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Abstract 
The unfolded protein response (UPR) is an evolutionarily conserved 
stress response to intra- and extracellular conditions that disrupt 
endoplasmic reticulum (ER) protein-folding capacity. The UPR is 
engaged by a variety of disease conditions, including most cancers as 
well as both metabolic and neurodegenerative disorders. Three 
transmembrane transducers—PERK, IRE1, and ATF6—are responsible 
for activating downstream signaling pathways that mediate the UPR 
and subsequent stress response pathways. PERK, an ER resident 
transmembrane protein kinase, initiates both pro-apoptotic and pro-
survival signaling pathways. In the context of neoplasia, PERK and its 
downstream targets alter gene expression that can be both pro- and 
anti-tumorigenic. In this review, we discuss recent advances in 
understanding how canonical and non-canonical PERK-mediated 
signaling pathways influence cell fate, tumor progression, and tumor 
suppression and avenues for therapeutic intervention.
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Introduction
The endoplasmic reticulum (ER) is the site of post-translational 

modification, folding, maturation, and secretion for transmembrane 

and secreted proteins. The rate of protein transport into the ER and 

its folding capacity fluctuates on the basis of intra- and extracellular 

conditions and varies among cell type. Cells can adapt to increased 

nascent protein import into the ER lumen and folding demands by 

preferentially increasing the overall size of the ER and upregulat-

ing translation of chaperone proteins1. However, under stressful  

conditions, such as tumorigenesis, protein translation exceeds ER 

folding capacity, resulting in the accumulation of misfolded pro-

teins within the ER. As a result of the accumulation of misfolded 

proteins, an evolutionarily conserved stress response known as the 

unfolded protein response (UPR) is activated. The function of the 

UPR is to either re-establish homeostasis or trigger cell death in 

order to prevent accumulation of damaged, non-functional cells.

Mammalian cells have three ER resident transmembrane  

proteins—protein kinase RNA-like ER kinase (PERK), inositol-

requiring enzyme 1 alpha/beta (IRE1α/β), and activating tran-

scription factor 6 (ATF6)—that function as signal transducers 

of the UPR. All three transmembrane proteins contain a single  

transmembrane domain, luminal domain, and are present at a basal 

level in their inactive state. PERK and IRE1α also consist of a 

cytosolic tail that has kinase activity and kinase and ribonuclease 

activity, respectively. The inactive states of PERK, IRE1α, and 

ATF6 are characterized by the binding of binding immunoglobu-

lin protein (BiP)/glucose-regulated protein 78 kDa (GRP78)  

ATPase domain to their luminal domain2. Decreased expression 

of BiP/GRP78 via repression of its coding gene, HSPA5, activates 

all three UPR sensors3. Furthermore, accumulation of misfolded 

proteins sequesters BiP/GRP78 away from PERK, IREα, and  

ATF6. BiP sequestration may occur through the interaction of 

unfolded proteins, such as CH1. CH1 interacts with the sub-

strate-binding domain of BiP/GRP78 where it potentially trig-

gers the dissociation of BiP/GRP78 from the luminal domains of  

PERK, IRE1α, and ATF62,4. Ultimately, reduced BiP/GRP78  

interaction is essential for activation of PERK, IRE1α, and ATF6.

Sequestration of BiP/GRP78 from the luminal domain of PERK 

triggers oligomerization and autophosphorylation5. PERK is found 

in both a dimer and a transient tetramer state, and the tetramer 

state is a higher state of activation than the dimer. PERK luminal 

domains oligomerize to form stable dimers and then a helix swap, 

or the intertwining of two dimers via helical subunit, produces 

the tetramer configuration6. The tetramer interface is primarily  

composed of hydrophobic residues that are thought to help 

stabilize the tetramer structure and increase phosphorylation  

efficiency6. Transient configuration changes between the dimer  

and the tetramer may represent an intrinsic form of regulation 

based on the level of misfolded proteins in the ER lumen. Activated  

PERK phosphorylates eukaryotic initiation factor 2α (eIF2α), 

thereby reducing translation initiation for a majority of cellular 

proteins. However, a select set of mRNAs that typically encode 

short open reading frames within the 5′ untranslated region (UTR) 

(upstream open reading frames, or uORFs), such as basic leucine 

zipper protein family member activating transcription factor 4 

(ATF4), are translationally induced7.

Similar to PERK, titration of BiP/GRP78 leads to IRE1α  

oligomerization and activation via trans-autophosphorylation. In 

addition to functioning as a protein kinase, the IRE1α cytosolic 

domain harbors ribonuclease activity which mediates the degrada-

tion of ER-localized mRNAs through a process known as regulated 

IRE1-dependent decay (RIDD). While RIDD triggers decay of 

both non-coding and coding RNA, IRE1 ribonuclease activity also 

specifically splices an intron from XBPI mRNA, thereby increas-

ing XBP1 translation. Genes downstream of XBP1s influence  

protein secretion, cell survival and apoptosis, and DNA damage  

and repair8. IREα associates with the Sec61 translocon to locate 

XBP1 unspliced mRNA9. Interestingly, repression of translocon 

subunits specifically activated IRE1α and leads to XBP1 mRNA 

splicing equal to that of decreased BiP/GRP78 interaction10.  

Activation of IRE1α through loss of translocon interaction suggests 

UPR signaling pathway activation specificity. PDIA6 influence 

on IRE1 and ATF6 activation independent of BiP, but not PERK  

activation, further suggests UPR signaling pathway activation  

specificity11,12.

