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Abstract
Depleting lake ice is a climate change indicator, just like sea-level rise or glacial retreat. Monitoring Lake Ice Phenology 
(LIP) is useful because long-term freezing and thawing patterns serve as sentinels to understand regional and global climate 
change. We report a study for the Oberengadin region of Switzerland, where several small- and medium-sized mountain lakes 
are located. We observe the LIP events, such as freeze-up, break-up and ice cover duration, across two decades (2000–2020) 
from optical satellite images. We analyse the time series of MODIS imagery by estimating spatially resolved maps of lake ice 
for these Alpine lakes with supervised machine learning. To train the classifier we rely on reference data annotated manually 
based on webcam images. From the ice maps, we derive long-term LIP trends. Since the webcam data are only available 
for two winters, we cross-check our results against the operational MODIS and VIIRS snow products. We find a change in 
complete freeze duration of − 0.76 and − 0.89 days per annum for lakes Sils and Silvaplana, respectively. Furthermore, we 
observe plausible correlations of the LIP trends with climate data measured at nearby meteorological stations. We notice that 
mean winter air temperature has a negative correlation with the freeze duration and break-up events and a positive correla-
tion with the freeze-up events. Additionally, we observe a strong negative correlation of sunshine during the winter months 
with the freeze duration and break-up events.

Keywords Lake ice monitoring · Machine learning · Semantic segmentation · Satellite image processing · MODIS · VIIRS

Zusammenfassung
Aktuelle Eisentwicklung auf Schweizer Bergseen: 20-jährige Analyse von MODIS-Daten. Abnehmende Vereisung von Seen ist, 
wie der Anstieg des Meeresspiegels oder das Abschmelzen von Gletschern, ein Indikator für den Klimawandel. Die Beobachtung 
von phänologischen Ereignissen wie Beginn und Ende der Vereisung ist nützlich, weil diese Anhaltspunkte für die Beschreibung 
des regionalen und globalen Klimawandels bieten. Dieser Beitrag berichtet über eine Fallstudie zu kleinen bis mittelgrossen 
Seen in der Region Oberengadin (Schweiz). Beobachtet werden Beginn und Ende der Vereisung sowie die Dauer der Eis-
bedeckung über zwei Jahrzehnte (2000–2020), anhand von optischen Satellitenbildern. Auf Basis von MODIS-Bildfolgen (sowie 
VIIRS-Bildfolgen, soweit verfügbar) wurden, mit Hilfe von maschinellem Lernen, explizite Karten des Seeeises erstellt. Als 
Trainingsdaten für den Klassifikator dienen händische Annotationen auf der Grundlage von Webcam-Bildern. Aus den Eiskarten 
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wurden Trends für die Seevereisung abgeleitet. Da Webcam-Daten nur für zwei Winter verfügbar sind wurden die Ergebnisse 
auch mit operationellen MODIS- und VIIRS-Schneeprodukten verglichen. Es zeigt sich eine Verkürzung der Vereisungsdauer 
um 0.76 bzw. 0.89 Tage pro Jahr für den Silsersee und den Silvaplanersee. Weiters beobachten wir plausible Korrelationen der 
Trends mit Klimadaten von nahe gelegenen meteorologischen Stationen. Konkret korreliert die mittlere Lufttemperatur der 
Wintermonate stark mit Beginn, Ende und Dauer der Vereisung. Ebenso gibt es eine starke Korrelation zwischen der Sonnen-
scheindauer während der Wintermonate und dem Ende sowie der Dauer der Vereisung.

1 Introduction

Lake ice cover is part of the essential climate variable: lakes 
(https:// gcos. wmo. int/ en/ essen tial- clima te- varia bles/ lakes/). 
Many studies have reported on the response of Lake Ice Phe-
nology (LIP) to climate variations (Brown and Duguay 2010; 
Duguay et al. 2006; Howell et al. 2009; Kang et al. 2012; 
Sharma et al. 2019; Surdu et al. 2014). Local weather patterns 
and lake ice formation processes are inter-connected (Brown 
and Duguay 2010). Hence, monitoring the long-term LIP 
trends can provide integral cues on the local and global cli-
mate. Increasing temperatures cause decreasing trends in the 
lake ice formation process. Air temperature in the vicinity of 
a lake affects the ice formation process within the lake and 
vice versa. Moreover, there are potential positive feedbacks, 
as frozen lakes have a higher albedo (especially when covered 
with snow), and thus lower absorption and evaporation (Slater 
et al. 2021; Wang et al. 2018). In addition to its contribution to 
climate studies, lake ice monitoring is also useful to organise 
safe transportation, especially in lakes that freeze partially, to 
conserve freshwater ecosystems, to trigger warnings against 
ice shoves caused by wind during the break-up period, and for 
winter tourism (Hampton and et al. 2017; Hirose et al. 2008; 
Knoll et al. 2019; Mullan et al. 2017).

In this study, we monitor the spatio-temporal extent1 of ice 
on lakes of the Oberengadin region in the Swiss Alps (which 
reliably freeze every winter) daily over 20 winters. From those 
time series, we derive the dates of the following important LIP 
events: Freeze-Up Start (FUS), Freeze-Up End (FUE), Break-
Up Start (BUS) and Break-Up End (BUE). Using these four 
dates, we also estimate the Complete Freeze Duration (CFD) 
and Ice Coverage Duration (ICD). For lake ice monitoring, the 
Global Climate Observing System (GCOS) office requirement 
are daily observations, and an accuracy of ±2 days for the ice-
on/-off dates (https:// gcos. wmo. int/ en/ essen tial- clima te- varia 
bles/ lakes/ ecv- requi remen ts).

In this work, we use only image data from optical satellites2, 
and provide a direct, data-driven observation not influenced by 
model assumptions about the ice formation process. We see 

satellite imagery as an independent information source and 
consider image analysis complementary to other methods of 
lake ice modelling. MODIS and VIIRS have several advan-
tages such as wide area coverage, good spectral and fine tem-
poral resolution (daily), and free availability. Additionally, as 
opposed to other optical satellites such as Landsat-8, Sentinel-2 
and the like, MODIS and VIIRS offer the best spatio-temporal 
resolution trade-off for the application of single-sensor lake 
ice monitoring, even though the spatial resolution is moderate 
(250–1000 m Ground Sampling Distance, GSD). An important 
asset is the availability of long time series, e.g., MODIS data 
is available for the entire period since 2000, contrary to other 
sensor data like airborne or terrestrial photography, webcams 
etc. We use the linear Support Vector Machine (Cortes and 
Vapnik 1995, SVM) classifier to perform semantic segmenta-
tion and derive the LIP events from the resulting time series 
by fitting a piece-wise linear model per winter. Additionally, 
we perform a fourfold cross-validation experiment and assess 
the transferability of the learned model across space and time.

To our knowledge, the only operational lake ice product is 
the Climate Change Initiative Lake Ice Cover (Crétaux and 
et al. 2020), however, our target lakes are not included among 
the 250 lakes it covers. A second product, Copernicus Lake Ice 
Extent  (LIE, https:// land. coper nicus. eu/ global/ produ cts/ lie), is 
still in the pre-operational stage due to accuracy issues, and 
coverage only starts in 2017. Though not designed for lake ice, 
the MODIS Snow Product (Hall and Riggs 2016, MSP) and 
VIIRS Snow Product (VSP, https:// nsidc. org/ sites/ nsidc. org/ 
files/ techn ical- refer ences/ VIIRS- snow- produ cts- user- guide- 
final. pdf) are also reasonable proxies since lakes in the Alps are 
typically snow-covered for most of the frozen period. In Tom 
et al. (2020b), we have reported a comparison of specifications 
of the operational lake ice/snow products. We cross-check our 
results with these two snow products, see Sect. 4.1.

