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Abstract Like other microorganisms, free-living Can-

dida albicans is mainly present in a three-dimensional

multicellular structure, which is called a biofilm, rather

than in a planktonic form. Candida albicans biofilms can

be isolated from both abiotic and biotic surfaces at various

locations within the host. As the number of abiotic

implants, mainly bloodstream and urinary catheters, has

been increasing, the number of biofilm-associated blood-

stream or urogenital tract infections is also strongly

increasing resulting in a raise in mortality. Cells within a

biofilm structure show a reduced susceptibility to specific

commonly used antifungals and, in addition, it has recently

been shown that such cells are less sensitive to killing by

components of our immune system. In this review, we

summarize the most important insights in the mechanisms

underlying biofilm-associated antifungal drug resistance

and immune evasion strategies, focusing on the most recent

advances in this area of research.
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Introduction

Being a commensal, Candida albicans is expected to

inhabit the urogenital and gastrointestinal tract of a large

percentage of the human population. In healthy individuals,

its growth is confined by actions of the immune system and

by the presence of other commensal microorganisms

occupying its potential niche. However, when one of these

barriers is disrupted, C. albicans can behave as a pathogen

causing both superficial and systemic infections, the latter

with possible infections of internal organs (Berman and

Sudbery 2002; Kim and Sudbery 2011). Bloodstream

infections are associated with considerable attributable

mortality rates varying from 30 to 70 % (Bouza et al. 2013;

Falagas et al. 2006; Kibbler et al. 2003; Peng and Lu 2013;

Wey et al. 1988; Wisplinghoff et al. 2004) and high health-

care costs with estimates ranging from millions to 1 billion

dollars in the US alone (Miller et al. 2001; Wilson et al.

2002). Major risk factors for candidemia are neutrophil

depletion and gastrointestinal damage, resulting in disper-

sion of Candida cells resident in the gastrointestinal tract to

the bloodstream (Koh et al. 2008) and the frequent use of

catheters in hospitalized patients that can present a sub-

strate for the formation of biofilms (Darouiche 2004; Kim

and Sudbery 2011; Kojic and Darouiche 2004). The risk of

biofilm development on catheters has been estimated to be

up to 30 %, depending on the location of the catheter

(Ramage et al. 2006).

Biofilm lifestyle of Candida albicans

Biofilms are defined as structured microbial communities

that are attached to a surface and surrounded by a self-

produced extracellular matrix (Costerton et al. 1995). In the
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L. Mathé � P. Van Dijck

Department of Molecular Microbiology, VIB, Leuven, Belgium
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early years, major focus was on bacterial biofilms, with a

first model to study C. albicans biofilm development

in vitro only emerging in 1994 (Hawser and Douglas

1994). Since then, ample model systems for the study of

fungal biofilms have been developed (Tournu and Van

Dijck 2012) and C. albicans biofilm formation has been

characterized both in vitro and in vivo by several research

groups (Andes et al. 2004; Chandra et al. 2001a, 2011;

Řičicová et al. 2010). In general, C. albicans biofilm for-

mation is characterized by four stages: (1) cell-wall pro-

tein-mediated adherence of yeast cells to a surface, (2)

growth of the attached yeast cells into a thin layer of cells,

(3) maturation of the biofilm through development of

pseudohyphae and hyphae and excretion of matrix material

and (4) dispersal of yeast cells from the biofilm possibly

leading to colonization of distant places (Blankenship and

Mitchell 2006; Chandra et al. 2001a; Kaneko et al. 2013;

Uppuluri et al. 2010). Although biofilm structures can

differ depending on the growth conditions (Baillie and

Douglas 1998, 2000) mature C. albicans biofilms, mostly

present after 24–48 h of biofilm formation (Andes et al.

2004; Kaneko et al. 2013; Řičicová et al. 2010), consist of

a thin yeast layer responsible for attachment of the thicker

layer, comprising both yeast and hyphal cells, to the sur-

face (Baillie and Douglas 1999b). Structurally, several

microcolonies can be distinguished which are separated by

water channels allowing circulation of nutrients (Douglas

2003; Watnick and Kolter 2000). Over the past years, the

genetic network controlling biofilm formation has been

investigated and partially elucidated, both in vitro and

in vivo (Banerjee et al. 2013; Bonhomme et al. 2011;

Fanning et al. 2012; Garcı́a-Sánchez et al. 2004; Murillo

et al. 2005; Nett et al. 2009; Nobile et al. 2012). Discussion

of the genetic control of biofilm formation is not the pur-

pose of this review, but has been discoursed elsewhere

(Finkel and Mitchell 2011; Fox and Nobile 2012; Nobile

and Mitchell 2006).

Although C. albicans is still considered the most pre-

valent pathogen within the Candida clade, non- albicans

Candida species are increasingly being isolated from

patients, with C. glabrata, C. parapsilosis and C. tropi-

calis being the most represented ones (Horn et al. 2009;

Peng and Lu 2013; Pfaller and Diekema 2007, 2010). Like

C. albicans, these species are capable of forming biofilms

(Hawser and Douglas 1994; Shin et al. 2002; Silva et al.

2010), be it to a lesser extent, increasing their potential to

cause disease in patients with medical implant devices.

Next to single species bloodstream infections associated

with biofilms on medical implant devices, multi-species

candidemia is also encountered, making up 4–8 % of all

Candida-associated bloodstream infections (Klotz et al.

2007; Nace et al. 2009). Seemingly more prevalent with

7–27 % of all candidemias are polymicrobial bloodstream

infections, in which Candida spp. are present together

with bacteria such as Enterococcus spp., Streptococcus

spp., Staphylococcus aureus and Pseudomonas aeruginosa

(Bouza et al. 2013; Harriott and Noverr 2010; Klotz et al.

