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Abstract 

Roads to turbulence in open-flow shear layers are interpreted as 

sequences of often competing instabilities. These correspond to 

primary and higher-order restructurings of vorticity distributions 

which culminate in convected spatial disorder (with some spatial 

coherence on the scale of the shear layer) traditionally called 

turbulence. Attempts are made to interpret these phenomena in terms 

of concepts of convective and global instabilities on one hand, and of 

chaos and strange attractors on the other. The first is fruitful, and 

together with a review of mechanisms of receptivity provides a unifying 

approach to understanding and estimating transition to turbulence. In 

contrast, current evidence indicates that concepts of chaos are 

unlikely to help in predicting transition in open-flow systems. 

Furthermore, a distinction should apparently be made between temporal 

chaos and the convected spatial disorder of turbulence past Reynolds 

numbers where boundary layers and separated shear layers are formed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T h i s  research was supported by the National Aeronautics and Space 

Administration under NASA Contract Nos. NAS1-18107 and NAS1-18605 while 
the author was in residence at the Institute for Computer Applications 
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1. INTRODUCTION 

Information on instabilities and transition to turbulence in 

shear layers has amplified exponentially in recent years and useful 

earlier summaries Morkovin (1978), Reshotko (1976, 1984), Arnal (1984), 

Ho and Huerre (1984), Schlichting (1979) and others can serve only as 

essential points of departure for a novice in the field. 

This report represents a selective account of the more recent 

insights into transition mechanisms in oDen-flow svstems, Fip. 1, as 

well as some new questions and disagreements that have arisen and that 
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may challenge innovative researchers. This up-to-date perspective is 

presented by focusing on vorticity fields: the transition process 

consists of a sequence of often competing instabilities which 

correspond to primary and higher-order restructuring of vorticity 

distributions. Use of composite figures was chosen as a key tool to 

convey and summarize overall features and contrasting developments. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

careful student of the subject will supplement these views with others, 

especially more mathematical approaches such as that of Bayly, Orszag 

and Herbert (1988). Spatial constraints limited the number of 

references; mostly they were chosen as particularly illustrative and 

suggestive. From these references and discussions in them a broader 

bibliography can be readily compiled. 

Two recurrent themes wind their way through the text: (1) 

response of shear layers to external stimulation, "natural" (indigenous 

to their specific environments) and intentional, by vibrations, sound, 

protuberances, grids, etc. for controlled modifications of behavior, 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  comparison of instability and turbulence behavior in open-flow 

and closed-flow systems. The first theme rests on the recent 

clarification of concepts of convective and global instability and 

proves itself very fruitful. It is coupled with the mechanisms of 

receptivity by which the external disturbances get internalized as 

unstable intrinsic shear-layer vorticity modes. The second theme aims 

at the possible applicability of the concepts of chaos and strange 

attractors to the open-flow systems. A simple introduction to these 

concepts is given in the Appendix with emphasis on the first theme: 

response to harmonic forcing. 

Broadly speaking, open-flow systems, Fie. 1, have two 

distinguishing behavior patterns not seen in the inherent oscillatory 

motions of non-fluid systems: downstream DroDaeatinP primary 

instabilities within a broad band of frequencies, and (at the end of a 

sequence of higher-order instabilities) sDatiallv disorderlv turbulence 

with some spatial coherence on the scale of the shear layer (the 

coherent "large scale" structures). All convectively unstable open 

flows at higher Reynolds numbers display their particular 

disturbance-conditioned sequence of instabilities successively in x 

(the streamwise coordinate) at the same time t. Restructuring of 
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vorticity probably continues in all shear layers with x-varying 

thickness. Only far downstream in internal flows, Fie, lb, can a true 

equilibrium of turbulence possibly take place. 

In contrast, within closed-flow systems the flow interacts with 

itself at all times. Under this iterative self-interaction, 

equilibrium states at constant Remolds number (including turbulent 

states) are generally reached in a short time at all spatial 

locations. 

oscillatory equilibrium can usually be.set at will and maintained in 

time by the experimenter-designer. 

differences impair the applicability of the concepts of chaos to 

open-flow systems. 

A fixed Reynolds or Rayleigh number and a fixed stable 

It will be seen that these 

The interweaving of the two themes and the structure of the paper 

can be gleaned from the Table of Contents and the sequence of figures. 
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2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAROADS TO TURBULENCE IN OPEN-FLOW SYSTEMS 

(2.11 Dehomovenizinn. - linearized Drimarv instabilities. 

Instabilities arise primarily in thin shear layers 

generated by viscosity in flows past solid walls: boundary 

layers, wakes, jets, mixing layers, pipe and duct flows, etc. 

At lower Reynolds numbers, Re, the laminar velocity profiles 

(such as those in Fie. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 for mixing layers, flat and concave 

boundary layers) form auasi-two-dimensional continuous vorticitv 

distributions which are nearly homoeeneous in the streamwise x 

and spanwise z directions. As Re increases, vorticity dynamics 

lead to locally increased concentrations Aw associated with the 

first or primarv instability as sketched in mid Fig.2, This 

first restructuring of vorticity consists thus of dehomoeenization or 

lumpization of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw field in which total vorticitv is preserved. 

In the case of the concave boundary layer, incremental positive 

and negative streamwise vortices, named after Goertler and Taylor, 

grow in x, Fie. 2 right, while the flow remains steady. In the case 

of the flat-plate boundary layer, positive and negative intensifi- 

cations of spanwise vorticity Aw are convected downstream at speed c. 

The dehomogenization together with convection render the flow unsteady. 

However, an observer traveling downstream with speed c would see a 

steady growth of the concentration in the so-called Kelvin cat’s eyes, 

located slightly above the critical height y 

center of Fin.2. In the case of the antisymmetric mixing layer on the 

left of Fi?. 2 spanwise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAw grow in time and remain in place. 

(for which U(ycr)- c), 
cr 

( 2 . 2 )  Amplification and damDine: of first and higher normal modes 

This restructuring in open-flow systems generally proceeds from 

vorticity disturbances (nonhomogeneous in space and/or time) induced by 

small perturbations in the environment of the given shear layer. 

initial growth rate of the vorticity concentrations can be computed 

from the linearized Navier-Stokes equations for the local geometry of 

the layer. When excitation is purely sinusoidal, the response consists 

The 
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of a superposition of normal or einen modes associated with the local, 

nearly parallel structure of the shear layer. 

lowest mode are damped. Above a geometry-dependent minimum critical 

In general, all but the 

Reynolds number,Re the lowest mode is selectivelv amDlified in 

relatively narrow frequency and/or wave number band. The corresponding 

y-distribution of vorticity, velocity components, pressure, etc are 

called eigen or characteristic functions and can at times be verified 

experimentally. They grow proportionately to the cosine-exponential 

combinations shown under the sketches in Fie.2, Thus, the incremental 

vortices in the mixing layer case intensify in place at the temporal 

exponential rate a c per unit time (where wave number a is the 

inverse of the wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX multiplied by 2ll and cr, ci are the real 

and imaginery components of the complex "propagation speed "c). For 

the other two cases in Fie.2, the exponential amplification rate is 

rlai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare 
spatial in character, - Q  per unit length, where a 

i 

the real and imaginary parts of the complex wave number a, again 

computed as eigenvalues for the given system of linear equations. 

cr ' 

r i  r 

( 2 . 3 1  Nonlinear develouments: secondarv and higher instabilities 

It has been recently established that nonlinear effects, neglected 

in the above computations, can initiate secondarv resonance mechanisms 

when the r.m.s. x - velocity fluctuations u' reaches relatively low 
levels of 0.3 percent of the mean velocity U 

flat-plate boundary layer. In mixing layers secondary restructuring 

commonly begins at primary u' levels near O.OO1-Ue, while the primary 

vortex growth and roll-up continues nearly exponentially to saturation 

levels on the order of O.l*Ue. (The cited u' levels convey relative 

not absolute energetics. In experiments, even numerical ones, the 

energies are contained in nonstandarized finite band-widths, which 

vary among experimenters.) It is important to note that slower, hardly 

diagnosable three-dimensional tertiarv restructuring may commence 

almost hand in hand, with the secondary vortex-pairing instability. 

at the edge of a 
e 

These observed cases thus do not conform to the scenario postulated 

by most mathematicians, namely that-the primary instability should 

first reach a nonlinear equilibrium. Such a "saturated" equilibrium 
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flow would form a new base flow which, in principle, could be perturbed 

and linearized in order to characterize the secondary instability modes 

bifurcating from the equilibrium flow. One reason for the growth of 

secondarv instabilities from pon-eau ilibrium stateq is the fact that 

these shear layers constantly grow in thickness. That thickness is 

taken as constant in the bifurcation theory. Another reason may be 

that in the strictly parallel boundary layer case the bifurcation is 

"subcritical". 

equilibrium, if achievable, would be automatically unstable. Herbert 

(1988) describes in great detail the experimental and theoretical 

research which resulted in the current understanding of secondary 

instabilities in boundary layers (summarized in the center of our 

Fie 15,) 

base flows, the assumption of a saturated primary leads to a very 

satisfactory agreement with experiments, Herbert (1988). 

Subcriticality implies that the finite-amplitude 

Even though the instabilities start from non-equilibrated new 

(2.4) Parametric instabilities 

Herbert also stresses that all the first restructurings bring about 

systems of equations in which some coefficients of the unknowns vary 

periodically in space or time, say with period PI as sketched in Fip.2. 

The resulting linear Floquet equations exhibits powerful parametric 

instabilites, with periods (m/n) P, where m and n are integers. Thus 

there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmanv possible conmetine secondary instabilities, depending on 
initial conditions and on the "saturated" amplitude of the primary mode 

(threshold effects). Consequently, for each physical realization, such 

as those in Fie. 2 ,  this unified mathematics will be reflected in 

different comDetinP eeometrical vorticitv formations. In mixing 

layers, the especially strong subharmonic instability with m - 2 and n 
n - 1, may correspond to pairing of two-dimensional primary vortices 
with total vorticity conserved or to a three-dimensional corrugation 

of the primary vortices, with the quintessential new-vorticity 

generating mechanism by "tilting and stretching"; see theory of 

Pierrehumbert and Widnall (1982) and experiments described 

by Ho and Huerre (1984). For the flat plate boundary layer in Fie. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  

the three-dimensional secondary instability (m = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ,  n = 1) is present 

in the Craik (small amplitude) and Herbert (finite amplitude) 

mechanisms. The earlier explored secondary instability, the K 
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mechanism, studied experimentally by Klebanoff, Tidstrom and Sargent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1962), corresponds to m - 1 and n - 1, and to a higher threshold 
amplitude of the primary instability. 

(2.5) When does a turbulent state set in? What is it? 

As indicated in the summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, higher instabilities, i.e., 
rapid restructurings of vorticity are observed as Re increases, often 

simultaneously on different scales. In closed flow systems, such as 

flows between rotating cylinders, the successive instabilities are 

relatively clear cut. Yet there is competition between the many 

possible configurations. Also, localized regions of turbulence occur, 

especially in counter- rotation, see Andereck, Liu and Swinney (1986). 

In open-flow systems with shear layer thickening in x or t, lack of 

resolving power of our instruments limits identification of 

instabilities beyond the tertiary, - if any are present. In a short 

time or distance past the occurrence of the tertiary we are generally 

unable to distinguish the state of the flow from a classically 

turbulent one. According to Tennekes and Lumley (1987) and R. W. 

Stewart (1968) four kev svndromex characterize turbulence encountered 

in engineering, Fie.3,: (1) irregularity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  three-dimensional 

vorticity, (3) diffusive motions far in excess of molecular mixing, and 

(4) dissipation. The first three are useful in diagnostics: they imply 

broad band (three dimensional) spectra. In motion-picture 

visualizations the onset of turbulence at higher Reynolds numbers is 

commonly seen as a sporadic sudden localized increase in diffusion 

which oblitarates small regions of laminar streak lines as an 

"inciDient turbulent m" is formed in the final stage of 
instability. 

Such emerging turbulent 3D spots need to be distinguished clearly 

from the turbulent spots and patches studied experimentally in boundary 

layers and ducts which are often called Emmons' spots. Emmons' spots 

grow in an environment of nearly quiescent laminar layer whereas the 

neighborhood of the incipient turbulent 3D spots, though still laminar, 

is highly unsteady and contains significant three-dimensional 

vorticity. 

comparable. 

Dynamics of their subsequent growth are unlikely to be 
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TO what extent are the classically turbulent states in open-flow 

systems (as characterized by the above four syndromes) equivalent to 

"chaotic" states characterized by "stranee attractors" in the modern 

theory of dynamical systems? What deeper insights can the theories of 

chaos bring to our dealing with turbulence in open flow systems and in 

particular to our engineering task of estimating the x-location of 

transition to turbulence? The 1988 Spring issue of a certain alumni 

magazine quoted an eager researcher at the university: "...we are now 

able to predict the point at which a laminar flow will start to become 

turbulent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . "  and "This applies to the turbulent flow encountered by 

any type of vehicle in any fluid". We note that the four-svndrome 

characterization of turbulence refers to localized regions - of the shear 

layer and allows for turbulence to coexist in proximity with laminar 

flow as in both types of turbulent spots above. 

dynamical systems the desienation chaotic refers to the state of the 

whole system - the whole shear layer. Locating the x-onset "point" of 

turbulence in a vehicle boundary layer requires additional assumptions 

which should be rigorous. Swinney and Gollub zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1986), who pioneered the 

experimental study of chaos in closed-flow systems, aware of such 

difficulties, state in a review article: "It is not yet clear whether 

the strange-attractor concept is useful for open systems . . . "  

In the theory of 

Before attempting to address the questions in the preceding 

paragraph, we need to clarify in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 what is meant by convective, 

absolute and global instability in open-flow systems. A simple 

illustration of the concept of strange attractor and some philosophical 

implications of chaotic phenomena is found in the Appendix. 

( 2 . 6 )  Remint Recr, Retr,and bmass transition 

Two more physical concepts which distinguish between intrinsically 

laminar flows and decaying turbulent flows are signaled in Fie.3. 

There is ample evidence, Morkovin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1984), that boundary layers below a 

Reynolds number, &.nt, cannot sustain intrinsic self-energizing 

turbulent motions on the scale of the local shear layer thickness 

6(x). In turbulent boundary layers, the unsteady energy dissipated 

near the wall is restored through intermittent "bursts" which produce 

negative Reynolds stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-PUT and recoup energy from the mean 
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flow. Two types of events associated with bursts, ejections and sweeps, 

are identified in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  The ejections in particular have the 

character of local instability which evidently is absent below Re 
mint. 

Any locally forced turbulence, say by a spark or local separation, 

decays rapidly. Even when vigorous free-stream turbulence is convected 

toward the boundary layer as in Fig la, the energizing "bursts" (with 

scales smaller than 6) are not excited. Rather, the boundary layer 

experiences some three-dimensional motions on scales larger than 6 and 

some mild increases in mean wall stress and heat transfer rates. 

However, the boundary layer remains intrinsically laminar. This 

randomly unsteady quality is conveyed by the term "buffeted laminar 

laver" in Fias. la and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  For the given shear-layer geometry the 

earliest possible transition, important in design, occurs at Re 
mint. 