For Swiss lakes, a previous study (Hendricks Franssen 
and Scherrer 2008) has verified that the lake ice formation 
is strongly correlated with the surrounding air temperature. 
The authors deducted an empirical relationship between 
the sum of negative degree days (also called Accumulated 
Freezing Degree Days, AFDD) and the lake ice formation 
process, and modelled the probability of ice cover via bino-
mial logistic regression. For that study, temperature data 
from 1901–2006 was gathered to study eleven lakes in the 

1 We measure ice cover, but not ice thickness.
2 We have previously also used webcams  (Tom et  al. 2020b; Xiao 
et  al. 2018) and Sentinel-1 Synthetic Aperture Radar  (Tom et  al. 
2020a, SAR) for lake ice monitoring.

https://gcos.wmo.int/en/essential-climate-variables/lakes/
https://gcos.wmo.int/en/essential-climate-variables/lakes/ecv-requirements
https://gcos.wmo.int/en/essential-climate-variables/lakes/ecv-requirements
https://land.copernicus.eu/global/products/lie
https://nsidc.org/sites/nsidc.org/files/technical-references/VIIRS-snow-products-user-guide-final.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/VIIRS-snow-products-user-guide-final.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/VIIRS-snow-products-user-guide-final.pdf
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lower-lying Swiss plateau. However, none of the mountain 
lakes we target were included.

The aims of the proposed study are twofold. First, it sup-
plements the existing databases about lake ice on mountain 
lakes, and further corroborates the accuracy of supervised 
machine learning for detecting LIP events on small lakes, 
using only low-resolution imagery. Second, it examines 
the correlation between LIP and climate data for small 
lakes in a topographically and climatically complex Alpine 
environment.

1.1  LIP Trend Analysis Studies with MODIS 
and VIIRS

The LIP trends of several lakes with different geographical 
conditions have been studied and reported in the literature. 
Though most of them used information from various ice 
databases (e.g., NSIDC), some studies directly derived the 
trends from radar and optical satellite data. In the following, 
we focus on studies that, like ours, analyse MODIS and/
or VIIRS optical satellite imagery to examine trends over 
multiple winters.

Latifovic and Pouliot (2007) used the AVHRR historical 
data record in addition to in-situ measurements to perform 
long-term (1950–2004) trend analysis of Canadian lakes 
with areas > 100 km

2 , via an automated profile feature 
extraction procedure. They confirmed later freeze-up (0.12 
d/a) and earlier break-up ( −0.18 d/a) for the majority of 
lakes that were analysed and suggested that their procedure 
to extract the LIP events is not sensor-specific and could be 
applied to other satellite data, too. Murfitt and Brown (2017) 
also used MODIS data to extract lake ice trends (2001–2014) 
for the Canadian states of Ontario and Manitoba, and found 
regionally varying trends.

Zhang and Pavelsky (2019) proposed to threshold the red 
reflectance band of MODIS (threshold values determined 
with the help of Landsat images) to monitor ice on lakes 
in Maine (USA), with areas ranging from 0.13 to 305 km2 . 
Though they analysed data from 296 lakes over 19 years 
(2000–2018), significant break-up and freeze-up trends were 
detected only for 3% , respectively 2.1% of the lakes. The 
same threshold-based approach, with additional post-pro-
cessing filters, was applied to a new LIP database covering 
4241 Alaskan lakes (Zhang et al. 2021) with areas > 1 km

2 , 
over the period 2000–2019. The estimated significant LIP 
trends are: later freeze-up (0.29 d/a) and earlier break-up 
( −0.55 d/a) for 289 and 440 lakes, respectively; and earlier 
freeze-up ( −0.33 d/a) and later break-up (0.75 d/a) for only 
11 and 4 lakes, respectively.

Šmejkalová et  al. (2016) extracted the LIP trends 
(2000–2013) for 13,300 Arctic lakes (area >1 km2 ) using 
MODIS imagery, and observed a trend towards earlier break-
up. They reported a mean shift in BUS in the range: −0.10 

d/a (Northern Europe) to −1.05 d/a (central Siberia), and 
BUE in the range: −0.14 d/a to −0.72 d/a. Kropáček et al. 
(2013) studied the LIP trends of 59 lakes (area > 100 km

2 ) 
on the Tibetan Plateau from 2001 to 2010 using MODIS 
data. However, the estimated LIP trends varied across the 
target lakes and it was concluded that the 10-year time span 
is too short to draw a firm conclusion about LIP trends. Gou 
et al. (2015) analysed the ice formation trends (2000–2013) 
in lake Nam Co (Tibet, area 1920 km2 ) using MODIS and 
in-situ data and found strong correlations with air tempera-
ture and wind speed patterns. This study found that high 
wind speeds during winter time could potentially expedite 
the freeze-up process. Additionally, this work reported a 
significant reduction in the total freeze duration. Gou et al. 
(2017) later analysed Nam Co for the period 2000 till 2015 
using multiple MODIS products and reported delayed FUS 
(0.58 d/a) as well as BUS (0.09 d/a), and reduced ice dura-
tion ( −0.49 d/a) trends. Another study (Yao et al. 2016) 
also noted an increasingly shorter freeze duration during 
the period 2000–2011 when investigating the lakes in the 
Hoh Xil region (Tibet, 22 lakes with area > 100 km

2 ), using 
MODIS, Landsat TM/ETM+, and meteorological data. In 
addition, that work estimated later freeze-up and earlier 
break-up trends. They reported that the FUS, FUE, BUS, 
BUE, CFD and ICD shifted on average by 0.73, 0.34, −1.66 , 
−0.81 , −1.91 , −2.21 d/a, respectively. Cai et al. (2019) also 
analysed 58 lakes (area > 41 km

2 ) located on the Tibetan 
Plateau during the period from 2001 till 2017 using both 
Terra and Aqua MODIS imagery. For 47 lakes, a later FUS 
was noticed (0.55 d/a) while for the remaining 11 lakes an 
earlier FUS was observed ( −0.44 d/a). For 50% of the target 
lakes, an earlier BUE ( −0.69 d/a) was noted, however, for the 
other half a later BUE (0.39 d/a) was observed. Additionally, 
they reported a reduced ice cover duration for 40 lakes ( −0.8 
d/a), while for 18 lakes an increase was noted (1.11 d/a).

Yang et al. (2019) used MODIS to estimate the LIP trends 
for 8 large lakes (106 to 3461 km2 ) in Northeastern China 
from 2003 to 2016. Later FUS (0.65 d/a), earlier BUE ( −0.19 
d/a) and shorter freeze duration ( −0.84 d/a) trends were 
noticed. Qi et al. (2020) used AVHRR, MODIS, and Land-
sat data to extract the LIP of Qinghai lake (China, area of 
4294 km

2 ) for the period 1980–2018. They estimated a shift 
of 0.16, 0.19, −0.36 , and −0.42 d/a for FUS, FUE, BUS and 
BUE respectively, also pointing towards progressively later 
freeze-up and earlier break-up. Additionally, they computed 
the decreasing patterns in ICD ( −0.58 d/a) and CFD ( −0.52 
d/a). That study also identified correlations between the LIP 
and climate indicators like the AFDD, wind speed, precipita-
tion, etc. during the winter season. Cai et al. (2020) used a 
threshold-based method to extract LIP trends from MODIS 
snow product for 23 lakes (2001–2018, Xinjiang Uygur 
Region, area: 11 to 1004 km2 ) in China. They found that 
the ICD decreased ( −1.08 d/a) in 16 out of the 23 lakes and 
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increased (1.18 d/a) for the rest. In addition, they reported 
later freeze-up (0.52 d/a) and earlier break-up ( −0.51 d/a) in 
17 and 18 lakes, respectively. Additionally, they found that 
the freeze-up events are more affected by lake-specific fac-
tors such as area and mineralisation; while climatic factors 
like Lake Surface Water Temperature (LSWT) have more 
influence on the break-up events. That work also emphasised 
that LSWT has a stronger influence on the LIP events than 
the air temperature.

In this work, we deal with small- and medium-sized lakes, 
whereas most trend studies that used MODIS (Gou et al. 
2015; Qi et al. 2019, 2020; Yao et al. 2016) focused on large 
lakes. Notable exceptions are a study by Šmejkalová et al. 
(2016), concerning only break-up trends; and by Zhang and 
Pavelsky (2019), who reported results for lakes as small as 
0.13 km

2 , but with a limited accuracy of 5–8 days mean 
absolute error for the ice-on/-off dates, and with no signifi-
cant trend. In Zhang et al. (2021), the same team processed 
lakes down to 1 km

2 with an accuracy of 5–11 days. It is 
interesting to note that, unlike the present study, both these 
works (Zhang and Pavelsky 2019; Zhang et al. 2021) did not 
perform any correction for absolute geo-location error when 
handling small lakes of only a few, often mixed, MODIS 
pixels. They also found it necessary to tune the thresholds 
separately for each lake and even use different thresholds for 
the same lake in different years. On the contrary, for practi-
cal reasons we derive a fixed set of parameters for all winters 
and the whole (admittedly, much smaller) set of target lakes.