2007).

Biofilms are often regarded as survival mechanisms of

microorganisms since it has been repeatedly shown that

cells associated with biofilms are much less susceptible to

antimicrobial agents such as antibiotics. This was first

shown for bacterial species, with an increase of dosage

ranging from 10- to 100-fold, depending on bacterium and

antibiotic, necessary for the eradication of biofilm-associ-

ated bacteria (Donlan and Costerton 2002). Later, a similar

trend was observed for fungal biofilms with drug concen-

trations needed for a 50 % reduction of metabolic activity

being 5–8 times higher in biofilms compared to planktonic

cells and minimum inhibitory concentrations (MICs)

increasing 30- to 20,000-fold (Hawser and Douglas 1995).

These findings were confirmed on different substrates and

for different Candida spp. (Baillie and Douglas 1999a;

Chandra et al. 2001a; Lewis et al. 2002; Ramage et al.

2001a, b).

Interestingly, Yi et al. (2011b) discovered recently that

C. albicans biofilms formed by MTL (for mating type

locus)-heterozygous cells differed significantly in per-

meability and drug resistance from their MTL-homozy-

gous counterparts. The viability of cells within a/a
biofilms was ninefold greater than that of cells in a/a and

a/a biofilms after challenge of mature biofilms with

24 lg/ml fluconazole during 24–48 h. Moreover, poly-

morphonuclear leukocytes (PMNs) could only impregnate

the upper 11 % of mature biofilms of the a/a-type,

whereas they could penetrate the total volume of MTL-

homozygous biofilms. The researchers propose that the

MTL-heterozygous biofilms form the traditional, protec-

tive biofilm environment mostly found in nature and

causing disease in patients, since 90 % of the free-living

C. albicans cells are heterozygous at their mating type

locus, whereas MTL-homozygous biofilms form a more

penetrable environment which may facilitate mating (Yi

et al. 2011b). Earlier, the same group had already shown

that biofilms of white a/a cells were thinner than MTL-

heterozygous biofilms, and that this could be countered

by addition of a few opaque cells. In nature, it is

expected that a few white cells would spontaneously

switch and function as a source of pheromone of the

opposite mating type, namely the product of MFa (Yi

et al. 2011a).

Since the discovery of high drug resistance conferred

by C. albicans biofilms, several mechanisms underlying

this high antibiotic tolerance have been proposed, and

these are reviewed here together with the latest advances

in the field.
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Resistance to antifungals. What are the underlying

reasons?

The search for safe, cheap and effective antifungals is

being hindered by the great similarities between fungal cell

structure and biosynthesis pathways and their mammalian

counterparts. Current therapies against fungal diseases fall

into five classes: (1) polyenes that bind sterols in the fungal

cell membrane and cause electrolyte leakage via formation

of transmembrane channels, (2) pyrimidine analogs that get

incorporated in a growing RNA/DNA strand and thereby

arrest fungal DNA and RNA synthesis, (3) azoles that

target ergosterol biosynthesis via blockage of the enzyme

lanosterol 14a-demethylase, (4) allylamines that target

ergosterol biosynthesis through blocking of the enzyme

squalene oxidase and (5) echinocandins that block the

enzyme b-1,3-glucan synthase and thereby inhibit incor-

poration of b-1,3-glucans in the cell wall disturbing the

integrity of the cell wall (Cowen and Steinbach 2008;

Denning and Hope 2010; Ostrosky-Zeichner et al. 2010).

For the treatment of biofilms, efficacy of echinocandins

and of the polyene amphotericin B lipid formulations has

been shown both in vitro (Bachmann et al. 2002; Kuhn et al.

2002; Ramage et al. 2002b, 2013) and in vivo (Kucharicová

et al. 2010, 2013; Mukherjee et al. 2009). The azole anti-

fungal drugs, the pyrimidine analogs, allylamines and

classic formulations of polyenes are not active against

biofilms (Chandra et al. 2001a, b; Hawser and Douglas

1995; Ramage et al. 2001c). In vitro susceptibility of bio-

films to antifungals is generally assessed using the 96-well

microtiter plate-based method first described by Ramage

et al. (2001a) (Pierce et al. 2010). Susceptibility testing

under in vivo conditions is performed using catheter lock

therapies, with amphotericin B, ethanol and echinocandins

showing promising results, (recently reviewed by Walraven

and Lee 2013) or by intraperitoneal or intravenous injection

of drugs to animals that have catheter-related biofilm

infections (Kucharı́ková et al. 2010, 2013). The underlying

mechanisms possibly causing the ineffectiveness of the

above-mentioned drugs are described below. To overcome

the inefficacy of these drugs, more and more studies appear

that focus on synergism between antifungals and antibiot-

ics, painkillers etc., resulting in an effective combination

therapy against biofilm-associated C. albicans. Examples of

such therapies include combination of fluconazole and the

tetracycline antibiotic doxycycline (Fiori and Van Dijck

2012; Gao et al. 2013), combination of amphotericin B and

aspirin (Zhou et al. 2012), combination of caspofungin and

the painkiller/anti-inflammation compound diclofenac

(Bink et al. 2012) and the sensitization of C. albicans bio-

films to different antifungals by the immunosuppressant

drug cyclosporine a (Shinde et al. 2012).

Over the course of time a vast amount of research

groups have tried to elucidate the mechanisms underlying

increased resistance in biofilm-associated C. albicans cells.

Some of the proposed causes are shared resistance mech-

anisms between planktonic and biofilm-associated cells

(e.g. upregulation of drug efflux pumps, upregulation of

target gene expression), others are biofilm specific (e.g.

presence of matrix). In what follows, we highlight the

major propositions and recent advances in this field

(Table 1).