The observed minimum Re for self-sustained turbulence in four types 

of flows are compared to corresponding critical Re for first laminar 

amplification of infinitesinal disturbances in Fiv, 4. In presence 

of moderate to small environmental disturbances of turbulence, Re in 
tr 

boundary layers is generally observed downstream of Re at distances 

corresponding to inferred total amplifications of roughly 100 to 10,000 

of the linearly most dangerous disturbance. The observed approximate 

coincidence of Re and Re of about 200 (based on momentum 

thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 )  for the flat plate has remained unexplained for forty 

years. However, the expected sequence Re 

observed in boundary layers on bodies with finite thickness when 

disturbances are moderate. 

cr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 

mint cr 

< Recr <Retr is generally 
mint 

Occasionally, Retr does not appear to be related to Re and may 
cr 

even occur upstream of Re . Obviously, such cases can play havoc with 

design, as it did in the humbling case of the heat-sink nose on the 

first reentry vehicles in 1956, Murphy and Rubesin (1966), Morkovin 

(1984). (This is called the blunt-body paradox in Fie. 15.) On blunt 

bodies at high speeds the transition path to turbulence bvpasses to 

this day all known instability theories and documented mechanisms 

(although highly accelerated thin boundary layers are known to be very 

sensitive to surface roughness). We can expect large disturbances 

(local wall distortions, vigorous oncoming turbulence) to cause bvpass 

cr 
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t m  as outlined in Fie 11. However, the mildly disturbed 

"naturally occurring" bypass transitions Re < Retr < Recr, in 

piDes and ducts in Fig.4 also remain unexplained. These flows are more 

subcritical to axisymmetric and two-dimensional disturbances than 

mint 

boundary layers (Section 2 . 3 ) ,  but experiments point to 

three-dimensional disturbances and more subtle causation. 

( 2 . 7 )  Relaminarization 

The final important concept in the summary Fie.2 deals with 

relaminarization, which has been extensively documented and analysed by 

Narasimha and Sreenivasan (1979) .  One of the several relaminarization 

mechanisms they describe operates in highly accelerated turbulent 

boundary layers. 

near the wall and stabilizes the inner layer. The turbulence-re- 

energizing bursts diminish in frequency and stop altogether. A thin 

new laminar layer grows from the wall within the old boundary layer, 

which now decays and becomes wake-like. The outer-layer turbulence 

cannot stop instantaneously; it is merely "starved'*. In fact, the 

growing inner layer constitutes a laminar layer "buffeted" by the 

decaying turbulence of the outer layer. It remains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso until it grows 

past its Re Sternberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1954), or until the favorable pressure 

gradient is relaxed and bursts recommence. Again, the wall stress and 

the heat transfer rate in such relaminarized buffeted inner layers 

appear to be less than those expected in turbulent layers, justifying 

the term "locally relaminarized" . 

The favorable pressure gradient increases dissipation 

mint ' 
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3 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONVECTIVE INSTABILITY AND STREAMWISE RESONANCE 

Fieure 5a, based on Huerre and Monkewitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1985) ,  and Huerre (1987) 

illustrates the linearized convective instability in one less dimension 

than the Gaster-Grant experiment. As in Fie.2 the response is 

exponential, but in both x and t simultaneously, yielding a growing 

wave packet within the propagation wedge shown in Fig.5a. Outside the 

wedge the factor exp(w.t) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw negative damps out the response. The 
1 i 

wave pocket transmits disturbance energy at the group velocity c - 
aw /ak which is associated with a ray x=c t within the wedge. 

g 

r r  g 

(3.1) Local convective and absolute instability 

The normal-mode responses to the specialized harmonic excitation of 

the linearized primary instability, Fie.2, were termed spatial or 

tenmoral. A fundamental instability response of a shear layer is 

that to an impulsive forcing disturbance at t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  localized at a the 

origin of the streamwise and spanwise coordinates. In terms of Dirac's 

impulse functions, response is desired to the forcing term 6(t)6(x)6(z) 

on the right side of the otherwise homogeneous linearized stability 

equation. This search for a Green's function of the linearized system 

represents an idealization of the experiment of Gaster and Grant 

(1975) .  By repetitive excitation and judicious sampling these 

researchers measured the unsteady response of a Blasius boundary layer 

to short weak pressure puffs from a very small hole in a flat plate. 

At any time after the puff, the boundary layer was disturbed only over 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall x-z area which grew slowly in size as the disturbance field 

propagated downstream. In accordance with the filter-amplifier 

characteristics of the layer, the disturbance took the form of x-z wave 

packets which grew at first nearly exponentially in amplitude within 

the disturbed, propagating "laminar m". At later times nonlinearity 
and higher instabilities modify the nearly exponential linearized 

primary instability behavior. Such localized exponential growths 

within downstream propagating spots are defined as being convectively 

unstable 
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In some flows, illustrated in Fie 5b, the grow velocitv becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zero and the disturbance energy remains centered on the point of 

impulse, x - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The disturbances then grow exponentially in place and 

disperse somewhat in x according to the normal-mode dispersion 

relation. Such linearized flows are called absolutelv unstable. In 

open-flow systems, most of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmean vorticity of the shear layer 
continues to be convected downstream but the energy, associated with 

the vorticity disturbance field may be trapped, "working upon itself". 

We note paranthetically that this self-interactive character of the 

disturbance field is partially similar to the interactive conditions of 

Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - 4  for Couette and Bgnard-Rayleigh flows, which ultimately 

lead to strange-attractor behavior. Those two flows are indeed 

absolutely unstable, but in addition they are closed with respect to 

the mean vorticity, an important feature when-turbulence and phase 

jitter set in. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 3 . 2 )  ) 

The spot-like character of the impulse response requires both the 
circular frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and the wave number k (often denoted by a) to be 

m x  in the spatio - ternDora1 factor expi(kx-ut) in Fie.5. A 

functional relation w(k) (the dispersive relation in terms of the flow 

parameters) is imposed by linearized equations for the disturbance in 

the given flow. The absolute instability condition a w / a k  - 0 of zero 
group velocity generally corresponds to a double root for the 

eigenvalues of w. Two disturbance vorticity waves propagate then at 

the same speed wr/k and potentially could "resonate". Koch (1985) 

postulated that vanishing of the w derivative in the wake of a bluff 

body indeed corresponds to a resonance leading to the extra strength 

and regularity of the observed Karman-Benard vortex street. 

resonant-like nonlinear regularity of the Karman-Bgnard street is now 

believed to be associated with plobal instability of the flow, 

Monkewitz (1988), for which the initial absolute instabilitv is only a 

necessary but not a sufficient condition, see Section 3 . 4 .  

r 

The 

The important definitions of convective and absolute instabilities 

are strictlv valid only for small-disturbance Linearized flows which 
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are indeDendent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE .  The extra qualifying adjective "local" for these 

instabilities underscores the suppression of the x dependence of the 

layer in the analysis, which then permits separation of variables and 

reduces the problem to the search for eigenvalues in y. Wakes of bluff 

bodies and jets with variable density (the other open-'flow shear layer 

with absolute instability, Monkewitz and Sohn, 1986) unfortunately 

exhibit rather strong x-dependence and depart significantly from 

infinite parallel layers. 

wave interaction in x with some unspecified reflection at the body and 

possibly elsewhere. 

Furthermore, the suspected r-esonance involve 

In the bluff-body cases, the local instability criterion disregards 

completely the strong destabilizing adverse pressure gradient near the 

base which is suspected to contribute significantly to the magnitude of 

the pressure fluctuations. It is known that the common dominant 

low-frequency pressure disturbances in wind tunnels stem from irregular 

separation in diffusors with adverse pressure gradients. Instantaneous 

separation lines often tend to be nonuniform spanwise due to presence 

of wx at moderate Reynolds numbers. However, resonances in x in shear 

flows tend to straighten out separation lines and lead to still larger 

fluctuations. There is nonlinear hvdroacoustic feedback to upstream 

regions which reinforces or modifies any interactions (and feedback 

tuning) between vorticity waves. 

In other words, the shear layer we observe may differ substantially 

from the hypothetical ones in which infinitesimal disturbances 

presumably initiated the resonant processes. 

the streamwise velocity fluctation u' in a cylinder wake exhibits the 

nonlinear level of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.02Um right at the separation of the shear layer 

from the body, Nishioka and Sat0 (1978, Fig. 5). The pressure 

fluctuations seeded by the vigorous nonlinear vortex formations (see 

equations in Fig.7) actually reach upstream of the cylinder and 

precondition the boundary layer on the cylinder upstream of the 

oscillating separation point. This exceeds any upstream effects which 

a vorticity wave interaction-resonance could have caused at the initial 

linearized level and is therefore unquestionably hydroacoustic 

in character. 

of local absolute instability (characterized by the purely temporal 

For instance, at ReD-120 

The same Nishioka-Sato figure documents that this case 
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initial instability in Fie.5b) evolves into a global instability in the 

form of a rapid purely spatial u' amplification in x for x/D up to 

approximately 2.5 and a slow decay thereafter. The maximum fluctuation 

u' (in excess of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.3Ua) is located just downstream of the closure of 

the mean-wake recirculation pocket. This provides support for at least 

a contributory role of vorticity feedback in the final state of 

cylinder-wake resonance at low Reynolds numbers. 

The resonant bluff wake has an additional property, useful 

in diagnostics. It is robust with respect environmental disturbances. 

In other words, the nonlinear feedback system filters out external 

perturbations to the point that the Re-dependent frequency of the 

vortex street has been used successfully for velocity measurements at 

low speeds where Pitot tubes are inaccurate, Roshko (1955). The 

resonant near wake at low Re seems to have just two effective degrees 

of freedom and behaves like a second-order Van der Pol oscillator with 

a robust limit cycle described in Section A-2 and Fie A-1a.b. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 3 . 3 )  Noise resDonse of convectivelv unstable lavers 

Fimre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 summarizes the progression of idealizations leading to a 

model of nonlinear global instability, presumably mimicking the 

resonance of the cylinder near wake. First, for the linearized 

convectively unstable shear layer - present in the majority of open 
flows - the local parallel approximation exacts no significant 

penalties. Second-order nonparallel theories (when carried out 

correctly) provide relatively small correctons for Re and 

amplification rates. The convective character of the instability 

remains unchanged. 

cr 

Thus by definition of convective instability each successive 

disturbance "received by the layer from upstream" generates its own 

laminar spot which propagates downstream as it grows exponentially. In 

wind tunnel environments with continuous randomly modulated 

disturbances laminar spots tend to superpose while maintaining some 

random phase and amplitude nonhomogeneity in x and z. 

frequency within the amplified spectrum, the response resembles that of 

an averaged quasi-two-dimensionally spatially growing unstable wave; 

Sampled at any 
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see lower half of Fig.13. As these disturbances approach nonlinear 

levels, the amplified, noise-sustained structures (in the language of 

Deissler and Kaneko, Section A-4) are ready for secondary and higher 

instabilities, fed in part by the amplitude inhomogeneities in x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz .  

The convectivelv unstable shear layers lack any robustness with 

respect to environmental disturbances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- on the contrary they are driven 
them, probably even quite some distance into the fully turbulent 

region. The randomness and nonhomogeneity of the response is 

reflected in an extended region ARe 
tr 

turbulence may take place. This is illustrated in the lower half of 

13, where Retr-beg refers to the upstream position of the onset 

and Retr-end 

burst-like, Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . 6 .  Measured ratios ARe to mean Re in wind 

tunnels are often on the order of 0.4, but tend to be smaller in 

adverse pressure gradients. 

within which the local onset of 

to the location past which all activity near the wall is 

tr tr 

The vision of transition Drediction by the researcher quoted in 

Section 2 . 5  is thus stronelv contraindicated for convectivelv unstable 

boundary layers "on any vehicle". 

(3.41 Absolute versus global instability 

Local absolute instability rests on the character of the eigenvalue 

The occurrence of zero group velocity in the x-dependent problem in y. 

shear layer signals merely the possibility of a resonance in x .  

visual evidence of Thorpe (1971, Figs, 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 )  for the anti- 

symmetric mixing layer demonstrates a lack of robustness in his 

absolutely unstable flow. Unquestionably there is no resonance. The 

layer responds irregularly to the initial nonhomogeneities, which are 

amplified into "noise-sustained" saturated structures, and proceed to 

irregular pairing and sporadic onset of turbulence. It would almost 

seem that the very lack of x-dependence in the mean mixing layer (in 

contrast to that of the bluff near wake) removed "the opportunity" for 

resonance, such as partial or full reflections of the vorticity waves. 

The 

The situation seems to have been clarified on a partial 

differential equation model (the Ginzburg-Landau equation in x and t, 
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with a convective term uaA/ax, a cubic nonlinearity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand one coefficient 

slowly varvinp; in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE )  by Chomaz, Huerre, and Redekopp (1988). The 

linearized equation admits an undamped eigenfunction in x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a robust 
global instability - only when the x-extent of the equivalent local 

absolute instability reaches a finite critical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsize. 

solutions of the full nonlinear equation for impulsive white-noise 

conditions exhibited the successive behavior for the stable, 

Numerical 

convectively unstable, absolutely unstable, and globally unstable 

regimes as the parameter of the system was varied. 

Monkewitz (1988) in his study of local viscous linearized stability 

of a family of wake profiles associated the onset of the three unstable 

stages with Re of approximately 5, 25, and 47, respectivey. He took 
D 

the emDirical result for the spontaneous onset of the oscillations at 

Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 47 as the criterion for the onset of global instability, a 

criterion not obtainable in parallel approximations. The common 

absence of oscillations in the convective regime 5 < Re < 25 is 

ascribed to the absence of environmental disturbances in the narrow 

excited range of frequencies. 

downstream of slightly vibrating cylinders supports this 

interpretation; see discussion of Fig. 5 in Morkovin (1964). 

D 

D 

Taneda’s 1963 visualizations of wakes 

Judging by Fig. 16 of Nishioka and Sat0 (1974) for the 

recirculating wake, Monkewitz local conditions for absolute instability 

at Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 correspond to the closure of the steady recirculation 

pocket at xkl.7D. 

47 the pocket extends to x ~ 3 . 1 D  and presumably provides the 

increased critical range needed for the resonance in x. Just as in 

the model of Chomaz et a1 (1988) in this regime of absolute instability 

there is little qualitative distinction of behavior from that in the 

convective instability regime: external forcing is required for the 

instability to appear and grow. For instance minute cross-flow 

oscillations of the cylinder engender an initially linearizable 

exponential amplification in x for ReD of 30 and 40, as documented in x 

in Figs. 6 and 7 of Nishioka and Sato (1978). 

D 
Just below the spontaneous street onset at Re Dof 

Altogether, the picture now appears rather consistent despite the 

ambiguities, outlined in Section 3.2, associated with the definition of 
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local infinitesimal instability, the usage of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmean profiles in 
highly disturbed flows 

feedback. Particularly 

evolution of the global 

and which verified that 

factor exp(w t) in the 

Experimental analytical 
io 

and the role of the nonlinear hydroacoustic 

convincing were papers which studied the time 

instability after it was suddenly "switched on" 

the whole field grew temporally with the single 

linear regime, as one would expect from Fig.5b. 

verification came from Sreenivasan, Strykowski 

and Olinger 1987 and Provensal, Mathis, and Boyer (1987), while a 

numerical study for a thick flat plate with a square base was described 

by Hannemann and Oertel (1987), based on Hannemann's dissertation. 