Compared to MODIS, the literature on lake ice monitor-
ing with VIIRS is limited. Sütterlin et al. (2017) estimated 
the LIP dates for winter 2016–2017 in selected Swiss lakes 
using the LSWT derived from visible and near-infrared 
reflectances, and VIIRS thermal infrared band ( I

5
 ). Later, 

for winter 2016–2017, Tom et al. (2020b) estimated the LIP 
dates of lakes Sihl, Sils, Silvaplana, and St. Moritz from 
VIIRS and MODIS data. To our knowledge, no multi-winter 
VIIRS-based LIP trend analysis has been reported yet. To 
summarise, most related works reviewed so far have found 
trends towards later freeze-up, earlier break-up and declining 
freeze duration. The prevalent methods are physics-inspired 
models based on empirical indices and thresholds. To our 
knowledge, none of the earlier trend studies applied Machine 
Learning (ML) methods to identify lake ice. Kropáček et al. 
(2013) used k-means clustering to group the target lakes but 
not to detect lake ice.

1.2  Lake Ice Observation with Machine Learning

The last decades have seen the rise of ML in remote sens-
ing and the Earth sciences. That is, large-scale statistical 
data analysis is used to capture the complex input-out-
put relationships in a data-driven manner. In Tom et al. 
(2020b), we investigated pixel-wise classification of the 

spatio-temporal extent of lake ice from MODIS and VIIRS 
imagery with SVM. Each pixel was classified as either 
frozen or non-frozen in a supervised manner. We presented 
extensive experiments on data from two full winters and 
confirmed the efficacy of SVM for lake ice monitoring 
with MODIS and VIIRS. In this study, we apply SVM to 
quantify the 20-year lake ice trends. Xiao et al. (2018) and 
Prabha et al. (2020) explored the potential of convolutional 
neural networks for lake ice detection in terrestrial web-
cam images (RGB). They performed a supervised classi-
fication of the lake pixels using the Tiramisu (Jégou et al. 
2016), respectively Deeplab v3+ (Chen et al. 2018) net-
works, into the four classes: water, ice, snow and clutter. 
Recently, Hoekstra et al. (2020) proposed an automated 
approach for ice vs. water classification in RADARSAT-2 
data, combining unsupervised iterative region growing 
using semantics and supervised random forest labelling. A 
deep learning approach to lake ice detection in Sentinel-1 
SAR imagery has been described in Tom et al. (2020a), 
and achieved promising results, including transferability 
across lakes and winters. Very recently, Wu et al. (2021) 
compared the capabilities of four different ML methodolo-
gies: multinomial logistic regression, SVM, random for-
est, and gradient boosting trees for lake ice observation 
using the MODIS data. They modelled lake ice monitoring 
as a 3-class (ice, water, cloud) supervised classification 
problem. The four classifiers were tested on 17 large lakes 
from North America and Europe with areas > 1040 km

2 , 
and achieved >94% accuracy. Random forest and gradient 
boosting trees showed better generalisation performance 
on this dataset of large lakes.

Table 1  Key LIP events: Freeze-Up Start (FUS), Freeze-Up End 
(FUE), Break-Up Start (BUS), Break-Up End (BUE), Ice Coverage 
Duration (ICD) and Complete Freeze Duration (CFD)

Event Definition

FUS 30% or more of the non-cloudy lake portion is 
frozen and the just previous non-cloudy day 
should be < 30% frozen

FUE 70% or more of the non-cloudy lake portion is 
frozen and the just previous non-cloudy day 
should be < 70% frozen

BUS 30% or more of the non-cloudy lake portion is 
non-frozen and the just previous non-cloudy 
day should be < 30% non-frozen

BUE 70% or more of the non-cloudy lake portion is 
non-frozen and the just previous non-cloudy 
day should be < 70% non-frozen

ICD BUE—FUS
CFD BUS—FUE
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1.3  Definitions Used

The pixels that lie completely inside a lake are termed as 
clean pixels. Non-transition dates are the days when a lake 

is either completely frozen or completely non-frozen, the 
remaining days in a winter season are termed transition 
dates. For each winter, we process all the dates from the 
beginning of September until the end of May. Definitions 
of the key LIP events are shown in Table 1.

2  Study Area and Data

2.1  Study Area

We process four small- to medium-sized Swiss Alpine lakes: 
Sihl ( 11.3 km2 ), Sils ( 4.1 km

2 ), Silvaplana ( 2.7 km

2 ) and 
St. Moritz ( 0.8 km

2 ), see Fig. 1 and Table 2. For the three 
small lakes in the region Oberengadin (Sils, Silvaplana, 
St. Moritz), located at an altitude > 1750 m, there are long 
in-situ observation series (important for climate studies), 
and they are also included in the NSIDC lake ice database 
(https:// nsidc. org), although not updated recently. The fourth 
lake (Sihl) from the region Einsiedeln is relatively larger, 
lies at a lower altitude on the North part of the Alps, and has 
different environmental conditions.

Table 2  Details of the lakes (primary source: Wikipedia)

The last four rows display information about the nearest meteorologi-
cal stations

Sihl Sils Silvaplana St. 
Moritz

Latitude ( ◦N) 47.14 46.42 46.45 46.49
Longitude ( ◦E) 8.78 9.74 9.79 9.85
Altitude (m) 889 1797 1791 1768
Max. depth (m) 23 71 77 42
Avg. depth (m) 17 35 48 26
Area ( km2) 11.3 4.1 2.7 0.78

Volume ( Mm
3) 96 137 140 20

Meteo station EIN SIA SIA SAM
Latitude ( ◦N) 47.13 46.43 46.43 46.53
Longitude ( ◦E) 8.75 9.77 9.77 9.88
Altitude (m) 910 1804 1804 1708

Fig. 1  MODIS orthophoto map (RGB composite, red: B
1
 , green: B

4
 , 

blue: B
3
 ) of Switzerland (left) captured on 7 September 2016. Red 

and amber rectangles show the regions Einsiedeln (around lake Sihl) 
and Oberengadin (with lakes Sils, Silvaplana and St. Moritz, from 

left to right), respectively. Inside each zoomed rectangle on the right, 
the respective lake outlines are shown in light green and the nearest 
meteorological stations (EIN:Einsiedeln, SIA: Segl Maria, SAM: 
Samedan) are marked using pins

https://nsidc.org


418 PFG (2022) 90:413–431

1 3

For these four lakes, there is no reference freeze/thaw 
data available from the past two decades. Hence, we study 
the weather patterns in the regions near the lakes. For each 
lake, the temperature and precipitation data recorded at the 
nearest meteorological stations are shown in Fig. 2. It can be 
seen that during the past 20 winters, at all the three meteoro-
logical stations, the mean temperature follows an increasing 
trend. On the other hand, precipitation has a decreasing pat-
tern. While Meteoswiss has reported a significant trend of 
temperature increase in the Swiss Alps since 1864, they have 
so far not confirmed a notable precipitation trend (https:// 
www. meteo swiss. admin. ch/ home/ clima te/ clima te- change- 
in- switz erland/ tempe rature- and- preci pitat ion- trends. html). 
Over the shorter period of the past 20 winters, precipita-
tion has been slightly declining. Warmer winters at higher 
altitudes in Switzerland could be linked to a decrease in 
precipitation, see Rebetez (1996). The pattern of precipita-
tion over the 20 years differs somewhat between the station 
EIN and the two other (similar) stations, e.g., see the winters 
2008–2009, 2012–2013.

