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Rough set theory has been used extensively in fields of complexity, cognitive sciences, and artificial intelligence, especially in
numerous fields such as expert systems, knowledge discovery, information system, inductive reasoning, intelligent systems, data
mining, pattern recognition, decision-making, and machine learning. Rough sets models, which have been recently proposed, are
developed applying the different fuzzy generalisations. Currently, there is not a systematic literature review and classification of
these new generalisations about rough set models. Therefore, in this review study, the attempt is made to provide a comprehensive
systematic review of methodologies and applications of recent generalisations discussed in the area of fuzzy-rough set theory. On
this subject, the Web of Science database has been chosen to select the relevant papers. Accordingly, the systematic and meta-
analysis approach, which is called “PRISMA,” has been proposed and the selected articles were classified based on the author and
year of publication, author nationalities, application field, type of study, study category, study contribution, and journal in which the
articles have appeared. Based on the results of this review, we found that there are many challenging issues related to the different
application area of fuzzy-rough set theory which can motivate future research studies.

1. Introduction

Rough set theory is a powerful and popular machine learning
method [1]. It is particularly appropriate for dealing with
information systems that exhibit inconsistencies [2]. Fuzzy-
rough set theory can be integrated with the rough set theory
to handle data with continuous attributes and can detect
inconsistencies in the data. Because the fuzzy-rough set
model is a powerful tool in analysing inconsistent and vague
data, it has proven to be very useful in many application areas.

Rough set theory, introduced by Pawlak [3] in the 1980s, is a
powerful machine learning tool that has applications in many
data mining [4-11] instances, attribute and feature selection
[12-25], and data prediction [26, 27]. Rough set theory deals
with information systems that contain inconsistent data, such
as two patients who have the same symptoms but different
diseases. In the rough set analysis, data is expected to be dis-
crete. Therefore, a continuous numeric attribute is required
to be discretized. Fuzzy-rough set theory [28] is an extension
of the rough set theory that deals with continuous numerical
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attributes. It can solve the same problems that rough set can
solve and also can handle both numerical and discrete data.
The importance of fuzzy-rough set theory is clearly seen in
several applications areas. For example, Wang [29] and Wang
[30] investigated topological characterizations of generalised
fuzzy-rough sets in the context of basic rough equalities. Pan
et al. [31] enhanced the fuzzy preference relation rough set
model with an additive consistent fuzzy preference relation.
Namburu et al. [32] suggested the soft fuzzy-rough set-based
magnetic resonance brain image segmentation for handling
the uncertainty related to indiscernibility and vagueness. Li
et al. [33] proposed an effective fuzzy-rough set model for
feature selection. Feng et al. [34] used uncertainty measures
for reduction of multigranulation based on fuzzy-rough sets,
avoiding the negative and positive regions. Sun et al. [35] pre-
sented three kinds of multigranulation fuzzy-rough sets over
two universes using a constructive method. Zhao and Hu [36]
examined a decision-theoretic rough set model in the context
of models of interval-valued fuzzy and fuzzy probabilistic
approximation spaces. Zhang and Shu [37] suggested a new
paradigm based on generalised interval-valued fuzzy-rough
sets by combining the theory of rough sets and theory of
interval-valued fuzzy sets based on axiomatic and construc-
tive methods. Zhang et al. [24] proposed a new fuzzy-rough
set theory based on information entropy for feature selection.
Wang and Hu [38] proposed arbitrary fuzzy relations by
integrating granular variable precision fuzzy-rough sets and
general fuzzy relations. Vluymans et al. [19] suggested a new
kind of classifier for imbalanced multi-instance data based
on fuzzy-rough set theory. Feng and Mi [39] investigated
and reviewed the variable precision of multigranulation fuzzy
decision-theoretic rough sets in an information system. Wang
and Hu [40] presented novel generalised L-fuzzy-rough sets
for generalisation of the notion of L-fuzzy-rough sets.

In recent decades, various kinds of models have been
proposed and developed regarding the fuzzy generalisation
of rough set theory. However, the literature review has not
kept pace with the rapid addition of knowledge in this field.
Therefore, we believe that there is a need for a systematic
consideration of the most relevant recent studies conducted
in this area. This review paper attempts to systematically
review the previous studies that proposed or developed fuzzy-
rough sets theory. This review paper adds significant insight
into the literature of fuzzy-rough set theory, by considering
some new perspectives in examining the articles, such as
the classification of the papers based on author and year
of publication, author nationalities, application field, type of
study, study category, study contribution, and the journals in
which they appear.

The structure of this review study is organised as follows.
Section 2 shortly reviews the literature regarding fuzzy
logic and fuzzy sets, rough sets, fuzzy set theory, fuzzy
logical operators, fuzzy relations, rough set theory, and
fuzzy-rough set theory. In Section 3, we present the related
works. Section 4 presents research methodology including
the systematic review, meta-analysis, and the procedures of
this study. Section 5 provides findings of this review based
on the application areas. Section 6 presents the distribution
of papers by the journals. In Section 7, we present the
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distribution of papers by the year of publication. Section 8
presents the distribution of papers based on the nationality of
authors. Section 9 discusses the results of this review with the
focus on the recent fuzzy generalisation of rough sets theory
and further investigations in this area. Finally, Section 10
presents the conclusion, limitations, and recommendations
for future studies.

2. Fuzzy-Rough Sets Theory

2.1. Fuzzy Logic and Fuzzy Sets. Binary logic is discrete and
has only two logic values which are true and false, that is, 1
and 0. In real-life, however, things are true to some extent. For
example, regarding the patient there are some assumptions
such as patient is sick, or say patient is very sick or starting
to become sick. Therefore, we cannot confidently say if the
patient is sick or not with a certain intensity. Fuzzy logic [43]

has extended binary logic through adding an intensity range
of values to specify the extent to which something is true. In
this situation, the range of truth values is between 0 and 1.
The closer the truth value of a statement to 1, the truer the
statement. For example, the patient is very sick could have
the degree of sickness around 0.9 to specify that the patient is
very sick. On the other side, patient could have the sickness
degree of 0.1 indicating that the patient is nearly recovered
from theillness. A fuzzy set [44] is a set of factors that fit to the
set with the membership degree. For instant, we assume that
there are two fuzzy sets representing two groups of people
including old and young people. Thus the larger the age of one
person, the higher the membership degree to the old people,
and the lower the person membership degree to the young
people. Meanwhile fuzzy logic is extending the binary logic
and moreover extends its logical operations. These are the ¢-
conorm fuzzy logical ¢-norm and implicator [45] that extend
the binary logical implication conjunction and disjunction.

