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T
errestrial vegetation globally absorbs 30% of the anthropo-
genic CO2 emissions on average, representing an important 
ecosystem service mitigating climate change1. The exchange 

of carbon between terrestrial ecosystems and the atmosphere is a 
delicate balance between large exchange processes, and a change in 
any of these can have a substantial impact on the dynamics of this 
relatively small net exchange. An improved understanding of the 
processes affecting the net terrestrial carbon exchange is therefore 
essential to better understand, quantify and forecast the effects of 
current and future climate change, and is of relevance for climate 
change mitigation policies designed to reduce atmospheric CO2.
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Major knowledge gaps remain regarding the regional distribu-
tion of the global terrestrial carbon sink. Inventories and results 
from a process-based model suggest that the majority of carbon 
sequestered by the terrestrial biosphere has been accumulated in 
forest ecosystems, primarily in the tropics2,3. Measurements of the 
interhemispheric gradient of atmospheric CO2 indicate an increas-
ing northern terrestrial sink from the 1960s to the present day, with 
an acceleration since the 1990s4. In the tropics, atmospheric CO2 
inversions and biomass change—deduced from optical remote sens-
ing data—indicate carbon neutrality or even a large net source of 
carbon5–9. Reducing the uncertainty of the estimates is essential to 
resolve these discrepancies, and combining Earth observation data 
with global-scale modelling can lead to an improved understanding 
of the regional distribution within the global terrestrial carbon sink7.

Global human population growth and thus increased food and 
fibre consumption increase the appropriation of net primary pro-
duction10, with profound consequences on ecosystems structure 
and function11,12. LULCC are particularly ubiquitous, since human 

Q3 Q4 Q5 Q6

management impacts about 80% of all ice-free land, replacing 
natural ecosystems with agricultural land and managed forests13. 
LULCC can alter the net terrestrial carbon exchange in both posi-
tive and negative directions, but in the past few decades has been 
dominated by deforestation, which causes carbon emissions and 
a loss in sink capacity as a result of accelerated carbon turnover14. 
LULCC is therefore the second largest source of anthropogenic car-
bon emission to the atmosphere, and represents about one third of 
the total accumulated anthropogenic carbon emissions since 18501. 
Given the importance of LULCC within the global net terrestrial 
carbon exchange, spatially-explicit observation-based datasets are 
essential for improved estimates of the impact of LULCC on the net 
terrestrial carbon exchange.

The dynamic global land cover dataset from the European Space 
Agency (ESA) Climate Change Initiative (CCI) is a recent detailed 
time series of land cover for 1992–2015 based on state-of-the-art 
moderate resolution Earth observation data15–17. The correspon-
dence between satellite land cover classes and plant functional types 
provides an opportunity to use these data to constrain a dynamic 
global vegetation model (DGVM) to calculate regional distribution 
of carbon sinks and sources. Additionally, direct Earth observation-
based estimates of aboveground biomass (AGB) can be derived 
from satellite passive microwaves, with the strong advantage that 
they remain sensitive to biomass variations at biomass densities 
when optical-based products saturate18,19. AGB estimates from X-, 
C- and K-band vegetation optical depth (VOD-AGB) are available 
for 1993–201218, whereas the L-band VOD data (L-VOD) are avail-
able from 2010 from the Soil Moisture and Ocean Salinity (SMOS) 
mission20,21. In this study, we analyse the contribution of biomes to 
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Anthropogenic land use and land cover changes (LULCC) have a large impact on the global terrestrial carbon sink, but this 
effect is not well characterized according to biogeographical region. Here, using state-of-the-art Earth observation data and a 
dynamic global vegetation model, we estimate the impact of LULCC on the contribution of biomes to the terrestrial carbon sink 
between 1992 and 2015. 
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Tropical and boreal forests contributed equally, with the largest share of the mean global terrestrial 