2.2  Data

In our analysis, we use the data from Terra MODIS (https:// 
terra. nasa. gov/ about/ terra- instr uments/ modis) and Suomi 
NPP VIIRS (https:// ncc. nesdis. noaa. gov/ VIIRS/) satellites 
downloaded from the LAADS (https:// ladsw eb. modaps. 
eosdis. nasa. gov) and NOAA (https:// www. avl. class. noaa. 
gov/) databases, respectively. For MODIS processing, we 
downloaded the MOD02 (geolocated and calibrated radi-
ance, level 1b, Top Of Atmosphere), MOD03 (geolocation) 
and MOD35_L2 (cloud mask) products and pre-processed 

using MRTSWATH (https:// lpdaac. usgs. gov/ tools/ modis_ 
repro jecti on_ tool_ swath/, re-projection and re-sampling) 
and LDOPE (Roy et al. 2002, cloud mask) software. For 
VIIRS, we downloaded the Scientific Data Record data for 
the imagery bands, IICMO and VICMO products for the 
cloud masks, and GITCO (for image bands) and GMTCO 
(for cloud masks) for terrain corrected geolocation. VIIRS 
pre-processing is done using the following software pack-
ages: SatPy (https:// satpy. readt hedocs. io/) for assembling the 
data granules, mapping and re-sampling, H5py (https:// www. 
h5py. org) for cloud mask extraction, PyResample (https:// 
resam ple. readt hedocs. io) and GDAL (https:// gdal. org) for 
re-sampling of cloud masks.

Figure 3 displays more details of the data that we use 
as a stacked bar chart (one colour per lake). For all target 
lakes, the total number of pixels in each winter is shown on 
the y-axis, against the winters in chronological order on the 
x-axis. In Fig. 3, note that some winters are relatively less 
cloudy and hence the number of cloud-free pixels varies 
across winters, even for the same lake and sensor. Due to its 
small size there exist no clean pixel for St. Moritz in VIIRS 
imagery bands (Tom et al. 2020b), hence we exclude it from 
the VIIRS analysis. It can be inferred from Fig. 3 that, con-
trary to lake Sihl located at a lower altitude with different 
surrounding topography, the cloud patterns of lakes Sils, Sil-
vaplana and St. Moritz are quite similar, due to geographical 
proximity (see also Fig. 1). However, minor differences exist 
(in a few winters) between the two very nearby lakes Sils and 
Silvaplana due to cloud mask errors. Different acquisition 
times of MODIS and VIIRS within a day can also result in 
varying cloud masks. Figure 3c shows that approximately 40 
to 60% of all observations per winter are covered by clouds, 

Fig. 2  Mean winter air tempera-
ture (row 1) and total winter 
precipitation (row 2) are plotted 
(solid curve, y-axis) against the 
winters shown in chronological 
order (x-axis). Twenty winter 
data from the nearest mete-
orological stations: EIN (Sihl), 
SIA (Sils and Silvaplana) and 
SAM (St. Moritz) are used. The 
corresponding trends (linear fit, 
dotted curve) are also shown 
with the same colour. Data 
courtesy of MeteoSwiss. Winter 
00–01 represents the dates from 
September 2000 till May 2001 
(and similarly other winters)

https://www.meteoswiss.admin.ch/home/climate/climate-change-in-switzerland/temperature-and-precipitation-trends.html
https://www.meteoswiss.admin.ch/home/climate/climate-change-in-switzerland/temperature-and-precipitation-trends.html
https://www.meteoswiss.admin.ch/home/climate/climate-change-in-switzerland/temperature-and-precipitation-trends.html
https://terra.nasa.gov/about/terra-instruments/modis
https://terra.nasa.gov/about/terra-instruments/modis
https://ncc.nesdis.noaa.gov/VIIRS/
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://www.avl.class.noaa.gov/
https://www.avl.class.noaa.gov/
https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath/
https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath/
https://satpy.readthedocs.io/
https://www.h5py.org
https://www.h5py.org
https://resample.readthedocs.io
https://resample.readthedocs.io
https://gdal.org
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strongly reducing the effective temporal resolution of the 
time series.

Ground truth. Our ground truth is based on the vis-
ual interpretation of freely available high-resolution 
images from webcams monitoring the target lakes. 
One label (fully frozen, fully non-frozen, partially 
frozen) per day is assigned. Two different operators 
looked at each image, i.e., a second expert verified 
the judgement of the first operator to minimise inter-
pretation errors. When deciphering a webcam image 
was difficult, additional images were used from other 
webcams viewing the same lake (if available), images 
from the same webcam but at other acquisition times 
on the same day, and images of the same webcam for 
the days before and after the given observation day. 
We also improved the webcam-based ground truth 
using sporadic information from media reports, and 
by visually interpreting Sentinel-2 images, whenever 
available and cloud-free. No webcam data is avail-
able from the winters before 2016–2017. Moreover, 
the manual interpretation process is labour intensive. 
Thus, ground truth is available only for winters 2016–
2017 and 2017–2018. Even though visual interpreta-
tion is the standard practice, a certain level of label 

noise inevitably remains in the ground truth, due to 
factors such as interpretation errors, image compres-
sion artefacts, large distance and flat viewing angle on 
the lake, etc. Furthermore, the webcams used are not 
optimally mounted for lake ice monitoring and hence 
do not always cover the full lake area (or even a major 

Fig. 3  Row 1 displays the clean, 
cloud-free pixels (transition 
and non-transition dates) from 
the four target lakes. Data from 
both MODIS (20 winters, 4 
lakes) and VIIRS (8 winters, 
3 lakes) is displayed. Row 2 
shows the percentage of at least 
30% Non-Cloudy (NC) days 
during each winter

(a) MODIS pixels (b) VIIRS pixels

(c) MODIS clouds (20 winters)

Fig. 4  Flow diagram of the proposed methodology
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portion of it), even for the smallest lake St. Moritz. 
Still, the ground truth serves the purpose, in the sense 
that it has significantly fewer wrongly labelled pixels 
than the automatic prediction results. For the winters 
2016–2017 and 2017–2018, we see no possibility to 
obtain a more accurate, spatially explicit ground truth 
for our task.

3  Methodology

A flowchart of the method is shown in Fig. 4. We perform 
the pre-processing steps as in Tom et al. (2020b). First, the 
absolute geolocation error for both sensors (0.75, respec-
tively 0.85 pixels x- and y-shifts for MODIS; 0.0, respec-
tively 0.3 pixels x- and y-shifts for VIIRS) are corrected. 
The generalised (Douglas and Peucker 1973) lake outlines 
are then back-projected onto the images to extract the clean 
pixels. Mixed pixels are discarded from the analysis. Binary 
cloud masks are derived from the respective cloud mask 
products to limit the analysis only to cloud-free pixels. We 
super-resolved all low-resolution MODIS bands (500 m, 
1000 m) to 250 m using bilinear interpolation prior to the 
analysis. This step is not required for VIIRS as all used 
bands have the same GSD ( ≈ 375 m).

3.1  Machine Learning for Lake Ice Extraction

We model lake ice detection in optical satellite images as a 
per-pixel 2-class (frozen, non-frozen) supervised classifica-
tion problem and employ a linear SVM (Cortes and Vapnik 
1995) classifier. As in Tom et al. (2020b), for each pixel, the 
feature vector is formed by directly stacking the 12 (5) bands 

of MODIS (VIIRS). The bands that offer maximum sepa-
rability for the task of lake ice monitoring were automati-
cally chosen by the supervised XGBoost feature selection 
algorithm (Chen and Guestrin 2016). We treat snow-on-ice 
and snow-free-ice as a single class: frozen. Class non-frozen 
denotes the open water pixels.

While there recently has been a strong interest in deep 
learning for remote sensing tasks (Camps-Valls et al. 2021), 
deep neural networks are not suitable for our particular 
application, due to the scarcity of pixels with reliable ground 
truth. The lakes that we monitor are small and ground truth 
is available only for two winters (see Sect. 2.2), which is too 
little to train data-hungry neural networks. Also, given the 
large GSD and limited need for spatial context, we do not 
expect deep models to greatly outperform shallower ones.

3.2  LIP Estimation

Each winter, using the trained ML model, we process all 
available non-cloudy acquisitions and generate pixel-wise 
classification maps (one per acquisition). To recover the 
temporal evolution (per winter), the percentage of non-
frozen pixels is computed from each classification map 
and is plotted on the y-axis against the acquisition time on 
the x-axis. Then, as in Tom et al. (2020b), multi-temporal 
smoothing is performed using a Gaussian kernel with a 
standard deviation of 0.6 days and window width of 3 days. 
An example MODIS results (timeline) for lake Sils from 
winter 2006–2007 is shown in Fig. 5a. Results from different 
months are displayed in different colours, see the legend.

