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Abstract

Recent improvements in an unstructured-grid method for large-scale aerodynamic design are presented. Pre-
vious work had shown such computationL_ to be prohibitively long in a sequential processing environment. Also,
robust adjoint solutions and mesh movement procedures were difficult to realize, particularly for viscous flows.
To overcome these limiting factors, a set of design codes based on a discrete adjoint method is extended to a mul-
tiprocessor environment using a shared memory approach. A nearly linear speedup is demonstrated, and the

consistency of the linearizations is shown to remain valid. The full linearization of the residual is used to precon-
dition the adjoint system, and a significantly improved convergence rate is obtained. A new mesh movement algo-
rithm is implemented and several advantages over an existing technique are presented. Several design cases are
shown for turbulent flows in two and three dimensions.

Introduction

With the advent of modern computer architectures, aerody-
namic designers have sought to make use of high-fidelity compu-

tational fluid dynamics (CFD) codes in their everyday design ef-
forts. While considerable progress has been made towards this

goal, realistic use of such tools remains hindered by the extreme
computational burden associated with such an endeavor.

A large focus has recently been placed on design algorithms.

In the area of gradient-based optimization, research has focused

on several methods for obtaining sensitivity information, and

many of these approaches rely on an adjoint-variable formulation

for efficiently computing sensitivity derivatives. The adjoint

technique is particularly attractive for aerodynamic design prob-

lems in which there are a large number of design variables, yet
relatively few constraints. Examples of both continuous and dis-

crete approaches to this method can be found in Refs. 1-10.

In Refs. 1-4, a discrete adjoint technique has been imple-
mented on unstructured grids for two- and three-dimensional

flows. This work was primarily aimed at performing accurate lin-

earizations of Reynolds-averaged Navier-Stokes solvers, using
both compressible and incompressible formulations. Results in-

dicated highly accurate sensitivity information for fully turbulent

flows. However, the cost of such computations in a sequential-

processing environment prevented large-scale design cases from
being pursued. The preconditioning strategy used for the adjoint
system in these references was based on a first-order lineariza-

tion of the residual and often led to poor convergence rates. In
addition, experience showed that the combination of a distance

function approach and tension-spring analogy used for mesh

movement was insufficient when large changes in the geometry
were necessary. This procedure was also intolerant of initial

meshes with poor quality.

In the current work, the linearizations developed in Refs. 1-4

are modified to run in a parallel processing environment. The do-

main decomposition and parallelization strategies are discussed,
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resulting speedups are demonstrated, and the linearizations are

shown to remain consistent. A new preconditioning strategy for the

adjoint solver is implemented and significantly improved conver-
gence is demonstrated for turbulent flow. A new mesh movement

strategy based on modified linear elasticity theory is also adopted,

and several advantages over the previous approach are presented.
Several design cases are also shown.

Nomenclature

c I, c,l Lift and drag coefficients
c Chord

D Vector of design variables

f Cost function

I Identity matrix

L Lagrangian function

Q Vector of dependent variables
R Discretized residual vector

t Time

u, v Nodal displacements

I_ Vector of nodal displacements
V Volume of control volume

X Computational mesh
A Vector of costate variables

v Poisson" s ratio

Design Methodology

Flow Equations

The governing flow equations are the Reynolds-averaged

Navier-Stokes equations, _l coupled with the one-equation turbu-
lence model of Spalart and AIImaras. J2The flow solvers used in the

current work are described at length in Refs. 4, 13, and 14. The

codes use an implicit, upwind, finite-volume discretization, in

which the dependent variables are stored at the mesh vertices. In-

viscid fluxes at cell interfaces are computed using the upwind
schemes of Roe 15, van Leer 16. or Osher 17. Viscous fluxes are

lbrmed using an approach equivalent to a central-difference Galer-

kin procedure. Temporal discretization is performed using a back-

ward-Euler time-stepping scheme. The meshes used in this study
have been generated using the software described in Refs. 18 and
19.