carbon sink. CO2 fertilization was found to be the main driver increasing the terrestrial carbon sink from 1992 to 2015, but the 
net effect of all drivers (CO2 fertilization and nitrogen deposition, LULCC and meteorological forcing) caused a reduction and an 
increase, respectively, in the terrestrial carbon sink for tropical and boreal forests. These diverging trends were not observed 
when applying a conventional LULCC dataset, but were also evident in satellite passive microwave estimates of aboveground 
biomass. These datasets thereby converge on the conclusion that LULCC have had a greater impact on tropical forests than 
previously estimated, causing an increase and decrease of the contributions of boreal and tropical forests, respectively, to the 
growing terrestrial carbon sink.
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the global terrestrial carbon sink 1992–2015 by combining Earth 
observation of land cover change with a DGVM, and by an inde-
pendent assessment using the VOD-AGB and L-VOD datasets.

Results
We divided the Earth land surface into ten biomes on the basis of 
static main Köppen climate classes (tropical (A), arid (B), temperate 
(C), boreal (D) and polar (E))22 and ESA-based dynamic vegetation 
types (Supplementary Fig.  1 and Supplementary Tables  1 and 2). 
These biomes included bare land, sparse vegetation, tundra, boreal 
low vegetation 

.

m
(low vegetation being areas with less than 15% her-

baceous, crop, shrublands or woody cover), boreal forests, temper-
ate low vegetation, temperate forests, semi-arid regions, tropical 
low vegetation and tropical forests. The contribution of the differ-
ent biomes to the global carbon dynamics for 1992–2015 was anal-
ysed by using the DGVM Lund–Potsdam–Jena General Ecosystem 
Simulator (LPJ-GUESS)23 constrained by annual fractions of woody 
and herbaceous cover derived from the land cover classes in the 
ESA-CCI annual land cover dataset 1992–201515,17 (Supplementary 
Information, subsection  1). This LPJ-GUESS simulation gives a 
global terrestrial carbon sink (sink and source represented as nega-
tive and positive values, respectively) of −1.15 ± 1.30 PgC yr−1 (± s.d. 
of interannual variability) for 1992–2015. This is in the lower end, but 
still consistent with, a multi-model mean from the Global Carbon 
Project (GCP) which provides an estimate of −1.48 ± 0.92 PgC yr−1 
(Fig. 1; for a comparison against the GCP atmospheric budget, see 
Supplementary Fig.  7)1. The interannual variability in these two 
datasets also showed strong agreement (Fig. 1) and the trends in the 
total contribution of the land without the LULCC emissions were 
also similar (Supplementary Information, subsection 2.2).

We partitioned the DGVM-derived AGB and VOD-AGB18 of 
terrestrial ecosystems into the different biomes and analysed their 
contribution to the mean global AGB for 1993–2012. The biomes 
with largest contribution were tropical and boreal forests, together 
accounting for approximately 60% of global AGB (Fig. 2a). Tropical 
forests showed a decrease and boreal forests showed an increase in 
their contribution to global AGB (Fig. 2b,c), whereas other biomes 
had relatively flat trends (Supplementary Fig.  9). The DGVM-
derived AGB trends are in very good agreement with the VOD-
AGB data (Fig. 2). Additionally, we compared the DGVM-derived 
AGB with L-VOD for 2011–201521. The L-VOD time series is too 

Q7

short to draw firm conclusions, but the trends for 2011–2015 in the 
two datasets showed good agreement (Fig.  2 and Supplementary 
Fig. 10).