Table 1 Resistance mechanisms in Candida albicans

Resistance mechanism Effect In which growth form?

Reduced growth rate Lower presence of antifungal targets, reducing the

antifungal efficacy

Planktonic cells (Baillie and

Douglas 1998)

Cell density Quorum sensing? Common (Perumal et al. 2007;

Seneviratne et al. 2008)

Differential regulation drug targets Changes in target levels, often associated with changes

in target structure rendering the drug incapable of

binding the target (White et al. 1998)

Common (Borecká-Melkusová

et al. 2009; Khot et al. 2006;

Nailis et al. 2010; White 1997)

Upregulation drug efflux pumps Antifungal is pumped out of cell and can thereby not

perform its intracellular function

Common (Nett et al. 2009;

Ramage et al. 2002a; Sanglard

et al. 1995, 1997)

Persister cells Because of the dormant state of persisters, antifungal

targets are inactive (Lewis 2010, 2012)

Biofilm (LaFleur et al. 2006)

Presence of a matrix Specific binding of antifungals by b-1,3-glucans, a

major matrix component, which prevents antifungals

from reaching their targets (Nett et al. 2007b)

Biofilm (Al-Fattani and Douglas

2006; Nett et al. 2007b)

Diverse stress responses Possibly only indirect effects via regulation of other

resistance mechanisms (Robbins et al. 2011)

Common (Diez-Orejas et al. 1997;

Kumamoto 2005)

Different mechanisms of resistance have been described, both for planktonic as well as for biofilm cells. In this table we indicate whether the

mechanism is functional in planktonic or biofilm cells or whether the mechanism is common for both life styles
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Reduced growth rate

In general, cells that show a slow growth are more resistant. It

was therefore proposed that biofilm cells are more resistant

because they grow slower. However, the involvement of a

reduced growth rate of biofilm cells for resistance to anti-

fungals was renounced by Baillie and Douglas (1998). They

compared amphotericin B susceptibility of biofilm-associ-

ated C. albicans cells with planktonic cells under different

growth rates. They found that the biofilm-associated cells

were resistant at all growth rates, whereas planktonic cells

were only resistant when showing very slow growth (Baillie

and Douglas 1998). Furthermore, Chandra et al. (2001a)

showed a correlation between metabolic activity and anti-

fungal resistance in maturing biofilms, further invalidating

the effect of growth rate. Lastly, the most common used

assay for quantitatively measuring biofilm formation relies

on the conversion of 2,3-bis-(2-methoxy-4-nitro-5-sulfo-

phenyl)-5-[(phenylamino)carbonyl]-2H-tetrazoliumhy-

droxide (XTT) to a colored formazan in the presence of

metabolic activity (Kuhn et al. 2003; Paull et al. 1988). It is

shown that the formazan signal corresponds very well with

cell number (Hawser 1996) and generally the signal increa-

ses when a biofilm grows (Lal et al. 2010).

Cell density

Based on the fact that the resistance of biofilms changes

with (extreme) inoculum size, Perumal et al. (2007) pro-

posed the influence of cell density on C. albicans drug

resistance. They tested the efficacy of different azoles,

amphotericin B and the echinocandin caspofungin on

planktonic cells at densities similar to those found in bio-

films (up to 1 9 108 cells/ml) and showed that at high cell

densities planktonic cells had markedly reduced suscepti-

bilities to all drugs. These results seemed not to be asso-

ciated with drug efflux or farnesol quorum sensing since a

strain deficient in these mechanisms showed the same

trend. Moreover, the susceptibility of dissociated biofilm

cells diluted to 1 9 103 cells/ml was similar to that of

planktonic cells at the same cell density, indicating that the

increased resistance was indeed associated with the biofilm

architecture. Similar conclusions were obtained by Sene-

viratne et al. (2008) for the azole ketoconazole and the

pyrimidine analog 5-flucytosine. However, they did not see

a density-dependent susceptibility of planktonic or biofilm-

associated cells to both caspofungin and amphotericin B,

but they account the modified experimental procedures

responsible for these discrepancies.

Therefore, cell density does seem to have an effect on C.

albicans resistance to several drugs, but this is probably not

a biofilm-specific resistance mechanism since a similar

trend was observed in planktonic cells.

Altered gene expression

Upregulation of specific genes has been shown to be

involved in antifungal drug resistance in planktonic cells

(Sanglard 2002; White et al. 1998). These genes can vary

from genes encoding efflux pumps such as CDR1 and

MDR1 (Sanglard et al. 1995; White 1997), which will be

discussed later, to genes encoding the protein targets of

antifungals such as genes involved in the ergosterol bio-

synthesis pathway (White 1997). The latter will cause

changes in target levels, often associated with altered target

structure, both resulting in the inability of the drug to

effectively eradicate the pathogen (White et al. 1998). It is

therefore plausible that alterations in gene expression are

also responsible for drug resistance in biofilm-associated C.

albicans cells. In this regard, expression levels of genes

encoding proteins involved in the production of cell

membrane and cell-wall components have been a major

point of focus, with the genes involved in the ergosterol

biosynthesis pathway being the most studied ones.

In a first study, mRNA levels of genes involved in

ergosterol biosynthesis (the ERG-genes) and in b-1,6-glu-

can biosynthesis (SKN1 and the KRE-genes) were deter-

mined via quantitative RT-PCR and compared between

planktonic and biofilm-associated cells (Khot et al. 2006).

