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The androgen receptor (AR) is the main therapeutic target in advanced prostate cancer,

because it regulates the growth and progression of prostate cancer cells. Patients

may undergo multiple lines of AR-directed treatments, including androgen-deprivation

therapy, AR signaling inhibitors (abiraterone acetate, enzalutamide, apalutamide, or

darolutamide), or combinations of these therapies. Yet, tumors inevitably develop

resistance to the successive lines of treatment. The diverse mechanisms of resistance

include reactivation of the AR and dysregulation of AR cofactors and collaborative

transcription factors (TFs). Further elucidating the nexus between the AR and

collaborative TFs may reveal new strategies targeting the AR directly or indirectly, such

as targeting BET proteins or OCT1. However, appropriate preclinical models will be

required to test the efficacy of these approaches. Fortunately, an increasing variety

of patient-derived models, such as xenografts and organoids, are being developed

for discovery-based research and preclinical drug screening. Here we review the

mechanisms of drug resistance in the AR signaling pathway, the intersection with

collaborative TFs, and the use of patient-derived models for novel drug discovery.

Keywords: androgen receptor, castration-resistant prostate cancer, transcription factors, octamer transcription

factor 1, preclinical models

INTRODUCTION

Prostate cancer is one of the most common causes of cancer-related death among men in Western
countries. At diagnosis, most prostate cancers rely on the androgen receptor (AR) signaling for
growth and survival. In this pathway, the AR is bound by ligands, such as dihydrotestosterone
(DHT), and regulates the expression of target genes (1–5). In addition, the AR collaborates with
cofactors, including transcription factors (TFs), which bind to specific DNA elements in regulatory
regions of AR-responsive genes. Since AR collaborative TFs fine-tune androgen-responsive gene
expression, it is important to further elucidate their role in the progression of prostate cancer.
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In normal prostate epithelium, the AR suppresses
proliferation and promotes differentiation (6); however,
during carcinogenesis prostate cancer cells develop “lineage-
addiction,” where the AR promotes tumor progression (7).
Given the importance of the AR pathway in prostate cancer, it
is the target of most treatments for advanced disease. Androgen
deprivation therapy (ADT), through surgical or pharmacological
castration, is initially effective at reducing tumor burden. ADT
is administered alone or in combination with chemotherapy or
AR-signaling inhibitors (8). A subset of cancer cells withstand
treatment and eventually develop into castration-resistant
prostate cancer (CRPC), which proliferates despite castrate
concentrations of circulating androgens. Since AR signaling
persists in most cases of CRPC, patients receive further treatment
with AR signaling inhibitors (abiraterone acetate, enzalutamide,
apalutamide, and darolutamide) based on whether they have
metastatic or non-metastatic disease (9–12). Yet, tumors
inevitably acquire further resistance, often by reactivating AR
signaling. Once patients fail an AR signaling inhibitor, further
treatments include another AR-directed therapy, chemotherapy,
or if there are genomic defects in homologous recombination
repair genes, a PARP inhibitor (13, 14). However, as CRPC is
ultimately lethal, there is an ongoing need for new treatments.

An important step in developing novel therapies is testing
their effectiveness in preclinical models. Although there is a
longstanding paucity of preclinical models of CRPC, larger
collections of patient-derived models are providing new tools
to validate and prioritize candidate treatments for clinical trials.
In this review, we examine mechanisms of castration-resistance
involving the AR and collaborating TFs, new strategies for
targeting tumors with these features, and the use of different
patient-derived models for testing these novel treatments.

MECHANISMS OF
CASTRATION-RESISTANCE THROUGH
ALTERATIONS OF THE AR

The AR gene on Xq11-13 consists of 8 exons encoding the
N-terminal domain (NTD; 555 amino acids; exon 1), DNA-
binding domain (DBD; 68 amino acids; exons 2 and 3), hinge
region (40 amino acids; exon 4), and ligand binding domain
(LBD; 295 amino acids; exons 4–8) (15, 16). Binding of androgens
to the LBD triggers an intramolecular interaction with the NTD,
which in turn interacts with AR co-activators (17, 18).