Next, we applied the same partitioning into biomes for the 
DGVM-derived net carbon exchange and analysed their contribu-
tions to the mean, trends and interannual variability of the global 
terrestrial carbon sink for 1992–2015. The strongest contributors 
to the mean global terrestrial carbon sink for 1992–2015 were 
boreal forests (0.31 ± 0.19 PgC yr−1, 28.1 ± 16.7%) and tropical for-
ests (0.30 ± 0.37 PgC yr−1, 26.9 ± 31.8%) (Fig. 3a and Supplementary 
Table  4). All other biomes showed relatively small contributions 
(between 0.8 and 11.1%) (Supplementary Fig. 4 and Supplementary 
Table 4). Although the definition of drylands used in this analysis 
has a lower spatial extent than the definition of semi-arid ecosys-
tems by Ahlström et  al.3, our results support the conclusion that 
drylands were the biome that contributed most to the interannual 
variability (22.2 ± 5.8%) (Fig. 3b and Supplementary Table 4). Boreal 
forests exhibited the strongest sink trend and thereby also the larg-
est contribution to the trend in the global terrestrial carbon sink 
for 1992–2015, with 29.6 ± 23.3% (Fig.  3c–e and Supplementary 
Table  4). Temporal changes in the contribution of biomes to the 
global terrestrial carbon sink showed an increasing and decreasing 
contribution of boreal and tropical forests, respectively (Fig. 3d,e).

There is a large interannual variability in the net terrestrial car-
bon exchange of tropical forests (Fig. 3d), causing a wide confidence 
interval for the estimated trends (Supplementary Table 4). However, 
in the tropics, a substantial fraction of interannual variability is 
caused by El Niño and La Niña events (Supplementary Fig.  6), 
and when removing variability caused by these events, trends for 
the tropical and boreal biomes remained similar (Supplementary 
Fig. 6). The tropical forests depicted carbon sources in 1998, 2005 
and 2015. The years 1998 and 2015 were characterized by strong 
El Niño events, whereas the carbon source in 2005 was due to a 
drought in the Amazon basin and a carbon source from the Congo 
basin, caused by a warm subtropical North Atlantic Ocean24. In 
2010, there were also severe droughts in the Amazon basin25 caus-
ing a substantial reduction in the sink strength for this year, but on 
a global scale, this effect was compensated by a large sink in tropical 
forests of Africa and Asia.

To better understand the relative role of environmental drivers 
and LULCC causing the diverging trends of boreal and tropical 
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Fig. 1 | Agreement between the global net terrestrial carbon (C) exchange as estimated by the LPJ-GueSS model with the eSA-CCi dataset and as 

estimated by the multi-model mean of the GCP. a, Time series for 1992–2015, with s.d. (shaded area) estimated from the model ensemble GCP budgets of 

0.9 PgC yr−1 (ref. 1). b, Interannual variability in the global net terrestrial carbon exchange as simulated by the LPJ-GUESS model with the ESA-CCI dataset 

versus multi-model mean estimates of the GCP. Agreement is quantified using an ordinary least-squares linear regression (dotted line). For a comparison 

with the atmospheric budget of the GCP, see Supplementary Fig. 7. RMSE, root mean square error.
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forests in the global terrestrial carbon sink, we conducted factorial 
model simulations by separating the effects of (1) meteorological 
forcing, (2) increased atmospheric CO2 concentrations and nitro-
gen deposition and (3) LULCC on both the simulated global- and 
biome-level carbon sinks. Those simulations showed that meteoro-
logical forcing and LULCC resulted in a carbon release to the atmo-
sphere (globally on average, 0.42 ± 1.21 and 0.24 ± 0.12 PgC yr−1 
during 1992–2015, respectively), whereas the increased atmospheric 
CO2 concentrations and nitrogen deposition increased the terres-
trial carbon sink (globally on average, −0.80 ± 0.39 PgC yr−1 during 
1992–2015) (Fig. 4a). This was primarily caused by the increased 
CO2 concentration and to a much lesser extent because of increased 
nitrogen deposition (Supplementary Fig. 11).