The researchers found a unique transcript profile in a

subpopulation of amphotericin B-resistant blastospores

with a significant downregulation of ERG1 and a signifi-

cant upregulation of ERG25, SKN1 and KRE1. Transcrip-

tion levels of the latter gene also showed a correlation with

increasing resistance at higher concentrations of ampho-

tericin B. Later, the changes in ERG-gene expression upon

addition of the azole fluconazole were investigated by

Borecká-Melkusová et al. (2009) using reverse transcrip-

tase and real-time PCR in different C. albicans isolates.

They found upregulation of ERG9 regardless of the sus-

ceptibility of the tested strains to fluconazole and down-

regulation of ERG11 in fluconazole-susceptible strains, the

product of the latter being the target of the azole class of

antifungals. Detailed analysis of ERG1 and ERG25

expression upon addition of fluconazole showed slight

increases in gene expression in both planktonic and bio-

film-associated cells. A study by Nailis et al. (2010)

showed a drug-specific transcription response upon chal-

lenge of biofilms with high concentrations of antifungals.

They challenged biofilm-associated C. albicans cells with

high doses of fluconazole and amphotericin B and analyzed

gene expression profiles using quantitative RT-PCR. They

noticed significant increases in ERG1, ERG3, ERG11 and

ERG25 in mature biofilms upon addition of fluconazole

and significant increases in SKN1, KRE1 and ERG1 in

mature biofilms upon challenge with amphotericin B. The

results of these three studies show that possible differential

254 Curr Genet (2013) 59:251–264
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regulation of gene expression within biofilm-associated

cells is very much depending on the experimental setup.

Recently, Yu et al. (2012) found that mature biofilms

grown in the presence of farnesol, which is the precursor of

ergosterol and a quorum-sensing molecule in C. albicans,

showed a significant increase in fluconazole susceptibility

compared to a farnesol-untreated biofilm. Using RT-PCR,

they could show that transcription levels of ERG1, ERG3,

ERG6, ERG11 and ERG25 decreased significantly in the

farnesol-treated group, indicating that the ergosterol bio-

synthesis pathway may contribute to the inhibitory effect of

farnesol and further arguing that increased transcription of

the ERG-genes does increase biofilm resistance.

A whole transcriptome approach was applied by Vedi-

yappan et al. (2010), who challenged mature biofilms during

2 h with fluconazole, amphotericin B and caspofungin in

concentrations that were lethal for planktonic cells but not

for biofilm-associated cells. Upon addition of fluconazole,

only five genes were differentially expressed, causing the

researchers to put forth that biofilm-associated cells might be

blind to fluconazole, also explaining its inefficacy. Upon

addition of amphotericin B, they saw a differential expres-

sion of 160 genes, whereas upon challenge with caspofungin

the amount of differentially expressed genes increased up to

a couple of hundred genes. Interestingly, this shows a cor-

relation between antifungal susceptibility and the amount of

differentially expressed genes, which is a trend opposite to

what would be expected if genetic alterations are the main

reason for antifungal resistance in biofilms.

An apparent contradiction rises from the studies cited

here above and we want to stress that this might reflect a

highly model-dependent mechanism since the in vitro

model systems for biofilm formation utilized in the cited

studies differed. It is for example known that the presence

of medium flow during the formation of biofilms signifi-

cantly alters the biofilm structure (Al-Fattani and Douglas

2006; Baillie and Douglas 2000; Hawser et al. 1998) and

that the resistance to commonly used antifungals of bio-

films grown under flow conditions differs significantly

from statically grown biofilms (Uppuluri et al. 2009, 2011).

It is therefore possible that the experimental setup for

biofilm formation also influences differential gene expres-

sion in biofilm-associated cells upon challenge with anti-

fungals, which would mean that this resistance mechanism

is highly model dependent. For this reason, we do not

expect altered expression of genes encoding antifungal

targets to be the major resistance mechanism in biofilm-

associated cells.

Upregulation of drug efflux pumps

Upregulation of drug efflux pumps has been described as a

causative factor in biofilm drug resistance for several

biofilm-forming microorganisms (Soto 2013). In C. albi-

cans, two groups of efflux pumps have been shown to

contribute to drug resistance: the ATP binding cassette

(ABC) transporters encoded by the CDR-genes and the

major facilitator (MF) superfamily encoded by the MDR-

genes (Ben-Yaacov et al. 1994; Fling et al. 1991; Marger

and Saier 1993; Prasad et al. 1995).

An increased expression of CDR1 (for Candida drug

resistance) and MDR1 (for multidrug resistance; also

known as BENr for benomyl resistance) was first docu-

mented by Sanglard et al. (1995), in C. albicans clinical

isolates with a high azole resistance associated with pro-

longed treatment. Moreover, this group showed that

mutants lacking CDR1 and MDR1 lost their azole resis-

tance together with resistance to other antifungals and

metabolic inhibitors (Sanglard et al. 1996). Upregulation of

these genes was confirmed by White (1997), and in addi-

tion they showed that members of the other families

making up the ABC transporters were not involved in

increased drug efflux. Later, Sanglard et al. (1997) identi-

fied a second member of the ABC transporter family,

encoded by CDR2, which could rescue drug resistance in

the highly susceptible S. cerevisiae multidrug transporter

pdr5D mutant. Northern blotting performed on total RNA

showed an increased expression of CDR2 in resistant C.

albicans strains. The involvement of a second member of

the MF superfamily, encoded by FLU1 (for fluconazole

resistance), was discovered by usage of the same S. cere-

visiae pdr5D mutant (Calabrese et al. 2000). So far, no

other genes have been shown to be involved in this process.

Efflux pump upregulation seems to primarily play a role in

azole resistance (Mateus et al. 2004; Mukherjee et al. 2003;

Ramage et al. 2002b; Sanglard et al. 1996) and is reported

not to be involved in echinocandin resistance (Niimi et al.