2.2. Rough Sets. In the very big datasets with several items,
calculating the gradual indiscernibility relation is very chal-
lenging in terms of memory and runtime. Rough set theory
(Pawlak [46], Polkowski et al. [47]) is the novel mathematics
technique dealing with uncertain and inexact knowledge
in several applications in various real-life fields such as
information analysis, medicine, and data mining. Rough set
is the powerful machine learning technique which has been
used in many application areas such as feature selection,
prediction, instance selection, and decision-making. Rough
set also has applications in many areas such as medical data
analysis, image processing, finance, and many other real-life
problems [3]. A rough set approximates a certain set of factors
with two subsets including upper approximations and lower
approximations. The fuzzy-rough set theory is constructed
based on two theories including rough set theory and fuzzy
set theory. In the next section, we present these theories with
hybridisation of both theories.

2.3. Fuzzy Set Theory. Zadeh [44] found that traditional crisp
set is not capable of explaining the whole thing in the real
manner. Zadeh proposed fuzzy sets to solve this problem.
Therefore Zadeh proposed a fuzzy set A as a mapping from
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the universe U to the interval [0, 1]. The set A(x) for x € U
is called the degree of membership of x in A. Employ this
method; factors in the universe could belong to a set to a
certain degree. Discovery for the good fuzzy set for model
concepts could be subjective and challenging; however it
is more significant than trying to create an artificial crisp
distinction among factors. Indeed that fuzzy set was an
extension of crisp set. Consequently, any crisp set A could be
modelled using a fuzzy set as follows:

1
Vx eU: A(x) =
0
1
1 ifxeA
VX € U : A(X) =
0 else.

The cardinality of a fuzzy set A is defined as the sum of
the membership values of all factors in the universe to A:

Al= ) Ay )

xeU

2.4. Fuzzy Logical Operators. There is need for the new logical
operators to extend the crisp sets to the fuzzy sets. In crisp set
theory, for example, the proposition a factor belongs to the
sets A and Bis either true or false. For extending this theorem
to fuzzy set theory, there is need to the fuzzy logical operators
for extending the logical conjunction A, for expressing to
what extent an example x belongs to A and B, given the
membership degrees A(x) and B(x).

The conjunction A and the disjunction V were extended
by using the t-conorm & and t-norm J that map 7,S :
[0,1]*> — [0, 1], satistying the following conditions:

J and & are increasing in both arguments.
T and & are commutative.
T and & are associative.

VxeU:9 (x,1) = x,
(3)
Vx eU:6(x,0) = x.

The most significant examples of t-norms are the mini-
mum operator T,,, which is the largest t-norm, the product
operator J p, and the Lukasiewicz t-norm 7 ;:

Vx,y € (0,1): Ty (%, y) = min(x, )
Vx,y€(0,1): Tp(x,y) =xy (4)
Vx,y€(0,1): T, (x,y) =max(0,x+y—1).

The important examples of t-conorms are the maximum
operator &', which is the smallest t-conorm, the probabilis-
tic sum &', and the Lukasiewicz -conorm & :

Vx,y € (0,1) : Sy (x, ) = max(x, y)
Vo, y €(0,1): 8, (% y) =x+y—xy (5)

Vx,y €(0,1): S, (x, ) =min(1,x + y).

The implication — is extended by fuzzy implicators,
which are mappings <: [0, 11> — [0,1] that satisfy the
following:

Lis decreasing in the first and increasing in the second
argument.

L satisfies L(1,1) = L(0,0) = 1 and L(1,0) = 0.

The well-knowing implicator is the Lukasiewicz implica-
tor L;, defined by

Vx,y€(0,1): L (x,y) =min(1,1-x+y). (6)

2.5. Fuzzy Relations. The binary fuzzy relations in U are the
special type of fuzzy sets which are fuzzy sets R in U* and
express to what extent x and y are associated with others.
In the field of fuzzy-rough set, usually use relations for
modelling indiscernibility between the examples. Therefore,
we refer to them as indiscernibility relations. We need R to
be minimum a fuzzy tolerance relation; that is, R is reflexive:
Vx € U, R(x,x) = 1 and symmetric Vx,y € U, R(x, y) =
R(y, x).

These two situations are linked to the symmetry and
reflexivity conditions of the equivalence relation. The third
situation for an equivalence relation, transitivity, is translated
to I -transitivity for a certain t-norm J:

Vx,y,z€ I (R(x,y),R(y,2)) <R(x,2). (7)

For this case, R is called a J -similarity relation. Thus
when R is T -transitive, R is I -transitive for all f-norms
T . For this case, R will be a similarity relation.

2.6. Rough Set Theory. Pawlak [3] proposed the rough set
theory for handling the problem of incomplete informa-
tion. Pawlak introduced a universe U involving factors,
an equivalence relation R on U, and a concept A € U
within the universe. The problem of incomplete information
indicates that it should not be possible to determine the
concept A based on the equivalence relation R, which is
there are two factors x and y in U that are equivalent to
R but to which x belongs to A and y does not. Figure 1
represented this case in which the universe is divided into
squares applying the equivalence relation. The concept A
does not follow the lines of the squares, which means that
A cannot be described using R. In real world this kind of
problem with incomplete information often occurs such as
problem of spam classification. For example we assume the
world contains nonspam and spam e-mails and mention that
this concept is spam. The equivalence relation is introduced
according to the predefined list of 10 words which usually
are in the spam e-mails; thus it can mention that two e-
mails are equivalent if they have the similar words among the
list of 10 words. Some equivalence classes will be completely
contained in the spam group, and some will be completely
contained in the nonspam group. Though it is very likely
that there are two e-mails that have the similar words among
the list of 10 words, however for which one is spam and the
other is nonspam. In this case, the equivalence relation is not
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FIGURE 1: A universe U partitioned by an equivalence relation R and
a concept A € U that cannot be defined using R [41, 42].

able to distinguish between spam and nonspam. Pawlak [3]
addressed this kind of problem by approximating the concept
A. The lower approximation includes all the equivalence
classes that are included in A, and the upper approximation
includes the equivalence classes for which at least one factor
is in A. Figure 2 represented the concept of lower and upper
approximations.

An equivalence relation is reflexive; thus x is only
included in R | A if x € A. The upper approximation is
defined by

RTA={xeU|3,eU:(x,y)eRAyecA}. (8

The lower approximation of A using R is defined as
follows:

Rly={xeU|VyeU:(x,y)eR— ycA}l. (9)

The lower approximation in the spam example contains
all e-mails that are spam and for which all e-mails indis-
cernible from it are also spam. The upper approximation
contains of e-mails that are spam and e-mails that are
nonspam but for which there exists an e-mail indiscernible
from it that is spam.

2.7. Fuzzy-Rough Set Theory. Fuzzy set theory enables us to
model vague information, while rough set theory models
incomplete information. These two theories are not com-
peting, but rather complement each other. Many models
have been proposed to hybridise rough sets and fuzzy sets
(6,29, 30, 34, 39,170-178]. A fuzzy-rough set is the pair of
lower and upper approximations of a fuzzy set A in a universe
U on which a fuzzy relation R is defined. The fuzzy-rough
model is obtained by fuzzifying the definitions of the crisp
lower and upper approximation. Recall that the condition for
an element x € U to belong to the crisp lower approximation
is

VyeU(x,y) €eR— y€A. (10)

The equivalence relation R is now a fuzzy relation, and
A is a fuzzy set. The values R(x; y) and A(y) are connected
by a fuzzy implication &, so Z(R(x; y), A(y)) expresses to
what extent elements that are similar to x belong to A.
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The membership value of an element x € U to the lower
approximation is high if these values Z(R(x; y), A(y)) are
high for all y € A:

VxcU(R | A) () =minZ (R(xy),4(y).