Tropical forests were the biome most strongly influenced by 
all three drivers (Fig. 4b), yet the effects of drivers in positive and 
negative directions nearly cancelled out (Fig. 4b). Even though our 
simulations indicate that tropical forests had a decreasing contribu-
tion to the global terrestrial carbon sink, it is evident that the high 

sensitivities to individual drivers (Fig.  4b) result in uncertainties 
of the overall role of tropical forests. For boreal forests, however, 
an increased carbon sink caused by LULCC in this biome could be 
expected, given the substantial increase in forested area over the 
study period (Supplementary Fig. 1). At the same time, woody cover 
decreased for some regions in the boreal zone (Supplementary Fig. 1 
and 2), generating small but positive net LULCC emissions (Fig. 4c 
and Supplementary Information, subsection  2.1). Therefore, both 
LULCC and meteorological forcing had minor roles in the trend 
in the boreal forests carbon sink for 1992–2015, whereas increased 
atmospheric CO2 concentrations increased this sink considerably 
(Fig.4c). As a result, in sum, boreal forests were found to be the 
biome contributing most strongly to the trend in the global terres-
trial carbon sink for 1992–2015 (Fig. 3e).

To assess the extent to which these results are specific for the 
DGVM LPJ-GUESS or the land use dataset, we compared the 
LPJ-GUESS simulations forced with the ESA-CCI annual land 
cover dataset with simulations from four of the DGVMs in the 
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biome contribution to global-scale AGB for boreal (b) and tropical forests (c) for 1993–2015. Net changes in biome contribution relative to 1993 for LPJ-

GUESS with ESA-CCI (black) and for VOD-AGB (red), and relative to average 2011–2015 for LPJ-GUESS with ESA-CCI (grey) and for L-VOD (purple). 

Ordinary least-squares linear regression trends 1993–2012 are shown brackets. d,e, Agreement in net changes in biome contribution to global-scale AGB 
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TRENDY v.5 model ensemble26,27 (see methods), and simulations 
of LPJ-GUESS forced with the default LULCC dataset applied to 
TRENDY models, known as the land use harmonization dataset v.2 

(LUH2)28. The TRENDY models are similarly forced by historical 
climate, atmospheric CO2 data and the LUH2 LULCC data. For all 
biomes except the tropical forests, all model simulations (TRENDY, 
LPJ-GUESS ESA-CCI and LPJ-GUESS LUH2) showed biome con-
tributions and trends similar to those in the VOD-AGB (Fig. 5a and 
Supplementary Fig. 9). For tropical forests, the VOD-AGB and LPJ-
GUESS simulations forced with the ESA-CCI annual land cover 
dataset showed a strongly decreasing trend, whereas the TRENDY 
simulations and the LPJ-GUESS forced with LUH2 showed a flat 
trend (Fig. 5b). Again, the time series of the L-VOD dataset is too 
short to draw firm conclusions, but the comparison between trends 
for 2011–2015 indicate that the LPJ-GUESS simulations forced with 
the ESA-CCI annual land cover dataset were in better agreement 
with L-VOD than LPJ-GUESS and TRENDY simulations forced 
with LUH2 (Fig. 5c,d and Supplementary Fig. 10).

To conclude, when the same LULCC dataset is used, LPJ-GUESS 
shows similar results to the TRENDY models; however, with 
the Earth observation-based ESA-CCI LULCC dataset, a stron-
ger agreement is obtained with the independent VOD-AGB and 
L-VOD data. The LPJ-GUESS simulations with the ESA-CCI data 
and the VOD datasets converge on the conclusion that LULCC have 
had a stronger negative impact on the trend in tropical forest sink 
than estimated with previous LULCC data. Thus, trends in contri-
bution to the global terrestrial carbon sink of boreal and tropical 
forests diverge, and the main contributor to the global terrestrial 
carbon sink is observed to change from tropical to boreal forests 
over the study period.