Amplifications of the AR locus are one the most common
mechanisms of castration-resistance, and they often encompass
an enhancer located ∼700 kilobases upstream (19–21). In some
tumors, the AR gene and enhancer are amplified independently
of each other (21). The AR enhancer is bound by several
transcriptional activators, including FOXA1, GATA2, NKX3.1,
HOXB13, and the AR itself (20). Amplifications of the AR and
its enhancer are associated with higher levels of AR expression,
and over-expressing the AR in prostate cancer cell lines causes
enzalutamide-resistance (20, 21). Accordingly, patients with
amplifications of the AR locus and/or enhancer are often
resistant to AR-directed therapies, including enzalutamide and

abiraterone acetate (22, 23). In preclinical studies with VCaP
cells, which have an AR amplification and express high levels of
the AR, darolutamide had a lower IC50 than enzalutamide and
apalutamide in suppressing proliferation (24), suggesting that
potent inhibition of the AR may be required for tumors with this
mechanism of resistance.

The conformation of the AR can be disrupted by point
mutations, which commonly arise in CRPC and mediate
resistance to AR-directed treatments (25, 26). Occasionally, two
AR mutations can occur in the same tumor (27–30). Point
mutations often occur in the LBD, causing gain-of-function
in ligand binding, so the AR is activated by other steroids,
and antagonists, like enzalutamide, are converted into agonists
(31–33) (Supplementary Table 1). Since AR mutations confer
resistance to particular antagonists, they are potential predictive
biomarkers for AR-directed inhibitors. Enzalutamide may not
be suitable for tumors with AR mutations that convert it into
a partial agonist (F877L, H875Y/T878A, F877L/T878A) (27).
Darolutamide might be more effective for these tumors, since
it remains an antagonist despite these AR mutations (34).
In addition, darolutamide has unique flexibility that allows it
to bind the W742C/L mutated ligand-binding pocket, unlike
enzalutamide (35). However, the utility of AR mutations as
biomarkers needs confirmation in patients. For example, the
F877L AR mutation converts apalutamide into a partial agonist
in vitro, but neither this mutation nor T878A was a common
cause of acquired resistance to apalutamide in a phase I/II
trial (36).

In addition to AR mutations, constitutively active AR splice
variants (ARVs) can mediate castration resistance (37). Increased
expression of ARVs can arise through amplifications or structural
rearrangements of the AR gene in CRPC (20, 30, 38, 39). Among
numerous ARVs, AR-V7, and ARv567es have been studied in
the most detail. AR-V7 includes exons 1/2/3, encoding the
NTD, followed by a cryptic exon (Figures 1A,B) (37). ARv567es
includes exons 1/2/3/4/8, but skips exons 5/6/7 (40). Since both
variants lack the LBD, they are not bound by most AR signaling
inhibitors, so can sustain AR-driven gene expression. The lack
of the AR hinge region in AR-V7 may also promote therapy
resistance. SPOP (speckle type POZ protein), an E3 ubiquitin
ligase that is upregulated by enzalutamide treatment, usually
binds to the hinge region of the AR and induces its degradation
(41). By escaping this ubiquitin degradation pathway, AR-V7
may enable enzalutamide resistance. In addition, the hinge region
usually mediates microtubule binding and translocation of the
AR into the nucleus (42, 43). Since AR-V7 lacks the hinge
region, its transport is independent of microtubules, enabling
resistance to taxane chemotherapy, which targets microtubules,
unlike ARv567es which still contains the hinge region (43, 44).
Cell-cycle or cell-division associated genes such as ubiquitin-
conjugating enzyme E2C (UBE2C) are unique AR-V7 targets,
contributing to cell proliferation under androgen-depleted
conditions (45, 46). Recent functional analyses demonstrated
the importance of various splicing factors, which are highly
expressed in CRPC tissues (47–50). Enhanced expression of
splicing factors would promote their recruitment to pre-mRNA,
facilitating the mRNA splicing process. Thus, altered splicing
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FIGURE 1 | Schematic summary of the AR structure, AR-directed treatments, and interactions with BRD4 and OCT1. (A) Overview of the AR locus, the structure of

full length (FL) and variant (AR-V7, ARv567es) forms of the AR, and various AR-targeted treatments that are approved (green) or in development (yellow). (B) Summary

of the interactions between different forms of the AR, BRD4, and OCT1 on chromatin.

machinery would result in a dysregulated AR splicing process.
Splicing factor, proline- and glutamine-rich (PSF/SFPQ) is
responsible for wide-ranging upregulation of spliceosome gene
expression in CRPC to activate a broad range of oncogenic
pathways, including AR (48). Thus, these studies provide an
intriguing insight into prostate cancer progression through
splicing machinery.