The numerical experiments permit detail examination of some of the 

aforementioned ambiguities. In accordance with the scenario of Chomaz 

et a1 (1988), Hannemann (1988, Fig. 42) finds the flow damped at ReD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
80, where the range of local absolute instability extends from the base 

to x - 2.3D, a range evidently insufficient to build up an amplifying 

eigenfunction in x. 

quasistationary symmetric Navier-Stokes field grow everywhere by a 

factor or lo5 in accordance with the linearized factor expo 

the free stream covers a distance of about 240D. 

nonlinear evolution, starting at u' 0.007+UaD is marked by (1) gradual 

shortening of the mean recirculation pocket by eddy entrainment (Fig. 

20), (2) change in mean velocity profiles, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 3 )  a 10% increase in the 

Strouhal frequency (Fig. 21), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 4 )  evidence of hydroacoustic feedback to 

the boundary layer upstream of the base, (Fig.28), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  exp(2wiot) 

growth of a varicose instability component of twice the frequency of 

the initially pure sinuous instability and movement of the unsteady 

vorticity maxima off the center line, (Figs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA24 and 19). 

For ReD= 200, the disturbances in a 

t while 
io 

The subsequent 

l3.5) Convective-hvdroacoustic global instabilitv; numerical 

simulations 

In closing this section, we should note that a whole class of 

global instabilities of free shear layers is sustained by hydroacoustic 

feedback when they impinge on a solid boundary; see bottom of Fie.6 and 

the overview by Rockwell and Naudascher (1979). When unsteady 

vorticity of a convectively unstable free shear layer impinges on a 

wedge, it generates pressure feedback to the point of separation of the 
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layer. ReceiDtivitv to unsteady p- gradients at separation 

being very high, Morkovin and Paranjape (1971), significant unsteady 

vorticity is generated at the origin of the layer. This newly-born 

unsteady vorticity is amplified by the unstable shear layer and 

convected toward the wedge, thus completing the resonance loop. A 

singing teakettle commonly reminds us shrilly that such loops can build 

up substantial energy levels. There is resonance and at least one 

undamped eigenvalue in x; there is robustness with respect disturbances 

(except for conditions of competition between two neighboring 

eigenvalues). 

The nonlinear generation of unsteady pressure is absent when 

Hannemann's global bluff-wake instability commences. 

indicates that the upstream effects of the pressure grow with 

nonlinearity and that they probably contribute to vorticity control at 

the very origin of the wake in the later stages of the global 

instability at low Reynolds numbers discussed here. 

the threshold for pressure feedback maybe very low. 

But his Figure 28 

At high Re values 

It is worth noting that the upstream traveling vorticity or 

pressure wave can be decaying in the negative x direction and yet 

sustain the global resonance. In the hydroacoustic case the pressure 

fluctuations decay in all directions from their origin, the exact 

manner depending on the geometry and the ratio of the total propagation 

distance to pressure wavelength (near-field versus far-field behavior). 

However, high receptivity followed immediately by large amplification 

in the layer and rather efficient conversion into pressure fluctuations 

at impingement, Rockwell (1983), provide sufficient regeneration and 
phase coherence to maintain the loop against more incoherent 

disturbances. We note that in the near-wake and variable-density-jet 

cases, the nature and dynamics of the resonant vorticity waves have not 

yet been identified theoretically or experimentally. 

the spatial development, evident in the saturated state of the 

instability (Hannemann, 1988, Fig. 28; Nishioka and Sato, 1978, Figs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  Una1 and Rockwell, 1988a, Fig. 5) suggests that any upstream 

traveling vorticity mode may be dwarfed in the interactions and may 

possibly be decaying towards the separation point. 

The dominance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof  
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Paradoxically, accuracy of numerical experiments with streamwise 

amplification of free shear layers is endangered by inadvertent 

pressure feedback from the unavoidable conditions at the outflow 

boundary, OB. Ideally, differential relations could be imposed at OB 

by dropping the "viscous" highest order derivatives from Navier-Stokes 

equations. 

structures except for a thin unsteady viscous "shock-boundary 

adjustment layer" just upstream of OB. (This BC scheme has convergence 

and expense problems). Otherwise, constraints imposed at OB convert 

the convected dynamic field more or less efficiently to pressure 

fluctuations as in the case of impinging shear layers. Pressure 

feedback to the receptive separation region of the layer and 

subsequent amplification-convection provide an additional disturbance 

loop imposed upon the "natural" dynamics of the layer under scrutiny. 

From the com- puted results alone, it is difficult if not impossible to 

judge how serious the likely modifications of the dynamics may be - 
changes in phase, amplitude, frequency, wavelength, onset of higher 

instabilites, etc. 

This would make OB transparent to oncoming vortical 

Simpler differential conditions at OB with some promise are 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is a convection velocity of large eddies near OB 

velocity vector. They correspond to Taylor's hypothesis in hot-wire 

anemometry and presumably decrease conversion of the energetic eddies 

into pressure fluctuations. 

Hannemann is adequate for low-amplitude vorticity waves in attached 

boundary layers with low receptivity, but its applicability to free 

shear layers with separation should be rigorously investigated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

similar problem, though probably less serious arises at the inflow 

boundary, IB. The practice of prescribing specified y,t or y,z,t 

velocity variations on IB may simulate tolerably the vorticity or 

pressure waves which penetrate the field of computations from upstream. 

However, since these prescribed values do not allow for any 

modifications by pressure fields spreading from within the computing 

domain or from OB, the condition automatically imposes a complicated 

velocity mode at IB, tantamount to special spurious reflections. 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 the 
C 

2 
The condition a u/h2 - 0 used by 
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4.1 

4. NATURE AND ROLE OF RECEPTIVITY 

14.1) ReceDtivitv-conditioned weak elobal instability in mixing lavers 

In Section 3.5, we saw how a convectively unstable free shear layer 

can be converted into a globally unstable system by inserting into it a 

solid object which generates unsteady pressure feedback to the 

separation region. In its initial laminar segment many a mixing layer 

has the character of a weak elobal. unstable system without intervention 

of an intruding body: 

secondary instability replaces the impingement region as the pressure 

source. Fieure 7 summarizes the many coupled processes involved in the 

complicated two-frequency feedback loop as documented by investigators 

at the Illinois Institute of Technology: Drubka (1982), Shakib (1984), 

Corke (1987), Corke, Shakib and Nagib (1988). 

the vigorous vortex pairing driving its 

The observation that downstream large-scale vortex structures in a 

mixing layer, even turbulent ones, may modulate the primary instability 

near the lip came from Dimotakis and Brown (1976). Laufer and 

Monkewitz (1980) focused on the feedback due to pairing, but the 

complex coupling loop in F iv  7 was deciphered at IIT. The reader is 

referred to Ho and Huerre (1984) for a rewarding description of the 

rich variety of other stability-related phenomena in initially laminar 

mixing layers. The IIT evidence consists of simultaneous measurements 

of unsteady pressure on the vertical flange above D in FiF 7, velocity 

fluctuations sensed by a hot-wire movable along and across the layer 

and of varipus combinations of processing of both signals. 

shall outline the developments in terms of single-wire data in the 

inset on the right of EiP 7, the chicken-egg reconstruction of the 

system rested ultimately on two-point correlation, coherence and 

bicoherence functions of pressure and velocity. 

Although we 

At the start of the layer in a sound-insulated low-disturbance 

facility the (u’)~ velocity spectra are broad-band, almost without 

peaks, indicating absence of spurious acoustic or vibrational 

disturbances the weakness of the feedback. The rise of the first 
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two feedback-initiated frequency peaks is sketched in the inset of 

Fie 7. Both the logarithmic slopes agree well with the linearized 

spatial amDlificatioq rates computed by Monkewitz and Huerre (1981) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf o r  

the primary instability. The puzzling fact that the strongly amplified 

fundamental of frequency f is generally 15-25% slower than the 

theoretically strongest amplified frequency fm was first mentioned to 

the author by A.K.M.F. Hussain ten years ago. Also initially 

surprising was the fact that its subharmonic at f/2 started at a level 

about an order of magnitude highey, see D in inset. 

answer appears to be first that the nonlinear interaction of the 

combinations may extract energy more efficiently from the mean flow 

than the fm, fm/2 combination. 

The probable 

Secondly the raltively high initial f/2 

level stems from the fact that vortex pairing is vigorous and generates 

higher pressure fluctuations than the more gradual vortex roll-up of 

the primary instability. 

compensated for, since the pressure decay from a pairing multipole 

scales with wave length and therefore lower frequencies reach farther. 

The low Mach number equation for generation of the feedback pressure is 

shown at the top of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. 
is proportional to the spatial gradient of the pressure around the lip, 

not the pressure level, Morkovin and Paranjape (1971). Sharpness of 

the corner causes a large local increase in ap/ds, thereby enhancing 

receptivity at separation. 

The proximity of the latter to the lip is 

The conversion into vorticity fluctuation 

Up to the position A*, f and f/2 develop independently, propagating 

At A* a nonlinear at different speeds close to those of linear theory. 

threshold is reached where the subharmonic locks onto the speed of f 

and can thereby extract energy through the fundamental. 

corresponds to the onset of the secondary parametric instability of 

Section 2.3: the subharmonic grows now exponentially at the linearized 

rate associated with the new base flow of rolled up vortices A and B of 

the fundamental. The subharmonic saturates at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ,  roughly at the 

position where the two strained vortices pass each other in x and 

manifest largest gradients du./dx 

This 

before viscous vorticity diffusion 
1 j  
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cuts them down. (The products of the gradients in the source for the 

pressure fluctuations are summed on i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj.) 

This double-frequency, globally unstable system was called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAweak 

because the fluctuation level at separation remains low, roughly 

hundred times smaller than that at the Nishioka-Sat0 separation on the 

cylinder, at Re-120, described in Section 3.2. Edge-tone systems also 

pump themselves up to higher energy levels since dipole impingement 

sources are more efficient than the quadrupole sources in the pairing 

process of FiF 7. 

oscillator is clearly limited by the saturation levels it can sustain. 

It can be disorganized by environmental disturbances and by artificial 

pressure fluctuations once these exceed sufficiently the initial levels 

of the fundamental and its subharmonic at D. 

The strength of this compound mixing-layer 

e a m 1  ification in m ixine lavers (4.2) Pais 

The coexistance of independent linear development of f and f/2 in 

the range DA* illustrates the important fact that the mixing layer can 

amplify simultaneouslv (albeit at different rates) frequencies from 

zero to about U/26 if imprinted at D. Only when the most prominent 

oscillation reaches sufficient nonlinear levels it may strengthen (or 

inhibit) other frequencies, such as the subharmonic at A*. This is 

effected through higher-order instabilities, often of parametric nature 

when frequency ratios are rational numbers, see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.4 .  Further 

details on the richness of such forced nonlinear behavior in mixing 

layers are found in Ho and Huerre (1984). 

Two consequences follow. First, low-frequency vorticity waves 

often permeate the shear layer, imprinted upon it at the origin by 

stream turbulence, irregular pressure fields, and feedback from 

large-scale downstream turbulent structures, Dimotakis and Brown 

(1976). 

smaller-scale secondary instabilities, which they "modulate". 

the layer thickens enough for them to acquire higher amplification 

rates they suddenly become active in a higher-order instability of 

their own. Sutton et a1 (1981) demonstrated the effect by vibrating 

At low amplitudes, their structure is little modified by the 

After 
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the separation point; the behavior persisted into the turbulent regime! 

It seems that a mixing layer, in contrast to the boundary layer, almost 

never forgets its long-wavelength vorticity structure. 

The second consequence is that extrinsic noise in a mixing layer 

will generate amplified, mildly filtered, noisy structures in 

accordance with the Ginsburg-Landau model of Deissler and Kaneko 

(1987). Thus, because its global instability is weak and limited to a 

short initial stretch, a mixing layer behaves quintessentially as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

convectively unstable system, even when turbulent; see also Fiedler et 

a1 (1985). If a strange attractor existed for this x-dependent layer, 

its intrinsic irregularity would be contaminated by the extrinsic 

stochastic noise amplified by the layer. 

( 4 . 3 1  Illustration of unsteady forcine of boundarv lavers 

In Section 2 we discussed unstable vorticity restructuring, 

assuming that vorticity nonhomogeneities were already internalized in 

the shear layer. In Section 4.1 and Fig 7 we described the manner in 

which an unsteady pressure gradient is converted into an unsteady 

internal vorticity wave at the origin of a mixing layer. 

case of a strong very localized receptivity, proportional to ap/as 

around the lip, with coefficients depending on the exact geometry and 

the forcing Strouhal number, f6/U. 

separation cr twodimensional leading edge. 

This is a 

Next we examine a layer without zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanv 

Fieure 8, courtesy of Kegelman (1982 thesis at Un. of Notre Dame), 

displays visual evidence of the excitation of TS (Tollmien-Schlichting- 

Schubauer), the viscosity-tuned waves on an ogive-cylinder model (see 

inset) by sound from a loudspeaker upstream of an open-throat wind 

tunnel at levels of 105-115dB. 

impinged symmetrically on the sharp nose and made the forced unstable 

waves visible some distance past the shoulder. 

hot-wire anemometer showed that the self-excited wave-pattern response 

to the forcing sound field began building up from the oscillatory 

Stokes layer just uDstream of the ogive-cylinder junction, where no 

The smoke from an upstream source 

Diagnostics with a 
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imprint on the smoke is yet visible. The range of excitation 

frequencies from 551 to 785 is impressive for an attached boundary 

layer. The spanwise inhomogeneous break up, featuring A vortex 

formations are now identified as H and occasional K secondary 

instabilities, Herbert (1988), as described in Section 2.3. 

Firmre 8 demonstrates beyond doubt that harmonic forcing by 

unsteadv irrotational fields generates early unsteady rotational 

waves in convectively unstable shear layers. Clearly, transition to 

turbulence cannot be Dredicted without the knowledee of the forcing 

field (frequency, amplitude, orientation), the dominant receptivity 

mechanism, and the threedimensional inhomogeneities of vorticity 

internalized in the boundary layer from other environmental 

disturbances. 

the turbulent boundary-layer structures over the body appear to be 

governed by the above factors. 

if they could develop, evidently would require longer evolution. 

Even though the Reynolds number is the same in Fig 8, 

Any more universal asymptotic features, 

Of the three factors limiting the predictability of transition to 

turbulence, the receptivity mechanisms to harmonic pressure forcing 

such as that in Fie 8 have recently undergone considerable 

clarification. 

Section 4.6. 

They will be discussed in conjunction with Fie 11 in 

O k f  orcine of shear lave rs bv auasisteadv fields: Goertler 

a tabili ty 

Forcing by steady zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw vorticity fields and surface roughness has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 

been largely ignored in the literature. 

source of the threedimensionality in secondary instabilities. 

Composite Fieure 9, based on wind-tunnel experiments of V. Kottke 

(1986), illustrates the forcing of steadv-in-the-meaq Goertler vortices 

in a concave boundary layer (right side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFie) by a primarily 

unsteadv vorticity generatoy, namely the grid with mesh M and rods of 

diameter d in upper Fie 9. Kottke (1980) and colleagues, e.g. Kottke 

And yet it is the primary 
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and Schmidt (1985) developed a chemical method for flow visualization 

in a wind tunnel and simultaneous photometric determination of local 

mass transfer rates. Grids and honeycombs bring forth complex 

threedimensional, multiply unstable and x-decaying wakes, Loehrke and 

Nagib (1972), (1976), which have been used for both generation as well 

as decay management of freestream turbulence. 

Kottke's plate is relatively large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that in the parameter range of 

Fie 9 its boundary layer remains a buffeted laminar one, Section 2 . 6 .  

However, the boundary layer is susceptible to centrifugal instability 

and responds to the mean-flow nonuniformitieg, which are invariably 

present (though seldom mentioned or documented) in flows with higher 

turbulence. 