An approximate solution of the linear system of equations

formed at each time step is obtained using several iterations of a

point-iterative scheme in which the nodes are updated in an even-

odd Iashion, resulting in a Gauss-Seidel-type method.



Theturbulencemodelissolvedseparatelyfromtheflowequa-
tionsateachtimestep,usinga backward-Eulertime-stepping
scheme.Theresultinglinearsystemissolvedusingthesamepoint-
iterativeschemeemployedfortheflowequations.Theturbulence
modelisintegratedallthewaytothewallwithouttheuseofwall
functions.

Adjoint and Design Equations
Given a steady-state flow solution in the lbrm

R(D, Q, X) = 0, a Lagrangian function can be defined as

of

L(D, Q, X, A) = f(D, Q, x) + ArR(D, Q, X) (I)

where f(D, Q, X) represents a cost function to be minimized and

A represents a vector of Lagrange multipliers, or costate variables.

Differentiating this expression yields the following:

,f s +r x-fas
d-_ =-{a-B Lb--bJa-_j + _2)

0Q r 0f OR r rOXqrragqr/

Since the vector of costate variables is essentially arbitrary, the co-

efficient multiplying [OQ/OD] r can be eliminated using the fol-

lowing equation:

FOR7 r Of

A-- a---O

Eq. 3 represents the discrete adjoint equation /'or the design prob-

lem. Once the solution for A has been formed, the remaining terms

in Eq. 2 can be evaluated to give the desired sensitivity information:

OL {af, i-Ox-iraf) J'rOR-I r raXnrraRn r]= w'L J   +|L0oJ +L J I

The adjoint equation given in Eq. 3 represents a linear set of

equations for the costate variables A. Although this system can be

solved directly using GMRES, 2"a time-like derivative is added and

the solution is obtained by marching in time. much like the flow
solver:

OR r . DR r ,,
(5)

where

A" + l = A" + A"A (6)

The time term can be used to increase the diagonal dominance for

cases in which GMRES alone would tend to stall. This ultimately

results in a more robust adjoint solver.

In Refs. I-5, an incomplete LU decomposition of the matrix ob-

tained from a first-order accurate discretization is used to precondi-

tion the linear system. The preconditioning is applied on the left
and no fill-in is allowed (ILU[0]). 21

Domain Decomposition Methodology

In the current work, the mesh partitioner MeTiS 22 is used to di-
vide the original mesh into subdomains suitable for a parallel envi-
ronment. Given the connectivities associated with each node in the

mesh and the number of partitions desired, MeTiS returns an array
that designates a partition number for each node in the mesh. The

user is then responsible for extracting the data structures required
by the specific application.

Partition

Boundary

• Node on the current partition

I Level-I ghost node

0 Level-2 ghost node

Figure 1. Information required beyond partition boundaries.

Due to the gradient terms used in the reconstruction procedure,
achieving second-order accuracy in the flow solver requires infor-

mation from the neighbors of each mesh point as well as the points

adjacent to these neighbors. In the present implementation, the gra-
dients of the dependent variables are first computed on each mesh

partition and then the results are scattered onto neighboring parti-

tions. This approach dictates that a single level of "'ghost" nodes be
stored on each processor. These ghost nodes that are connected to

mesh points on the current partition are referred to as "level-l"

nodes. Similarly, the neighbors of level-I nodes that do not lie on

the current partition are designated "level-2"' nodes. This terminol-

ogy is illustrated graphically in Fig. I.

The adjoint solver requires similar information; however, unlike

the flow solver, residual contributions must be written into off-pro-

cessor memory locations associated with level-2 mesh points. This

implies that a second level of ghost information must be retained

along partition boundaries.

Software has been developed to extract the required information

from a pre-existing mesh based on the partitioning array provided

by MeTiS. This domain decomposition operation is done prior to

performing any computations. The user is also able to read in exist-

ing subdomains and their corresponding solution files and reparti-

tion as necessary. This capability is useful in the event that addi-

tional processors become available or processors currently being

employed must be surrendered to other users. In addition, software

has been developed that reassembles partition information into glo-

bal files and aids in post-processing the solutions.