Discussions
There is ongoing debate regarding the magnitude of the effect of 
CO2 fertilization on the terrestrial carbon sink over recent decades. 
Experimental studies indicate increased growth rates under ele-
vated CO2 concentrations29, whereas studies using tree-ring data 
claim that this effect is eliminated at larger spatial scales due to 
other constraining variables, such as nutrient limitation or water 
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Fig. 4 | impact of drivers on the trends in the net terrestrial carbon 

exchange. a–c, The impact is aggregated for boreal forests (a), tropical 
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terrestrial carbon exchange for 1992–2015 as an effect of meteorological 
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region within 1× s.d. of the prediction interval.
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stress30. Attempts to constrain the impact of CO2 fertilization from 
large-scale observations point at an effect visible in the decrease of 
the 

.

m
growth rate of atmospheric growth rate of CO2 during the hia-

tus period of stagnating global temperatures31, although explana-
tions for this, such as lower soil respiration32 and decelerating land 
use emissions33, have also been proposed. We see no decrease in 
LULCC emissions over the hiatus period (Supplementary Fig. 3b), 
indicating that decelerating land use emissions33 do not explain the 
decrease of atmospheric CO2 growth rate. Schimel et al.8 compared 
bottom-up and top-down approaches of terrestrial carbon feed-
backs in the context of the global mass balance, and found that up 
to 60% of the present-day terrestrial sink is caused by increasing 
atmospheric CO2, in line with our results (Supplementary Table 9). 
They also showed that CO2 fertilization is strongest in tropical 
regions, but additionally contributes to high-latitude enhancement 
of CO2 uptake8,34. Sellers et al.7 used a top-down approach assimilat-
ing in  situ and satellite-based CO2 concentration data into atmo-
spheric transport models, which indicate a neutral carbon sink for 
the tropical forests, in contrast with a strong increase in the carbon 
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sink of the northern extra-tropics for 1990–2015. They hypoth-
esized, in line with our results, that the carbon sink in intact tropical 
forests is nearly in balance with the net deforestation. We note that 
during the hiatus period of stagnating global temperatures31,32, there 
was a strong increasing trend in VOD-AGB for the boreal forests 
(Fig. 2) and a persistent greening trend, indicated by satellite veg-
etation indices35. This persistent northern carbon sink is generally 
attributed to climate change and CO2 fertilization effects, but forc-
ing mechanisms are still considered to be a possibility36–38.

The estimations of global carbon emissions and sinks require a 
combination of methods, measurements, data sources and models12; 
the importance of incorporating dynamic observation-based land 
cover data has long been recognized for documenting the role of 
terrestrial ecosystems19. Applying Earth observation-based LULCC 
data in a global DGVM reconciled model simulations with observed 
changes in AGB for 1993–2015 (from VOD-AGB and L-VOD) 
(Fig. 2), and provides a global carbon sink estimate that is in better 
agreement with the GCP atmospheric budget than models driven by 
the LUH2 dataset28 (Supplementary Information, subsection  2.7). 
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The ESA-CCI land cover data has very different patterns of for-
ested area compared with LUH2, and shows a larger global for-
ested area and more negative trends for 1992–2015 (Supplementary 
Information, subsection 2.1). The results also show no trend of the 
sink for tropical forests, and a strong increasing trend for the boreal 
forest sink—that is, diverging trends in the contribution of these 
two biomes to the global terrestrial carbon sink.

