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An ever-increasing number of biological modeling
methods depend on the assembly of an accurate
multiple sequence alignment (MSA). These include

phylogenetic trees, profiles, and structure prediction.
Assembling a suitable MSA is not, however, a trivial task, and
none of the existing methods have yet managed to deliver
biologically perfect MSAs. Many of the algorithms published
these last years have been extensively described [1–3], and this
review focuses only on the latest developments, including
meta-methods and template-based alignment techniques.

The purpose of an MSA algorithm is to assemble
alignments reflecting the biological relationship between
several sequences. Computing exact MSAs is computationally
almost impossible, and in practice approximate algorithms
(heuristics) are used to align sequences, by maximizing their
similarity. The biological relevance of these MSAs is usually
assessed by systematic comparison with established
collections of structure-based MSAs (‘‘gold standards’’; for
review see [4]). Since only a few sequences have known
structures, the accuracy measured on the references is merely
an estimation of how well a package may fare on standard
datasets. Gold standards have had a considerable effect on the
evolution of MSA algorithms, refocusing the entire
methodological development toward the production of
structurally correct alignments. Their use has also coincided
with a notable algorithmic harmonization, most MSA
packages being now based on the ‘‘progressive algorithm’’ [5].
This greedy heuristic assembly algorithm involves estimating
a guide tree (rooted binary tree) from unaligned sequences,
and then incorporating the sequences into the MSA with a
pairwise alignment algorithm while following the tree
topology. The progressive algorithm is often embedded in an
iterative loop where the guide tree and the MSA are
reestimated until convergence. Most MSA packages reviewed
here [6–18] follow this canvas, albeit more or less extensively
adapted for improved performances [1–3].

The scoring schemes used by the pairwise alignment
algorithm are arguably the most influential component of the
progressive algorithm. They can be divided in two categories:
matrix- and consistency-based. Matrix-based algorithms such
as ClustalW [14], MUSCLE [6], and Kalign [19] use a
substitution matrix to assess the cost of matching two symbols
or two profiled columns. Although profile statistics can be
more or less sophisticated, the score for matching two
positions depends only on the considered columns or their
immediate surroundings. By contrast, consistency-based
schemes incorporate a larger share of information into the
evaluation. This result is achieved by using a recipe initially
developed for T-Coffee [10] and inspired by Dialign
overlapping weights [20]. Its principle is to compile a
collection of pairwise global and local alignments (primary
library) and to use this collection as a position-specific

substitution matrix during a regular progressive alignment.
The aim is to deliver a final MSA as consistent as possible with
the alignments contained in the library. Many recent
packages have built upon this initial framework. For instance,
PCMA [15] decreases T-Coffee computational requirements
by prealigning closely related sequences. ProbCons [7] uses
Bayesian consistency and fills the primary library using the
posterior decoding of a pair hidden Markov model. The
substitution costs are estimated from this library using
Bayesian statistics. MUMMALS [17] combines the ProbCons
scoring scheme with the PCMA strategy, while including
secondary structure predictions in its pair hidden Markov
model. The most accurate flavors of MAFFT [8] (i.e., the GNS
and LNS modes) use a T-Coffee–like evaluation. A majority of
studies indicate that consistency-based methods are more
accurate than their matrix-based counterparts [4], although
they typically require an amount of CPU time N times higher
than simpler methods (N being the number of sequences).
Most of these methods are available online, either as
downloadable packages or as online Web services (Table 1).
The wealth of available methods and their increasingly