The curnature of 

The second row of Fie 9 demonstrates how the streamwise vortices 

form readily when the grid distance xs from the plate leading edge is 

small. As x increases the mean streamwise vorticity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw entering the 
S X 

concave boundary layer (or induced within it) subsides and so does the 

strength of the Goertler vortex response. 

the grid distance is held fixed, but the mesh M is varied, eliciting a 

wave number response in limited qualitative agreement with "parallel" 

linear theory for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM) 7. 

Fie 9 of the local and (spanwise) mean mass transfer coefficients B and 
/3 in m/h supplement the visual information. 

In the third row of Fig 9, 

The quantitative inference on the right of 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 

Clearly, the forcing by mean "environmental" w distributions feeds 
X 

the development of the centrifugal instability and predictions without 

better knowledge of the oncoming disturbances and the associated 

receptivity paths will prove fictional and wishful. 

c r i t i q u e o f i n e a r  instability theory itself by 

Hall (1982), (1983) commpounds the predictive difficulties. 

Fortunately, recent and ongoing judicial application of the numerical 

marching technique of Hall by Kalburgi, Mangalam and Dagenhart (1988) 

and others restores considerable engineering utility to the results of 

the linear theory of Floryan and Saric (1984). 

For this flow, the 

Amplitude resolution of measuring techniques for steady w X fields 
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is orders of magnitude inferior to measurements in unsteady fields 

which are aided by the electronic amplification. Thus the comparison 

between linear theory and experimental results (many detected only at 

the nonlinear level) has always remained ambiguous. The net evidence 

points to strong imprinting by the particular zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw distribution in each 
X 

facility. 

disturbances, despite Huerre's 1987 conjecture that the system is 

absolutely unstable. 

In other words, the system is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot robust with respect to 

In the experiments of Kottke in Fie 9, only the effects of the 

primary instability are evident. Secondary unsteady instabilities, 

symmetric, sinuous and others have been studied experimentally only 

recently, and are burdened by the uncontrolled nonuniformities of the 

saturated primary field. For some results and guide to earlier 

literature see Swearingen and Blackwelder (1987). 

F i m r e  10, middle, singles out two often neglected sources of 

quasisteady forcing of boundary layers: nonuniformities in leading 

edges (especially at supersonic speeds) and surface protuberances or 

dimples. 

cross-flows and w . At the author's suggestion Wilkinson placed a 

Obviously the resulting local pressure gradients cause local 

X 

small intentional roughness element on the surface of a rotating disk 

and demonstrated in great detail that the well-known growing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspiral  

vortices were driven by it, Wilkinson and Malik (1985). This forcing 

experiment carries special significance because Mack (1984) was able to 

reproduce to a remarkable degree the wave patterns and growth on the 

basis of linear theory, thus verifying this path of receptivity. 

Quasisteady forcing of instabilities is equally important in free 

shear layers: any w disturbance entering the layer at the separation 
X 

line where it is born governs subsequent evolution of its 

threedimensionality. 

the effects can be found in Lasheras and Choi (1988). 

Recent evocative visualization and discussion of 



, 
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( 4 . 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEnvironmental forcing in open-flow systems 

Most open-flow systems of technological interest are convectively 

unstable, Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and Fie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Therefore small environmental 

disturbances do energize and amplify the numerous competing intrinsic 

unstable modes in all primary and higher-order instabilities leading to 

turbulence. These external disturbances can be classified, Fie 10, as: 

(A)  irrotational unsteady pressure fields (sound, including near-field 

of pseudosound) which travel across streamlines, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B) threedimensional 

vorticity fields (usually decaying remnants of turbulence from 

upstream shear layers), convected with the mean motion of the fluid, 

while nonlinearly diffusing; (C) unsteady threedimensional 

entropy-temperature-density (ETD) spottiness of Kovasznay (1953) also 

convected "parabolically" from upstream mixing of shear layers of 

unequal temperatures; (D) steady-in-the-mean streamwise vorticity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
X 

and ETD patterns, (present in all ground facilities but undetectable 

directly because of the exceedingly poor resolution of w detectors; 
X 

these fields force cross-flow instability and Goertler instability 

responses; (E) particulates and aerosols (including dust) in the fluid 

which individually and collectively cause flow nonhomogeneities along 

their nonequilibrated paths through the shear layer, e.g. Lauchle and 

Gurney (1984). In addition, (F) vibrational motions of any walls in 

the system and (G) nonhomogeneous or unsteady heating of such walls 

often provide significant seeding of instability modes (which may 

explain some anomalies in past observations). 

Because they are generally small, the disturbances are very hard to 

identify. Even with two independent instruments, the distinct 

irrotational velocity (pressure) fields and the rotational (laminar or 

turbulent) velocity fields have never been adequately resolved in any 

facility. The best calibrations of wind tunnels, such as that of 

Winter and Maskell (1980) leave hosts of unanswered questions as to the 

actual forcing fields. For Dractical DurDoses we don't know and are 

unlikelv to know the inwt freestream distrubances into our unstable 

shear layers. 

and from test to test. Philosophically, this reality must be 

In fact, they are not fixed and change during any test 
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accomodated in any rational "prediction scheme" - perhaps by plausible 

bracketing estimates. 

The freestream fields, however, undergo straining and distortions 

by any solid boundaries, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFie 1, BeceDtivity paths are to be sought with 

resDect to the strained fie1 ds, which often are more effective. In 

fact, it is the straining of the sound field in Fie zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 ,  which enables 

the seeding of TS waves despite the disparity in wavelengths between 

the sound and vorticity waves of the same frequency. 

provides new characteristic lengths commensurate with the TS 

wavelengths. Much remains to be done in the matter of straining of 

vorticity and sound fields as related to receptivity paths. 

supersonic and hypersonic speeds the interaction of these fields with 

body shock waves creates additional unsolved problems. 

The straining 

At 

Various other issues and problems are listed in Fie 10; they are 

essentially selfexplanatory. 

UZ is sobering with respect to predictability of turbulent onset in 
open-flow systems. 

the environmental disturbences by the single parameter u'/u, at a fixed 

The overall perspective provided by Fig: 

One implication points to the futility of judging 

point, which is incorrectly identified as turbulence level. General 

correlations of transition based on this number have the scientific 

validity of schemes for choosing lottery numbers. When u'/um exceeds 

0.5% or so,  prospects of establishing reliable trends with various 

parameters are slim. Levels below 0.1% (including low-frequency 

contributions) are considered necessary for serious research on 

transitioq. In contrast experiments on controlled Drimarv 

instabilities are considerably less sensitive to external disturbances. 

14.61 EeceDtivities to unsteady Dressure f ields 

The conversion of environmental unsteady pressure fields into 
- 

unstable vorticity waves, such as displayed in FiP 8 ,  has been subject 

to numerous experiments, with rather contradictory conclusions. 

more significant experiments were summarized and critically reviewed in 

The 
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Sections 1 and 5 of Nishioka and Morkovin (1986). The same paper 

describes the results of a more controlled experiment on acoustic 

irradiation of a Blasius boundary layer at unstable, neutral, and 

stable TS frequencies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs noted in the preceding section, the mismatch 

between the TS and acoustic wavelengths (or equivalently between the TS 

and sound propagation speeds) tends to make this receptivity rather 

poor. 

Receptivity improves as additional effective characteristic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
leneths are introduced into the combined system of the forcing, 

diffracted acoustic field and the boundary layer. 

Poiseuille-duct flow has zero linear receptivity to a uniform harmonic 

pressure gradient in the duct. Both flow solutions, being uniform in 

x, simply superpose without interaction. Variations of the amplitude 

of the unsteady pressure gradient with x ,  as in Fie 8, and variation of 

the boundary layer thickness with x provide two specific receptivity 

paths; see Nishioka and Morkovin, Sections 2 for the physics of the 

interaction and Section 5 for other receptivity paths. 

lack of controlled experiments, the question of which paths are most 

efficient for a given geometry remains open. 

An infinite 

Because of the 

Depending on geometry the seeding of TS waves may take place over a 

short segment of the boundary layer, shorter than one TS wavelength. 

Such Jocalized receDtivitv D aths lend themselves to efficient analysis 

based on the triple-deck approach; see review by Goldstein (1986). On 

the other hand, extended dis tributed contributions to the TS vorticity 

strength do occur frequently over bodies with continuous curvature. 

The analysis is then complicated by positive and negative phase 

interference effects. 

The left side of Fie 11 outlines the formal solution for the 

forcing, i.e. for the BonhomoPeneous differential eauations system. In 

principle, it depends on the completeness of the eigenfunctions for the 

system, such as proved for the Orr-Sommerfeld equation by Salwen and 

Grosch (1981). 

simpler inviscid case of a vortex sheet downstream of a semi-infinite 

plate and buttressed by the low-frequency experiments of Bechert and 

It was carried out explicitly by Bechert (1988) for the 
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stahl (1988). 

The familiar resonant vibrations of a wine glass in response to the 

excitation of a singer's voice will illustrate both the similarities 

and differences with the forcing behavior in an unstable boundary 

layer. 

nonhomoeene ous lin ear dif ferential eauationg governing the forced 

system. To these we can add any number of solutions of the homogeneous 

unforced system with arbitrary coefficients, the normal modes or 

eigensolutions. 

normal-mode solutions satisfy the complete boundary conditions over the 

boundaries of the wine-glass or the shear layer generally fixes the 

coefficients of the eigensolution spectra and thus selects 

quantitatively the response to the excitation. 

The forcing fields evoke particular solutions of the 

The requirement that the superposed particular and 

In the case of the wine glass the vibrational eigensolutions are 

all frictionally damped and the response consists primarily of the 

particular solution; it is essentially proportional to the sustained 

amplitude of the singer's tone. 

rapidly decays. 

exceeds a nonlinear threshold, the properties of the physical system 

are no longer governed by the idealized linear differential equations 

and the glass breaks. 

Once the tone ceases, the response 

In the rare cases when the resonant response amplitude 

The corresponding Nishioka-Morkovin experiments with a very weak 

sound source in proximity of a Blasius boundary layer demonstrated that 

when the TS waves at the exciting frequency were damped according to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ the linear Orr-Sommerfeld equations, a behavior ensued, similar to that 

of the wine glass. At each x, z, the response consisted of a 

finite-wavelength oscillatory viscous Stokes field in y,  (the 

particular solution) plus small contributions from the damped 

eigensolutions. 

spectral domain of amplified normal modes, the cumulative response grew 

in x verv much fastel; (!) than allowed by the theoretical amDlif ication 

However, when the forcing frequency was in the 
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a. of the unforced normal modes. Once locally excited, these TS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

waves propogate downstream and continue to grow even if the periodic 

excitation ceases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- in sharp contrast to the case of the wine glass. 
This is of course the behavior expected in a convectively unstable 

layer, inferable from FiP 5. As in the case of excitation by a 

vibrating ribbon, the propagation field becomes that of the amplified 

homogeneous - normal mode. 

not arbitrarv (as in linear stability theory) but set linearly by the 

amplitude and geometry of the forcing sound field, i.e. by the net 

receptivity for the configuration. 

The key difference is that its arnDlitude 

When the unsteady pressure field is not perjodic, the linear 

mathematics becomes more involved, but the some principles govern the 

seeding of the amplified disturbances which are convected downstream 

within an unsteady laminar "spot". Kendall (1987) induced a traveling 

pressure wave as a cylinder approached and receded from a flat-plate 

boundary layer. 

documented through simultaneous measurements with multiple pressure 

sensors at the wall and hot-wire anemometry in the layer. 

are consistent with the concepts described in this section. 

The resulting complex amplifying pattern was 

The findings 

(4.7) ynknown r eceDtivitv Dathg 

When the external disturbances are large, additional nonlinear 

receptivity paths appear. 

of high-level sound excitation, Ginevskii et a1 (1978). The bypass 

roads to turbulence, discussed in Section 2.6, by definition fall in 

the category of unknown receptivities. 

the more important cases and conjectures that local and/or transient 

inflectional shear-layer profiles may be responsible for the rapidity 

of the turbulence onset. Gill (1965) calculated that such an effect 

could be responsible for the transition in the linearly stable plane 

Couette flows and pipe flows. 

They remain uncharted except for a few cases 

The right side of Fie 11, lists 

However, unknown linear receptivity paths provide the conceptually 

more important challenees. Although Fie 9 demonstrated forcing of 
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Goertler instability by quasisteady zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw distributions, the corresponding 
X 

linear receptivity mechanisms remain unknown. 

paths of the steady cross-flow instability as well as of the 

threedimensional traveling waves in threedimensional boundary layers 

have not been discussed in the literature. 

Similarly the forcing 

Perhaps the most vexing and technologically important is the puzzle 

of receDt ivitv to low freestream turbulence. Both experimentally and 

theoretically this is the most difficult linear receptivity problem. 

As noted on the left of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFie 11, any analysis performed using averaged 

quantities would solve the wrong problem. Almost of necessity, 

experimenters must use space-time correlations and coherences between 

multiple sensors. 

wave fields of Kendall (1987) at the end of Section 4.6. 

The difficulties far exceed those of known traveling 

Hot-wire evidence: Bennett (1953), Arnal and Juillen (1978), 

Klebanoff (unpublished, 1964) and intriguing visualization in adverse 

pressure gradients by Gates (1980) imply that the receptivity path for 

low-intensity turbulence includes TS wave-packet formations, as the 

convective nature of the instability would suggest. Kendall's more 

controlled experiments (1984, 1985) with more extensive up-to-date 

instrumentation do indeed disclose energy in the TS bands (with 

decreasing frequency of the broadband peaks as the layer grows in x). 

However, serious questions remain whether this path represents a weak 

ineffective sideshow while some threedimensional instability governs 

the dominant road to turbulence. 

For further discussion of two possible ways of internalization of 

the external vorticity disturbances see p. 256 of Nishioka and Morkovin 

(1986) based on the implications of the cited research of 

Arnal-Juillen, Klebanoff, and Kendall. It is quite possible that the 

receptivity paths may depend on the specifics of the oncoming 

low-intensity, decaying turbulent wave packets in any given 

realization and on the straining fields associated with the flow 

facility and the front of the body includinq those at sharp leading 

edges. 
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Finally, a curious hybrid case is noted at the bottom of FiP 11. 

Unexpectedly, moderate distributed roughness which might disorganize TS 

waves, accelerated ( ! )  the TS wave formation and secondary 

instabilities, Corke, Bar-Sever and Morkovin (1986). These authors and 

especially Kendall (1981) showed that the boundary layer just beyond 

the roughness peaks follows displaced Blasius profiles, i.e. is 

governed by molecular rather than eddy transport. 

inference from the total evidence suggests that the low-inertia flow 

regions below the roughness peaks modifies substantially zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 

receDtivity to external disturbances from that of a smooth wall. When 

the TS wavelengths exceed 15-20 times the characteristic roughness 

scale, the crucial y and x phasing of TS waves evidently remains 

unimpaired. These inferences should be verified by controlled 

experiments designed for the specific testing of the mechanisms. 

The plausible 

The preceding Xouehness role in transition is distinct from the 

larger roughness role covered on the right side of Fie 11, and was not 

previously suspected. 

roughness role on the roads to turbulence is that of v e n  small 

distrib uted rouehness. This is probably not a receptivity problem: at 

such low Reynolds numbers, the roughness generates steadv vorticity, 

especially wx. 