However, LULCC in this study only include fluxes that are a 
result of natural and anthropogenic disturbances associated with a 
change in land cover classes within the ESA-CCI land cover prod-
uct, thereby ignoring the effects of converting primary forest to 
managed secondary forest. For example, conversion of primary 
forest to oil palm and rubber plantations is still assigned to forests 
in the ESA-CCI dataset, even though it is associated with emis-
sions from the loss of biomass and soil carbon. Changes in carbon 
density within land cover classes are also likely to take place and 
are not currently captured by the simulations. The strong negative 
trends in VOD-AGB and L-VOD for tropical forests (Fig.  2 and 
Supplementary Figs.  9 and 10) indeed indicate the occurrence of 
such land use transitions. The strong decline in the tropical forests 
carbon sink has previously been claimed by both Pan et al.2, using 
forest inventory data, and by Baccini et  al.5, using optical Earth 
observation data, and has also been shown on plot scale for more 
than 300 plots in the Amazon region, where tree mortality led to a 
shortening of the carbon residence time39. Additionally, CO2 inver-
sions indicate a substantially larger carbon sink at high northern 
latitudes (> 20° N) and either a source or neutral carbon exchange 
from the tropics and the south (< 20° N)7,8,40. Incorporation of for-
est degradation, forestry and agricultural management, mecha-
nistic simulations of fire and other forms of natural disturbances 
(pest outbreaks and storm events) in DGVM modelling is therefore 
essential to further improve our understanding of trends in carbon 
sinks and sources, and of the contribution of different biomes to 
changes within the global carbon cycle.

Methods
Land cover analysis. The dynamic global land cover dataset for 1992–2015 
from ESA-CCI (spatial resolution of 0.0028° × 0.0028°) was used in two different 
analyses: (1) to derive woody and herbaceous cover, for forcing the DGVM (see 
below), and (2) for separating the terrestrial Earth surface into its different biomes 
(as described below, points 2a-c).

In separating the terrestrial Earth surface: we applied a static Köppen climate 
classification of the Earth’s surface with a spatial resolution of 0.1° × 0.1° from 
.

m
Earthdata (https://earthdata.nasa.gov)22 and used it for separation of the global 
land areas into different climate classes. We separated the global land area into the 
five main Köppen climate classes: Tropical (A), Arid (B), Temperate (C), Boreal 
(D), and Polar (E).

We used the dynamic global land cover dataset from ESA-CCI and divided 
the global land area into five different vegetation classes following Supplementary 
Table 1: forest, savannah/shrubland, crop/grassland, sparse vegetation and  
bare land.

We combined the vegetation and climate classes into ten different biomes 
following the settings in Supplementary Table 2: bare land, regions with sparse 
vegetation, tundra, boreal with low vegetation, boreal forests, temperate with  
low vegetation, temperate forests, drylands, tropical with low vegetation, and 
tropical forests.

This separation was used to partition the simulated global terrestrial carbon 
sink into the different biomes covering the Earth.

It should be mentioned that: (1) there is a risk of natural disturbance 
suppressing woody cover, causing an area to not be detected as a forest, even 
though this is a temporary phenomenon. This is a risk, but the processing chain 
of the ESA-CCI land cover data has been set up to avoid false change detection 
due to such interannual variability in the classifications. (2) The reliability of the 
ESA-CCI product can vary spatially depending on number of valid and cloud-free 
observations15. The lack of an estimate of the uncertainty is therefore a limitation.

DGVM LPJ-GUESS simulations. The DGVM LPJ-GUESS23,41, developed for 
studies of vegetation dynamics and ecosystem biogeochemistry, was used to 
estimate the net terrestrial carbon exchanges. LPJ-GUESS is a terrestrial ecosystem 
model, combining a detailed representation of population dynamics with 
mechanistic descriptions of the plant physiological processes of carbon, nitrogen 
and water cycling. It has been subject to extensive evaluations of temporal and 
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spatial variation in ecosystem carbon balance at a range of spatial and temporal 
scales3,42.

Monthly mean air temperature, precipitation and cloud cover (1901–2015) 
from Climate Research Unit time-series dataset 3.24.0143, annual atmospheric 
CO2 concentrations44,45 and monthly nitrogen deposition46 were applied to drive 
the model. The model was configured to run in cohort mode, in which age classes 
(cohorts) of prescribed plant functional types are simulated in patches. The plant 
functional types were set as in ref. 47. Simulations were performed using 20 replicate 
patches in each grid cell and an average value of these 20 patches was calculated 
as output. Disturbances, representing pest outbreaks and storm events, were set 
up as stochastic events with an expected frequency of 0.01 yr−1 at patch level. In 
addition, wildfires were simulated based on fuel (litter) load, dryness and physical 
conditions. The first 30 yr of the observed meteorological data (1901–1930, with 
detrended temperatures) and the CO2 concentration for 1901 were used repeatedly 
during a 500-yr-long spin-up phase. This was done in order to achieve a vegetation 
structure and ecosystem carbon and nitrogen pools in dynamic equilibrium with 
the long-term climate.