similar accuracies makes it harder than ever to objectively
choose one over the others. Consensus methods such as M-
Coffee [12] provide an interesting framework to address this
problem. M-Coffee is a consensus meta-method based on T-
Coffee. Given a sequence dataset, it fills up the library by
using various MSA methods to compute alternative
alignments. T-Coffee then uses this library to compute a final
MSA consistent with the original alignments. When
combining eight of the most accurate and distinct MSA
packages, M-Coffee produces 67% of the time a better MSA
than ProbCons, the best individual method [12]. Aside from
its ease of extension, M-Coffee’s main advantage is its ability
to estimate the local consistency between the final alignment
and the combined MSAs (CORE index [21]; Figure 1). This
useful index has been shown to be well-correlated with the
MSAs’ structural correctness [21,22]. M-Coffee is not,
however, the ultimate answer to the MSA problem, and its
limited performances on remote homologs suggest that
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further improvement using only sequence information
remains an elusive goal. Progress is nonetheless needed, and,
at this point, the most promising approach is probably to
incorporate within the datasets any information likely to
improve the alignments, such as structural and homology
data. Template-based alignment methods [13] follow this
approach.

Structural extension was initially described by Taylor [23].
The principle is fairly straightforward (Figure 2) and involves
identifying with BLAST a structural template in the Protein
Data Bank for each sequence, aligning the templates using a
structure superposition method, and mapping the original
sequences onto their template’s alignment. The resulting
sequence alignments are compiled in the primary library and
used by a consistency-based method to compute the final
MSA. Homology extension was originally introduced in the
DbClustal package [24] and works along the same lines, using

a profile rather than a structure. PSI-BLAST is used to build a
profile for each sequence, and these profiles are used as
templates to generate better sequence alignments, thanks to
the evolutionary information they contain. The only
difference between homology and structure extension is the
templates’ nature and the associated alignment method. This
generic approach can easily be extended to any kind of
template. For instance, Expresso [13] uses SAP [25,26] and
FUGUE [27] to align structural templates identified by a
BLAST against the Protein Data Bank. PROMALS [17],
PRALINE [9], and SPEM [28] make a profile–profile
alignment with PSI-BLAST profiles used as templates. In
PRALINE and PROMALS, the profile can be complemented
with a secondary structure prediction in an attempt to
improve the alignment accuracy. PROMALS uses ProbCons
Bayesian consistency to fill its library with the posterior
decoding of a pair hidden Markov model. T-Lara [29] uses

Table 1. Summary of the Methods Described in the Review

Method Score Templates Validation Values Server

PreFab HOMSTRAD

ClustalW [14] Matrix — 61.80 [12] — http://www.ebi.ac.uk/clustalw/

Kalign Matrix — 63.00 [18] — http://msa.cgb.ki.se/

MUSCLE [6] Matrix — 68.00 [16] 45.0 [9] http://www.drive5.com/muscle/

T-Coffee [10] Consistency — 69.97 [12] 44.0 [9] http://www.tcoffee.org/

ProbCons [7] Consistency — 70.54 [12] — http://probcons.stanford.edu/

MAFFT [8] Consistency — 72.20 [12] — http://align.genome.jp/mafft/

M-Coffee [12] Consistency — 72.91 [12] — http://www.tcoffee.org/

MUMMALS [16] Consistency — 73.10 [16] — http://prodata.swmed.edu/mummals/

DbClustal [24] Profiles — — — http://bips.u-strasbg.fr/PipeAlign/

PRALINE [9] Matrix Profiles — 50.2 [9] http://zeus.cs.vu.nl/programs/pralinewww/

PROMALS [16] Consistency Profiles 79.00 [16] — http://prodata.swmed.edu/promals/

SPEM [28] Matrix Profiles 77.00 [28] — http://sparks.informatics.iupui.edu/Softwares-Services_files/spem.htm

Expresso [13] Consistency Structures — 71.9 [11]a http://www.tcoffee.org/

T-Lara [29] Consistency Structures — — https://www.mi.fu-berlin.de/w/LiSA/

Validation values were compiled from several sources, and selected for comparability. PreFab validations were made using PreFab version 3. HOMSTRAD validations were made on
datasets having less than 30% identity. The source of each value is indicated by the accompanying reference citation.
aThe Expresso value comes from a slightly more demanding subset of HOMSTRAD (HOM39) made of sequences less than 25% identical.
doi:10.1371/journal.pcbi.0030123.t001