(11)

Vx e U(RT A)(x) =max T (R(x,y),A(y)).

yeU

This upper approximation expresses to what extent there
exist instances that are similar to x and belong to A.

3. Related Works

Morsi and Yakout [179] examined the relationship between
fuzzy-rough sets theory based on R-implicators and left-
continuous t-norms, with focus on fuzzy similarity in the
axiomatic approach. Wang and Hong [180] proposed an algo-
rithm to produce a set of fuzzy rules from noisy quantitative
training data, by applying the variable precision rough set
model. Molodtsov [181] employed the theory of rough sets
in several ways and formulated the soft number notions, soft
integral and soft derivative. Maji et al. [182] examined the
soft sets in detail and provided the application of soft sets
in decision-making by employing the rough sets reduction.
Radzikowska and Kerre [28] investigated the family of fuzzy-
rough sets based on fuzzy implicators, which were called
generalised fuzzy-rough sets. De Cock et al. [183] introduced
fuzzy-rough sets based on R-foresets of all objects with
respect to a fuzzy binary relation, when R is a fuzzy serial
relation. Jensen and Shen [184] proposed classical rough
sets based on a dependency function of fuzzy-rough sets
and presented the new greedy algorithm for reduction of
redundant attributes. Mieszkowicz-Rolka and Rolka [185]
proposed an approach based on the variable precision fuzzy-
rough set approach to the analysis of noisy data. Mi and
Zhang [186] introduced a new fuzzy-rough set definition
based on a residual implication, 6 and its dual, 0. Shen and
Jensen [187] proposed an approach that integrates a fuzzy rule
induction algorithm with a fuzzy-rough method for feature
selection. Wu et al. [188] examined generalised fuzzy-rough
sets in the axiomatic method. Bhatt and Gopal [189] proposed
a new concept of compact computational domain for Jensen’s
algorithm for enhancing computational efficiency. Yeung et
al. [190] proposed some fuzzy-rough set models by means
of arbitrary fuzzy relations and investigated the connections
between the existing fuzzy-rough sets. Deng et al. [191] inves-
tigated fuzzy relations by involving a fuzzy covering. Li and
Ma [192] proposed two pairs of fuzzy-rough approximation
operators, including fuzzy and crisp covering-based fuzzy-
rough approximation operators. Aktas and Cagman [193]
compared the concepts of rough sets, soft sets, and fuzzy
sets and showed that, for each fuzzy set, rough set is a soft
set. Greco et al. [194] integrated the DTRS approach with
the dominance-based rough set approach and presented a
new generalised rough set theory approach. Cornelis et al.
[195] introduced a classical rough set approach by utilising
fuzzy tolerance relations, considering fuzzy-rough set theory.
Wang et al. [196] introduced new definitions of fuzzy lower
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(a) The lower approximation

(b) The upper approximation

FIGURE 2: The concept A is approximated by means of the lower and upper approximations [41, 42].

and upper approximations by using the similarity between
two objects. Hu et al. [197] proposed a novel fuzzy-rough
set model, based on which a straightforward and efficient
hybrid attribute reduction algorithm was designed. Lingras
et al. [198] and Lingras et al. [199] applied the DTRS theory
for clustering analysis. She and Wang [200] investigated L-
fuzzy-rough set theory from an axiomatic method. Zhao et
al. [201] suggested the new concept based on fuzzy variable
precision rough sets for handling the noise of perturbation
and misclassification. Wu et al. [202] introduced a new
attribute reduction approach, focusing on the interval type
2 fuzzy-rough set model and providing some properties of
interval type 2 fuzzy-rough sets. Yan et al. [203] proposed
generalising the rough set model with fuzzy relation on two
universes using fuzzy theory and probabilistic methods. Yang
and Yao [204] investigated the multiagent DTRS model. Xu
et al. [205] examined the GRS approach based on the rough
membership function. Xia and Xu [206] investigated intu-
itionistic fuzzy information changing. Wu [207] examined
fuzzy-rough sets based on ¢-norms and discussed algebraic
structures and fuzzy topologies. Feng et al. [208] suggested
the soft rough sets concept instead of equivalence classes
and defined the parameterized soft set of upper and lower
approximations. Meng et al. [209] suggested an approach for
calculating the upper and lower approximations for fuzzy soft
sets which efficiently define the boundary. Li and Zhou [210]
and Li et al. [211] suggested a multiperspective explanation
of the decision-theoretic rough set approach and attribute
reduction. Jia et al. [212] investigated the problem related to
attribute reduction for decision-theoretic rough set theory.
Liu et al. [213] and Liu et al. [214] explored multiple-category
classification with the DTRS method and applications in
management science. Degang et al. [215] introduced a novel
approach to examine fuzzy-rough sets by integrating gran-
ular computing. Hu et al. [94] used kernel functions for
introducing the fuzzy similarity relations and developed the
greedy algorithm based on dimensionality reduction. Ma
and Sun [216] proposed a probabilistic rough set model on
two universes. Ma and Sun [217] investigated the decision-
theoretic rough set theory over two universes, based on the
idea of classical DTRS theory. Liu et al. [218] studied the GRS
approach based on two universes and discussed its properties.
Chen et al. [102] used fuzzy-rough sets to present a matrix

of fuzzy discernibility. Zhang et al. [111] proposed a general
framework of intuitionistic fuzzy-rough sets and discussed
the intuitionistic fuzzy operator and the properties of the
model with the dual domain case. Wei et al. [219] investigated
the relationships among rough approximations of fuzzy-
rough set models. Chen et al. [117] explored the interpretation
of several types of membership functions, geometrically,
by using the lower approximations in fuzzy-rough sets, in
terms of square distances in Krein spaces. Ma and Hu [220]
examined lattice structures and the topology of L-fuzzy-
rough sets by considering upper and lower approximations
sets. Yang et al. [70] suggested a fuzzy probabilistic rough
set model on two universes. Liang et al. [59] examined
information retrieval and filtering by employing the DTRS
theory. Zhang and Miao [221] and Zhang and Miao [222]
proposed the double-quantitative approximation space for
presenting two double-quantitative rough set theories. Yao
et al. [101] suggested the variable precision (0, o)-fuzzy-
rough sets theory regarding fuzzy granules. Liu et al. [223]
investigated logistic regression for classification based on
decision-theoretic rough sets theory. Ma et al. [224] sug-
gested a decision region distribution preservation reduction
in decision-theoretic rough set theory. Qian et al. [225]
investigated the multigranulation decision-theoretic rough
set approach. Sun et al. [82] examined the DTRES application
and model. Zhang and Miao [226] constructed a fundamental
reduction framework for two-category decision-theoretic
rough sets. Gong and Zhang [105] investigated a method of
intuitionistic fuzzy sets and variable precision rough sets, to
construct an extended intuitionistic fuzzy-rough set model.
Zhao and Xiao [131] defined the general type-2 fuzzy-rough
sets and discussed the basic properties of lower and upper
approximation operators. Zhang and Miao [227] and Zhang
and Miao [228] examined attribute reduction for proposing
rough set theory models. Deer et al. [118] investigated
the drawbacks and benefits of implicator—conjunctor-based
noise-tolerant fuzzy-rough set models. Li and Cui [77]
studied the characterizations of the topology of fuzzy-rough
sets by considering the similarity of fuzzy relations. Li and
Cui [229] investigated fuzzy topologies considering a lower
fuzzy-rough approximation operator based on the t-conorm.
Xuetal. [230] introduced a knowledge reduction approach in
a generalised approximation space over two universes. Li and