2006).

An induced expression of CDR1, CDR2, MDR1 and

FLU1 in biofilm-associated C. albicans cells compared to

planktonic cells has been shown both in vitro (Mateus et al.

2004; Mukherjee et al. 2003; Ramage et al. 2002b) and

in vivo (Andes et al. 2004; Nett et al. 2009). Increased

expression of the CDR-genes was mainly observed after

24 h and to a lesser extent after 48 h, while MDR1 was

solely overexpressed after 24 h (Mukherjee et al. 2003;

Ramage et al. 2002a). These observations already indicate

that upregulation of drug efflux pumps does not play a

major role in drug resistance in mature biofilms because

both groups observed a decrease in efflux pump gene

expression in aging biofilms whereas generally resistance

increases as the biofilm ages. In fact, it seemed like chal-

lenge of the biofilm with antifungals was not necessary

since adherence to a surface was enough to trigger this

gene overexpression (Lepak et al. 2006; Mateus et al.

2004). Moreover, several studies have shown that CDR1,
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CDR2 and MDR1 single and double mutants are suscepti-

ble to azoles when grown planktonically despite retaining

their resistance when grown in a biofilm structure, thereby

implying that the presence of these genes is not necessary

for resistance in biofilms (Mukherjee et al. 2003; Perumal

et al. 2007; Ramage et al. 2002a).

Recently, it was discovered that the efflux pump enco-

ded by FLU1 is also responsible for efflux of the salivary

human antimicrobial peptide histatin 5 (Hst5) that is toxic

to C. albicans. Li et al. (2013) showed that flu1D/D had

significantly reduced efflux rates of Hst5 and significantly

higher cytosolic Hst5 concentrations. Moreover, this

mutant showed reduced biofilm formation capacity in the

presence of Hst5. RT-PCR of C. albicans cells showed that

FLU1 expression levels did not increase upon challenge

with Hst5 in the short term, giving an indication that

FLU1-upregulation is unlikely to become a mechanism for

resistance against Hst5, showing its therapeutic potential.

In conclusion, although an increased expression of genes

encoding efflux pumps has been observed in the early

hours of biofilms formation, this does not seem to be the

case in mature biofilms. Moreover, it has been shown that

mutants lacking genes encoding efflux pumps still retain

their resistance to antifungals when grown in a biofilm.

These observations lead to the conclusion that upregulation

of drug efflux pumps is not a major cause for increased

resistance of biofilm-associated cells.

Persister cells

Persister cells are phenotypic variants rather than mutants

(Keren et al. 2004; LaFleur et al. 2006) that are able to

survive antibiotic concentrations well above MICs (LaFl-

eur et al. 2006). It is thought that the inability of an anti-

biotic to eradicate persister cells is a consequence of the

dormant state in which persister cells are present, since

antibiotics need an active target to perform their function

(Lewis 2010, 2012).

Since the discovery of persister cells in 1944 (Bigger

1944), their presence has been shown in biofilms formed by

different bacterial species such as P. aeruginosa and

Escherichia coli (Harrison et al. 2009; Spoering and Lewis

2001) in which they make up 0.1–1 % of all cells (Keren

et al. 2004). The presence of persister cells in Candida

biofilms was first shown in 2006 when LaFleur et al. (2006)

observed a biphasic killing of C. albicans biofilms, with the

majority of the population being killed at relatively low

amphotericin B concentrations and a very small fraction of

cells remaining resistant even at high concentrations of the

drug. 1 % of the population was completely unharmed by

antifungal agents, and these cells were appointed ‘‘per-

sisters’’. Moreover, the group showed that the presence of

persisters was not dependent on the formation of a complex

biofilm structure, but rather on the ability to attach to a

surface.

Blocking persister survival can be an interesting thera-

peutic option aiming at increasing C. albicans biofilm

susceptibility to antifungals. Bink et al. (2011) discovered

that superoxide dismutases, encoded by SOD-genes in

C. albicans and important for detoxification of reactive

oxygen species (ROS), play a major role in miconazole

persistence through upregulation of SOD-genes upon

addition of miconazole. By addition of a superoxide dis-

mutase inhibitor N,N’-diethyldithiocarbamate (DDC) to

C. albicans biofilms, they reduced the miconazole-resistant

persister fraction 18-fold.

However, quickly after the discovery of persisters in

Candida biofilms, it was shown that not all Candida strains

produce persister cells (Al-Dhaheri and Douglas 2008).

When the effect of AmB on biofilm formation by two C.

albicans strains, namely SC5314 and GDH 2346, was

tested, it was demonstrated that biofilms formed by the

latter strain contained a small amount of cells that was

resistant to AmB concentrations of 100 lg/ml after 24 h of

exposure whereas the MIC for planktonic cells of this

strain is 1.3 lg/ml. Surprisingly, however, biofilms formed

by SC5314 showed no cells surviving after the same

treatment. These results were later confirmed by a life-dead

staining of biofilms cells exposed to 100 lg/ml AmB using

fluorescein diacetate (Al-Dhaheri and Douglas 2010). As a

consequence of these findings it can be concluded that the

presence of persisters cannot be the only reason for drug

resistance in C. albicans biofilms.

Matrix

Cells within a C. albicans biofilm are embedded in an

extracellular self-produced matrix (Costerton et al. 1995).

