and A. Pantić proved the following three results for Lagrangian submanifolds
of complex space forms.

Theorem 15.5. A Wintgen ideal Lagrangian submanifold Mn (n ≥ 4) of a complex space form M̃n(4c) is a Deszcz
symmetric Riemannian manifold if and only if it is totally geodesic (with LR = 0) or a minimal or pseudo-umbilical
submanifold of M̃n(4c).

Theorem 15.6. A Wintgen ideal Lagrangian submanifold Mn (n ≥ 4) of a complex space form M̃n(4c) is a Deszcz
symmetric if and only if it is Deszcz Ricci-symmetric.

Theorem 15.7. Let Mn (n ≥ 4) be a Wintgen ideal Lagrangian submanifold of a complex space form M̃n(4c). Then
(1) Mn is conformally flat if and only if Mn is a totally geodesic submanifold.
(2) If Mn is not a conformally flat submanifold, then Mn has pseudo-symmetric conformal Weyl tensor C and the
corresponding function LC defined by (15.5) is given by

LC =
n− 3

(n2 − 1)(n− 2)2

(
τ − n(n− 1) inf K

)
,

where τ is the scalar curvature of Mn.

15.4. Pseudo-psymmetry of Wintgen ideal Legendrian submanifolds in Sasakian space forms

The Wintgen type inequality for Legendrian submanifolds in Sasakian space forms was established by I.
Mihai in [104] (see Theorem 10.1). For such submanifolds, A. Šebeković, M. Petrović-Torgašev and A. Pantić
proved the following three results in [120].

Theorem 15.8. A Wintgen ideal Legendrian submanifold Mn (n ≥ 4) of a Sasakian space form M̃2n+1(c) of constant
ϕ-sectional curvature c is a Deszcz symmetric Riemannian manifold if and only if it is totally umbilical (with LR = 0)

or a minimal or pseudo-umbilical submanifold of M̃2n+1(c) (with LR = − c+3
4 − ‖H‖

2).

Theorem 15.9. Any Wintgen ideal Legendrian submanifold Mn (n ≥ 4) of a Sasakian space form M̃2n+1(c) is a Deszcz
symmetric if and only if it is Deszcz Ricci-symmetric.
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Theorem 15.10. Let Mn (n ≥ 4) be a Wintgen ideal Legendrian submanifold of a Sasakian space form M̃2n+1(c). Then

(1) Mn is conformally flat if and only if Mn is a totally umbilical submanifold of M̃2n+1(c).
(2) If Mn is not a conformally flat submanifold, then Mn has pseudo-symmetric conformal Weyl tensor C and the
corresponding function LC defined by (15.5) is given by

LC =
n− 3

(n2 − 1)(n− 2)2

(
τ + n(n− 1) inf K

)
,

where τ is the scalar curvature of Mn.

15.5. Roter spaces, Deszcz symmetric spaces, and Wintgen ideal submanifolds

Let (Mn, g) be a Riemannian n-manifold with n ≥ 4 and Ricci tensor S. Put

US = {x ∈Mn : S − τ

n
g 6= 0 at x}

and denote by UC the set of all points ofMn at which the Weyl-conformal curvature tensor C 6= 0. Then (Mn, g)
is called a Roter type manifold or a Roter space if its Riemannian curvature tensor R satisfies

R = αS ∧ S + βg ∧ S + γg ∧ g,

where α, β, γ are some functions on US ∩ UC .

The following link between Roter spaces, Deszcz symmetric spaces, and Wintgen ideal submanifolds was
proved by S. Decu, M. Petrović-Torgašev, A. Šebeković and L. Verstraelen in [67]

Theorem 15.11. Let Mn (n ≥ 4) be a Wintgen ideal submanifold of a real space form Rm(c). Then Mn is Deszcz
symmetric if and only if Mn is a Roter space
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[18] Borůvka, O.: Sur une classe de surfaces minma plonées dans un espace á quatre dimensions à courbure constante. C. R. Acad. Sci. 187, 334–336