Xu [231] introduced the multigranulation decision-theoretic
rough set approach in the ordered information system.
Liang et al. [232] suggested three-way decisions by extending
the DTRS approach to a qualitative environment. Ju et al.
[233] presented a moderate attribute reduction model in
DTRS. Li and Xu [234] investigated the double-quantitative
DTRS approach based on assembling the upper and lower
approximations of the GRS and DTRS methods. Wang [114]
examined type 2 fuzzy-rough sets by considering two finite
universes and utilising axiomatic and constructive methods
and investigated some topological properties of type 2 fuzzy-
rough sets. Zhang and Min [235] used three-way decisions
regarding recommender systems. Wang [114] defined an
upper approximation number for developing a quantitative
analysis of covering-based rough set theory. Wang et al. [25]
proposed a fitting fuzzy-rough set model to conduct feature
selection. Yang and Hu [178] proposed a definition of fuzzy
B-covering approximation spaces by introducing some new
definitions of fuzzy f-covering approximation spaces, Ma’s
fuzzy covering-based rough set and the properties of fuzzy
B-covering approximation spaces. Wang [29] investigated
characterizations of generalised fuzzy-rough sets in the core
rough equalities context. Namburu et al. [32] suggested a soft
fuzzy-rough set-based segmentation of magnetic resonance
brain image for handling the uncertainty regarding the indis-
cernibility and vagueness in a parameterized representation.
Wang [30] examined the topological structures of L-fuzzy-
rough set theory. Liang et al. [232] examined triangular fuzzy
decision-theoretic rough sets. Zhang and Yao [236] examined
functions of the Gini objective for three-way classification.
Sun et al. [237] explored three-way group decision-making by
using multigranulation fuzzy decision-theoretic rough sets.
Feng et al. [34] investigated reduction of the multigranulation
fuzzy information system based on uncertainty measures
by considering variable precision multigranulation decision-
theoretic fuzzy-rough set theory and avoiding the changing
of negative region and positive region to small ones. Sun et
al. [62] proposed the new fuzzy-rough set on a probabilistic
approximation space and used it with respect to decision-
making in unconventional emergency management. Hu et
al. [171] proposed a new incremental method to update
approximations of fuzzy information system over two uni-
verses. Fan et al. [72] introduced several double-quantitative
DTRS (DQ-DTRES) models based on logical conjunction
and disjunction operations. Qiao and Hu [238] proposed a
granular variable precision L-fuzzy-rough set theory based
on residuated lattices with arbitrary L-fuzzy relations. Liang
et al. [172] examined the decision principles of three-way
decision rules based on the variation of loss functions with
IFSs.

4. Research Method

For the research methodology in this study, we used the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) provided by Moher et al. [239]. PRISMA
has two main parts, including systematic reviews and meta-
analyses. Systematic reviews provide objective summaries of
what has been written and found out about research topics.
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This is especially valuable in wide research areas, where
many publications exist, each focusing on a narrow aspect
of the field [240]. Systematic reviews aim to provide a full
overview of research conducted in a specific area until the
present date. All research procedures have to be made explicit
before the actual behaviour of the review to make the process
objective and replicable. Meta-analysis provides a means
of mathematically integrating findings employing diverse
statistical approaches to study the diversity of the articles.
In this kind of synthesis, original studies that are compatible
with their quality level are selected. This aspect may help and
highlight different facts which individual primary studies fail
to do, for example, it may prove that results are statistically
significant and relevant when small primary studies provide
inconclusive and uncertain results with a large confidence
interval [241]. The main goal of PRISMA is to help the
researchers and practitioners complete a comprehensive and
clear literature review [242].

Several previous studies have been conducted using
PRISMA in the various fields to develop a comprehensive
literature review [242-244]. In order to implement the
PRISMA method in this study, we accomplish three main
steps including literature search, choosing the eligible pub-
lished papers, and extraction of data and summarising [237].

4.1. Literature Search. In this step, we have chosen the Web
of Science database to provide a comprehensive application

of fuzzy-rough set theories. The literature search was accom-
plished based on two keywords including rough set theories
and fuzzy-rough set theories. We attempted to collect the
current published papers from 2010 to 2016. In the first step
of our search, we found 5648 scholarly papers related to
the rough set theories and fuzzy-rough set theories which
were extracted according to our strategy search. In the next
step, we searched to find the papers which were published
between 2010 and 2016 and checked the duplicate papers
with redundant information. After this step, 296 papers were
remaining. After removing 17 records due to duplication,
we screened papers based on the titles and abstracts, and
irrelevant papers were removed. In total, 193 potentially
related papers remained (see Figure 3).

4.2. Articles Eligibility. In this step of the review, for the
purpose of eligibility, we reviewed the full text of each article
independently (which extracted from the last step). In the
last step, we carefully identified the related articles to attain
a consensus. Book chapters, unpublished working papers,
editorial notes, master dissertations and doctoral theses,
textbooks, and non-English papers were excluded. In the end,
we selected 132 articles related to the fuzzy-rough sets, from
28 international scholarly journals between 2010 and 2016,
which met our inclusion criteria. We selected the papers from
2010, because of such a large number of papers published in
this field.

4.3. Data Extraction and Summarising. In the final step of
our methodology, after negotiation with other authors, some
required information was collected, and, finally, 132 articles
were reviewed and summarised. In Table 1, all the selected
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Search in Web of Science for rough sets theories

Excluded records based of

abstract review

(n = 86)

Excluded full-text articles,
with reasons

(n=171)

Identified papers in references

(n=10)

(n = 4856)
g !
S
& Search in Web of Science for fuzzy-rough sets theories
i (n=792)
Q
- I
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Included articles for meta-analysis
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FIGURE 3: Study flowchart for the identification, screening, eligibility, and inclusion of articles.

TaBLE L: Classification of papers based on application area.