The third technologically all-important 

Any unsteadiness must be associated with an instability 

forced by a "cooperating" disturbance agent, such as freestream 

turbulence. Conceptually, the small-roughness effect remains an 

irritating bypass, almost an insult to our engineering soul. 
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5 .  CHAOS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND TURBULENCE IN OPEN-FLOW SHEAR LAYERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15.1) Jnst ab ilities. f o r c w  d isturbances. r eceDtivities and chaos 

prediction 

In Section 2 ,  we outlined the observed development of sequences of 

instabilities and onset of turbulence in x-dependent open-flow systems. 

In Section 3, we established that except in the infrequent cases of 

global instability, environmental disturbances (not the intrinsic 

properties of the initial shear layer) control the instability 

sequences on the road to turbulence, and dominate the irregular 

character of vortical structures. Thus in this vast class of 

technologically important flows the concepts of chaos and strange 

attractors offer little if any help with the design task of predicting 

transition. 

Since, as explained in Section 4 . 5  in conjunction with F iP  10 we 

cannot expect to have adequate information about the environmental 

disturbances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the input into the instabilities - we must establish 

rational bracketing estimates in spite of these uncertainties and a 

matching philosophy of risk in design; see Morkovin (1978) for further 

discussion. For the purposes of the present review, only the 

rationally solvable aspect of the problem of receptivity paths for the 

external disturbances were taken up in Section 4 .  That completes the 

account of the main recent conceptual and physical advances in 

understanding transition to turbulence in open-flow systems. 

In the Appendix, we provided the essential descriptive background 

for the conceptually and philosophically important notion of chaotic 

behavior. 

concerning the relation of chaos, transition to turbulence and 

turbulence in open-flow systems. In Sections 5 . 2 - 5 . 4  we shall 

reexamine three flows (one of them globally unstable) to set the stage 

- for more questions. Currently the uncertainties and irregularities 

of the subject in open-flow systems lead naturally to questions and few 

answers if any. However, with the recent clarification of concepts of 

We can now return to the questions posed in Section 2 . 5  



-36- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 

convective and global instabilities, the questions should be sharpened. 

In fact, an experimenter should well consider the various questions in 

Section 5.2-5.5 and Fig: 1 3 and 14 before embarking upon the 

time-consuming search for chaotic characteristics in open-flow shear 

layers. 

(5.2) The case of a chaotic laminar slender wake 

The beautiful visualization of Fie 12 of Stuber and Gharib (1988) 

display for us four modes of behavior of a slender wake downstream of a 

63A008 airfoil under various intentional excitations by local wall 

heating in water. These should help to make the concepts in the 

Appendix and more concrete zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- and raise some more general 
questions stimulated by the behavior of this specific fluid oscillator. 

The slender wake is convectivelv unstable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that it responds to a 

band of frequencies which widens with excitation level (though the band 

is much narrower than that of mixing layers). Subject to the 

indigenous environmental disturbances the spectrum at the primary probe 

position 3 chord lengths downstream shows a broad-band hump between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . 2  

and 5.8 Hz, with most energy between 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 . 6  Hz. This is in sharp 

contrast to the globally unstable bluff wakes and mechanically rigid 

oscillators, where the oscillations are very regular. Nevertheless the 

investigators identify 4.075 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz as the "natural" frequency f and study 

the properties of this nonlinear Navier-Stokes system with rather 

strong forcing, as seen in Fies 12a-c. 

n 

The forcing at fn in Fie 12a makes the oscillator more regular: 

the excitation overrides the competing frequencies in the convective 

instability and reduces the background broadband spectrum by factors 

roughly from 10 to 50. The quasiperiodic f and f2 forcing of Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12b 

should place the system on the torus of the 3 phase space in Fie A-lc, 

although spectra in Fig 7 of Stuber and Gharib (1988) indicate that the 

oscillations are more complex. Evidently the convective instability 

elicits more degrees of freedom in the open-flow environment. 

1 
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In accordance with Section A - 3 ,  forcing by the three frequencies in 

Fie 12c should make the wake chaotic (as the spectra seem to confirm). 

However, according to Stuber and Gharib (1988) examination of more 

extensive visualization records disclosed "some areas of strong 

mixing". 

streaklines (Section 2.5) is evident, the original label of "laminar" 

was retained for this specific realization. In principle, 

twodimensional laminar chaos should be possible and may presumably 

correspond to so-called twodimensional turbulences (Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA - 4 ) .  If 

at this speed the local turbulent mixing is sporadically present, a 

reduction in Reynolds number would probably produce a true laminar 

though not necessarily twodimensional chaos. 

Since in Fia 12c no local fuzziness nor obliteration of 

Sporadic local onset of turbulence is common in bluff wakes. In 

fact, its march upstream towards the body with increasing Reynolds 

number modifies the wake characteristics significantly, Fie 13, top. 

Such localized onsets of turbulence in a sea of laminarity bring out a 

basic question: how does one usefullv characterize the state of a 

Shear laver in the theory of dynamical systems when it disDlavs 

laminar itv and turbulence side bv side? See also item (2) on the right zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of Fie. 

The visualization in F i e  12d was carried out by K. Stuber at the 

author's request. The turbulent structures are "natural" in the sense 

that no oscillatory forcing was applied in this case. 

layer was turbulent at the trailing edge of the airfoil. 

of the lines testifies to small-scale turbulent diffusion which is not 

present in the other visualizations. 

gurbulence and chaos are not synonvmous in open-flow systems. 

Paradoxically, the same conclusion was reached recently by Heslot, 

Castaing, and Libchaber (1987),in their experimental study of a 

Bgnard-Rayleigh cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a closed- flow system! 
this issue will be taken up at the end of Section 5.5. 

The boundary 

The fuzziness 

The intent was to suggest that 

Further discussion of 

The paper of Stuber and Gharib also illustrates the nature and the 

approximate validity of temporal phase-space reconstruction and 
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Poincarg sections for the cases of Fie 12a-c. However, the 

determination of LvaDunov exponents (Section A-3) in their Fig 17 shows 

them to be positive for the non-chaotic states of Fie 12a and b. This 

is a significant conceptual discrepancy which they "attribute to noise 

inherent in an open system". Clearly the value of the concepts of 

chaos deteriorates unless rieorous Drocedures can be established for 

fox seDaratine the intrinsic chaotic features from extrinsicallv driven 

random features in the flow response; see item (3) on left of Fie 14. 

All the measurements were taken at a sinele Doint or single x 

station. How well can such measurements characterize the properties of 

the whole system, especially in an x-developing shear layer? (Item ( 2 )  

on left of F€P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI.) Admittedly, Deissler's reasoned call for 

measurements of Lyapunov's exponents in a convective frame of 

reference, Section A-4, is difficult to carry out experimentally. 

However, the "optimal space-time correlations" of Favre et a1 ( 1 9 5 3 )  

substantiate Deissler's criticism. Since they take into account the 

convection of large structures they may lead to improved procedures: 

see Question Q in Fie 14 and Section 5.5.  
2 

The preceding questions sparked by the Stuber-Gharib experiment do 

not imply any criticism of the experiments. After all their intent was 

to "test the waters" for the applicability of the new concepts and 

procedures in a relatively simple and controllable open-flow system. 

They accomplished their purpose well. The author is grateful for their 

help with Fie 12 and for an early manuscript, which helped to broaden 

the range of the planned general questions. 

( 5 . 3 1  Road to turbulence in a eloballv unstable flow 

In view of the central role of convective instability in forcing 

and controling the sequence of instabilities on the road to turbulence, 

it is instructive to examine the major features of a similar evolution 

as Reynolds number increases in an unidealized eloballv unstable 

open-flow system, namely that downstream of circular cylinders, upper 

part of Fie 13. Both the globally unstable near wake as well as the 
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local incipient turbulent spots at some Reynolds numbers. Therefore, 

the two questions at the top of are in order in the context of 

Section 5. 

In a globally unstable near wake vortical structures are still 

convected away without the chaos-generating iterative recycling present 

in closed-flow systems. However,part of their unsteady signature is 

Gonveved upstream and thereby helps to create a partiallv closed svstem 

with respect to temporal disturbances . 
unstable systems have one important feature in common with closed-flow 

systems. The applicability of chaos concepts may therefore be more 

likely in globally unstable cases than in the convectively unstable 

ones. 

Thus open-flow globally 

Sections 3.2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.4 established the basis for the global 

instability of near wakes and described the temporal evolution to the 

final saturated x-resonant flow field. 

Sat0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1978) and Una1 and Rockwell (1988) in this final field disclose a 

spatial exponential erowth in s of the harmonic oscillations u'. 

strict global-instability regime extends only between (aspect-ratio 

dependent) Reynolds numbers of 45 and 160, with two minor puzzles, 

still unresolved. The "clockwork oscillatory regularity" of Roshko 

(1955) is interrupted by small discontinuities near Re of 90-100. 

apparently associated with a change of shedding pattern and possible 

threedimensionality, see discordant accounts of Tritton (1959) ,  Gaster 

(1971) Berger and Wille (1972), Gerrard (1978) and Friehe (1980). 

Furthermore, in some low-Re experiments, the phase of the vorticity 

varies linearly along the span yielding swept-back vortices. 

Measurements by Nishioka and 

The 

Smaller-scale spanwise nonuniformities appear near Re of 200. 

Gerrard's (1978) visualizations suggest the presence of vorticity 

feedback to the separation line - as postulated in absolute instability 

- for this spanwise threedimensionality, Fie 12. 

Reynolds number local regions of high diffusivity (incipient turbulence 

spots of Section 2.5) appear at first quite far downstream in the 

convective-instability domain. Also at about the same Re, a startling 

At about the same 
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change in the nonlinear upstream influence takes place: a reversal in 

the Re-trend of base pressure and oscillatory lift coefficient on the 

cylinder (both of technological importance): see introduction in Unal 

and Rockwell (1988). These trends reverse again for Re zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 2000-10,000 

(depending on aspect ratio). 

Despite various conjectures, Gerrard (1978), Unal and Rockwell 

(1988), no convincing explanation has vet emerned for either reversal. 

A correlating scale seems to be provided by the formation length of 

Gerrard, lF sketched in Fig 13. 

crossing of the centerline by the rolling-up vorticity sheet when the 

first vortex is shed. The system, which now includes threedimensional 

vorticity, evidently remains globally unstable. The cause of the 

reversals must therefore be sought in the changes of the vorticity 

distributions and (possibly competing) instability modes in the 

immediate near wake as Re increases. Symmetric Gerrard-Bloor 

instability (which at higher Re is associated with the thin individual 

separating layers rather than with D) and the aforementioned 

smaller-scale spanwise threedimensional instability could well 

interfere with the basic Karman-Bgnard mode. 

instability model probably will not be able to account for the subtle 

changes in these vorticity fields and their multiple instabilities as 

Re increases. Nor can one expect chaos theory to unravel the puzzle in 

this highly x-dependent shear layer. 

This length corresponds to the 

The simple global 

With growth in Re comes also the upstream march of the first onset 

of turbulence Tu, Fin 13. We could expect changes in behavior when Tu 

first reaches the boundary between global and convective instability or 

the fluid in the first shedding vortex. These conditions probably 

modify but do not destroy the global instability of the main 

oscillator, but the author is unaware of any studies of such effects. 

The Gerrard-Bloor vortices increase in frequency and become smaller. 

At higher Re many of them crowd into the shear-layer segment which 

rolls up into the first large vortex at 1 The first bursts of 

turbulence then apparently become associated with higher instabilities 

of the strained unsteady Gerrard-Bloor vortices. 

F' 

They ultimately reach 
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the proximity of the oscillating separation line on the cylinder 

It has been recognized only in the Fifties that the subsequent 

classical rapid decrease in drag takes place through the formation of 

laminar bubbles when the oscillating free turbulence shear layer 

reattaches to the cylinder. 

features in the near wake of circular cylinders. The reattachment 

process is random in space and time and very sensitive to freestream 

disturbances (especially in o ) because the instability in the 

individual SeDarated laver% is Eonvective. The entrainment effects 

within the bubbles are commonly uneven with consequent asymmetry of the 

mean flow. 

Reynolds numbers are also technologically important. 

relate now to convectively unstable boundary layers under high 

acceleration and are included here merely for the sake of completeness. 

This terminates any global instability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 

The rest of the listings in FiF 13 for still higher 

However they 

It seems clear that despite the important feature of global 

instability, the prospects of clarifying any of the significant details 

of these high-Re phenomena in an open-system with strong x-dependence 

through concepts of chaos are virtually nil. To be fair no such claims 

have been made for this specific applicability, as they have for the 

power of modern computers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Morkovin (1964). the opinion that these too are unlikely to handle the 

important threedimensional and locally turbulent features of the flows 

described in Fie 13 for quite some time. 

It seems safe to repeat after 24 years, 

It is worth remarking that much of the comDlexitv of these flows is 

associated with the interDlav between the unsteady, variable, often 

spanwise nonuniform, seDaration line and the nonlinear pressure 

gradients. In bluff flat-based wakes such as that of Hannemann and 

Oertel (1988), where the separation line is fixed at the straight 

shoulders global instability persists when the separating boundary 

layer becomes turbulent! If its thickness is small with respect to the 

base height, the high-frequency small-scale turbulence at separation 

has remarkably little influence on the wake oscillator including its 

frequency. 
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(5.41 Poad to turbulence in a boundarv laver: eN method 

The cases examined in Sections 5.2 and 5.3 had inflectional 

instability. 

evolution depicted in the lower half of Fie 13 is viscosity induced. 

Nevertheless, it is convectively unstable as was the slender wake of 

Section 5.2 so that many comments and questions need not be repeated. 

Since excitation by unsteady pressure gradients was covered in Section 

4.6, the response selected here for examination is that to low 

freestream turbulence. 

In contrast the primary instability in the boundary-layer 

Despite Kendall's misgivings cited in Section 4.7 we assume that 

coherent freestream structures, strained and accelerated by the body 

pressure field enter the boundary layer or pass near it and induce 

laminar TS spots as mandated by satisfaction of all the boundary 

conditions, left side of FiP 11. In accordance with the character of 

convective instability Tip. 5q, these spots grow while propagating 

downstream; they merge and superpose. A hot wire would measure 

modulated, slightly shifting frequencies of an x-amplifying u 

fluctuation. 

waves, the averaged response would appear close to a 

quasitwodimensional growth in x. 

Since 2D waves are generally more amplified than skew 

The sequence of 3D secondary instability, tertiary instability, and 

intermittent onset of incipient turbulent spots between Retr_beg and 

Re tr - end ' 
throughout Section 2. 

emphasizes the fact that the amDlification rate of TS erowth is slow 

and that the sketch distorts the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx scales to accommodate the 

explanations. In reality the x-range between Re amd the beginning 

of the secondary instability vastly exceeds the combined x-range of the 

secondary and tertiary instabilities. 

sketched in Fie 13 summarizes the material discussed 

The label under the primary instability 

cr 

A.M.O. Smith (1956) and Van Ingen (1956) suggested independently 

that this evident primary control of the transition process by the 
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involving TS instability. With the blossoming of computer technology 

this technique based on the ratio of linearized amplification between 

Re (f) for any frequency f and any station zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  e N(x), has been widely 

applied and extended, e.g. Bushnell, Malik and Harvey (1988). The 

following comments on judicious use of the technique are appropriate in 

the spirit of Section 5. 

cr 

The crucial choice of N (say from 5 to 12 in free flight) clearly 

depends on estimated environmental disturbances for all convectively 

unstable shear layers. Philosophically, the risk to the design 

obiecti ves and the possibilitv of b m a s s  tr ansitioq, Fie 15, in 

uncharted flow fields (including wall roughness generation in superhot 

hypersonic environments) should be accounted for. The very term 

"prediction" instead of "estimation" indicates a tendency to an 

optimistic overbelief by engineers: 

our simplified computer codes for idealized flow fields with an 

unwarranted aura of reality. 

we tend to endow the results of 

The basis for inferring the quality of "controlling slow-rate 

amplification" for primary instabilities other than the low-speed TS 

instability needs buttressing. The reliability of computer codes for 

calculating accurately enough subtle boundary layer profiles and the 

corresphding Re 

of the laminar spots (e.g. for 3D boundary layers with wall curvature, 

hypersonic boundary layers, etc.) is largely untested. The critical 

"semiempiral" choice of N for any class of flows is a subiective 

process of judgments across several disciplines. 

across the Mach number and Reynolds number range on specific linear 

instability theories, on specific computer codes, on the onset of 

transition in the few experiments with sufficient detail information, 

on the quality of environmental disturbances in these experiments, etc. 