Because the ESA-CCI land cover dataset does not provide land use fractions 
directly, but rather land cover types, these land cover types were converted to 
fractions of woody cover following the settings in Supplementary Table 1. The 
woody fractions were then aggregated to the same resolution as the CRU data 
(0.5° × 0.5°). The estimated fractions of woody cover for the starting year of the 
ESA-CCI data, 1992, were compared with simulated woody cover from LPJ-GUESS 
for the same year in a simulation with the meteorological forcing as described 
above, but without applying land use (also referred to as potential vegetation). On 
the basis of the difference between the simulated and the estimated fractions of 
woody cover, a land use correction was determined, which reduced the number 
of patches in which trees were allowed to grow to match the observed ESA-CCI-
estimated cover for 1992. In cases where the ESA-CCI-estimated woody cover 
exceeded the value simulated in the no-land use simulation with LPJ-GUESS, no 
correction was applied.

The effects of meteorological forcing, biogeochemical drivers (CO2 and N) and 
LULCC were determined from a set of factorial simulations, in which all except 
one of the drivers were kept at constant conditions resembling the period prior to 
1992. These results were compared with a simulation with all drivers kept constant, 
and the differences between each of the factorial simulations and the all-constant 
simulation were attributed to the effect of these drivers.

Partitioning of the global-scale mean, trend and interannual variability in 
the terrestrial carbon sink to the different biomes. The mean global terrestrial 
carbon sink 1992–2015 was partitioned to the different biomes by summing the net 
ecosystem carbon exchange for each biome. To obtain the contribution per biome, 
each biome was divided by the global sum.

We estimated the trends for 1992–2015 by fitting ordinary least-squares 
linear regressions between both global and biome-level carbon sink using year as 
predictor. The biome contribution to the global trend was estimated by taking the 
absolute values of each specific biome trend divided by the sum of the absolute 
values of all biome trends. The absolute values were used to ensure that the trends 
added up to 100%, and since a contribution of small trends may otherwise become 
infinite.

We partitioned the contribution to the interannual variability of the terrestrial 
carbon sink of the different biomes (FIAV)

.

m
 following the method in ref. 3:

FIAV ¼

P
t

xjt jXt j

XtP
t Xtj j

ð1Þ

where xjt is the net carbon sink anomaly from long-term trend for a biome (j) 
and time (t; in yr); Xt is the anomaly of the global terrestrial carbon sink, so that 
X𝑡 = ∑j 𝑥𝑗𝑡. FIAV is therefore the average relative anomaly weighted with the absolute 
anomaly of the global terrestrial carbon sink |Xt|.The result indicates that biomes 
with high and low FIAV contribute more or less to the interannual variability in the 
global terrestrial carbon sink.

Temporal changes in biome contributions to the global terrestrial carbon sink 
were estimated by making predictions of biome-level carbon sink on the basis of 
their respective trends and then annually dividing these predictions by the sum of 
all biome predictions.

Satellite passive microwave data. VOD derived from passive microwaves was 
found to be linearly related to vegetation water content48 and time series of the 
yearly average of satellite-derived VOD products have been used for assessment of 
large-scale biomass dynamics18,20. Liu et al.18 converted a satellite passive microwave 
derived VOD dataset for 1993–2012 to a time series of AGB on the basis of a 
relationship with AGB from ref. 49 The SMOS L-VOD dataset for 2011–2015 
(v.105) used here was produced using the SMOS-IC algorithm50.