Application areas Frequency Percentage of frequency
Information systems 12 9.09%
Decision-making 9 8.33%
Approximation operators 15 11.36%

Feature and attribute selection 24 20.45%

Fuzzy set theories 37 2727%

Other application areas 35 23.48%

Total 132 100.00%

articles were classified into different classifications including
information systems, decision-making, approximate reason-
ing, feature and attribute selection, machine learning, fuzzy
set theories, and other application areas. Also, the articles
were summarised and reviewed based on the various criteria
such as author and year of publication, author nationalities,
application field, type of study, study category, study contri-
bution, and journal in which they appeared. We believe that
reviewing, summarising and classifying the articles helped us

to achieve some critical and valuable insights. Consequently,
some suggestions and recommendations for future studies
were proposed. Furthermore, we believe that this review
paper was accomplished very carefully and it presented a
comprehensive source regarding the fuzzy-rough set theories.
It should be noted that the main difficulty of using the
PRISMA method was to understand what methodologies
were used from the abstract and the research section of the
selected articles. Thus, we required going through the full



content of articles and took a more detailed look to evaluate
the exactly applied approach to evaluate the fuzzy-rough
sets. Although a considerable amount of time was spent in
the selection process, it helped us choose the most suitable
publications in conducting the review.

5. Application Areas Classification

Although categorising and combining the articles in the fields
of fuzzy-rough sets is complex, for the classification task
we used the opinions of experts. Consequently, based on
opinions of experts we categorised articles into six different
applications areas (see Table 1). In the following section, all
selected articles were summarised and reviewed based on the
various criteria.

5.1. Distribution Papers Based on Information Systems. Rough
set theory is a powerful and popular machine learning
method. It is particularly appropriate for dealing with the
information systems that exhibit inconsistencies. Fuzzy set
theory integrated with the rough set theory detects degrees
of inconsistency in the data. Xu et al. [245] examined a new
parallel attribute reduction algorithm by focusing on fuzzy-
rough set theory and mutual information rather than calcu-
lating of the fuzzy-rough lower and upper approximations
explicitly. Moreover, Yang et al. [246] investigated some rough
sets models for handling big data, but this study does not
focus on explicitly calculating the upper and lower approx-
imations. Some previous scholars investigated the parallel
models for computing the upper and lower approximations
in the traditional rough set model. For example, Zhang et
al. [247] introduced a new MapReduce-based approach for
calculating the upper and lower approximations in a decision
system. Zhang et al. [248] used different approximations
to compare knowledge acquisition. Yang and Chen [249]
suggested a novel approach to calculate the positive region
such as the union of the lower approximation of all classes.
Dubois and Prade [250] explored the relationship, similar-
ities, and differences between twofold fuzzy sets and rough
sets. Ouyang et al. [50] defined new fuzzy rough sets which
generalized the concept of fuzzy rough sets in the sense
of Radzikowska and Kerre [28], and that of Mi and Zhang
[186]. Kuznetsov et al. [251] introduced an approach based
on the fuzzy-rough sets which were called the (I, J)-fuzzy-
rough set. Zeng et al. [52] developed a new Hybrid Distance
(HD) in Hybrid Information System (HIS) based on the
value difference metric, and a new fuzzy-rough approach
was designed by integrating the Gaussian kernel and HD
distance. Feng and Mi [39] investigated variable precision
multigranulation fuzzy decision-theoretic rough sets in an
information system. Chen et al. [55] introduced a new
approach to build a polygonal rough-fuzzy set and presented
a novel fuzzy interpolative reasoning approach for sparse
fuzzy rule-based systems based on the ratio of fuzziness of the
constructed polygonal rough-fuzzy sets. Table 2 represents
significant distribution findings of information systems based
on the author and year of publication, application field, type
of study, study category, and study contribution. The results
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represented in this table indicate that 12 articles have been
published in the area of information systems.

5.2. Distribution Papers Based on Decision-Making. While
there are a variety of existing methods for various application
areas from imprecise data, the fuzzy-rough set method has
an advantage for decision-making for large volumes of data
since it focuses on reducing the number of attributes required
to characterize a concept without losing essential information
required for decision-making. Although rough sets have sev-
eral advantages over other methods, they generate a number
of rules creating difficulties in decision-making [252]. A
fuzzy-rough set is a data mining algorithm for decision-
making based on incomplete, inconsistent, imprecise, and
vague data. Fuzzy-rough set theory is an extension of the
fuzzy conventional set theory that supports approximations
in decision-making. However, rough set theories are valu-
able mathematical approaches for explaining and showing
insufficient and incomplete information and also have been
extensively used in numerous application areas such as
comprehensive evaluation, and uncertainty decision-making
with fuzzy information [62]. Greco et al. [253] proposed a
new dominance rough set framework that is appropriate for
preference analysis [31, 254-261]. This study investigated the
decision-making problem with multicriteria and attributes,
where dominance relations are extracted from similarity rela-
tions, and multicriteria are created from equivalence relations
and numerical attributes are created from nominal attributes.
An extensive review of multicriteria decision analysis based
on dominance rough sets is given in Greco et al. [253].
Dominance rough sets have also been applied to ordinal
attribute reduction [253, 262] and multicriteria classification
[263-266]. Recently, several previous studies extended the
fuzzy set based on the dominance rough set approach
(106,170, 258, 267, 268]. Hu et al. [60] proposed a novel
approach for extracting the fuzzy preference relations by
using a fuzzy-rough set model. Liang and Liu [61] presented
a naive approach of intuitionistic fuzzy decision-theoretic
rough sets (IFDTRSs) and analysed its related properties. Sun
and Ma [65] introduced a novel concept of soft fuzzy-rough
sets by integrating the traditional fuzzy-rough sets and fuzzy
soft sets. The detailed results of this section are presented in
Table 3. The findings represented in this table indicate that 8
articles have been published in the area of decision-making.

5.3. Distribution Papers Based on Approximation Operatots.
A rough set approximates a crisp set by two other sets that
give a lower and upper approximation of the crisp set. In
the rough set analysis, the data is expected to be discrete. In
enormous information systems, the computation of the lower
and upper approximation sets is a demanding process both
regarding processing time and memory utilisation. A rough
set approximates a certain set of elements with two other
subsets called upper and lower approximations. Through the
fuzzy-rough lower and upper approximation, fuzzy-rough set
theory can model the quality or typicality of instances within
their respective classes, and hence it is an ideal tool to detect
border points and noisy instances. The lower approximation
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is the union of all cases that can be classified with certainty in
one of the decision classes, whereas the upper approximation
is a description of the instances that possibly belong to one of
the decision classes. With the utilisation of rough set theory
in the feature selection process, the vague concept can be
modelled by the approximation of a vagueness set by a pair
of precise concepts, called lower and upper approximations.
The lower approximation, or positive region, is the union of
all instances that can be classified with certainty in one of
the decision values, whereas the upper approximation is a
description of the instances that possibly belong to one of the
decision values [269, 270]. Some previous papers investigated
some properties of fuzzy-rough approximation operators. Hu
et al. [60] proposed a novel approach for extracting the fuzzy
preference relations by using a fuzzy-rough set model. Zhang
etal. [63] presented a common decision-making model based
on hesitant fuzzy and rough sets, named HF rough sets. Sun
and Ma [65] introduced a novel concept of soft fuzzy-rough
sets by integrating the traditional fuzzy-rough sets and fuzzy
soft sets. Table 4 provides valuable distribution findings of
approximation operators based on the author and year of
publication, application field, type of study, study category,
and study contribution. The results represented in this table
indicate that 15 articles have been published in the area of
approximation operators.