After multi-temporal smoothing, we find all the potential 
candidates for the following four critical dates: FUS, FUE, 

Fig. 5  Piece-wise linear (“U 
with wings”) curve fitting exam-
ple. NF indicates Non-Frozen. 
Results are displayed only for 
the cloud-free acquisitions

(a) Results timeline before curve fitting

(b) After curve fitting
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BUS and BUE, see Table 1 for the corresponding defini-
tions. Within a winter, it is possible that > 1 candidates 
exist per critical date which all satisfy the respective defi-
nition. To weed out some spurious candidates, we enforce 
the constraint that the four dates must occur in the follow-
ing chronological order: FUS→FUE→BUS→BUE. Then we 
exhaustively search for the optimal set of four dates among 
the remaining candidates. To that end, we fit a continuous, 
piece-wise linear “U with wings” shape to the per-day val-
ues of percentage of non-frozen pixels, such that the fitting 
residuals z are minimised (see example fit in Fig. 5b, shown 
in black colour). In detail, the loss function for the fit is 
defined as:

where N is the total number of cloud-free acquisitions.

is the Huber norm of the residual. For the shape parameter � , 
we use a constant value of 1.35 which offers a good trade-off 
between the robust l

1
-norm for large residuals and the sta-

tistically efficient l
2
-norm for small residuals (Owen 2006).

Per lake, we assume that each critical date occurs only 
once per winter, which is always true in Oberengadin. Lake 
Sihl does not always fully freeze. As it lies outside of the 
target region and is included mostly to ensure transferability 
of the ice classifier, we do not extract the LIP events for Sihl. 
Moreover, we decide to exclude lake St. Moritz since it is too 
small for the GSD of MODIS (only 4 clean pixels), making 
the fraction of frozen pixels overly susceptible to noise. We 
thus prefer to study only the two main lakes in Oberengadin, 
Sils and Silvaplana, in terms of long-term lake ice trends. 
These two lakes fully freeze every year and typically have 
a single freeze-up and break-up period. To further stabilise 
the LIP estimates we include a weak prior probability for 
each phenological date, in the form of a diffuse Gaussian 
distribution.

The prior probability (P) is given by:

where Pfus , Pfue , Pbus , and Pbue are Gaussian normal distribu-
tions for the events FUS, FUE, BUS and BUE, respectively. 
The prior formalises the knowledge that freeze-up normally 
occurs around the end of December and takes around three 
days, and break-up occurs around the end of April over a 
similar period, for both target lakes. To not bias the estima-
tion, but only to minimise the risk of implausible results, 
we choose very wide Gaussians ( � = 1 month). Further-
more, we impose a constraint that the duration of freeze-up 

(1)LLIP =

1

P
⋅

N∑

i=1

H�(z)

(2)H𝜙(z) =

{
z2 |z| ≤ 𝜙

2𝜙|z| − 𝜙2 |z| > 𝜙

(3)P = Pfus ⋅ Pfue ⋅ Pbus ⋅ Pbue

(FUE-FUS) and break-up (BUE-BUS) is not more than two 
weeks.

We use 30% as the threshold to estimate the four dates. 
For example, a date is considered a FUS candidate if 30% 
or more of the non-cloudy portion of the lake is frozen. 
Some studies based on MODIS (Qi et al. 2020; Reed et al. 
2009; Yao et al. 2016) have used 10% as the threshold, while 
another approach (Kropáček et al. 2013) even employed 5%. 
All of them monitored larger lakes (45 to 4294 km2 area). 
We empirically found that for our rather tiny lakes the above 
thresholds are too strict and a threshold of 30% is needed to 
ensure reliable decisions. To see why, consider that in the 
best case (Sils, cloud-free) a lake has 33 clean pixels, but 
that number can go down to as few as 7 (Silvaplana, 70% 
cloud cover). Note also that on such small lakes a large por-
tion of all pixels is very close to the lake’s shoreline, where 
the geo-location error (in the worst case 0.5 pixel) may have 
a significant impact.

4  Results

In addition to the overall classification accuracy, we report 
also a stricter measure, mean intersection-over-union 
(mIoU), which better depicts the performance when the class 
distribution is imbalanced. Overall classification accuracy 
is given by:

where TP, TN, FP, and FN represent true positive pixels, 
true negatives, false positives and false negatives, respec-
tively. For each class, the Intersection-over-Union score (IoU 
or Jaccard Index) is given by:

mIoU is the average of the per-class IoUs.

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)IoU =

TP

TP + FP + FN

Table 3  Test-train split for the MODIS data from 20 winters. Aux set 
refers to auxiliary set

Test set Training set

2016–2017 2017–2018
2017–2018 2016–2017
Remaining winters 2016–2017, 

2017–2018, 
aux set
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4.1  Experiments on MODIS Data from 20 Winters

Test-train split. We process MODIS data from all the 20 
winters since 2000–2001 (inclusive). Details of the train-
ing set for each tested winter are shown in Table 3. To 
avoid systematic biases in the estimated ice maps due to 
overfitting to a particular year, we proceed as follows: we 
train the linear SVM model on all non-transition dates of 
2016–2017 and use it to estimate lake ice coverage for all 
days in 2017–2018 (including transition dates). We repeat 
that procedure in the opposite direction, i.e., we train on all 
non-transition days of 2017–2018 and perform inference 
for all dates of 2016–2017. Then, we merge all non-transi-
tion dates from both winters into a new, larger two-winter 
training set, which we further augment with an auxiliary 
dataset. The latter contains all acquisitions of lakes Sils 
and Silvaplana captured during the remaining 18 years in 
September (when the lakes are never frozen) and in Feb-
ruary (when the lakes are always frozen). The purpose of 
the auxiliary dataset is to cover a wider range of weather 
and lighting conditions that might not have been encoun-
tered in the two winters with annotated ground truth, for 
better transferability. Data of lake Sihl is not included in 
the auxiliary set, as it does not freeze reliably, St. Moritz 
is ignored due to its negligible number of pixels. The 

(a) 1.1.2006 (b) 23.1.2010

(c) 10.3.2014 (d) 20.9.2019

Fig. 6  MODIS classification results (lake Sihl, overlaid on band B
1
 ) 

on selected dates from the past 20 winters. blue and red squares are 
overlaid on the pixels detected as frozen and non-frozen respectively

(a) (b)

(c) (d)

Fig. 7  (a) The comparison of our Machine Learning (ML) products 
(MODIS and VIIRS) for the 8 common winters. MAD stands for 
Mean Absolute Difference. Silv represents lake Silvaplana. (b) Our 
(MODIS) ML product (per-winter MAD) vs. MODIS Snow Prod-
uct (MSP) for 20 winters. (c) Comparison of our MODIS (M, 20 

winters) and VIIRS (V, 8 winters) ML products with the respective 
snow products (MSP and VIIRS Snow Product, VSP). (d) Deviations 
between the two snow products and our webcam-based ground truth 
(GT)
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two-winter and auxiliary datasets are merged and used to 
train a linear SVM model, which is then used to predict ice 
cover maps for the 18 remaining winters.

Qualitative results. Exemplary qualitative results of lake 
Sihl are shown in Fig. 6. The respective dates are displayed 
below each sub-figure. The lake outline overlaid on the 
MODIS band B

1
 is shown in green. Pixels detected as frozen 

and non-frozen are shown as blue and red squares, respec-
tively. The results include fully-frozen, fully non-frozen and 
partially frozen days.

Additional check using VIIRS. Direct quantitative analysis 
is not possible, since no ground truth is available for 18 out 
of the 20 winters. To validate our ML product (MODIS), we 
additionally process the VIIRS data from 8 winters (since 
winter 2012–2013, inclusive) and compare the results. Since 
a pixel-to-pixel comparison is not straightforward due to dif-
ferent GSDs, we fit the timelines per winter for each lake as 
described before (Fig. 5a) and compute absolute differences 
(AD) between the daily estimates for the percentage of fro-
zen pixels. The AD is computed only on dates when both 
MODIS and VIIRS acquisitions are present, and when the 
lake is at least 30% cloud-free. The ADs are then aggregated 
to obtain a Mean Absolute Difference (MAD) per winter. 
Figure 7a shows, for each lake, the mean and standard devia-
tion of the MAD across the 8 common winters. The low 
mean values (3.5, 5.8 and 4.3 percent respectively for Sihl, 
Sils and Silvaplana) show that our MODIS and VIIRS ML 
products are in good agreement, especially considering that 
a part of the MAD is due to the difference in GSD between 
MODIS (250 m) and VIIRS ( ≈ 375 m). Note also that the 
acquisition times during the day (and hence the cloud masks) 
can differ; and that, although the absolute geolocation has 
been corrected for both sensors, errors up to 0.5 pixels can 
still remain (Aksakal 2013) and affect the selection of clean 
pixels near the lake shore.