First, L-VOD data for ascending (ASC) and descending (DESC) orbits were 
filtered according to the standard scene flags for strong topography, frozen soils 
(soil temperature < 273.5 K), urban areas and water bodies. We then applied a filter 
for effects of radio frequency interference by excluding data with a TB-RMSE

.

m
 

index20,50 higher than 6 K. We then applied a moving-average smoothing (window 
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size = 30 d) on the filtered ASC and DESC L-VOD time series21. We excluded 
outliers, corresponding to data lower (higher) than the 10th (90th) percentile of 
residues (being defined as differences between raw L-VOD data and smoothed 
L-VOD data). The filtered ASC and DESC L-VOD data were combined into 
one L-VOD dataset by keeping only the 30 L-VOD data points with the lowest 
TB-RMSE values. We then calculated the annual average L-VOD values, aggregated 
for each biome, and computed fractions against the average for 2011–2015. We 
kept the original L-VOD unit without converting into a biomass unit, given its 
rather linear relationship with static biomass carbon estimations19,20,51.

The temporal changes in biome contributions to the global AGB were 
calculated by dividing each biome by the global sum. The changes in time were 
then assessed by calculating the difference for each year against the estimates of the 
first year in the time series (1993) for VOD-AGB, and against the mean estimates 
of the time series for L-VOD. Ordinary least-squares linear regression trends were 
fitted to these changes.

DGVM LPJ-GUESS simulations forced with the LUH2 land cover dataset. The 
DGVM simulations with LPJ-GUESS were repeated with the same settings as 
previously described except that the land cover dataset used for forcing the model 
was instead the LUH2 data28. We adopted the LUH2 data classes for the DGVM 
LPJ-GUESS by representing the cropland and pasture classes with grassland, 
barren and urban with bare land, and the remainder with natural vegetation, letting 
the model dynamically simulate the emergent vegetation cover.

TRENDY DGVM data. We compared our LPJ-GUESS simulations against output 
of DGVMs from the TRENDY model ensemble (v.5)26,27. LPJ-GUESS was excluded 
from the TRENDY model ensemble in order to not compare our simulations with 
the same DGVM. From remaining TRENDY models, we selected four 

.

m
(CABLE, 

DLEAM, ISAM and VEGAS) which fulfilled the criteria of (1) using LULCC 
forcing, and (2) having the same spatial resolution as the LPJ-GUESS simulations 
(0.5°). The selected models used Climate Research Unit-National Centers for 
Environmental Prediction v.7 dataset as meteorological forcing, global atmospheric 
CO2 from ice core and National Oceanic and Atmospheric Administration annual 
resolution (1860–2015)44,45, and land use forcing from the LUH2 data28.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Data from the ESA-CCI land cover dataset is freely available from ESA-CCI (http://
www.esa-landcover-cci.org/?q=node/169)15. The Köppen climate classification is 
freely available at https://earthdata.nasa.gov. The LPJ-GUESS simulated terrestrial 
carbon exchange estimates, the simulated AGB data, the fractions of woody, 
herbaceous and bares land, and the annual SMOS L-VOD data are available at 
https://doi.org/10.17894/ucph.7a8d3a3c-6056-445b-b05c-4212231aff40. The 
VOD-AGB dataset derived over the period 1993–2012 can be accessed at http://
www.wenfo.org/wald/global-biomass18. For the TRENDY data, please see http://
dgvm.ceh.ac.uk/node/21/.

Code availability
The codes used in the data analysis is available at https://doi.org/10.17894/
ucph.7a8d3a3c-6056-445b-b05c-4212231aff40. The codes are: 1) the code used for 
converting the ESA-CCI land cover to fractions of woody, herbaceous and bares 
land; 2) the codes used for separating the terrestrial Earth surface into its different 
biomes; 3) the codes used for partitioning the global-scale mean, trend and 
interannual variability in the terrestrial carbon sink to the different biomes; and 4) 
the codes used for the factorial simulations.
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