NEW STRATEGIES FOR DIRECTLY
TARGETING THE AR IN CRPC

In an effort to overcome resistance to current treatments, new
therapies are being developed to target the AR. Some compounds
have a similar mechanisms-of-action to existing AR-directed
treatments. Like abiraterone actetate, the new compound VT464
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(seviteronel) is a CYP17A1 inhibitor that suppresses androgen
biosynthesis (51). Unlike abiraterone acetate, VT464, selectively
inhibits the 17,20-lyase rather than 17α-hydroxylase reactions,
so it is proposed that the combination with prednisone is not
necessary. However, phase 1 testing of VT464 suggested that
there is minor inhibition of CYP17 hydroxylase (52), so low-dose
dexamethasone is being administered with VT464 in ongoing
trials with prostate cancer patients (53, 54). Abiraterone acetate
and VT464 both also function as competitive AR antagonists,
including of AR mutants, with VT464 more potent than
abiraterone in cells with the T878A AR mutation (55–58).

An alternative strategy is to deplete the AR in prostate
cancer cells. This may be done by blocking gene expression
with antisense oligonucleotides targeting different regions of
AR pre-mRNA transcripts (59–62). Antisense oligonucleotides
against exon 1 reduce full-length AR and ARV expression,
while antisense oligonucleotides against cryptic splicing signals
specifically downregulate AR-V7 expression (60, 62). The AR can
also be depleted using selective AR degraders (SARD), which
bind to the AR and induce proteasome-mediated degradation
(63). Some SARDs bind to both the N- and C-termini of the
AR, so also promote degradation of ARVs (64). Preclinical
studies suggested that niclosamide, an approved treatment
for parasitic worms, could be repurposed as a SARD, since
one of its effects is degradation of ARVs. Although the
combination of niclosamide with enzalutamide or abiraterone
significantly reduced the growth of castrate-resistant cells (65–
67), a phase I trial showed that inhibitory concentrations of
niclosamide could not be achieved in patients (68). Therefore,
this approach must rely on newer generations of SARDs being
developed (64).

Another way of inducing AR degradation is with proteolysis
targeting chimeras (PROTAC) or SNIPERs (specific and non-
genetic inhibitor of apoptosis protein [IAP]-dependent protein
erasers). These heterobifunctional small molecules contain a
ligand that binds to the target protein, such as an AR antagonist,
linked to another ligand that engages the ubiquitin ligase
complex (69–71). Since current AR-targeted PROTACs bind to
the LBD, they induce degradation of full-length AR, but not
ARVs. Nevertheless, they still inhibit the growth of enzalutamide-
resistant cells, emphasizing the ongoing importance of full-length
AR in many cases of CRPC (71).

A different strategy for directly targeting the AR is to disrupt
its interactions with other molecules. D2 is a peptidomimetic
that disrupts the interaction between the AR and a co-regulator,
PELP1 (proline, glutamate and leucine rich protein 1), by
mimicking the LXXLL motif in the AF2 domain of the AR C-
terminus (72). By blocking this interaction, D2 inhibits nuclear
translocation of the AR and reduces the growth of prostate cancer
cells. EPI-001 also blocks the interactions between the AR and
coactivators, and is notable because it binds the NTD (73). Thus,
EPI-001 also inhibits ARVs (74). EPI-001 inhibits the growth of
prostate cancer cell lines in vitro and in vivo, and had increased
activity in combination with docetaxel (74, 75). However, off-
target effects have been identified, highlighting the difficulty of
targeting the ARNTD (76). EPI-506 was developed as a successor
to EPI-001 (77), but was required at high doses in a phase I

trial due to low potency and a short half-life. Therefore, the
development of N-terminal AR inhibitors is ongoing (78).