Comparison with operational snow products. We com-
pare our MODIS (20 winters) and VIIRS (8 winters) ML 
products to the respective snow products: MODIS snow 
product (collection 6, MOD10A1), VIIRS snow product 
(collection 1, VNP10A1F). For the regions of interest, the 
VIIRS snow product has some data gaps, hence the compari-
son is done whenever it is available. For actual snow cover 
mapping, errors of 7–13% have been reported for MODIS 
snow product  (Hall and Riggs 2016). Our findings are in 
line with this: for the two winters 2016–2017 and 2017–
2018 (non-transition days only) we observe an error of 14% 
w.r.t. our ground truth, see Fig. 7c.

For each lake, we first estimate the percentage of frozen 
pixels per day using our MODIS and VIIRS ML products. 
Since a pixel-to-pixel registration is difficult in the presence 

of absolute geolocation shifts and/or GSD differences, the 
daily percentage of frozen pixels is also computed from the 
snow products and the MAD is estimated for each winter. 
See Fig. 7d for the comparison of our ML product (MODIS) 
and the MODIS snow product. For the three lakes, the per-
winter MAD is shown on the y-axis against the winters on 
the x-axis.

Overall, the 20-year time series inter-comparison (per-
lake mean and standard deviation of MAD, Fig. 7b) does not 
suggest large, systematic inconsistencies. On average, our 
MODIS and VIIRS ML products deviate by mean MAD val-
ues of 14–18% and 12–19% respectively. These deviations 
are only a little higher than the estimated error of the snow 
products and are relatively stable across different years.

It is important to point out that the snow products are an 
imperfect proxy for lake ice because a lake can be frozen 
but not snow-covered, especially near freeze-up when it 
has not yet snowed onto the ice. Also, mixed ice and water 
cases go undetected in the MODIS snow product (Hall and 
Riggs 2016). Figure 7c shows that the snow products are 
less consistent with the manually annotated ground truth 
than our ice maps. Most deviations between our estimates 
and the snow products occur around the transition dates, 
mostly freeze-up. Additionally, MODIS and VIIRS snow 
products use a less conservative cloud mask than we do 
(accepting not only confident clear and probably clear, but 
also uncertain clear as cloud-free). Despite these issues, 
the inter-comparison provides a second check for our ML 
products. For completeness, we note that our algorithm 
has a similar issue and thin ice is sometimes confused with 
open water: firstly, snow-free ice is rare and underrepre-
sented in the training set. Secondly, it appears predomi-
nantly near the transition dates (especially freeze-up) when 
we do not have pixel-accurate ground truth. Thirdly, thin 
ice and open water are difficult to distinguish, we observed 
that even human interpreters at times confused them when 
interpreting webcam images.

It is interesting to note that, for both sensors, the mean 
MAD is inversely proportional to the lake area (see Fig. 7b). 
This hints at residual errors in the products’ geolocation, 
which would affect smaller lakes more due to the larger 
fraction of pixels near the lake outline. Besides the < 0.5

-pixel inaccuracy of our maps, inaccurate geolocation of the 
snow products has been reported (more for MODIS, less for 
VIIRS) especially for freshwater bodies, due to uncertainties 
in gridding, reprojection etc. (Hall and Riggs 2016).

LIP trends using MODIS data. As discussed in Sect. 3.2, 
we fit the “U with wings” polygon to each winter to estimate 
the four critical dates: FUS, FUE, BUS and BUE. Some-
times, these phenological dates are defined such that a sec-
ond, consecutive day with similar ice conditions is required 
to confirm the event. We do not enforce this constraint, 
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because, quite often, the days after a potential freeze-up or 
break-up date are cloudy, and looking further ahead runs the 
risk of pruning the correct candidates.

Using the estimated LIP dates from 20 winters, we plot 
their temporal evolution for lakes Sils and Silvaplana in 
Fig. 8. On the y-axis, all the dates from 1 December to 1 
June (we skip September till November since no LIP events 
were detected during these months), while on the x-axis we 
show the winters in chronological order. In each winter, the 
non-frozen, freeze-up, frozen and break-up periods are dis-
played in blue, red, blue and dark green colours, respectively.

It can be seen from Fig. 8 that the freeze-thaw patterns 
of both lakes vary considerably across winters. For lake Sils 
(Silvaplana), on average, the FUS occurred on 3 January (5 
January) followed by a freeze-up period of 3 (3) days until 
FUE on 6 January (8 January). Additionally, on average, the 
lake remained fully frozen (CFD) for 113 (108) days until 
BUS on 29 April (26 April) and the break-up period lasted 
1 (1) day until BUE on 30 April (27 April). The average 
number of days from FUS to BUE is 117 (112).

The Oberengadin region with lakes Sils and Silvaplana 
is a single valley (Fig. 1) and hence the two have similar 
weather conditions. Silvaplana is relatively deeper but has a 
smaller area than Sils, making them comparable in terms of 
volume, too. So similar LIP patterns can be expected. How-
ever, the clouds above the lakes (especially on partly cloudy 
days), and the associated cloud mask errors can cause small 
differences. In winter 2016–2017, the ice-on date of the two 
lakes, confirmed by visual interpretation of webcams, differ 
by 7 (low confidence) to 10 (medium confidence) days, see 
also Tom et al. (2020b).

In most winters, the LIP characteristics of these lakes 
derived using our approach are in agreement, see Fig. 8. 
However, there are some outliers too ( > 10 days devia-
tion). A notable outlier is the break-up period in winter 
2009–2010. For Sils (Silvaplana), BUS and BUE were both 
estimated as 19 May (28 April). This drift primarily hap-
pened because of a huge data gap due to clouds and cloud 
mask errors. During the period from 28 April till 20 May, 
Silvaplana had > 30 % cloud-free MODIS acquisitions only 

on 28 April, 29 April, 8 May and 20 May, and the lake was 
detected as non-frozen on all these dates. However, Sils had 
MODIS acquisitions on 28 April, 29 April, 5 May and 19 
May. On 5 May the lake was detected as 100% frozen due to 
a false negative cloud mask, although break-up had started 
on the two earlier dates (75%, respectively 60% frozen) and 
the lake was ice-free on May 19. We also checked the Land-
sat-7 acquisitions on 20 April 2010 and 22 May 2010 and 
found that both lakes were fully covered by snow on the for-
mer date and fully non-frozen on the latter date. No cloud-
free Landsat-7 data is available between these two dates. For 
Sils, the actual BUS probably happened on 29 April ( > 30 % 
non-frozen) and BUE soon after (likely on 30 April, since 
the BUE of Silvaplana was detected on 28 April and Sils 
was detected < 70 % non-frozen on 29 April). However, both 
dates went undetected until 19 May, because of the clouds 
in combination with the maximum allowed duration of 2 
weeks for the break-up.

In winter 2003–2004, the freeze-up periods of Sils (FUS 
on 1 January, FUE on 2 January) and Silvaplana (FUS and 
FUE on 14 January) were also detected far apart, again due 
to a data gap because of clouds. Sils was estimated 68% and 
90% frozen on 1 and 2 January, respectively, so they were 
chosen as FUS and FUE. On lake Silvaplana, the sequence 
for 1-5 January was 4%→13%→0%→21%→ 0% frozen. Then 
14 January and 21 January were both found 100% frozen, 
so the fitting chose 14 January as both FUS and FUE. No 
cloud-free MODIS data exist on the intermediate dates 6–13 
January and 15–20 January, and we could also not find any 
cloud-free Landsat-7 images between 21 December 2003 
and 29 January 2004 (both inclusive) to check but could 
confirm 0% ice cover on 20 December and 100% cover on 
30 January. Connecting all the dots, we speculate that the 
FUS and FUE of Silvaplana occurred soon after 5 January.

In winter 2013–2014, our method asserts FUE of Sils 
on 26 December and of Silvaplana on 6 January. Between 
those dates, there were a number of partially frozen dates, 
but with more ice cover for Sils than Silvaplana. Addition-
ally, 2–5 January were cloudy, leading the fitting to choose 
the earlier date for the former, but the later one for the latter. 