Parallelization Strategy

Each of the codes has been modified to run in a multiprocessor
environment using a shared memory implementation. This ap-
proach has been chosen because the primary hardware to be utilized
is a Silicon Graphics Origin 2000 system. In the current implemen-
tation, ghost information is exchanged across partition boundaries

by loading data into global shared arrays which are accessible from
each processor. Simple compiler directives specific to the Origin
2000 system are used to spawn child processes for each partition in
the mesh. This approach scales well and is readily extendable to a
message-passing or OpenMP 2_ implementation. The convergence

rate of the flow solution is independent of the number of proces-

sors, whereas the convergence of the adjoint solver varies slightly

since the preconditioner is only applied locally on each mesh parti-
tion.
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Figure 2. Parallel speedup obtained for the flow solver.
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Figure 3. Parallel speedup obtained for the adjoint solver.

J

Figure 4. Surface mesh for viscous ONERA M6 wing.
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Figure 5. Location of design variables for ONERA M6 wing.

Table 1. Sensitivity derivatives for turbulent flow over ONERA

M6 wing computed in parallel.

Design Finite Adjoint Percent Error
Variable Difference

Camber #3 2.7762 2.7763 0.(X)4%

Thickness #4 -0.03970 -0.03971 0.025%

Twist #4 0.00747 0.00747 0.000"#

Shear # I 0.62023 0.62050 0.044%

The speedup obtained by parallelizing the flow and adjoint solv-

ers is demonstrated in Figs. 2 and 3. It can be seen that a nearly lin-

ear speedup is obtained. For this test, turbulent flow over the

ONERA M6 wing shown in Fig. 4 is computed. The mesh contains
• . , 6

359,536 nodes wtth a wall spacmg of 2 x 10 of the mean aerody-
namic chord (MAC). The surface mesh consists of 9.129 nodes.

To verify that the linearizations performed in Refs. I-4 have re-

mained consistent through the port to the parallel environment, sen-

sitivity derivatives obtained using the parallel solvers on eight pro-

cessors are compared with centered finite differences• Here,

turbulent flow over an ONERA M6 wing is computed using a

freestream Math number of 0.3, an angle of attack of 2 ° , and a
Reynolds number of 5x10" based on the MAC. The mesh used for

this case consists of 16,391 nodes. All results have been converged
to machine accuracy, and a step size of 1 x 10 5 has been used for

the finite-difference computations. For this case, the cost function

is a linear combination of lift and drag, and the design variables

generated using the software described in Ref. 24 are depicted in

Fig. 5. It can be seen from Table I that the derivatives are highly
consistent.

Adjoint Preconditioning Scheme

In Refs. 1-5, a preconditioned GMRES algorithm has been used
to solve Eq, 3. In these references, an incomplete LU-factorization
with no fill-in allowed [ILU(0)] is employed as the preconditioner.
The factorization is based on the first-order linearization of the re-

sidual, thereby avoiding excessive storage penalties associated with

the higher-order stencil for the inviscid fluxes. It has been shown in

Ref. 4 that the GMRES algorithm may stall and a converged adjoinl

solution may be difficult to obtain using this preconditioner, partic-

ularly for viscous flows• This has been found to be the case for both

two- and three-dimensional problems•
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Figure 6. Convergence of the adjoint solution for different
preconditioners.

In an effort to develop a more robust adjoint solver, an improved

ILU(0) preconditioning technique based on the complete Iineariza-

tion of the residual is employed in the current work. As shown in

Ref. 25, the additional memory required for storing the complete

linearization is roughly four times that of the first-order matrix for

three-dimensional problems. This requirement can be somewhat al-

leviated by utilizing half-precision storage for these terms. As de-

scribed in Refs. 3 and 4, the linearizations required for the matrix-

vector products in the GMRES algorithm are stored for the nearest-
neighbor terms: these linearizations are also stored in half-precision

in the current work. Experiments have shown that this strategy
yields a total memory requirement of about 50% more than the pre-

vious version of the adjoint solver.