Compounds are also being developed to block the interaction
of the AR with DNA. This could target both full-length and
variant forms of the AR, which contain the DBD. For example,
AR binding to specific androgen response element sequences
can be blocked using PI polyamides, N-methylimidazole (Im)
and N-methylpyrrole (Py) amino acids that bind to the minor
groove of DNA with high affinity and sequence specificity (79–
81). PI polyamides that bind particular AREs can suppress
androgen-responsive gene expression (82), and inhibit binding
of RNA polymerase II to the transcription start site of AR-driving
genes (83).

INDIRECTLY TARGETING AR SIGNALING
VIA COFACTORS AND COLLABORATING
TRANSCRIPTION FACTORS

Cofactors, including coregulators and TFs, are also necessary
for AR-regulated gene expression. Whilst coregulators directly
bind to activation function (AF) 1 or 2 domains of the AR, TFs
bind to DNA elements near AR binding sites (84). Some TFs
are also pioneer factors that facilitate AR recruitment to target
regions through chromatin remodeling (85). Dysregulation of
TFs can dramatically change the pattern of AR responsive gene
expression. Indeed, there are differences in AR binding regions
and coordinating TFs between treatment-naïve and castration-
resistant prostate cancer (86). AR binding sites that are unique to
CRPC were not AR-regulated in treatment-naïve prostate cancer
cells or enriched in binding of common AR collaborative TFs,
such as MYC (86). MYC is a oncogenic transcription factor that
plays a critical role in prostate cancer progression by influencing
diverse molecular mechanisms (87).

The importance of cofactors and collaborative TFs makes
them potential therapeutic targets for indirectly targeting the
AR. There are numerous strategies for targeting different AR
interacting proteins, so here we focus on two notable examples,
bromodomain and extra terminal domain (BET) proteins and
OCT1 (POU2F1; POU class 2 homeobox 1) that collaborate
with MYC.

BET PROTEINS

The BET family of epigenetic readers, including BRD2/3/4
(bromodomain containing 2, 3, and 4) and BRDT (bromodomain
testis associated), bind to acetylated histones and regulate the
expression of downstream genes such as MYC (88).

BET proteins are therapeutic targets in different tumor
types, but are of particular interest in prostate cancer because
they affect the expression and activity of the AR pathway
(89). BET proteins directly interact with the NTD of the AR
(90). Moreover, BRD4 has numerous shared DNA binding
loci with full-length AR and AR-V7 (90, 91). With FOXA1,
BRD4 and AR-V7 bind to canonical AR target genes, but
with ZFX they bind to non-canonical genes related to cell
cycle, autophagy, and WNT signaling (91). Accordingly, BET
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inhibitors downregulate the expression of AR target genes, as
well as MYC (90, 91). BET inhibitors also decrease AR-V7 levels
by regulating alternative splicing (92, 93). This culminates in
reduced growth of prostate cancer cell lines, organoids and
xenografts treated with BET inhibitors, including enzalutamide-
resistant models (90, 92, 94, 95).

The promising preclinical data for BET inhibitors suggests
that they are potential new treatments for CRPC, functioning
in part by indirectly targeting the AR. Numerous BET
inhibitors are clinical development and some are in phase
I/II clinical trials enrolling men with CRPC, such as ABBV-
075 (mivebresib) and MK-8628/OTX015 (birabresib) (89). So
far, prostate cancer patients in these trials have still had
progressive or stable disease, although a partial response has
been reported (89, 96, 97). Ongoing trials are also testing
combination treatments of BET inhibitors with AR-directed
treatments, PARP inhibitors, chemotherapy and immunotherapy
(89, 98). For example, a phase 1b/2a trial of the BET inhibitor
ZEN-3694 in combination with enzalutamide demonstrated
that the treatment had acceptable tolerability in men with
metastatic CRPC who had previously failed abiraterone or
enzalutamide (99). Encouragingly, a subset of these patients
had prolonged progression-free survival with the combination
therapy, including those with tumors with low AR activity.