(a) Lake Sils (b) Lake Silvaplana

Fig. 8  Temporal LIP characteristics estimated from MODIS using linear SVM classifier (20 winters)
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We again checked with Landsat-7 that on 15 December both 
lakes were fully non-frozen, whereas on 25 January both 
lakes were fully snow-covered. There exist no cloud-free 
Landsat-7 image in between these two dates to pin down the 
dates more accurately.

In some winters, there is almost no freeze-up and/or 
break-up period detected by our algorithm. This is partly a 
byproduct of the relatively loose threshold needed to esti-
mate the initial candidates for our small lakes (see Sect. 3.2), 
bringing the start and end dates of the transition closer 
together; and also influenced by frequent cloud cover during 
the critical transition dates (often more than half of all days 
c.f. Sect. 3c). For instance, if a couple of adjacent dates are 
cloudy during break-up (and the real BUS occurred during 
one of these dates) and on the next non-cloudy day, the lake 
is estimated 70.1% non-frozen, then our fitting will choose 
this date as both BUS and BUE.

We go on to analyse the freeze-up and break-up pat-
terns, by plotting the time series of the four critical dates 
over the past 20 winters for the same two lakes, see Fig. 9. 
Additionally, per phenological date, we fit a linear trend. 
Progressively later freeze-up and earlier break-up are 
apparent for both lakes.

In each winter, we also derive the remaining LIP events 
(ICD, CFD) listed in Table 1. Their trends are shown 
in Fig. 10, with the duration in days on the y-axis and 
the winters on the x-axis. Obviously, ICD and CFD are 
decreasing for both lakes.

Quantitative trend values that we estimated for all the 
LIP events of Sils and Silvaplana are shown in Table 4. 
As explained above, we correct obvious failures of the 
automatic analysis, and set the following corrections for 
lake Sils: BUS and BUE occurred on 29 April and 30 
April, respectively, in winter 2009–2010. Similarly, for 
Silvaplana: FUS and FUE occurred on 6 January in winter 
2003–2004 and FUE occurred on 26 December in winter 
2013–2014. For completeness, we also fit trends without 
the correction – these differ only slightly and confirm that 
the corrections hardly impact the overall picture. The trend 
towards earlier break-up is more pronounced than the one 
towards later freeze-up, for both Sils and Silvaplana. It is 
interesting to note that the decrease in freeze duration is 
stronger for the slightly smaller lake Silvaplana.

Correlation: LIP events and meteorological data. We have 
also studied the (centred and normalised) cross-correlation 

(a) Lake Sils (b) Lake Silvaplana

Fig. 9  Ice freeze-up (FUS, FUE) and break-up (BUS, BUE) trends (20 winters)

(a) Lake Sils (b) Lake Silvaplana

Fig. 10  Freeze duration (ICD, CFD) trends (20 winters)

Table 4  Estimated LIP trends 
(black) and results before 
manual correction of the 
automatic results (bold)

Lake FUS FUE BUS BUE ICD CFD

Sils 0.23 0.31 −0.46/−0.47 −0.32/−0.34 −0.55/−0.57 −0.76/−0.78
Silvaplana 0.45/0.37 0.38/0.36 −0.51 −0.45 −0.9/−0.82 −0.89/−0.87
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Fig. 11  Bar graphs showing the 20 winter correlation (y-axis) of the LIP events with climate variables (x-axis) for lake Sils. NDD and AFDD 
represent Negative Degree Days and Accumulated Freezing Degree Days respectively

Fig. 12  Relationship between the LIP events and weather variables: 
NDD (Negative Degree Days, days) and CFD (days) are shown in the 
first row, AFDD (Accumulated Freezing Degree Days, ◦ C) and FUS 
in the second row, total winter sunshine (hours) and CFD in the third 
row, total precipitation (mm) in the months January to May (J2M) 

and BUE in the last row. Results for lakes Sils and Silvaplana are dis-
played in left and right columns respectively. In all the sub-figures, 
x-axis displays the winters from 2000–2001 (00–01) till 2019–2020 
(19–20)
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∈ [−1, 1] between the LIP events (corrected version) and 
climate variables such as temperature, sunshine duration, 
precipitation and wind during the 20 winters. The results are 
shown in Fig. 11 for lake Sils. We do not display the results 
for lake Silvaplana due to space reasons. Air temperature 
(2m above ground) and precipitation data were collected 
from the nearest meteorological station SIA. However, we 
used the sunshine and wind measurements at station SAM, 
since these were not available for the complete 20 winter 
time span at SIA. We did not use the cloud information 
(number of non-cloudy pixels) from MODIS data as a meas-
ure of sunshine duration, since that would ignore the evolu-
tion throughout the day, and suffers from a non-negligible 
amount of cloud mask errors.

Negative Degree Days (NDD) corresponds to the total 
number of days in a winter with sub-zero air temperature 
(daily mean, ◦C). As expected, Fig. 11 shows that NDD has 
a strong positive correlation with the freeze durations, and 
break-up events, and a negative correlation with the freeze-
up events. We conclude that, indeed, as winters got warmer 
over the past 20 years the lakes froze later and broke up ear-
lier. The relationship of NDD with CFD is shown in Fig. 12.

AFDD represents the cumulative sum (of daily mean tem-
perature) on the days with average air temperature below 
the freezing point ( 0◦ C) in a winter season. AFDD is a 
popular proxy for ice thickness (Beyene and Jain 2018; Qi 
et al. 2020). For both Sils and Silvaplana, AFDD has strong 
positive correlations with ICD and CFD, a strong negative 
correlation with the freeze-up events, and a moderate posi-
tive correlation with ice break-up events, see Fig. 11, again 
indicating that in colder winters (higher AFDD) the freeze-
up occurs earlier and the break-up later, leading to a longer 
freeze duration. The relatively weaker correlation for the 
break-up indicates that freeze-up played a larger role in that 
event. As an example, the relationship with FUS is shown 
Fig. 12.

To study the effect of sunshine on LIP events, we cor-
relate the total winter sunshine (hours) with the freeze 
length events ICD and CFD, total sunshine in the months of 
September to December (S2D) with the freeze-up events, 
and the total sunshine from January to May (J2M) with the 
break-up events. Here, we assume that the sunshine in the 
months after freeze-up has no connection with freeze-up 
events. Similarly, we assume that the sunshine in the early 
winter months (September till December) does not affect 
the break-up events. We notice a strong negative correla-
tion of the total winter sunshine with ICD, CFD and break-
up events. The more sunshine in the months near break-up, 
the earlier the ice/snow melts, which also reduces the total 
freeze duration. An example relationship with CFD is visu-
alised in Fig. 12.

We also check the relationship between the LIP events 
and total precipitation during the winter months. Similar to 

sunshine analysis, we correlate the total precipitation dur-
ing the months from September till December, January till 
May and September till May to the freeze-up, break-up and 
freeze duration events respectively, see Fig. 11. Notable are 
the break-up events with a good positive correlation. More 
precipitation in the months January to May (likely to be pre-
dominantly snow), favours later break-up, and vice-versa. 
The trend for BUE is shown in Fig. 12.

Inspired by Gou et al. (2015), we also looked at the effect 
of wind on the LIP events, which may also influence lake 
freezing. We correlated the mean winter wind speed (km/h) 
with CFD and ICD, mean wind speed from September to 
December with FUE and FUS, and mean wind speed from 
January to May with BUS and BUE. However, we did not 
find any significant correlations, see Fig. 11.

Finally, we explore the correlation of LIP events with 
the weighted combination of variables (after standardisation 
by mean and standard deviation) such as NDD, sunshine, 
precipitation and Mean Winter Temperature (MWT), see 
Fig. 11 for results. MWT corresponds to the air temperature 
( ◦ C) averaged over the full winter. It can be noted (Fig. 11) 
that the weighted combination of NDD and precipitation 
(equal weights) has a strong positive correlation with the 
break-up and freeze duration events indicating that during 
the colder winters (high NDD) with higher precipitation 
(probably more snow) the break-up occurs later, essentially 
leading to a higher freeze duration. On the other hand, 
the weighted combination of MWT and Sunshine (equal 
weights) has a strong negative correlation with the break-up 
and freeze-duration events. Hotter winters (high MWT) with 
more sunshine speed up the ice break-up, thus reducing the 
freeze duration and vice-versa.