The amount of matrix material present depends on the

growth conditions to which the biofilm is subjected, with

much more matrix material being produced when the cells

are confronted with a liquid flow as compared to static

conditions (Hawser et al. 1998). Like extracellular poly-

meric material produced by planktonic cells, the main

components of the biofilm matrix are carbohydrates (glu-

cose, mannose, rhamnose and N-acetylglucosamine), pro-

teins, phosphorus, uronic acid and hexosamine (Al-Fattani

and Douglas 2006; Lal et al. 2010). However, when com-

paring the exact composition of biofilm matrix material

with its counterpart produced by planktonic cells, consid-

erate differences were discovered concerning its carbohy-

drate and protein content indicating that there might be

some features specific to biofilm matrix material (Al-Fat-

tani and Douglas 2006; Baillie and Douglas 2000; Hawser

et al. 1998). Recently, it was discovered that extracellular

DNA (eDNA) is also an important component of biofilm
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matrix material, with amounts increasing over time, and

that treatment with deoxyribonuclease I (DNAse) decreases

biofilm biomass at later time points (Martins et al. 2010).

Moreover, DNAse could enhance the activity of AmB and

caspofungin on C. albicans cells in mature biofilms. Such a

synergy was not observed with fluconazole (Martins et al.

2012).

To determine whether the presence of matrix material

indeed increases the resistance of biofilms to antifungal

products, Al-Fattani and Douglas (2006) grew C. albicans

biofilms under static conditions, resulting in a small

amount of matrix material, and under conditions of con-

tinuous flow using a modified Robbins device (MRD).

Using scanning electron microscopy (SEM), they could

confirm the presence of much more matrix material in the

biofilms grown under continuous flow, compared with

biofilms grown statically, as was expected. When chal-

lenging mature biofilms grown under both conditions with

5- and 30-times the MIC for planktonic cells, they found

that biofilm resistance was correlated with the amount of

matrix material present. In contrast, two earlier publica-

tions that compared drug susceptibility of statically grown

biofilms with biofilms grown under gentle shaking did not

report any differences associated with the extent of matrix

formation (Baillie and Douglas 2000; Hawser et al. 1998).

This might be caused by the difference in flow regimen

(Al-Fattani and Douglas 2006), with the MRD, which

causes a continuous unidirectional flow over the surface,

possibly mimicking natural conditions more than does

gentle shaking.

One potential mechanism by which matrix material

increases biofilm resistance is via restricting penetration of

the drug through the biofilm. This was, however, quickly

confuted when Al-Fattani and Douglas (2004) showed that

unless their observation that diffusion rates differed for

different drugs, after 3–6 h of drug exposure, distal places

in the biofilm showed drug concentrations that were several

times the MICs. Even with this drug permeability into the

biofilm, complete killing of biofilm-associated cells could

not be accomplished.

A new light was shed on the matter when Nett et al.

(2007b) discovered that cell walls of biofilm-associated

cells were up to two times thicker and contained more

carbohydrates and b-1,3-glucans than stationary or log-

phase planktonic cells. This was true both in vitro, with

supernatant of biofilms containing two to tenfold more b-

1,3-glucans than supernatant of planktonic cells, and

in vivo, with serum of rats with a biofilm-associated

infection on a central venous catheter containing nearly

tenfold more b-1,3-glucans than serum of rats with dis-

seminated candidiasis. After isolation of matrix material,

they could also show the presence of b-1,3-glucans in the

biofilm matrix, and this amount was shown to increase over

the course of biofilm maturation (Nett et al. 2010). More-

over, they were able to show that biofilm-associated cells

could bind four to fivefold more fluconazole per cell-wall

weight compared to the planktonic cells. Combining these

two observations seems to indicate that b-1,3-glucans bind

fluconazole in biofilm structures, thereby decreasing its

potential to control biofilm-associated cells. To further

support this hypothesis it was shown that both in vitro and

in vivo, a combination of 1,000 lg/ml fluconazole with

1.25 units/ml zymolyase (a glucanase) could decrease

biofilm viability, whereas either one separately was not

able to do so (Nett et al. 2007a, b). Addition of fluconazole

to biofilms at concentrations reducing metabolic activity

was shown not to alter exopolysaccharide material and

biofilm architecture (da Silva et al. 2012), giving an indi-

cation that binding of fluconazole to b-1,3-glucans will not

affect matrix material or biofilm structure. Specific binding

of antifungals by b-1,3-glucans was later shown for AmB

(Vediyappan et al. 2010). Recently, Mitchell et al. (2013)

showed that also in non-albicans Candida species, b-1,3-

glucans contribute to azole resistance by specific binding.

Since this discovery, the involvement of different genes

in this process has been elucidated. Firstly, the gene FKS1,

encoding a b-1,3-glucan synthase which is the target for the

echinocandin class of antifungals, was shown to be nec-

essary for resistance, since viability of cells in a biofilm

produced by a heterozygous deletion mutant which showed

a 30 % reduction in b-1,3-glucans content, was reduced

with 80 % after 48 h of treatment with 250 lg/ml fluco-

nazole. A similar effect was not observed in planktonic

cells (Nett et al. 2010). Furthermore, genes involved in the

protein kinase C cell-wall integrity pathway, which con-

trols cell-wall glucan content in response to stress, namely

SMI1 and RLM1, were shown to be essential for C. albi-

cans matrix and cell-wall b-1,3-glucan content (Nett et al.

2011). Moreover, Taff et al. (2012) showed that two pre-

dicted glucan transferases, encoded by BGL2 and PHR1,

and one exoglucanase XOG1, which are predicted to be

present in the extracellular matrix, are crucial for b-1,3-

glucans delivery to the matrix and accumulation of b-1,3-

glucans in matrix material, with biofilm-associated mutants

lacking these genes showing an increased susceptibility to

fluconazole. Similar phenotypes were not observed for

planktonic cells. Since b-1,3-glucans are also a major

component of the cell wall, the researchers propose that the

three above-mentioned glucan modification proteins are

also present in the cell wall. Lastly, research by Yi et al.