A challenge in the clinical development of BET inhibitors
is overcoming toxicity and off-target effects, so new forms
of BET inhibitors are being developed. Using the PROTAC
approach, BET degraders target BET proteins for ubiquitination
and proteasomal destruction (71, 100). In addition, compounds
have been developed to selectively target one of the two
bromodomains (BD1 and BD2) within BET proteins (101,
102). BET degraders and selective bromodomain inhibitors both
inhibit the growth of prostate cancer cells in vitro and in vivo
(71, 100, 101). Therefore, ongoing trials, combination treatments
and new compounds, may provide opportunities to treat CRPC
by targeting BET proteins.

OCT1

Another canonical AR collaborative TF is OCT1. Of the eight
OCT proteins, OCT1 is most widely expressed, and is related to
the pluripotency master regulator OCT4 (103, 104). OCT1 acts
downstream of pioneer factors that make histone modifications
to support AR binding to target regions. GATA2 (GATA binding
protein 2) and OCT1 work in a hierarchical network where
GATA2 is recruited with AR, followed by OCT1 binding to
its motifs. Increased immunoreactivity of OCT1 is correlated
with worse prognosis of localized prostate cancer (105). OCT1
is also highly expressed in other cancers, including gastric and
colorectal cancer (106, 107). Interestingly, in MYC-driven lung
adenocarcinoma, OCT1 binding sites were enriched in a set
of genes regulated by MYC (108), suggesting that OCT1 and
MYC may also co-regulate a subset of androgen responsive
genes in prostate cancer. Furthermore, OCT1 interacts with
PARP-1 and BRCA1 (109, 110). OCT1 enhances breast cancer
aggressiveness, and BRCA1 catalyzes OCT1 degradation to

inhibit tumorigenicity (110). PARP inhibitors are often effective
for cancers with BRCA1 mutations, however some tumors
are resistant (111). These findings suggest that OCT1 may
have a significant effect when used in combination with
PARP inhibitors.

Of the genes that are jointly regulated by OCT1 and the AR in
prostate cancer, acyl-CoA synthetase long-chain family member
3 (ACSL3) is the mostly highly differentially expressed (112).
ACSL3 in turn increases AKR1C3 (aldo-keto reductase family
1 member C3) expression, enhancing the backdoor pathway of
androgen synthesis that confers resistance to abiraterone (113,
114). Beyond ACSL3, the genome-wide network of OCT1 target
genes in CRPC is enriched in factors such as anillin actin binding
protein (ANLN) and DLG associated protein 5 (DLGAP5) that
regulate proliferation and migration (115, 116).

Although there are few drugs targeting OCT1, PI polyamides
have been developed that block the interaction between OCT1
and specific DNA binding sites. A PI polyamide targeting the
OCT1 binding sites of ACSL3 suppresses ACSL3 expression
and inhibits the growth of CRPC by repressing global OCT1
chromatin association and AR signaling (112). These preclinical
data support further development of compounds targeting
OCT1 in CRPC.

PATIENT-DERIVED MODELS FOR TESTING
NEW TREATMENTS FOR CRPC

As novel compounds are developed to directly and indirectly
target the AR, their efficacy must be tested with appropriate
preclinical models. Unfortunately, the development of preclinical
models of CRPC lags behind the evolving understanding of
CRPC and changes in clinical practice. Most studies use a
small collection of cell lines, including LNCaP, PC3, DU145,
VCaP, 22RV1, and LAPC4 cells (117). These cells are very well-
characterized and have been used for important discoveries.
They have different mechanisms of castration-resistance, such
AR amplification and expression of AR-V7 in VCaP cells, and an
intragenic duplication of the AR gene and expression of several
AR isoforms in 22Rv1 cells (40, 47, 118, 119). An important
use of prostate cancer cell lines is high-throughput screening,
including in the NCI-60 panel (120, 121). With this approach,
cell lines can be used to identify drug targets with genome-
wide genetic screens, such as with siRNA or CRISPR-Cas9,
and treated with large compound libraries to identify candidate
drugs for further evaluation (50, 122). Nevertheless, this small
number of cell lines does not encompass the heterogeneity
of CRPC. To address this challenge, there are ongoing efforts
to develop new in vivo, ex vivo, and in vitro models from
patient specimens.