4.2  Ablation Studies with MODIS Data from 2 
Winters

As a first ablation study, we combine the data (independently 
for MODIS and VIIRS) of all the available lakes from win-
ters 2016–2017 and 2017–2018 and perform 4-fold cross-
validation and report the overall accuracy and mIoU, see 
Table 5.

To study how well the classifier generalise across space 
and time, we train a model on all except one lake (respec-
tively, winter) and test on the held-out lake  (winter). 

Table 5  Four-fold cross-validation results (in percent).

Overall classification accuracy (Acc) and mean intersection-over-
union (mIoU) scores are shown

Sensor Feature vector Method Acc mIoU

MODIS 12 bands Linear SVM 93.4 83.9
VIIRS 5 bands Linear SVM 95.1 88.4
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Figure 13 displays the results (bar graphs showing overall 
accuracy and mIoU) of the classifier for leave-one-lake-out 
setting on MODIS (top) and VIIRS (bottom) data. It can be 
seen that the performance varies across lakes and sensors.

On both sensors, the best performance (especially in 
terms of mIoU) is achieved for the lakes Sils and Silvaplana. 
This is likely due to them having the most similar character-
istics and imaging conditions. I.e., pixels from one of them 
are representative also of the other one, such that the clas-
sifier trained in one of the two generalises well to the other. 
Lake St. Moritz (only for MODIS) has too few clean pixels 
per acquisition to draw any conclusions about transferability. 
However, we still include it in our processing to study how 

far lake ice monitoring with MODIS can be pushed (in terms 
of lake area)—indeed, the classification is > 82.5% correct. 
Lake Sihl from the region Einsiedeln is different compared 
to the other three lakes from the region Engadin in terms of 
area, weather, surrounding topography etc., c.f. Sect. 2.1. 
Hence, the performance on lake Sihl is interesting to assess 
geographical transferability over longer distances.

As a second transferability study, more important for our 
time series analysis, we check how well the trained clas-
sifier can be transferred across different winters. We train 
on one winter and test the model on the held-out winter 
(leave-one-winter-out), see Fig. 14. We only have data from 
two consecutive winters (2016–2017, 2017–2018) to per-
form this analysis. Still, we believe that the experiment is 
representative for transferability to unseen years, since the 
weather conditions in different years are largely uncorre-
lated (c.f. Fig. 2). In particular for the two available winters, 
2017–2018 was markedly colder than the previous year, see 
Fig. 2.

The classifier exhibits a certain performance drop when 
having to generalise beyond the exact training conditions. 
Table 6 shows the detailed performance drops compared 
to Table 5. Note that in the ablation studies we must hold 
out some ground truth for evaluation and therefore have a 
smaller training set.

4.3  Discussion

In any ML-based system, the variety in the training dataset 
has a critical influence on the model being learnt. Our data-
set consists of small lakes and has a significant class imbal-
ance since we include all cloud-free dates from September 
till May, of which only a minority is frozen. This is a biased, 
but realistic scenario, representative of mountain lakes in 
sub-Arctic and temperate climate zones.

Our MODIS and VIIRS products validate each other in a 
relative sense ( < 5.6% MAD in the worst case, lake Sils), but 
could be subject to a common bias. In the absence of ground 
truth, there is no way to assess our absolute accuracy, but as 
an external check against a methodologically different map-
ping scheme we inter-compared our ML products against the 
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Table 6  Transferability loss encountered by our classifier.

Drop (in percent) for overall accuracy and mIoU are shown in normal 
and bold fonts, respectively

Sensor Loss type Linear SVM

MODIS Across lakes 3.7/5.1
MODIS Across winters 1.3/2.8
VIIRS Across lakes 1.1/1.5
VIIRS Across winters 2.6/5.7
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respective operational snow products. The deviations were 
in the expected range (MAD < 20%).

Some errors exist in both MODIS and VIIRS cloud 
masks. The most critical ones are false negatives, where an 
actually cloudy pixel goes undetected. Such cases can cor-
rupt model learning and inference and introduce errors in 
the predicted ice maps. The trade-off between spatial and 
temporal resolution makes it difficult to monitor smaller 
lakes—with 21 MODIS (9 VIIRS pixels) for lake Silvaplana 
and only 4 MODIS pixels for lake St. Moritz, our study goes 
to the limit in that respect. A further, often-named obstacle 
for optical satellite observation is occlusions due to clouds, 
which significantly reduce the effective temporal resolu-
tion and also cause irregular gaps in the time series. These 
unpredictable data gaps are particularly troublesome for ice 
phenology because the critical events occur over a short 
time and at times of the year when clouds are frequent in 
sub-Arctic and mid-latitudes. Such gaps are the main source 
of error in our LIP estimation, besides cloud mask errors, 
confusion between open water and thin/floating snow-free-
ice, and quantisation effects around hard thresholds. This 
makes phenological observations challenging—in particu-
lar, the uncertainties of our predictions are largest during 
freeze-up, because of the frequent, but short-lived presence 
of snow-free ice. Still, it appears that our classifier copes 
better with the ice reflectance than simple index-based snow 
products. ML is a powerful tool to recognise the underlying 
patterns where mechanistic models are lacking or too com-
plicated. Furthermore, unlike the traditional threshold-based 
approaches which needed separate tuning for each lake and 
winter, our ML methodology relies on a fixed set of param-
eters applicable for all our target lakes and winters.

For small lakes, even small geolocalisation errors have a 
large effect. Our work is also on the challenging ends of the 
spectrum in terms of local weather conditions: in a drier cli-
mate the observations would be less affected by clouds (we 
process lakes with as little as 30% cloud-free area to obtain 
sufficient temporal coverage), and fewer clouds mean fewer 
cloud-mask errors.

5  Conclusion

In this paper, we reported results for selected lakes in South-
eastern Switzerland, where we have retrieved lake ice phe-
nology based on MODIS optical image time series. On the 
one hand, we have shown that, even for small high-Alpine 
lakes, ice cover can be derived from low spatial resolution 
MODIS data; and that lake ice phenology retrieved in this 
manner over 20 years exhibits meaningful correlations with 
climate data. On the other hand, we have confirmed that 
a dedicated machine learning scheme maps lake ice more 

accurately than the classical index- and threshold-based 
approaches.

As expected, our results point towards later freeze-up 
(freeze-up start at a rate of 0.23 d/a for lake Sils, respectively 
0.45 d/a for Silvaplana and freeze-up end at a rate of 0.31 
d/a for lake Sils, respectively 0.38 d/a for Silvaplana), earlier 
break-up (break-up start: −0.46 d/a for lake Sils, respectively 
−0.51 d/a for Silvaplana and break-up end: −0.32 d/a for lake 
Sils, respectively −0.45 d/a for Silvaplana) and decreasing 
freeze duration (ice coverage duration: −0.55 d/a for lake 
Sils, respectively −0.90 d/a for Silvaplana and complete 
freeze duration: −0.76 d/a for lake Sils, respectively −0.89 
d/a for Silvaplana). We also observed significant (but not 
surprising) correlations with climate indicators such as tem-
perature, sunshine and precipitation.

Our approach is generic and easy to apply to other sensors 
beyond MODIS and VIIRS (given training data). Impor-
tantly, the VIIRS sensor is projected to ensure continuity 
well into the future, opening up the possibility to establish 
an even longer time series. One solution for the cloud issues 
of optical satellites is to complement/replace them with 
radar observations, e.g., Sentinel-1 SAR. We have done 
preliminary research in this direction (Tom et al. 2020a). 
SAR-optical data fusion holds great promise, particularly in 
view of the GCOS requirement to monitor lake ice at daily 
temporal resolution. We expect that machine learning-based 
ice detection itself could be further improved with pixel-
accurate annotations during transition dates, as well as for 
more winters and a wider variety of lakes. Unfortunately, 
gathering such data is not only a considerable, tedious effort, 
but also poses its own challenges. In most locations and for 
older data, no corresponding webcam data (or similar regu-
lar photography) is available; even when available, its cover-
age is almost invariably incomplete; and even with usable 
webcams and satellite imagery, manual annotation is not 
trivial and prone to mistakes exactly in the situations that are 
most critical also for computational analysis (such as thin, 
black ice). We speculate that, given the enormous archive of 
unlabelled satellite data, approaches such as unsupervised, 
semi-supervised or active learning may be applicable and 
could improve the lake ice detector.
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