To demonstrate the improved performance using the higher-

order preconditioner, adjoint solutions are computed in parallel for
turbulent flow over the ONERA M6 wing shown in Fig. 4 using

eight processors. The freestream Mach number is 0.84, the angle
of attack is 3.06 ° , and the Reynolds number is 5×106 based on the

MAC. For this case. 10 GMRES cycles are used with 10 search di-

rections and 5 restarts. Results for the first- and second-order pre-

conditioning strategies are shown in Fig. 6. It can be seen that the

solver based on the first-order preconditioner fails to converge the

solution, whereas the method employing the complete linearization

steadily reduces the residual by nearly five orders of magnitude.

Mesh Movement Strategy

As stated in Refs. 1-5, a combination of a distance function ap-

proach and a tension-spring analogy has previously been employed

as a means for modifying volume meshes as the geometric shape is

changed throughout the design process. It has been found that this

algorithm lacks the robustness necessary for the design environ-

ment, particularly for large surface deformations, meshes with

highly distorted cells, and essentially all three-dimensional geome-

tries. For this reason, a new approach based on modified linear elas-

ticity theory has been implemented.

tn the approach taken in the current work. it is assumed that the

computational mesh obeys the isotropic linear elasticity relations
which take the following form in two dimensions: 26

1--_v _ = 0 (7)
V2u + 1 - 2v_9,r

V2V 4- ]__'_V " ' = 0 (8)

where v is Poisson's ratio and the nodal displacement vector is
given by _ = ui + v_. Despite the assumption of an isotropic ma-

Figure 7. Near-field view of baseline mesh.

Figure 8. Near-field view of mesh after applying distance function/
tension-spring analogy.

Figure 9. Near-field view of mesh after applying modified linear
elasticity method.

terial, a spatially-varying value of Poisson's ratio is used in order to

maintain the physical integrity of highly skewed cells. This value
has been chosen based on heuristics and is set so that the coefficient

1/(1-2v) is equal to the aspect ratio of the local cell, In this

manner, low aspect ratio cells mimic compressible materials such

as cork, while high aspect ratio cells tend to behave in an incom-

pressible fashion, much like rubber. Since the nodes on the surface

are constrained, the high aspect ratio cells in the near-wall region

are not susceptible to compression. A similar mesh movement

scheme has also been utilized in Ref. 27. Here, anisotropy in Pois-

son's ratio is achieved by neglecting the Jacobian associated with

the transformation between physical and computational coordi-

nates. In this manner, Poisson's ratio is implicitly determined by
the cell volumes, so that small cells deform less.



Figure 10. Near-field view of mesh with flap in baseline position.
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Figure 13. Mesh with flap in baseline position.

Figure 11. Near-field view of mesh with flap rotated using the
distance functiorffteusion-spring analogy.
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Figure 12. Near-field view of mesh with flap rotated using modified
linear elasticity method.

To illustrate the advantage over the distance function/tension-

spring analogy, the flap on a multielement airfoil has been deflected

15 ° and each of the mesh movement strategies has been applied.

Figure 7 shows a near-field view of the baseline mesh in the region
between the main element and flap. Figures 8 and 9 show the

meshes resulting from the distance function/tension-spring and
elasticity methods, respectively. It can be seen that the distance

function/tension-spring analogy allows gaps to form in the mesh.

whereas the elasticity approach pulls in nearby material to fill the
voids.