(f) and amplification rates, integrated over the path 
cr 

It involves judgments 

Such judgments have come largely from a single group at NASA 

Langley Research Center. 

transition estimates, the author is supportive of the objectives and 

efforts of the group. Nevertheless, it is appropriate to quote here 

the modified Guideline No 4 of the U.S. Transition Study Group, 

As a friend and an old industrial hand at 
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Reshotko (1976). “Whenever possible, tests and numerical comDutations 

should involve more than one facility. Tests and comDutations should 

have ranges of overlapping parameters, and whenever possible, 

experiments should have redundancy in transition measurements and 

transition-estimatine personnel.” The issues here transcend the narrow 

professional questions about which author is more correct in what 

paper. 

involved, these are national issues. 

In view of the magnitude of private and public funding 

Finre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 13, bottom also cautions us about the so-called unit-Re 

effect. Whenever freestream velocity or stagnation pressure is changed 

transition on the model changes not only in x but also in the 

diensionless parameter Retr! 

usually conveyed in plots of Re vs Re per unit length, Re hence the 

misleading name. 

model in any facility there are more than one characteristic length or 

velocity which influence palpably the transition process. There is no 

w e  unit-Re effect! Notorious contributors to these variations come 

from leading-edge geometries, roughness and freestream disturbances, 

including sound radiated from turbulent sidewalls in supersonic wind 

tunnels. The unit-Re effects make it difficult to compare transition 

results between facilities and free flight and complicate the life of 

transition estimators. 

This pernicious nonconstancy of Retr is 

tr L; 
The diverse variations merely indicate that for any 

The comment on the right of the sketch raises an untackled issue 

for research in turbulent boundarv lavers: to what extent do the 

properties studied in a given realization reflect generic intrinsic 

turbulent-layer characteristics, uncontaminated by the nonuniformities 

in the preceding laminar layer including the extensive transition 

region? 

“naturally” or is artificially induced. 

The question is relevant whether the transition occurs 
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(5.5) On experiments on chaos'in open-flow systems 

The account of observed real-life routes to turbulence in the three 

classes of flows in Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .2 -5 .4  prepared us for further discussion 

of the questions posed in Section 2.5. 

the manner in which the successive phenomena in the sketches of Fig 13, 

could be related to dynamical states, including chaos: the definition 

of the state of the svstem (see Section 5 .2 )  and the existence of a 

stranee attractor associated with each sement of a shear laver which 

grows with x. 

rests on the fact that linear instability characteristics, especially 

the amplification rate, are glmost-local DroDerties of each segment of 

the shear layer. 

use it in our computations. 

segment of a chaotic or turbulent layer growing in x by a snecific 

xieorous Drocedure? If not, repetition of techniques taken over from 

experiments on closed-flow systems, would be illusory with superficial, 

if any meaning. 

The central questions concern 

The relative success of the linear instability theories 

We can define the functional dependence ai(x) and 

Can a strange attractor be related to each 

The notion that a major difference between open and closed systems 

lies in the fact that vorticity structures in the former are convected 

away and not recycled as in the latter was brought up in Sections A-4 

and 5 . 2 ;  see also the contrast between statements (a) vis-:-vis (b) and 

(c) in Fie 14. Deissler ( 1 9 8 5 )  in effect states that the divergence 

proDerties characterized by LvaDunov's exDonents are not 

"almost-local" and that a convective framework is needed to elicit them 

in his "simple" equation (i.e. with coefficients not explicitly 

dependent on x). &g other prop erties, such as the Stranee Attractor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S . A . ,  itself and its dimensions also attached to the traveling 

vor t ic i tv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs truc tureg? 

If that were so for Deissler's model, determination of these 

properties would become questionable in all open-flows where the shear 

layers changes in x. 

changing so that for Dractical DurDoses the properties would be unde- 

finable; see contrast in statements (1) on both sides of Fie 14. 

Modernized spatio-temporal multiple-probe techniques of Favre and 

The asymptotic target would be constantly 
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coworkers, Q2 at bottom of Fie 14, might possibly characterize the 

intrinsic properties in constant-scale turbulent flows such as those in 

piDes. 

which should clarify the convective aspects of any chaotic properties. 

The studies of Wygnanski and Champaign (1973) of turbulent puffs and 

slugs provide support for this notion. 

That would appear to be a meaningful but difficult exueriment 

Even pipe flows, Fia lb, contain segments of x-dependent internal 

boundary layer growth which make them at least locally convectivelv 

unstable. As such, pipe flows may be imprinted by extrinsic noise 

before they become fully turbulent. As in the case of the boundary 

layer at the end of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 4 ,  the question arises whether the f u l l v  

turbulent structures in DiDes have anv memorv of their noise-controlled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ a s t  or how rapid the memory loss may be. This is related to the 

question of separation of intrinsic chaotic features from externally 

driven random features; see items (3) in and discussion of noise 

at the end of Section A - 4 .  The turbulent pipe-flow experiment in the 

preceding paragraph could then be usefully followed up with studies of 

effects of diverse intentional disturbances which trigger different 

upstream transition patterns. 

summarizes the various issues which distinguish between 

concepts and their experimental verification in closed-flow and 

open-flow systems. 

"controversial" on top right of Fie 14, and the skepticism with respect 

to single-point measurements, especially in open-flow systems. What 

substantive information can be inferred from a time trace at a single 

point of a growing turbulent shear layer? 

multiple-probe information can help to clarify the modifications 

brought about by the uniterated convection of vortical structures. 

The preceding discussion justifies the label 

Only multiple-point 

As noted in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . 2 ,  the one experiment in the literature 

reporting two-point measurements is for a closed ( ! )  Benard-Rayleigh 

cell, heated from below (in which buoancy-driven vorticity recirculates 

in place). The results created considerable commotion: Heslot, 

Castaing, and Libchaber (1987) confirmed that chaos and turbulence are 
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not synonymous. 

onset of the oscillatory instability followed by the now well-known 

routes to chaos", specifically through a period-doubling cascade 

proposed theoretically by Feigenbaum. The correlation dimension of the 

ternDora1J.y chaotic state varied from 2 f. 0.1 to 4, before the coherence 

between the bolometer at half height of the cell and the bolometer near 

the bottom wall started decreasing from nearly unity for all 

significant frequencies to a negligible value. The loss of coherence 

and the disappearance of the identifiable chaotic state was attributed 

to the formation of a boundary layer at the wall. 

As the Rayleigh number increased they observed "the 

As the Raleigh number was pushed higher and higher they observed 

two extended regimes of "soft" and "hard" turbulence. The first, with 

very little coherence between the two bolometers, is interpreted in 

terms of unsteady rolls with locally detached laminar boundary layers 

and random phasing, a state called phase turbulence in some quarters. 

The hard turbulent state is interpreted in terms of a turbulent 

boundary layer at the base with abrupt detachment of thermal flumes 

which reestablish communication and coherence between the two 

bolometers (one above the other). Interestingly, the interpretations 

are supported by dimensional arguments from eneineerine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- turbulent 

boundarv lav er theory, besides spectra, timetraces, probability 

density, etc. In other words, even in closed systems, we ultimately 

have boundary-layer formation, detached shear layers, etc. and need to 

speak of them as distinct entities, with turbulence on their local 

scales, as in Section 2.5. 

In the authors' language: "we have in some ways brought together 

the two approaches to turbulence. The dynamical system approach is a 

very good analysis of the onset of (temporal) disorder, as one slowly 

increases the Rayleigh number . . .  It is followed by a state where m a c e  

disorder sets in. In this regime, the development of a boundary 

layer, laminar at first and later turbulent, leads to two distinct 

turbulent states . . . "  
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Chaos conceDts are evidently of little help after the spatial 

disorder commences. 

fruitful in oDen-flow shear lavers, where we beein with alreadv formed 

boundarv lavers? 

downstream convection of vortical structures absent in the 

Benard-Rayleigh experiments. And by the growth in the layer thickness? 

Some of the suggestions in this section concerning experiments may help 

to provide at least partial answers. 

Can the chaos concepts be at least conceptually 

How much is their significance weakened by the 
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Roads to turbulence in open-flow systems can be interpreted 

fruitfully as sequences of often competing instabilities corresponding 

to primary and higher-order restructuring of vorticity distributions; 

see summary Fivures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  13 and 15. The recently clarified concepts 

of convective instability and global instability unify previously 

fragmentary observations of fluctuation behavior, Section 3 .  

particular, a large majority of technologically important open-flow 

shear layers, which belong to the convectively unstable families, are 

unquestionably driven by ever-present small environmental 

disturbances. Consequently in these flows, concepts of chaos and 

strange attractors (introduced in the Appendix) offer no help with 

prediction of transition to turbulence. 

In 

To help understand forcing by external disturbances the 

disturbances are first classified into families with different 

propagation characteristics, Fie 10. These disturbances are first 

strained or diffracted by the wall geometry of tunnels and models. 

Depending on their propagation characteristics and the straining near 

and in the shear layer, these external disturbances are converted into 

internal unstable modes of Tollmien-Schlichting-Schubauer, Goertler, 

and cross-flow primary vorticity restructuring and into more complex 

modes of secondary and higher instabilities. 

conversion was identified by the author in 1969 and called 

receptivity. 

experiments selected from recent literature, and 

Sections zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 . 3 - 4 . 6 .  When the external disturbances are small, the 

forcing corresponds to a nonhomogeneous linear problem, which is 

solvable in principle, Fin. 11. The mathematical and physical basis 

of several receptivities is outlined. 

The process of 

Several types of receptivity paths are demonstrated by 

Receptivity analyses should alert us to the most dangerous 

receptivity paths for any given configuration. 

with direct estimates of transition because the disturbance flow 

fields will not be known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori in wind tunnels or in flight. 

Because of the large total amplification of the disturbances, the 

initial forcing fields are too weak for adequate diagnostics and 

They will not help 
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measurements of the distinct families of disturbances of Fie. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. 

Since the input into the various instabilities will remain uncertain 

we have to resort to engineering estimates and bracketing with the 

powerful but tricky aid of computers. The philosophy of approach to 

such estimates, in particular, the eN method, is examined in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 . 4  In Section 5 we return to the questions posed in Section 2 . 5 :  

To what extent are the classical turbulent states in open-flow systems 

equivalent to chaotic states? What deeper insights can the theories 

of chaos bring to our dealing with turbulence in open-flow systems? 

The attempts at answers raise new questions about the effects of 

vorticity convection and of x-dependence of the shear layers on the 

nature and existence of strange attractors in open flow systems - see 
Fie. 14.  The roads to turbulence in three real-life shear layers, 

(one with the partially closed system of disturbances rather than of 

mass and vorticity) are examined for clues in Sections 5.2-5.4. 

Doubts arise about the meaning of single-point measurements taken over 

from experiments in closed-flow systems. Modernized multiple- 

probe optimal space-time techniques of Favre and co-workers are 

suggested to help to answer the vorticity-convection and 

x-dependence issues. 

The new experiments of Stuber and Gharib (1988) in slender wakes 

and Heslot, Castaing, and Libchaber (1987) in a closed B&nard-Rayleigh 

cell heated from below suggest that chaos and turbulence are not 

synonymous. The latter, closed-flow exDeriment (the only substantial 

one yet reported using measurements at two points) indicates that 

chaos concepts are of little help once space disorder as contrasted to 

temporal chaotic disorder sets in. In this closed-flow, space 

disorder appears when the controlling parameter is high enough for the 

formation of boundary layers. In open-flow systems we have boundary 

layers and separated shear layers as an initial given! Thus current 

evidence points to negative answers to the two questions about chaos 

and turbulence. 

In summary, the concepts of convective and global instabilities 

help us to unify diverse observations on instabilities and transition 

in open-flow systems and confirm the role of environmental 
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disturbances. The roads to turbulence are physically and 

theoretically clearer. However, the nature of transition estimation 

has not changed; only the perspective and the tools have improved. 

At this stage of developments the concepts of chaos and strange 

attractors show little if any promise in this task. The name of our 

technological game is "convected spatial disorder in x-growing shear 

layers" not "temporal disorder in recycled closed systems of constant 

scale". Transition and turbulence in open-flow systems are 

evolutionarv processes. not balanced. eauilibrated states. The 

serious difficulties in applying these concepts to high-Re open flows 

should not detract from their great conceptual and philosophical 

significance in less complex, more cohesive nonlinear systems across 

scientific disciplines. 

It is impossible to trace the myriad of discussions, letters and 

papers which have influenced the perspective offered in this review. 

To all those contributors the author is grateful for keeping him 

curious and young in retirement. Many are acknowledged indirectly by 

citation of their papers. The author also wishes to acknowledge 

partial financial support in preparation of this review under AFOSR 

Grant No. 86-0165 and a grant from ICASE and the Computational Methods 

Branch of NASA Langley Research Center. 
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APPENDIX: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA TASTE OF CHAOTIC BEHAVIOR 

(A-1) New conceDts and DhilosoDhical imDlications 

Chaos theory uses language far removed from engineering 

terminology. The most accessible exposition of the field is found in 

the books of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF.C. Moon (1987) and Berge: Pomeau and Vidal (1986). 

we propose merely to illustrate how a nonlinear Van der Pol oscillator 

can undergo chaotic motion in response to pure harmonic forcing, a 

behavior seldom discussed in engineering courses. The abstractions o f  

chaos may not impact practical engineering concerns in turbulent 

systems for a long time. 

basic insight: erratic or chaotic behavior is to be exDected across 

diSCiD1 

of freedom even in absence of random disturbances. 

Here 

Conceptually, however, they provide a new 

DETERMINISTIC nonlinear systems with just a few degrees 

Turbulence was discovered more than a century ago and fluids 

engineers have known over forty years that its onset occurs after j u s t  

a few instabilities. 

aperiodic behavior takes place commonly in sufficiently nonlinear 

mechanical (e.g. vibrations), electrical, biological, chemical, 

ecological, etc systems provides a unifying philosophical perspective 

on our world. That fibrillation in the human heart heralds the onset 

of a chaotic mode of this electromechanical system represented a 

revelation which in turn helped the design of defibrillators. 

too would have found the concepts of chaos stimulating. 