(1928).
[19] Boyom, M. N., Jabeen, Z., Lone, M. A., Lone, M. S., Shahid, M. H. Generalized Wintgen inequality for Legendrian submanifolds in Sasakian

statistical manifolds. In: Geometric science of information, pp. 407–412, Lecture Notes in Comput. Sci., 11712, Springer, Cham, 2019.
[20] Bryant, R. L. Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Diff. Geom. 17, 455–473 (1982).
[21] Carriazo, A.: Bi-slant immersions. in: Proc. ICRAMS 2000, Kharagpur, India, pp. 88–97 (2000).

www.iejgeo.com 42

http://www.iej.geo.com


B.-Y. Chen

[22] Castro, I.: Lagrangian surfaces with circular ellipse of curvature in complex space forms. Math. Proc. Cambridge. Philo. Soc. 136, 239–245 (2004).
[23] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990).
[24] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Belgium (1990).
[25] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60, 568–578 (1993).
[26] Chen, B.-Y.: Differential geometry of semiring of immersions I. General theory. Bull. Inst. Math. Acad. Sinica 21 (1), 1–34 (1993).
[27] Chen, B.-Y.: Mean curvature and shape operator of isometric immersions in real-space forms. Glasgow Math. J. 38, 87–97 (1996).
[28] Chen, B.-Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J. 49, 277–297 (1997).
[29] Chen, B.-Y.: Interaction of Legendre curves and Lagrangian submanifolds. Israel J. Math. 99, 69–108 (1997).
[30] Chen, B.-Y.: Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In: The Third Pacific Rim Geometry

Conference (Seoul, 1996), pp. 7–60, Int. Press, Cambridge MA (1998).
[31] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 41 (1), 33–41

(1999).
[32] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japan. J. Math. 26, 105–127 (2000).
[33] Chen, B.-Y.: Riemannian submanifolds. In: Handbook of Differential Geometry. Vol. I, pp. 187–418, North-Holland, Amsterdam (2000).
[34] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math. 5, 681–723 (2001).
[35] Chen, B.-Y.: δ-invariants, inequalities of submanifolds and their applications. In: Topics in differential geometry, pp. 29–155, Ed. Acad. Romane,

Bucharest (2008).
[36] Chen, B.-Y.: Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvature. Ann. Global Anal. Geom. 38,

145–160 (2010).
[37] Chen, B.-Y.: A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization. Arch. Math. 94, 257–265

(2010).
[38] Chen, B.-Y.: A Wintgen type inequality for surfaces in 4D neutral pseudo-Riemannian space forms and its applications to minimal immersions. JMI

Int. J. Math. Sci., 1, 1–12 (2010).
[39] Chen, B.-Y.: Classification of minimal Lorentz surfaces in indefinite space forms with arbitrary codimension and arbitrary index. Publ. Math.

Debrecen. 78 (2), 485–503 (2011).
[40] Chen, B.-Y.: Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific, Hackensack, NJ (2011).
[41] Chen, B.-Y.: On Wintgen ideal surfaces. In: Riemannian geometry and applications–Proceedings RIGA 2011, pp. 59–74, Ed. Univ. Bucuresti,

Bucharest (2011).
[42] Chen, B.-Y.: Wintgen ideal surfaces in four-dimensional neutral indefinite space form R4

2(c). Results Math. 61, 329–345 (2012).
[43] Chen, B.-Y.: A tour through δ-invariants: from Nash’s embedding theorem to ideal immersions, best ways of living and beyond. Inst. Math. Publ.

94(108), 67–80 (2013).
[44] Chen, B.-Y.: On ideal hypersurfaces of Euclidean 4-space. Arab J. Math. Sci. 19, 129–144 (2013).
[45] Chen, B.-Y.: Total mean curvature and submanifolds of finite type. 2nd Edition, World Scientific, Hackensack, NJ (2015).
[46] Chen, B.-Y.: Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ (2017).
[47] Chen, B.-Y.: Recent developments in δ-Casorati curvatures. Turk. J. Math. 45 (1), 1–46 (2021).
[48] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Totally real submanifolds of CPn satisfying a basic equality. Arch. Math. 63, 553–564

(1994).
[49] Chen, B.-Y., Houh, C. S.: Totally real submanifolds of a quaternion projective space. Ann. Mat. Pura Appl. 70, 185–199 (1979).
[50] Chen, B.-Y., Mihai, A., Mihai, I.: A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results

Math. 74 (4), Art. 165, 11 pp. (2019).
[51] Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc. 193, 257–266 (1974).
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