(2011b) showed that biofilm regulation, including matrix

deposition, in strains with a differential MTL-locus con-

figuration involves a different pathway and different tran-

scription factors. The more resistant MTL-heterozygous

biofilms are regulated by the Ras1/cAMP pathway and

require the subsequent action of transcription factors
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Efg1p, Tec1p and Bcr1p, which were termed the ‘‘tran-

scription factor cascade’’. On the other hand, the structur-

ally similar but thinner and more permeable MTL-

homozygous biofilms are regulated by the mitogen-acti-

vated protein kinase (MAPK) pathway and are so far only

shown to require the action of transcription factor Tec1p.

Most interestingly, these observations might indicate the

importance of regulation of matrix deposition over general

biofilm architecture in conferring antifungal resistance, but

further research is needed to validate this proposition.

Whereas binding of several antifungals by b-1,3-glucans

that make up a big part of C. albicans biofilm matrix

material has been proven to reduce antifungal susceptibility

of biofilm-associated cells, this cannot be the only reason

for increased drug resistance in biofilms. In the first paper

describing resistance of C. albicans biofilms (Hawser and

Douglas 1995), they were grown under static conditions

meaning that they contain much less matrix material than

they would do in vivo where they are constantly exposed to

fluid motion (Hawser et al. 1998; Hawser and Douglas

1995).

Stress responses

During colonization of its host, C. albicans is confronted

with a wide variety of stresses to which it responds via

different conserved signal transduction pathways of which

the MAPK network is a crucial component (Cannon et al.

2007; Monge et al. 2006). An important part of the MAPK

network is the protein kinase C cell-wall integrity pathway

that signals via the MAPK Mkc1p (Cannon et al. 2007;

Navarro-Garcia et al. 1995, 1998). Whereas the importance

of the cell-wall integrity pathway for virulence in a murine-

disseminated Candida model was already published in

1997 (Diez-Orejas et al. 1997), its importance in normal

biofilm formation and biofilm resistance was not known

until 2005 (Kumamoto 2005) when it was demonstrated

that an mkc1-null mutant formed an abnormal biofilm with

reduced filamentation after 48 h of development. More-

over, biofilms formed by the mkc1-null mutant were sus-

ceptible to MICs 100-fold lower than wild-type and

reintegrant strains.

Another key player in stress responses, the serine/thre-

onine protein phosphatase calcineurin, was already known

to be necessary for survival in serum and therefore for

disseminated infection by C. albicans (Blankenship and

Heitman 2005), when Uppuluri et al. (2008) showed that

Candida strains mutated in calcineurin B (CNB1), which

encodes the catalytic subunit of the protein, or its down-

stream target, the transcription factor Crz1, could be

restricted by much lower fluconazole concentrations than

their wild-type counterparts. In concordance with this, we

have to elaborate on heat shock protein 90 (Hsp90), which

interacts with the catalytic subunit of calcineurin to stabi-

lize it and prepare it for activation (Singh et al. 2009).

Hsp90 is known to be important for C. albicans resistance

against azoles and echinocandins (Singh et al. 2009) and

was shown to be necessary for biofilm dispersal and

resistance to azoles in vitro and in vivo (Robbins et al.

2011). The latter might be caused by the fact that Hsp90 is

a regulator of matrix glucan levels, with deletion of Hsp90

resulting in matrix material with reduced b-1,3-glucans-

levels, and thus a reduced potential to capture antifungals

(Robbins et al. 2011). These results indicate that a com-

bination therapy of an Hsp90 inhibitor or calcineurin

inhibitor, together with fluconazole would be an interesting

therapeutic option. The potential and likelihood of C.

albicans to develop resistance against such a combination

therapy was investigated by Hill et al. (2013). They started

from strains that were resistant to azoles in a manner

dependent on Hsp90 and calcineurin. Of the 290 strains

they started with, 7 C. albicans strains developed resistance

to fluconazole and either geldanamycin (Hsp90 inhibitor)

or FK506 (calcineurin inhibitor). Resistance mechanisms

identified included: drug target mutations that conferred

resistance against geldanamycin and FK506, mutations in a

gene encoding a transcriptional activator of drug efflux

pumps, namely PDR1, mutations that transformed azole

resistance from dependent on calcineurin independent on

this regulator and mutations in the catalytic subunit of

calcineurin. Moreover, they showed extensive aneuploidy

in four of the C. albicans lineages (Hill et al. 2013), a

characteristic that has been shown to increase fitness during

drug resistance development (Selmecki et al. 2009). A

second heat shock protein, Hsp104, was recently shown to

be important for in vitro biofilm formation and virulence in

a Caenorhabditis elegans infection model, but a role for

Hsp104 in biofilm drug resistance was not addressed in this

study (Fiori et al. 2012).

From this it is clear that the high resistance to commonly

used antifungals by biofilm-associated C. albicans cells

cannot be attributed to the actions of just one mechanism,

but is rather a comprehensive mechanism reflecting the

complexity of the biofilm lifestyle itself.