The recognition that qualitatively similar 

Darwin 

(A-2) Limit cvcle - attractox 

The Van der Pol oscillator mimics flow instabilities in allowing 

small displacements y at small velocities 

system and grow by virtue of the locally negative damping coefficient 

c(y2-1) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 in the equation shown in Fie A-1. 

draw energy from the 

In the unforced case 
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(l), b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ,  the motion is thus self -excited. For this second-order 

system, we need to specify the initial values of y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (termed phase 

or state variables) to evaluate the constants of integration and obtain 

a specific solution in time. 

displacement amplifies rapidly for the parameter value E - 1 before it 

"saturates" at a fixed amplitude. In an autonomous svsterQ (one without 

explicit time dependence in the equations) it is possible to express 

one phase variable in terms of the others at all times and plot them 

against each other, as in A -& for the 2-phase space. 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEi;p A-lb shows, an initially small 

The specific time-trace solution of Fie A -1b corresponds to the 

inner trajectory, unwinding from the origin in F i v  A-la toward the 

saturation curve C, called the limit gvcle. For any initial state of 

the oscillator, i.e. any point y(o) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( o )  within the contour C, there 

is a unique inner trajectory through this point. Each 

solution- traj ectory unwinds towards larger y and i values and 

approaches C asymptotically. 

corresponding to all initial state variables inside the contour, crowds 

outward toward C from within. 

;(o) values outside of C have positive damping, lose energy and wind 

down towards C, the common asymptote. 

but again there is an infinity of these outer trajectories crowding 

down towards C. 

and direction of the trajectories is set. In a 2-phase space the 

long-time solution-trajectories are thus constrained to approach a 

single finite-amplitude closed curve, the periodic limit cvcle, the 

dominant jntr insic ch aracteristiG of the nonlinear oscillator. These 

long-time solutions are insensitive to initial conditions. The 

Karman-Behard vortex street close behind a cylinder for 45 < Re < 160 

exemplifies such a periodic attractor in an open-flow system. 

An infinity of these trajectories 

Solutions associated with initial y(o), 

Only two are shown in FiF A-la, 

Given the y dependence of the damping, the geometry 

(A-3) Oscilla tor forcinv - - threedimensional Dhase space 

When the Van de Pol oscillator is forced harmonically, the term 

rbocosot on the right side of the equation in Fip A - 1  renders the 

system non-autonomous. To obtain solutions-trajecteries with 

properties similar to those in the 2-phase space of Fie A -  la, we 
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eliminate the explicit t-dependence of coswt by introducing a third 

phase space variable through B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- w. The forcing term becomes cos# as 

can be seen in the equivalent set of three first-order equations in Fig 

u. Again, for any combination of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc ,  b and w, there is 

a unique trajectory-solution through every point of the 3-phase space 

determined by the prescribed initial values x, y, and B at t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 .  

For some parameter combinations, as. the transients subside the 

solutions are asymptotically attracted to the toroidal surface in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig 

m, the generalization of the one-dimensional limit cycle. The 

quasiperiodic laminar wake oscillations in FiT 12b correspond to such 

an attractor with two noncommensurate frequencies f 

and Gharib (1988) for more details. 

and f2; see Stuber 
1 

For some parameter combinations, however, the trajectories become 

disorderly, as if drunk with the freedom of motion provided by the 

extra phase dimension. The contorted family of trajectories still 

fills the 3 space, but is locally more dense in some regions, as it was 

in the proximity of the limit cune C in Fig A-lb. As time increases 

indefinitely the transients die out and the trajectories approach an 

attractor submace not describable in terms of classical geometry. 

This "strange - attractoy" is made of an infinite discrete set off 

convoluted, nearly parallel surfaces with spacing becoming locally 

infinitesimal. 

The asymptotic set does not fill the 3 space completely; nor is it 

a finite sum of two-dimensional surfaces. The attractor has an 

effecti ve fractional dimension between 2 and 3. Various determinations 

of the "fractal dimension" of a strange attractor naturally require 

limiting procedures and large amounts of numerical or empirical data, 

with attendent problems in accuracy, Moon (1987). Yet the attractor 

dimension is a quantitative intrinsic property of the given nonlinear 

system which distinguishes it from other systems. 

governed by Navier-Stokes equations could potentially have very large 

dimensions so that some critics question inferences of behavior based 

on experiences with low-dimensional systems. Sreenivasan (1985) 

estimated dimensions on the order of 20 in a cylinder wake at Reynolds 

A fluid system 
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numbers near 10,000. 

In forced chaotic systems, sampling of the state variables at 

discrete periods 2nn/w corresponds to so called Poincare' sections 

labeled P in Fig A-lc through which one can study the evolution of the 

system in more detail. 

quasiperiodic regime i.e. intersections of the asymptotic trajectories 

with the Poincare cut, are seen to aggregate into the closed cume Q. 

For the chaotic regime, Figure 3-14 of Moon (1987) shows the 

intersections of the asymptotic trajectories to form an infinite set of 

"highly organized points arranged in what appear to be contorted 

parallel lines". When one enlarges a portion of the section, similar, 

smaller-scale structure is revealed, a characteristic of fractal sets. 

This phase-space structure is reflected in the aDeriodicitv of time 

traces of any state variable and their broad-band spectra. 

oscillator, driven sinusoidally at constant frequency may respond in 

gibberish, not noise-induced, but deterministic gibberish! The Duffing 

oscillator, with linear positive damping and a cubic spring element 

responds similarly. 

In this figure the signature of the 

An 

The equations are relatively simple; even the crucial nonlinearity 

in the Duffing case is simple. Yet predictability and reconstruction 

ef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Dast is thwarted. In principle, the results are repeatable. 

But there exists extreme Snsiti vity to initial conditions which 

control the specific solution-trajectory. Neighboring trajectories in 

chaotic systems tend to diverge exponentially in time, the divergence 

being characterized by positive LvaD unov exDonentS - another 

"measurable" property of the system. 

value, say of the velocity y, may therefore cause a shift to a 

different region of the attractor and different asymptotic gibberish. 

A minute change in the initial . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 On i mDlications for oDen-flow systems 

The nonlinear behavior of systems with two and three degrees of 

freedom, summarized in Fie A-1, departs significantly from that 

stressed in undergraduate engineering texts. On one hand there is the 
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powerful constraint of the limit cycle and toroidal attractors with 

their lock-in, threshold, jump and hysteresis phenomena, elements of 

which are evident in all fluid oscillators. On the other hand, there 

is the intrinsic chaotic behavior which may be a low-dimensional 

manifestation of phenomena somehow related to turbulence in the 

high-dimensional Navier-Stokes flows. We first note that Fie 12c 

demonstrates the existence of chaotic wake motion without 

threedimensional turbulence. If the motion in that laminar wake could 

be maintained twodimensional, it would be difficult to distinguish it 

from theoretical twodimensional turbulence (with possible inverse 

cascade processes) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- if a distinction does exist. Such a 

twodimensional chaotic flow would be a realization of a Navier-Stokes 

solution satisfying the turbulent syndromes of Fie 3 except that 

vorticity would remain twodimensional. 

determined by vorticity dynamics without the powerful tilt-and-stretch 

mechanism of threedimensional turbulence. The common turbulent wake of 

Fie 12d would presumably have a different, higher-dimensional 

attractor. But how to translate the attractor characterization into 

information in the physical space, of general or specific engineering 

interest such as entrainment and mixing in the two wakes above? 

building up a dictionary of strange attractors? 

The solution would be 

By 

A major problem is that the theory of dynamical systems has 

concentrated on evolution in time, and by virtue of its tools has 

nothing to say about the structure of chaotic flow systems in the 

physical space. The paradigm is one of temporal chaos. Yet in 

shear-flow turbulence threedimensional spatiotemporal organization 

determines the varied transport properties which are of primary 

interest in engineering. 

chaos theories in flows, Guckenheimer (1986), comes from closed-flow 

systems: 

layers heated from below. 

itself ("working upon itself"). Streamwise change of scale and 

streamwise convection of vortical structures do not play a role as in 

open-flow systems. 

The limited experimental confiramtion of 

flows between rotating cylinders and the BLnard-Rayleigh 

In both, the vorticitv is recirculated upon 
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In important open-flow systems vortical structures move downstream 

while gradually spreading across streamlines. 

behavior in the mean, there generally exists streamwise nonhomogeneity 

and associated intermittency in the structures comparable to the shear 

layer in scale. Vortical structures are not recycled; there are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno 
associated iterative Drocesses which are basic to the theoretical 

generation of strange attractors. In a Bgnard-Rayleigh cell or the 

fibrillating heart, the same object is interacting iteratively with 

itself. In open flows the objects are passing by. Consequently, if 

strange attractors can be defined for x-dependent systems, they are 

likely to be glimpsed by an observer traveling with the objects. 

Besides this parabolic 

R . J .  Deissler (1985) concluded on the basis of numerical 

experiments with the nonlinear Ginzburg-Landau partial differential 

equations in x and t with a convective term, UdA/dx, that if Lyapunov 

exponents were to be meaningful, the underlying measurements should be 

carried out in the frame of reference moving with U. That measurements 

by fixed probes in a physical shear layer sense primarily the effect of 

nonhomogeneities from upstream rather than some intrinsic properties of 

the vortical entities has been recognized among engineers since Favre 

and coworkers first measured space-time correlations in turbulent 

boundary layers in 1953. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An associated issue is that of external noise. Noise in flow 

systems is omnipresent, broad-band and hard to distinguish from 

manifestations of an intrinsic strange attractor (except when kept very 

low). However, noisy fields, nonhomogeneous in x, can be selectively 

amplified by open-flow laminar shear layers and can give rise to strong 

nonlinear fluctuations sensed at any x, Sections 2 and 3 .  Furthermore, 

we have seen in Fie: A-1 that external harmonic forcing of sufficient 

magnitude can actually modify the dimensions of the system and bring 

about chaos where there had been stable periodic behavior. In 

open-flow systems small-amplitude noise can thus lead to large randomly 

modulated fluctuations which can add to and even modify the character 

of the putative intrinsic strange attractor of the shear layer. 
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This is not the case in closed flow systems where noise generally 

adds a low-level broad-band background, except when several modes of 

incipient instability compete at a critical stage and perhaps in the 

more erratic cases of large aspect ratios, Guckenheimer (1986). 

Deissler and Kaneko (1985) mimicked the open-flow noise amplification 

with the cited Ginsburg-Landau model even without the troublesome 

x-dependence of the shear-layer thickness. They conclude that the 

"noise sustained structures" are both seeded by the noise as well as 

destabilized by the remaining noisy features after saturation. 

the secondary instability in their model is rather specialized 

(side-band instability) their generalizations agree with our account of 

primary and secondary instabilities and their inductions in Sections 2 

and 3.3. 

While 

The issues raised in this Section prepare the discussion in 

Sections 5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5.5 where they are further elaborated in context of 

specific families of flow fields. 
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laminar separation + bubble 
l a te ra l  

L A T E R A L  

SWEEP: 
MEAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 D  BL 

d i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst  r i  b u t e d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rou ghne ss 

M E F F E C T S  

Wall T, EFFECTS 
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-LJ k-7 
RECEPTIVITY 
s t r o i n  pene t ra t i on  
forced + f ree -response l inkage 

EFFECTS of SUCTION 

Fig. 1 a , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATyp ick l  t r a n s i t  i on  i s s u e s  i n  e x t e r n a l  flows 
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Fig. 1b I n t e r n a l  flow f a c i l i t y  
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INSTABILITIES -ti TURBULENCE 

Dynamics & Kinematcs o f  VORTICITY DISTRIBUTIONS 
(BIOT-SAVART IMAGERY) + w ( x, y, z, t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI=!€ +p + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 

. - -  

f %  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SHEAR LAYERS 

Y 
. .  

.#, 

init ially quasi-homogeneous in x and z 

TURBULENT 
1,2,3.., ..* I STRUCTURES 

INSTABILITIES 
SEQUENCES OF 
some simultaneous RESTRUCTURING 

- Restructuring 

i n  x 
conditioned 

tuned 
v iscos i ty  cent r i fuga l  MECHANISM: in f lect ional  

NET VORTICITY CHANGES AVARAGE TO ZERO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZAO-0 - 
c os .,I x -c t I e-'iX Init ially : cosa,(x-c,t)e w i t  

l inearizable 
c o sgz e-''' 

fo l lowed b y  slower nonlinear g rowth  

\possible approach .to 'saturat ion' 
'neutral' max. of f i r s t  rest ructur ing 

t t  USUAL ASSUMPTION (not suff iciently general) 
\ I 
secondary Instability f rom local nonlinear equilibrium 
init ially l inearizable around this 

/ 

/ - 

\ l inear  D.E. with periodic coef f ic ients  

FLOQUET SYSTEMS PARAMETRIC INSTABILITIES 

FIG. 2 VORTICITY RESTRUCTURING IN INSTABILITIES 
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Examples 

SECONDARY : 

t i l t  & stretching in C,H&K breakdowns in BL's 
rotat ing wavy Taylor cells in Couette R,flow 

TERTIARY : hairpin-vortex formation (3D inflectional1 in K breakdown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 2-frequency wavy Taylor cells 
I 
I 
V ULTIMATELY OPERATIONALLY I ND ISTI NG Ul SHA BLE FROM 

TURBULENT STATES character ised by 4 key SYNDROMES 

i r regular i ty  (d isorder ,par t ia l )  -s tochas t ic  nonlinear systems 

3 Dim vor t i c i t y  (eddying) -5 ensemble of loosely coupled zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 di f fus ion f a r  in  excess  of molecuxar mixing-=-both f r iend and foe  

deformable gyroscopes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

L, on a la rge range of sca les 
:. broad-band spect ra 

I 

I 
see-Tennekes &Lumley t 1972) 

RESTRUCTURING CONTINUES in  turbulent shear f lows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 represents  s t range behavior  in  continuum mechanics - 

-apparently common in  NONLINEAR DISSIPATIVE SYSTEMS with 
'strange a t t rac to rs '  

- and f i lm by R. W. Stewart  (19681 and 8-page summary 

I ---> la rge - scale coherent  s t ructures, f ine-scale intermittency. 

) la rger  number of degrees o f  f reedom 

I 

EXISTENCE of Remin t  for  self sustaining w a l l  turbulence 
o n  scales corresponding t o  the thickness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb of  the layer  

p resuma b I y through intermittent B U R S T S " 
o f  the viscous sublayer,correlated d is turbance 

SWEEP EJECTION 

upstream of Remint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
buf fe ted  laminar BL's 
lack ing true turbulent 

t ranspor t  Q mot ions produc ing  
negative R 9 n o I d s  
s tresses-Puv. P ;lr (Iarge1 

------m v- 
L u+ 

lllllllmlllllnlllllnlllninnrmnlrrlnlrrrlrlrlrl 
mushrooms o r 3  

IN HIGLY ACCELERAT TBL 61' like hai rp in  loops  ' 

the viscous sublayer is  s t  zed,bursts !top. 
the sublayer becomes a 'buffeted lam.BL',decoupled f rom the 
wake-l ike,decaying turbulent outer layer (STERNBERG 19541. 