5.4. Distribution Papers Based on Feature or Attribute Selec-
tion. There are several other instances of information that
can be derived from data, but in this section we focus on
classification. Formally, given a dataset of instances described
by conditional features and a decision feature, classifiers aim
to predict the class of a new instance given its conditional
features. Most classifiers first build a model based on the
data and then feed the new instance to the model to predict
its class. For example, Support Vector Machines (SVMs)
[98, 271-273] construct a function that models a separating
border between the different classes in the data, and the
value of that function for the new instance then determines
to what class it most likely belongs. Decision trees [274,
275] generate rules from the data following a tree structure
that predict the class of a new instance. Zhu et al. [276]
introduced a novel attribute reduction criterion for choosing
lowest attributes while keeping the best performance of the
corresponding learning algorithms to some extent. Inbarani
et al. [277] proposed a new feature selection approach
based on high dimensionality in the medical dataset. This
classifier has no modelling phase. A new instance is classified
directly by looking up the closest instances in the data and
classifying it to the class mostly occurring among those
nearest neighbors. Before the data can be used to build the
classification model and to classify the new instances, the
data needs to be preprocessed. For example, there can be
missing values [278-281] in the data that need to be imputed.
Preprocessing can also be used to speed up or improve
the classification process. For example, fuzzy-rough feature
selection techniques select features such that the membership
degrees of the instances to the fuzzy-rough positive region
are maximised [195], or instance selection techniques select
instances with a high membership degree to the fuzzy-rough

1

positive region [195]. Jensen et al. [83] proposed a model
by using a rough set for solving the problems related to
the propositional satisfiability perspective. Qian et al. [84]
proposed an approach based on dimensionality reduction
together with sample reduction for a heuristic process of
fuzzy-rough feature selection. Derrac et al. [88] presented
a new hybrid algorithm for reduction of data using feature
and instance selection. Jensen and Mac Parthaldin [89]
introduced two novel, diverse ways of using the attribute
and neighborhood approximation step for solving problems
of complexity of the subset evaluation metric. Maji and
Garai [91] presented a new feature selection approach based
on fuzzy-rough sets by maximising the significance and
relevance of the selected features. Zeng et al. [52] developed
a new Hybrid Distance (HD) in Hybrid Information System
(HIS) based on the value difference metric, and a new fuzzy-
rough approach by integrating the Gaussian kernel and HD
distance. Cornelis et al. [95] introduced and extended a new
rough set theory based on the multiadjoint fuzzy-rough sets
for calculating the lower and upper approximations. Yao et
al. [101] introduced a new fuzzy-rough approach called the
variable precision (6, o) fuzzy-rough approach based on fuzzy
granules. Zhao et al. [103] introduced a robust model for
dimension reduction by using fuzzy-rough sets to achieve
the possible parameters. Chen and Yang [104] integrated the
rough set and fuzzy-rough set model for attribute reduction
in decision systems with real and symbolic valued condition
attributes. Table 5 provides valuable distribution findings of
approximation operators based on the author and year of
publication, application field, type of study, study category,
and study contribution. The results represented in this table
indicate that 23 articles have been published in the area of the
attribute or attribute selection.

5.5. Distribution of Papers Based on Fuzzy Set Theories. In
recent years, several studies have examined how rough set
theory can be extended using various types of fuzzy set
theories [53, 173, 238, 261, 282], which extends traditional
set theory in the sense that instances can belong to a set
to a certain degree between 0 and 1. Most studies have
been conducted on fuzzy sets with fuzzy-rough sets [36,
81, 116, 125, 141, 283, 284], mainly focusing on preserving
the predictive power of datasets with the least features
possible. Some preliminary researches have been done on
using fuzzy-rough set theory for instance selection [88] and
its combination with fuzzy sets [120, 285]. Apart from using
fuzzy-rough set theory for preprocessing, it has also been
used successfully to tackle classification problems directly,
for example, in rule induction [157, 170, 286, 287], decision-
making [49, 59, 65, 288] improving K-NN classification
[87, 289-293], interval-valued fuzzy sets [108, 122, 130,
133, 294, 295], enhancing decision trees [165, 296, 297],
hesitant fuzzy sets [132, 133, 137, 173, 298], and boosting
SVMs [11, 98] [25, 26, 68, 106]. Huang et al. [106] proposed
Dominance Intuitionistic Fuzzy Decision Tables (DIFDT)
based on the fuzzy-rough set approach. Zhang [109] pro-
posed intuitionistic fuzzy-rough sets based on intuitionis-
tic fuzzy coverings by using intuitionistic fuzzy triangu-
lar norms and intuitionistic fuzzy implication operators.
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Zhang et al. [111] examined intuitionistic fuzzy-rough sets
based on two universes, general binary relations, and an
intuitionistic fuzzy implicator I and a pair (T,I) of the
intuitionistic fuzzy t-norm T. Huang et al. [113] developed
a novel multigranulation rough set which was named the
Intuitionistic Fuzzy Multigranulation Rough Set (IFMGRS).
Wang [114] examined type-2 fuzzy-rough sets based on
extended t-norms and type 2 fuzzy relations in the convex
normal fuzzy truth values. Chen et al. [117] introduced a
geometrical interpretation and application of this type of
membership functions. Ma [119] presented two novel types of
fuzzy covering rough set for bridges linking covering rough
sets and fuzzy-rough theory. Reference [29] investigated
the topological characterizations of generalised fuzzy-rough
regarding basic rough equalities. He et al. [120] proposed
an inconsistent fuzzy decision system and reductions and
improved discernibility matrix-based algorithms to discover
reducts. Bai etal. [123] proposed an approach based on rough-
fuzzy sets for the extraction of spatial fuzzy decision rules
from spatial data that simultaneously were of two kinds of
fuzziness, roughness and uncertainties. Zhao and Hu [124]
examined the fuzzy and interval-valued Fuzzy Probabilistic
Rough Sets within frameworks of fuzzy and interval-valued
fuzzy probabilistic approximation spaces. Huang et al. [125]
introduced an Intuitionistic Fuzzy (IF) graded approximation
space based on IF graded neighborhood and discussed
information entropy and rough entropy measures. Li et al.
[299] integrated the interval type 2 fuzzy with rough set
theory by using the axiomatic and constructive approaches.
Khuman et al. [126] investigated the type 2 fuzzy sets and
rough-fuzzy sets to provide a practical means to express
complex uncertainty without the associated difficulty of a
type 2 fuzzy set. Zhang [295] introduced a new model
based on interval-valued rough intuitionistic fuzzy sets by
integrating the classical Pawlak rough set and interval-valued
IF set theory. Hu [130] developed an integrative model
considering interval-valued fuzzy sets and variable precision
named generalised interval-valued fuzzy variable precision
rough sets. Yang et al. [132] investigated a novel fuzzy-rough
set model based on constructive and axiomatic approaches
to introduce the hesitant fuzzy-rough set model. Zhang et al.
[133] integrated the interval-valued hesitant fuzzy sets with
rough sets to introduce the novel model named the interval-
valued hesitant fuzzy-rough set. Tiwari and Srivastava [300]
investigated the results of some previous studies regarding
the one-to-one correspondence between the family of fuzzy
preorders on a nonempty set. Chen et al. [136] proposed
a new rough-fuzzy approach for handling, representation,
and utilisation of various levels of uncertainty in knowl-
edge. Table 6 provides valuable distribution results of fuzzy
sets theories based on the author and year of publication,
application field, type of study, study category, and study
contribution. The results represented in this table indicate
that 37 articles have been published in the area of the attribute
or attribute selection.