It has been found that the elasticity approach also allows for sig-

nificantly larger geometric deformations. In a similar test, the flap

of a multielement airfoil has been deflected from its baseline posi-

tion shown in Fig. 10. As can be seen from Figs. I 1 and 12, the dis-

tance function/tension-spring approach has yielded an invalid

Figure 14, Mesh with flap translated Ax/c = 0.02 and rotated
+15 ° .

mesh. while the elasticity formulation has handled the deformation

in an acceptable manner. Similarly, when a series of flap transla-

tions and rotations is applied to the geometry shown in Fig. 13, the

meshes resulting from the elasticity technique maintain a high de-

gree of quality as shown in Fig, 14.

To further quantify the differences between the two mesh move-

ment schemes, derivatives of lift and drag due to horizontal transla-
tions of a main element and flap are examined. Ideally. the deriva-

tive due to a translation of the flap should be equal and opposite in

sign to a derivative due to an equal and opposite translation of the

main element. In practice however, this relationship is affected by

changes in the topology of the mesh due to the manner in which it

varies during a shape modification. 5

To demonstrate this behavior, derivatives of lift and drag due to

equal and opposite horizontal translations of the main element and

flap on the two-element airfoil shown in Fig. 15 have been com-

puted for a turbulent flow. For this case. the freestream Mach num-
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Figure 15. Geometry used for translation derivatives.

"Uable 2. Derivatives of lift and drag due to flap and main element
translation using the distance function/teusion-spring analogy.

Derivative Xmai. x flap x

_c)/_x - 1.4785 2.4033 0.9248

_c,l/_x 0.0183 0.0277 0.0460

Table 3. Derivatives of lift and drag due to flap and main element
translation using linear elasticity.

Xmain X,IJaP E
Derivative X

_ct/_x -3,8064 3.8671 0.0607

Ocj/O.r 0.1722 -0.1615 0.0107

ber is 0.25, the Reynolds number is 9x10 (' , and the angle of attack
is 5 ° .

Table 2 shows the lift and drag derivatives due to translations of

the main element and flap using the distance function/tension-

spring analogy, and the last column is the sum of these two deriva-

tives which ideally would be zero. However, it can be _en from the

table that the derivatives are not at all equal in magnitude, and the

drag derivatives are not even of opposite sign. This inconsistency

would be expected to have an adverse effect on an optimization

procedure. Table 3 shows the same derivatives obtained using the

linear elasticity formulation. Although these derivatives do not sum

exactly to zero, they do exhibit opposite signs and are much closer
in magnitude. This tendency has been observed in several cases and

indicates that the linear elasticity formulation maintains the mesh

topology in a more consistent fashion.

Design Cases

Recovery of Experimental Flap Contiguration
The first test case is a two-dimensional turbulent flow problem

for which a target pressure distribution is sought. An experimental
study of the multielement airfoil geometry shown in Fig. 16 has

been previously performed, and it can be seen from Fig. 17 that

computations using the baseline geometry are in disagreement with

the experimental results. The model used in the experiment had a

non-uniform gap and overlap across the span, and the flap deflected

at high dynamic pressures. The goal of the current work is to deter-

mine a new position of the flap using the pressure distribution ob-

tained in the experiment. The improved mesh movement capability

described above allows for the flap adjustment required by such a

problem.

The freestream Mach number is 0.7, the angle of attack is 1,5 ° ,
and the Reynolds number is 30x10 _ . For this case, the design vari-

ables are the rotation and x- and y-translations of the flap. After 5

design cycles, the flap has been rotated 3.5 ° and repositioned as
shown in Fig. 16, although very little change has occurred after the

first design cycle, it can be seen from Fig. 17 that the resulting

agreement with the experimental results is significantly improved.

Although not shown, an angle of attack sweep verifies that the new

position of the flap improves the agreement with the experiment

across the range of angles of attack.

[ _ Baseline ]--- Modified

/

Figure 16. Baseline and modified geometries for multielement
airfoil problem.
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Figure 17. Pressure distributions for multielement airfoil problem.

Figure 18. Density contours for the baseline geometry.
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Figure 20. Cross-sections of the initial and final wing geometries.