This is  one mode o f  RELAMINARIZATION, 
see NARASIMHA & SREENIVASAN ( 1 9 f 9 )  f o r  other modes 

FG.3 HIGHER RESTRUCTURING AND TURBULENCE 
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Flat plate 

Attachment line on swept wing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 100 < Reecr = 236 Re emint 

Precritical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cy1 lnder magnitudes 

Post critical 
ReD-dependent 

Pipe - - 
- 2300 equilibrium puffs << Recr - 

ReDmint - 2700 wall bursts, slugs 

Large aspect ratto ducts -1 2h 
k 

Rehmint - 1500 non-decaying t b l  POtCh<<Rehcr - 5700 

Pig.4 : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMinimum Re for self-sustained turbulence compared to linear 

critical Re for T-S like instabilities. 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALINEARIZED RESPONSE t o  

LOCAL IMPULSE DISTURBANCE a t  x = O ,  t = O  

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(k x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ut) 
p r o p o r t i o n a l  t o  e 

CONVECTIVE INSTABILITY 

e.g. Boundary Layers  

GASTER SPOTS ( 1 9 7 5 1  

ABSOLUTE INSTAI lL lTY  

Onset  C r i t e r i o n  
group ve loc i t y  

(doub le  r o o t 1  
cg =aw/ ak = o 

STABILITY W,<O f o r  a l l  x , t :  
i m p u l s e  response  decays  everywhere  

See HUERRE + MONKEWITZ (19851  JFM 1 5 9 , 1 5 1  

TEMPORAL-. l inear response t o  continuous Asinax a t  t=o 

LuJSTABILITfl- dependent on  INITIAL CONDITIONS in x and/or  t 

SPATIAL- l inear response to  continuous Asinot a t  x-o 

FffiURE 5 
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Boundary  layer  

CONVECTIVE' 

/ .  downs t ream zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PR 0 PA G A T rO N' LOCAL LINEAR 

INSTABILITIES 'some ups t ream:  
p o t e n t i a l  resonance  in  x 

1 
.ABSOLUTE 

Bluf f  near  wake  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I-Oc-AL means: 

a t  each  x ,  r e p l a c e  x -vary ing  shear  l a y e l  by  para l le l ,  
c o n s t a n t  l aye r  w i th  l o c a l  mean p r o f i l e  U(y1 - neglects s t rong 
destabil izing adverse pressure gradient near body !  

f o r  B lu f f  wake 

% 
b a c k f  l ow  T U [ Y l  

Near:  abso lu te l y  uns tab le  

p a s t  c losu re  of 
r e c i r c u l a t i o n  p o c k e t  

H 
Far the r :  c o n v e c t i v e l y  uns tab le  

RIGOR i n  usage o f  l o c a l  mean p r o f i l e  o f  v igo rous l y  o s c i l l a t i n g  wake? 

PROBLEM o f  NONLINEAR UPSTREAM EFFECTS t h rough  PRESS URE: 
This uns teady  feedback  c o n v e r t s  the  l i nea r l y  c o n v e c t i v e l y  uns tab le  
m ix ing  l aye r  i n t o  a weak ly  (non - robus t ]  abso lu te ly  uns tab le  One! 

LGLoBAL INSTABILITY] ar i ses  f r o m  ' resonance '  i n  x when 
non-pa ra l l e l  x evo lu t i on  i s  d i r e c t l y  t aken  in to  accoun t .  

Model ing  v i a  Ginsburg-Landau equat ion ,  CHOMAZ, HUERRE 
REDEKOPP ( 1  988,  Phys.Rev.Le t te rs ,3 ,251 show:  

NEED l ong  enough x range  o f  Abso lu te  L o c a l  Ins tab i l i t y  t o  bu i l d  up an 
uns tab le  e igen func t i on  i n  x o n  top o f  the  l o c a l  y e igen func t i on  o f  
t he  layer .  

PROBLEM o f  Boundary  Cond i t i ons  i n  x ,  espec ia l l y  a t  b o d y  

IQRoW'T" TO NONLINEAR SATURATION and ENERGY BALANCE1 

SYSTEM t hen  ROBUST t o  env i ronmenta l  d i s tu rbances !  

HYDROACOUSTIC G_LOBACLY- UN_S_TABLE SYSTEMS 
e.g. jet edge-tone: 

pressure 
,#di ole 

- L - to lips zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh--- - - - -_- 4 
D1 - U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv-- - - -  - _ _  - 

,-feedback IRREGULAR f JUMPS L 

FIG.6 CONVECTIVE, ABSOLUTE and GLOBAL INSTABILITIES 
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R e t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA814,000, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = excitation at f = 551 Hz t 7 8 5  Hz 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 
4 

sound 

Kegelman and Mueller (19841, A I M  Jour- 

609 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

304 80 203 20 101 60 - -- 

CYL. Do01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf3 CALIBER 
SECANT OGIVE NOSE 

1901.79 RAD 

463.90 

OlYENSlONS IN YtLLIYETERS 
- 1  

f igure 8 Sound induced TS waves on ogive-cylinder body at U of 21.6 m/s 
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nrn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmass transfer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas color density distribution 

"I "I 

' M = 3.5 7 14 28 lmll 

Mass transfer distribution for 
different mesh niees,M. 
( x s =  100 nun, u = 1.3 m / s )  

Local mass transfer toeff (3 
( x  = 1 5 0  mm) 

FIG. 9 EFFECT OF GRIDS ON GOERTLER INSTABILITY 
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INSTABILITIES AND ROAD TO TURBULENCE i n  

OPEN-FLOW SYSTEMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ARE FORCED b y  ENVIRONMENTAL DISTURBANCES 

( e x e p t  in r a r e  c a s e s  o f  g l o b a l - a b s o l u t e  i n s t a b i l i t i e s )  

RE-C-E-P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT LL1J-Y : c o n  v e r s i o n o f  e x t e r n  a I d i s t u r b  an c e s i n t o  
i n t e r n a l  homogeneous  g r o w i n g  v o r t i c i t y  modes  

SMALL DISTURBANCEQ 

L i n e a r i z a b l e  R e c e p t i v i t i e s :  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 i n  pr inc ip le ,SOLUTIONS t o  

NONHOMOGENEOUS 
I 

1 c r o s s - f l o w )  

PARTICULAR (FORCED) SOLUTION 

PLUS 

a l l  HOMOGENEOUS SOLUTIONS 
n e e d e d  to s a t i s f  t o  e t h e r  a l l  

h A m Y  I n o t  o n  the  
OUNDARY C ~ N D ~ T I O N S  i n  s p a c e  

avarage,  in c a s e  of t u r b u l e n t  
d i s t u r b a n c e s )  These c o n d i t i o n s  f i x  
the  c o e f f  Cn in t h e  s y m b o l i c  f o r m :  

 SO^^ + FCm .HomoSoln 

F o r  l a r g o r  x a n d  t a l l  b u t  o n e  

d e c a y ,  leav ing  t h e  d o m i n a n t  

E x :  BECHERT ( 1 9 8 8 )  JFM 186,47 

I (o r  f e w : j l  HomoSol, a n d  Soi,,t 

I r e s p o n s e  C, .HomoSol, 
I 

LARGE DISTURB AN C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€3 
C o n c e p t  o f  NONLINEAR Remint 
f o r  se l f -sus tenance of  tu rbu lence 
in  a g iven Boundary  L a y e r ,  
genera l ly  be low l inear  Recr 

UNKNOWN NEW 
x,y,z,t - dependent  

BASE FLOWS 
I f  l o  c a II y I ine a r i za  b l e  : 
RAPID INFLECTIONAL INSTABILITIE! 
( w i t h  f o r c i n g 1  

1, 
] B Y  PASSESJ  

of  p rev ious ly  e x p l o r e d  l inear ized  
f i e lds  and mechanisms.  

EXAMPLES 

0 Large,  s ing le-PROTUBERANCE 
ins tab i l i t y  and t rans i t ion  

0 Impingement o f  wa‘kes f r o m  
u p s t r e a m  in  tu rbomach inery  

0 Turbulent  p a t c h e s  i n  2D 
Poiseui l le  d u c t s  

0 L a r g e r  d i s t r i b u t e d  ROUGHNESS 

see Morkov in (  1984)  ‘Bypass 
Trans i t ion ’ ,  NASA CP-2386,  
Sympo:  Trans i t ion  i n  Turb ines 
NASA Lewis  Res.center 

V V 
W B R  ID C ASS: Enhanced TS and H e r b e r t  r e c e p t i v i t i e s  t o  f r e e - s t r e a m  f i e lds  

I 
due t o  mean- f low changes BELOW the h e i g h t s  o f  smal ler  d i s t r i b u t e d  roughness,  
CORKE, BAR-SEVER , MORKOVINC 1986) Phys. F lu ids 29,3 199 

1 
FIG. 11 ENVIRONMENTAL FORCING & RECEPTIVITY 
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in water unsteady vort ic i ty 

forced at  frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, 
by heating elements 

I 

i f1 l o c k e d  on 

natura l -s t reet  

f requency fn 

I 

~ 4 . 0 7 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH t  

quas  i-p er i  od  i c  
response to  

o f f -s t ree t  fr : 

fp =4.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHZ 

11 ~ 3 . 5  HZ 

chao t i c  laminar  
f l  =3.55 Ht  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f p  =4 .075=  f, 

f 3 = 5 . 4 2  H t  

some 3 0  mot ion  

no fo rc ing  ; 

COURTESY: K .  Stuber and M. Gharib 

FIG. 12 EXCITED STATES IN SLENDER WAKE 
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SOME R O A D S  t o  TURBULENCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 CHAOS 

Q: can  shear layers  g rowing  i n  x have STEADY s t range a t t r a c t o r s ?  

Q: can  chaos  theory  accomoda te  lam.-Tu coex is tence?  --- ~ - QL0BAL:Y unstab le  sys tem NEARd BfDky 
' - s o m e  l o c a  feedback  through unstea y ac f l o w ,  

s tab le,  LOCKED 'c lockwork '  osc i l l a to r  
3D-instab.(absolute?); ro le  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW ;  d is tu rbances? 
sym.-ant isym. mode compe t i t i on?  G e r r a r d ( l 9 7 8 1  
Drop in  C;, r i se  i n  p 
Reversed fo r  R e ~ 2 0 ~ 0 - 1 0 , 0 0 0 ,  why? 

45<Re<160 

Re>200 
Tu downst ream 

J. 
marches upst ream 

+ 

and lF-unexplained 

Tu reaches  f lu id  i n  f i r s t  shedding vor tex  bubble 

Tu in  separa t ing  layer  causes  
rea t tachment  and bubble;  Re-2.1 O5 P ' iMPoRTANT SPANWISE NONUNiFORMtTY 

6 
Tu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC onset  ups t ream of lam.sep., 

c r o o k e d  tbl.sep. l ine,  low CL ; Re-1.5.10 

roughqess sensi t ive;  wake widens, 
mi ld  CL r i se  as sep. l ine s t ra igh tens  

I 
TU m a r c h e s  u p s t r e a m  in  th in  B.L.; - 

B.L.: CONVECTIVELY unstab le  RESPONSE t o  low f ree -s t ream Tu: 

superpos i t ion  of lam. TS spots ,  ampl i fy ing quasi2D in  x 

INTERMITTENCY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ONSET 

U - 
of 
n 

I ? 

SPANWISE nonun i fo rmi ty  

As U increases ,  p a t t e r n  moves  upst ream, 
bu t  Ret, n o t  cons tan t !  Unit-Re e f f e c t s !  

UNLIKE f o r  u re  STRANGE ATTRACTORS 
SIGNAL I R ~ E G U L A R I T Y  s t rong ly  NOI~SE DEPENDENT 

Q: Any way o f  exper imenta l l y  sensing the in t r ins ic  SA i r regu la r i t y  i f  present?  

Q: Invar iance o f  such in t r ins ic  measures i n  y and z ,  and espec ia l l y  in  x ?  

FIG. 13 EVOLUTION TO TURBULENCE IN 
GLOBALLY AND CONVECTIVELY UNSTABLE EXAMPLES 
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\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

D.C DISTURBANCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor G ~ R T L E R  + SWEEPBACK INSTABILITIES 

uncharted interactions I 
with fine scales I 

for isolated bursts: I 

BURSTS' NEAR WALL 

- - - - - - - - - -  

- poor observatlon of distJrbonCes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAC. INPUTS DISTURBANCES 
h e - s t m m  vorticity m r  control of disturbances 

sound I' 1 I :  rntropy spots 

-- - 
Poiseuille 

duct 

Blunt 
body 

paradox 

Pipe-f low 
puffs, 
slugs 

some 
roughness 
conditions 

Lateral 
contam- 
ination 

- 

- 

- 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 

\ 

high 
fr.qurncy 
vi brat Ions 

I 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I  ; !  R A C E  between 
/ 

/ 
/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 RECEPTIVITY 
/ 

0 

BYPASSES: 'SLOW LINEAR AMPLIFICATION OPERATION M O D I F I E R S  = 
IE M E A N  8.1. PROPERTIES probably of wave packets: 

3D NONLINEAR xz Fourier 2 0 :  D I R E C T  3 0 :  INDIRECT 
SPACE-TIME components of p(x )  3D roughness 

properties - disturbunces past Tw /Tr 
Recr of each mode 

DISTURBUNCES 

functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL m 
CUMULATIVE EFFECTS curvature 0.0. p ( z )  

directly observable- 
TS wave packetsf 

STRONG SECONDARY 
3D INSTABILITIES 

A sweep 

PRIMARY GORTLER 
AND CROSS-FLOW 

VORTICES 
>>>K : Klebanoff 

_j 

c 
IRREGULAR TERTIARY 

INSTABILITIES 

e.g 3D inflectional- 
Klebanoff high f 

breakdown 

1 

FIGURE 15. 1984 system portrait of environmentally stimulated 

vorticity perturbations on their evolutionary paths to 

turbulence in undistorted boundary layers and ducts. 
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t 

Forced V n der Pol  osci l lator:  
j i+ t (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- l ) y + y = b t w c O s u  

I 1 1  u n f o r c e d  case  b=O 
autonomous sys tem 

_ _ -  - OUTER 
TRAJECTORIES in  phase space 

--- - INNER 'both fa t t racted t o  the  same 
(a1 se t  o po in ts :  LIMIT CYCLE C 

t he re fo re  mo t ion  b e c o m e s  
pe r iod i c  i n  t ime ,has 

TIME RECORD 

(b1 I 

(21 f o r c e d  case  b # O  

To make sys tem autonomous ( f ree  o f  exp l i c i t e  t -dependence)  
i n t r o d u c e  a th i rd  d imens ion  (phase var iab le)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 by  se t t i ng  8 = w .  
Equiva lent  sys tem of t h ree  f i r s t -o rde r  equat ions is: 

p= t { x - ( y3 /3 -y )  + b s i n e t  ; i = - y / t  ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = ~  : PARAMETERS c,b,w 

So lu t ions  t r a j e c t o r i e s  a t t rac ted  to :  

c u r v e s  o n  a l im i t ing  TOROIDAL SURFACE- 
STRANGE ATTRACTOa@: c o l l e c t i o n  o f  
in f in i te  s e t s  o f  c o n v o l u t o d  'para l le l '  sur faces  
w i th  spac ing  l o c a l l y  app roach in  in f in i tes ima l ,  
s t u d i e d  b y  P o i n c a r e '  s o c t i o n s ,  % -. 

PROPERTIES have a e r iod i c ,  bounded  t r a c e s  
i n  Nme,  c a r r e s p o n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 - 7 i  ing t o  r o a d - b a n d  s p e c t r a  
Pos i t i ve  Lyapunov  e x p o n e n t s  t r a j e c t o r y  
d i ve rgence  
Supersens i t i v i t y  t o  i n i t i a l  c o n d i t i o n s  i n  phase  
space  

A f t e r  Mc Lach lan  119471, Oxford Un. Press  and  B e r g e '  ( C I  

Pomeau and V ida l  (19861,  John Wiley & Sons 

FIG. A-1 ROAD TO CHAOS IN A FORCED 
NONLINEAR OSCILLATOR 
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