Escape from the immune system

The presence of pathogens in and on our bodies is gener-

ally detected by pattern recognition receptors (PRRs) that

are present on different cells of our innate immune system

and recognize pathogen-associated molecular patterns

(PAMPs) that are either present on the cell wall of the

pathogen or are secreted by the pathogen. Successful

binding of a ligand by PRRs causes receptor-specific sig-

naling through a downstream cascade, which eventually

results in pathogen phagocytosis, the onset of a pro-
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inflammatory response via production of cytokines and

chemokines and secretion of microbicidal compounds

(Seider et al. 2010). The major components of the C.

albicans cell wall, such as b-1,3-glucans, are responsible

for its detection by several specific receptors, the most

important ones belonging to the classes of toll-like recep-

tors (TLRs) and C-type lectin receptors (CLRs) (Bourgeois

et al. 2010; Netea et al. 2008). However, over the course of

time, C. albicans has evolved several immune evasion

strategies resulting in reduced recognition of the pathogen

by our immune system. A couple of these immune evasion

mechanisms include masking of specific cell-wall compo-

nents to prevent PRR-mediated recognition (Galan-Diez

et al. 2010; Wheeler and Fink 2006), secretion of aspartic

proteases to inactivate components of the innate immune

system (Gropp et al. 2009; Meiller et al. 2009), switching

to the opaque form with reduced filamentation to circum-

vent recognition mechanisms based on the hyphal state

(Sasse et al. 2013) and expression of surface proteins such

as Pra1p and Gpd2p that actively bind factor H and FHL1

thereby mimicking host cells resulting in protection from

the complement system (Luo et al. 2009; Luo et al. 2013).

Analysis of the interaction between biofilm-associated

C. albicans cells and our immune system started only

recently but has already shown to be very distinct from

interactions with planktonic C. albicans cells. In their

research, Chandra et al. (2007) showed that peripheral

blood mononuclear cells (PBMCs) did not phagocytose

biofilm-associated cells, as opposed to planktonic cells. In

contrast, the presence of PBMCs during biofilm develop-

ment enhanced the process with significantly thicker bio-

films being formed as a consequence of unknown factors

secreted by the immune cells. Comparable to this, it was

found that the presence of the pro-inflammatory cytokine

IL-17A enhanced C. albicans biofilm formation in vitro

(Zelante et al. 2012). These data support the idea that

biofilm formation might be an adaptation to survival within

the hostile environment inside the host.

By a mechanism that is still unknown, biofilm-associ-

ated C. albicans cells can change the profile of cytokines

secreted by PBMCs (Chandra et al. 2007) and phagocytes

(Katragkou et al. 2010). Furthermore, when biofilms were

exposed to the echinocandin anidulafungin, the cytokine

profile secreted by the phagocytes was altered once more

toward a more beneficial Th1 response (Katragkou et al.

2010) thereby steering our immune system into eradication

of the invasive fungal infection (Kullberg et al. 2004).

Infiltration of immune cells into the biofilm structure has

been reported repeatedly. In in vitro studies, PBMCs and

PMNs were shown only to be present in the top and middle

layers of most biofilms (Chandra et al. 2007; Yi et al.

2011b), whereas the less frequently encountered, more

penetrable MTL-homozygous biofilms possessed PMNs

distributed over their whole volume (Yi et al. 2011b). In an

in vivo mouse model of oropharyngeal candidiasis, clusters

of neutrophils were found to be present in the mucosal

biofilm structure (Dongari-Bagtzoglou et al. 2009).

Reduced activity of innate immune cells on biofilm-

associated C. albicans cells was also shown by Katragkou

et al. (2010). They demonstrated that the potential of

phagocytes to kill C. albicans was reduced for biofilm-

associated cells, compared to planktonic cells and resus-

pended biofilm cells, similar to the above-mentioned

behavior of PBMCs on biofilm-associated cells discovered

by Chandra et al. (2007). Exposing the biofilms to sub-

inhibitory concentrations of anidulafungin (0.12 mg/l) led

to a significant increase in phagocyte induced damage,

which, according to them, might be caused by an increased

exposure of b-1,3-glucans which are important PAMPs.

The hypothesis that cells are primarily protected by mature

biofilms was established by Xie et al. (2012). When 3-h old

biofilms were exposed to HL-60 (a human neutrophil-like

cell line) cells they lost over 80 % of their activity, whereas

the activity of 24- and 48-h biofilms was only reduced with

less than 30 %. Consistent with this, mature biofilms did

not elicit a robust oxidative response, which is one of the

main mechanisms by which neutrophils kill pathogens, in

sharp contrast with 3-h old biofilms. Moreover, dispersed

24-h biofilm cells also failed to prevent a ROS response,

leading the group to suspect a role for the biofilm matrix.

This role was confirmed when biofilm matrix alone did not

trigger a reactive oxygen response, and the true protector

was unmasked when glucanase treatment of the matrix

completely abrogated the matrix ROS-attenuating effect.

Conclusion

Reducing the incidence of biofilm-related candidemias in

hospitals is a requirement in the search for optimized

patient care. However, the high degree of resistance of

biofilm-associated C. albicans cells hinders rapid devel-

opment toward highly efficacious therapies. Recent efforts

of various excellent research groups tremendously broad-

ened our knowledge on the complex mechanisms under-

lying biofilm resistance. According to the authors, the

presence of matrix material is the most important biofilm-

resistance mechanism. Its involvement has been shown by

several elegant experiments and the fact that it is only

present in biofilms can explain the increased susceptibility

of planktonic cells and resuspended biofilm cells. However,

we do expect that several less important mechanisms such

as cell density, differential regulation of drug targets,

upregulation of drug efflux pumps in developing biofilms,

the presence of persisters in biofilms, upregulation of dif-

ferent pathways associated with stress responses and
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possibly yet undefined mechanisms can further increase

resistance to a maximum level. The elucidation of these

resistance mechanisms provides a promising step toward

the development of optimal therapies. Such therapies can

include classic antifungal therapies including catheter lock

therapies, combination therapies, natural compounds (Sardi

et al. 2013) and immunotherapies that are gaining more and

more attention. To enable us to develop the full potential of

immunotherapies, lot of effort is being put in revealing the

specific interaction of biofilm-associated C. albicans cells

with components of our immune system.
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