The ability to establish patient-derived xenografts (PDXs)
from patient tumors has advanced with the use of more highly
immune-deficient strains of mice. Yet, PDXs are often more
difficult to establish from prostate cancer compared to other
malignancies, due to low take rates (10–40%) and long latency
periods (up to 12 months) (123). Nevertheless, several groups
have established collections of serially transplantable prostate
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cancer PDXs (30, 124–128). At least 51 PDXs of CRPC have been
established, primarily from patients who failed ADT, but fewer
from men treated with second generation AR-directed therapies
(125). To simulate androgen deprivation, PDXs of CRPC are
often grafted in castrated mice, with circulating androgen
levels equivalent to patients treated with abiraterone (129). By
increasing the number of models of CRPC, PDXs provide new
opportunities to study the mechanisms of castration resistance,
including mutations and ARVs. PDXs are also useful for testing
whether candidate therapeutics are effective at reducing the
growth of tumors with diverse alterations in the AR pathway.
The typical endpoint to determine whether drug treatment

reduces the growth rate of PDXs is decreased tumor volume, or
ideally regression.

Like all experimental models, PDXs have limitations, so they
can be integrated with other patient-derived models to maximize
the advantages and offset the limitations of each approach
(Figures 2A–C). PDXs provide a rigorous way to evaluate in
vivo drug responses, but the experiments are expensive, labor-
intensive, low throughput and have long timeframes. Explants
and organoids are complementary models that address these
limitations. Explants are intact pieces of tissue maintained for
several days ex vivo on filters or gelatin sponges, so they retain
the native tissue architecture and microenvironment (130, 131).

FIGURE 2 | Establishment and application of patient-derived models for preclinical testing of new treatments for CRPC. (A) PDXs are established from human patient

tumor tissue, and are considered serially transplantable when repassaged into additional host mice and expanded. Explants and organoids can be established directly

from fresh patient specimens or from PDXs. PDXs may also be established from organoids. (B) Each model is unique with its own advantages and limitations. (C)

Therefore, by integrating these models established from tumors with different resistance mechanisms, preclinical therapeutic evaluation can be performed with greater

rigor and efficiency.
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Organoids are digested prostate tissue grown in extracellular
matrix solutions, such as Matrigel. Explants and organoids can
be established from fresh patient specimens or PDXs, which are
renewable sources of tissue (30, 132, 133). These patient-derived
models are higher throughput and can be used to rapidly test
whether compounds affect proliferation and apoptosis. These
ex vivo and in vitro cultures are also useful for testing tool
compounds that have poor bioavailability or are not available
in sufficient quantities for in vivo experiments. Explants and
organoids can also be used for experiments that are challenging
with PDXs, including large-scale dose responses of single or
combination treatments, genetic manipulation, and short-term
time points for mechanistic studies (132, 134, 135). This bridges
the gap between high-throughput experiments with cell lines, and
in vivo treatments with PDXs. Therefore, by combining different
patient-derived models established from different cases of CRPC,
it will be possible to test the next generation of therapies with
greater rigor and efficiency to help prioritize them for further
clinical trials.

CONCLUSION

Over the last decade, the introduction of new treatments for
CRPC has extended patient survival, but tumors still eventually
fail treatment. The increasingly detailed understanding of
the underlying mechanisms of resistance has facilitated the
development of novel compounds that use alternative approaches
to target the AR pathway, directly or indirectly. Two examples
of drug targets are BET proteins, with BET inhibitors in
ongoing clinical trials for prostate cancer, and OCT1, with
novel compounds in preclinical development. Whether these
compounds are effective as monotherapies, or should be used in

combination with other treatments is still under investigation.
Nevertheless, growing collections of patient-derived models,
spanning xenografts, organoids and explants, are providing ways
to test the efficacy of these candidate drugs across a wider
spectrum of tumors. Collectively, this ongoing effort will provide
a rich pipeline of new treatments for further validation in
clinical trials.
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