Turbulent Flow Over ONERA M6 Wing

A turbulent flow wing optimization is perfi)rmed using the

ONERA M6 mesh previously shown in Fig. 4. The freestream

Mach number is 0.84, the angle of attack is 3.06 ° , and the Rey-
nolds number is 5xl0 _ based on the MAC. For these conditions.

the baseline geometry exhibits a swept shock extending from the

root leading edge and a strong normal shock further aft as shown in

Fig. 18. The objective for this example is to reduce drag while

maintaining a specified lift. The 20 shape design variables are

shown in Fig. 19, and the angle of attack is also allowed to vary.

The design case has been run using approximately 3 days of

wallclock time on 12 processors of an Origin 2000 system.

Cross-sections of the initial and final geometries can be seen in

Fig. 20. After 5 design cycles, the drag coefficient has been de-

Figure 22. Density contours for the final geometry.

creased by 15% from 0.0168 to 0.0142. while the lift coefficient has

maintained its baseline value of 0.253. Pressure distributions at sev-

eral locations across the span of the wing are shown in Fig. 21, and

density contours for the final geometry are shown in Fig. 22. It can

be seen that the normal shock has been weakened considerably,

particularly in the outboard section of the wing.

Turbulent Flow Over Multielement Wing

In order to handle an arbitrary number of three-dimensional ele-

ments parameterized by the package described in Ref. 24, software
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has been developed to combine multiple bodies which employ in-

dependent parameterizations. To evaluate this capability, the base-

line airfoil depicted in Fig. 16 is extruded in a spanwise direction to

create a 5 ° swept wing as shown in Fig. 23. The surface grid

shown contains 31,229 nodes and the volume mesh consists of

843,385 nodes and 4,796,360 tetrahedra. The adjoint solver re-

quires roughly 12 gigabytes of storage for the current example.

For this case, the main element and flap are parameterized sepa-

rately using camber values at the locations shown in Fig. 24. In ad-

dition to these shape parameters, the deflection as well as the verti-

cal and streamwise positioning of the flap are used as design

variables. The angle of attack is also allowed to vary, for a total of

34 design variables. The objective is to reduce the drag while main-

taining a specified lift. The freestream Mach number is 0.75, the

baseline angle of attack is I ° , and the Reynolds number is 6.2 mil-

lion.

The design case has been run using 16 processors of an Origin

2000 system and required approximately 6 days of wallclock time.

After 5 design cycles, the drag coefficient has been reduced from

0.0399 to 0.0378, while the lift coefficient has maintained its origi-

nal value of 0.437. Cross-sections of the baseline and modified ge-

ometries can be seen in Fig. 25, while pressure distributions are

shown in Fig. 26. The flap has been repositioned and can be seen to

carry a reduced loading, which has been compensated by an in-
crease in camber across the main element.
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Figure 25. Cross.sections of the initial and final wing geometries.
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Figure 26. Pressure distributions for the initial and final wing

geometries.



Summary
Anunstructured mesh design methodology based on a discrete

adjoint formulation has been extended to a multiprocessing envi-

ronment using domain decomposition and a shared memory ap-

proach. The parallel implementation has been shown to scale well

while yielding discretely consistent sensitivity information.

A preconditioning scheme based on the complete linearization of

the residual has been demonstrated for adjoint computations. Al-

though the new strategy requires an increased amount of memory

due to the larger stencil, it has been found to give superior conver-

gence rates and hence better reliability.

An improved mesh movement capability has been developed

using an approach based on linear elasticity relations. In the current

work. the scheme is modified to use a spatially-varying value of

Poisson's ratio to account for highly skewed cells. The new proce-

dure yields a robust technique which maintains the mesh topology

in a more consistent fashion than a previous distance function/ten-

sion-spring analogy.

Several design examples have been presented which demonstrate

the improved capability of the current implementation. Reduced
turnaround time combined with an increased level of robustness has

enabled previously impractical problems to be addressed.
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