doi:10.1371/journal.pcbi.0030123.g001

Figure 1. Typical Output of M-Coffee

This output was obtained on the kinase1_ref5 BaliBase dataset, by combining MUSCLE, MAFFT, POA, Dialign-T, T-Coffee, ClustalW, PCMA, and ProbCons
with M-Coffee. Correctly aligned residues (as judged from the reference) are uppercase; noncorrect ones are lowercase. The color of each residue
indicates the agreement of the individual MSAs with respect to the alignment of that specific residue. Red indicates residues aligned in a similar fashion
among all the individual MSAs; blue indicates very low agreement between MSAs. Dark yellow, orange, and red residues can be considered to be
reliably aligned.
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RNA secondary structure predictions as templates and fills a
T-Coffee library with the Lara pairwise algorithm. With the
exception of PRALINE and SPEM, which use a regular
progressive algorithm, most template-based methods
described here are consistency-based (some of them taking
advantage of T-Coffee modular structure). Their main
advantage is increased accuracy. Recent benchmarks on
PROMALS (Table 1) show that homology extension results in
a ten-point improvement over existing methods. Likewise,
structure-based methods such as Expresso produce
alignments much closer to the structural references than do
any of their sequence-based counterparts. One must,
however, be careful not to over-interpret validation values
like that given for Expresso in Table 1, since both the
reference and the Expresso alignments were computed using
the same structural information.

This last point raises the important issue of method
validation and benchmarking. A recent study [4] shows that
with the exception of artificial datasets, benchmarks carried
out on most reference databases tend to deliver compatible
results. It also suggests that the best methods have become
indistinguishable, except when considering remote homologs
(less than 25% identity). Unfortunately, remote homologs are
poorly suited to generating reference alignment, owing to the
fact that their superposition often yields alternative sequence

alignments that are structurally equivalent [30]. However, one
can bypass the reference alignment stage by directly
comparing the evaluated alignment to some idealized 3-D
superposition. Such an alignment-independent evaluation
has been described and used by several authors [17,31,32].
Another trend, not well accounted for by current reference
collections, is the alignment of very large datasets. While
many new methods incorporate special algorithms for
aligning several hundred sequences [6,8,18], current
reference databases do not allow the evaluation of very large
datasets, thus making it unclear how the published accuracies
scale with the number of sequences. While this last issue could
probably be satisfyingly solved in the current benchmarking
framework, another problem remains that is much harder to
address. All the existing validation approaches have in
common their reliance on the ‘‘one size fits all’’ assumption
that structurally correct alignments are the best possible
MSAs for modeling any kind of biological signal (evolution,
homology, or function). A report on profile construction [33]
has recently challenged this view by showing that structurally
correct alignments do not necessarily result in better profiles.
Likewise, it may be reasonable to ask whether better
alignments always result in better phylogenetic trees, and,
more systematically, to question and quantify the relationship
between the accuracy of MSAs and the biological relevance of
any model drawn upon them.
In this review, I have presented some of the latest additions

to the MSA computation arsenal. An interesting milestone
has been the development of meta-methods able to seamlessly
combine the output of several methods. Aside from easing the
user’s work, the main advantage of these consensus methods
is probably the local estimation of reliability they provide
(Figure 1). Using this estimation to filter out unreliable
regions has already proven useful in homology modeling [34]
and could probably be used further. The main improvement
reported here, however, is probably the notion of template-
based alignment. Template-based alignment is more than a
trivial extension of consistency-based methods. Under this
new model, the purpose of an MSA is not to squeeze a dataset
and extract all the information it may contain, but rather to
use the dataset as a starting point for exploring and retrieving
all the related information contained in public databases.
This information is to be used not only for mapping
purposes, but also for driving the MSA computation. Such a
usage of sequence information makes template-based
methods a real paradigm shift and a major step toward global
biological data integration. &
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Figure 2. Framework of a Template-Based Method

Structural templates are first identified, mapped onto the sequences, and
aligned using SAP. The sequence–template mapping is then used to
guide the alignment of the original sequences. This alignment is
integrated into the library that is used to compute the final MSA.
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