5.6. Distribution of Papers Based on Other Application Areas.
In recent decades, rough sets and fuzzy-rough sets theories
have been employed in various application areas such as
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data mining [4, 5, 86, 301-303], software packages [141,
304], web ontology [138, 305-307], pattern recognition [24,
148, 187, 308-310], granular computing [38, 221, 238, 251],
genetic algorithm [310-313], prototype selection [145, 163],
solid transportation [146, 314, 315], social networks [316—
318], artificial neural network [92, 153, 319], remote sens-
ing [320, 321], and gene selection [158, 322-324]. An et
al. [140] analysed a regression algorithm based on fuzzy
partition, fuzzy-rough sets, estimation of regression values,
and fuzzy approximation for estimating wind speed. Shiraz
et al. [142] proposed a new fuzzy-rough DEA approach
by combining the classical DEA, rough set, and fuzzy
set theory to accommodate the uncertainty. Zhou et al.
[144] developed a new approach for automatic selection
of the threshold parameter to determine the approxima-
tion regions in rough set-based clustering. Vluymans et
al. [19] introduced a novel kind of classifier for imbal-
anced multi-instance data based on fuzzy-rough set theory.
Ganivada et al. [150] proposed a Fuzzy-Rough Granular
Self-Organising Map (FRGSOM) by including the three-
dimensional linguistic vector and connection weights for
clustering the patterns which included overlapping regions.
Amiri and Jensen [151] introduced three missing imputation
approaches based on the fuzzy-rough nearest neighbors,
namely, VQNNI, OWANNI, and FRNNI. Feng and Mi [39]
introduced the use of data mining approaches to forecast
the need of maintenance. Affonso et al. [153] proposed a
new method for biological image classification by a rough-
fuzzy artificial neural network. Pahlavani et al. [155] pro-
posed a novel fuzzy-rough set model to extract the rules
in the ANFIS based classification procedure for choosing
the optimum features. Zhao et al. [157] developed a rule-
based classifier fuzzy-rough using one generalised fuzzy-
rough set model to introduce a novel idea which was called
consistence degree. Maji and Pal [158] presented a new
fuzzy equivalence partition matrix for approximating the
true marginal and joint distributions of continuous gene
expression values. Huang and Kuo [159] investigated two
perspectives of cross-lingual semantic document similarity
measures based on the fuzzy sets and rough sets which were
named formulation of similarity measures and document
representation. Ramentol et al. [161] developed a learning
algorithm for considering the imbalance representation and
proposed a classification algorithm for imbalanced data by
using the fuzzy-rough sets and ordered weighted average
aggregation. Derrac et al. [163] introduced a new fuzzy-
rough set model for prototype selection by optimising the
behaviour of this classifier. Zhao et al. [166] introduced a
novel complement information entropy method in the fuzzy-
rough sets based on the arbitrary fuzzy relations, inner-class,
and outer-class information. Changdar et al. [168] presented
a new genetic-ant colony optimisation algorithm in a fuzzy-
rough set environment for solving problems related to the
solid multiple Travelling Salesmen Problem (mTSP). Sun and
Ma [169] introduced a novel model to evaluate the emergency
plants for unconventional emergency events using soft fuzzy-
rough set theory. The results of this section are provided in
Table 7.
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6. Distribution of Reviewed Paper by Journals

Table 8 presents the results of analysing the articles based on
distribution of the journals. The articles related to the fuzzy-
rough set theory have been chosen from 28 different inter-
national scholarly journals indexed in the Web of Science
databases. Selected articles published, along with an extensive
diversity of journals that focus on fuzzy-rough set theory,
validate different scholarly journals willingness to publish in
this field. By far, the highest ranking journal is the journal of
Information Sciences with 36 articles, followed by the journal
of Fuzzy sets and Systems with 17 papers. Furthermore, more
than 60 percent of the total papers (83 out of 132 papers)
were concentrated in five journals, which play dominant
roles in field of rough-fuzzy set theory. Additionally, in other
rankings, the Soft Computing journal had the third rank
with 11 publications followed by journal of Knowledge-Based
Systems and IEEE Transactions on Fuzzy Systems with 10
articles. Hence, based on this result, we can conclude that
these selected journals can be considered as the main journals
on the fuzzy-rough set theory, as the more than 60 percent of
the articles were published in these journals. Table 8 presents

the list of journals where the fuzzy-rough set theory has been
published.

7. Distribution of Articles
by Year of Publication

In recent decades, the application of fuzzy-rough set theory
has increased dramatically in the literature. A historical
growth of fuzzy-rough sets has existed for many years. A
frequency analysis of the 132 articles based on the articles
published for different years is shown in Figure 4. During
2010-2012, the articles published on fuzzy-rough set theory
were at a steady rate with 15, 11, and 15 articles. The uptrend in
papers outputs is observed since the year 2012, until 2016. Fig-
ure 4 presents relevant information based on the frequency
of distribution by the year of publication. Accordingly, it can
be indicated that nowadays researchers are highly interested
in conducting research on fuzzy-rough set theory and it
can be predicted that in coming years these numbers will
increase.

8. Distribution of Papers
Based on Nationality of Authors

This review paper attempted to show the difference among
the countries related to the fuzzy-rough set theory. Two
kinds of principles were used for identifying the character-
istics in selected articles, including the information gained
directly from the papers or the nationality of the first
author. Figure 5 shows that authors from 16 nationalities and
countries investigated the fuzzy-rough set theory. Most of
the published papers were from China with 86 publications
followed by India, United Kingdom, and Spain with 13, 6, and
5 publications, respectively. Figure 5 shows the frequency of
other nationalities, as well.
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FIGURE 5: Distribution of papers based on nationality of authors.

9. Discussion

There are some challenges regarding various application
areas of fuzzy-rough set theory that can be interesting for
discussion and future studies. For example, in the case of
fuzzy B-covering approximation spaces, there are various
topics which need further research, such as matroidal struc-
tures, data mining, the generalisation of fuzzy covering-based
rough sets, topological properties and data compression
with homomorphism, and communication by using fuzzy
covering-based rough sets. In the area of multigranulation
fuzzy-rough set theory, some more investigations are needed.
For example, it is necessary to explore the primary theory
and characterizations of multigranulation fuzzy-rough sets
over two universes, as well as attribute reduction of the
multigranulation fuzzy approximation space over two uni-
verses. In the field of fuzzy information system over Two
Universes (ISTU), further study is necessary to enhance
the current incremental algorithms by integration with the
parallelism technique to update rough approximations. More
investigations are required in the area of interval-valued hes-
itant fuzzy multigranulation rough sets over two universes,
to study uncertainty measures, topological structures, and
attribute reduction methods. Also, further investigations are
needed in the area of the Dominance-Based Fuzzy-Rough Set
Approach (DFRSA), by improving the attribute reduction,
rule induction, and object reduction. In the field of fuzzy
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TaBLE 8: Distribution of papers based on the name of journals.

Name of journals Frequently Percentage
Information Sciences 36 27.27%
Fuzzy sets and Systems 15 11.36%
Soft Computing 1 8.33%
Knowledge-Based Systems 10 7.58%
IEEE Transactions On Fuzzy Systems 10 7.58%
Pattern Recognition 6 4.55%
International Journal of General Systems 5 3.79%
Journal of Approximate Reasoning 5 3.79%
Expert Systems with Applications 5 3.79%
Applied Soft Computing 5 3.79%
Applied Mathematical Modelling 4 3.03%
Pattern Recognition Letters 2 1.52%
IEEE Transactions on Knowledge and Data Engineering 2 1.52%
Neurocomputing 2 1.52%
Artificial Intelligence Review 1 0.76%
Expert Systems 1 0.76%
Data & Knowledge Engineering 1 0.76%
Neural Networks 1 0.76%
Mathematics and Computers in Simulation 1 0.76%
Fundamenta Informaticae 1 0.76%
Socio-Economic Planning Sciences 1 0.76%
Theoretical Computer Science 1 0.76%
Engineering Applications of Artificial Intelligence 1 0.76%
International Journal of Production Research 1 0.76%
International Journal of Remote Sensing 1 0.76%
The International Journal of Advanced Manufacturing Technology 1 0.76%
Kybernetes 1 0.76%
Mathematics and Computers in Simulation 1 0.76%
Total 132 100.00%

neighborhood rough sets, further study is necessary regard-
ing classification learning and reasoning with uncertainty.
In addition, in the area of type 2 fuzzy-rough sets, further
investigations are required regarding attribute reduction
related to granular type 2 fuzzy sets and various methods
of knowledge discovery in the complex fuzzy information
systems. Furthermore, although some studies have investi-
gated type-2 variable precision multigranulation fuzzy-rough
sets, future studies can focus on uncertainty and reduction
measures of variable precision multigranulation fuzzy-rough
sets. Moreover, although some scholars have examined Fuzzy
Probabilistic Rough Sets (FPRSs) and Interval-Valued Fuzzy
Probabilistic Rough Sets (IVF-PRSs) with models of IVF
and fuzzy probabilistic approximation spaces, there is still
need to focus on characterizations of axiomatic methods
in FPRSs and IVF-PRSs models. Although some previous
papers investigated Gaussian Kernel Fuzzy-Rough Sets (FRS)
in Hybrid Information Systems (HIS) further studies are
required regarding technologies of parallel computing, for
example, Map Reduce to optimise the increment updating
model. There are also some papers regarding intuitionistic
fuzzy-rough set model. However, more investigation is nec-
essary to improve and construct the dominance intuitionistic

fuzzy variable precision rough sets theory models. Although
some previous papers examined the DTRS approach in the
area of fuzzy and IVF probabilistic approximation spaces,
there is a need for more studies to be conducted on the
circumstance of IVF sets. In addition, there are some works
related to IFDTRSs focusing on decision-theoretic rough
sets; nonetheless, there is a need for more investigations
on generalisation models based on the IFDTRSs. Although
some previous researchers focused on the fuzzy topologies
induced by the fuzzy-rough approximation operators, further
articles are necessary for enhancing the generalised similarity
of fuzzy relations, based on the t-norms and complete resid-
uated lattices. Furthermore, although papers were published
regarding the Intuitionistic Fuzzy Multigranulation Rough
Sets (IFMGRS), further enhancements of these models are
required by focusing on an interval-valued IF environment.

10. Conclusion

This review paper presented a comprehensive overview of
recent fuzzy generations of rough sets theory in various
applications areas. In total, 132 papers were selected for
systematic review and meta-analysis in the period 2010-2016
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from popular international journals accessible in the Web
of Science database. We carefully selected and reviewed 132
studies about the fuzzy-rough set theory based on the title,
abstract, introduction, research methods, and conclusions.
These selected papers were categorised into six application
areas. Also, all papers were classified based on the author
and year of publication, author nationalities, application field,
type of study, study category, study contribution, and journal
in which they appeared. Some points on fuzzy-rough set
theory were gained from this review article. The vast majority
of reviewed articles were published between 2013 and 2016.
In total, the papers were classified into six areas includ-
ing information systems, decision-making, approximation
operators, feature and attribute selection, fuzzy set theories,
and other application areas. Fuzzy set theory combined with
rough set theory was the most important application area
with 37 papers. Furthermore, 28 international peer reviewed
journals were considered in the current review paper. The
Journal of Information Systems had the first rank among
the considered journals regarding publishing papers related
to the fuzzy-rough set theory. The articles published at the
beginning of 2017 (if any) have not been included in the
present paper because of the limited reporting time. We
attempted to use those published articles in other sections
of our review paper, such as related works and introduction
sections. However, this present review can be developed
for the future studies. Another limitation is that the data
was collected from journals, while the examined documents
did not include textbooks, doctoral and master’s theses,
and unpublished papers on MCDM problems. Although
we attempted to provide the comprehensive review based
on the current and old literature, nevertheless, as a rec-
ommendation for future studies, the data can be collected
from these sources, and the obtained results can be com-
pared with the data obtained and reported in this study.
Another limitation of this review was that all of the papers
were extracted from the journals written in English. Hence,
scientific journals in other languages were not included in
the review. However, the researchers believe that this paper
comprehensively reviewed most of the papers published
in international journals. In this paper, we reviewed 132
papers which recently studied generalised fuzzy-rough sets
theory but attempted to include the comprehensive list of
papers in other sections. In addition, we carefully selected
and summarised the available papers of several publishers
in the Web of Science database. However, some relevant
outlets remained beyond the scope of the current study.
Therefore, future researchers will be able to review those
papers which are not considered in the current review.
Another limitation of the survey is that although the paper
presents various journals and conference publications that
recently studied generalised fuzzy-rough set models, it does
not include any of this topic discussed in the published
books.
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