ATF6 is a transmembrane transcription factor. ER stress causes 

export of ATF6 to the Golgi followed by two sequential cleavage 

events by protease site-1 protease (S1P) and protease site-2 protease 

(S2P). The two cleavage events expose ATF6’s transcriptionally 

active cytosolic domain, which translocates to the nucleus. ATF6 

also induces XBP1 mRNA, highlighting the cross-talk between 

UPR pathways13.

The pathways described above represent the canonical ER stress 

and UPR signaling pathway. In recent years, great strides have been 

made to better understand the canonical and non-canonical signal-

ing pathways that influence other stress response mechanisms and 

cell fate and ultimately revealed potential roles of both canonical 

and non-canonical pathways in disease. In the following sections, 

we will highlight recent novel findings pertaining to the role of 

UPR in regulating cell fate following exposure of cells to tumor- 

associated stresses and the potential for therapeutic development.

UPR signaling and cell fate
Signaling through eIF2α
The integrative stress response (ISR) is a complex signaling path-

way that is activated by both intracellular and extracellular stres-

sors. Stress-specific protein kinases recognize stress induction 

and mediate ISR downstream signaling pathways. For example, 

amino acid deprivation, heme deprivation, viral infection, and mis-

folded proteins are recognized by GCN2, HRI, PKR, and PERK, 

respectively14. While there is inherent stress recognition specificity, 

there is also considerable redundancy among these protein kinases 

that has been elucidated through gene-specific knockout mice15.  

Interestingly, the ISR downstream signaling pathways of all four 

previously mentioned kinases converge on the phosphoryla-

tion of eIF2α. Of particular interest in the present review is the  

PERK-eIF2α UPR signaling pathway.

eIF2α coordinates the formation of eIF2α-GTP-Met-tRNA
i

Met, 

a component of the 43S pre-initiation complex necessary for  

formation of the 80 S ribosome complex. Formation of the 80S 

ribosome complex requires hydrolysis of eIF2-GTP to eIF2-GDP, 
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which leads to dissociation of the ribosomal complex for trans-

lation termination. The eIF2α guanine exchange factor, eIF2β, 

is responsible for exchanging GDP for GTP to enable eIF2α- 

GTP-Met-tRNA
i

Met complex reformation and ultimately re-initiate 

protein translation16. However, phosphorylation of eIF2α by PERK 

(HRI, PKR, or GCN2) inhibits eIF2β-dependent exchange of GDP 

for GTP, thereby preventing reformation of the 43 S pre-initiation 

complex and subsequent ribosome complex. mRNAs containing 

uORFs will stall 43S pre-initiation complexes to block translation, 

but at low concentrations the 43 S pre-initiation complex will skip 

the uORFs, enabling mRNA translation17,18.

PERK mediates pro-death and pro-survival signaling
PERK-mediated eIF2α phosphorylation directly regulates  

expression of cell fate–determining genes through several  

mechanisms. ATF4, which is translationally induced by PERK is 

the most heavily studied. The ATF4 mRNA contains overlapping 

uORFs in its 5′ UTR which are necessary or and preferentially 

ATF4 translation upon phosphorylation of eIF2α (Figure 1). ATF4 

directs transcription of a complex network of genes that ultimately 

determine cell fate. ATF4 induces expression of multiple ER  

resident chaperone proteins (such as BiP/GRP78) to increase 

folding capacity, mediate amino acid metabolism and glutathione 

synthesis, and increase resistance to oxidative stress19. ATF4 also 

induces autophagy genes that are important in autophagosome  

formation and function20. Inhibitors of apoptosis, cIAP1 and 

2, are also induced during ER stress in a PERK-dependent but  

ATF4-independent manner21 (Figure 1).

A well-known ATF4 pro-death target gene is the transcription fac-

tor C/EBP homologous protein (CHOP), which further promotes 

transcription of pro-death genes22 (Figure 1). CHOP is directly 

Figure 1. Activation of unfolded protein response and downstream pro-survival and pro-death proteins. Tumorigenesis induces protein 
synthesis that exceeds the endoplasmic reticulum (ER) folding capacity and increases the number of nascent proteins within the ER lumen 
leading to ER stress. Sequestration of binding immunoglobulin protein (BiP) from the luminal domain of protein kinase RNA-like ER kinase 
(PERK) to nascent proteins enables PERK oligomerization, autophosphorylation, and activation. Activated PERK phosphorylates eukaryotic 
initiation factor 2α (eIF2α) at Ser51 and causes selective translation of proteins containing upstream open reading frames (uORFs). Selectively 
translated proteins, like transcription factor activating transcription factor 4 (ATF4), directly or indirectly regulate expression of pro-survival and 
pro-death proteins. Red arrows represent pro-death pathways, and blue arrows represent pro-survival pathways.
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responsible for inducing expression of two BH3-only pro-apoptotic  

Bcl-2 family members: Bim and Puma. Bim and Puma mediate cell 

death by negatively regulating the activity of pro-survival Bcl-2 

family members23. Negative regulation of pro-survival Bcl-2 family 

member activity via Bim and Puma enables Bax/Bak oligomeriza-

tion mediating the apoptotic release of cytochrome C24,25. CHOP 

indirectly induces expression of another BH3-only pro-apoptotic 

Bcl-2 family member, NOXA, through induction of the transcrip-

tion factor ATF526. Similar to Bim and Puma, NOXA negatively 

regulates pro-survival Bcl-2 family proteins. Furthermore, CHOP 

induces expression of death receptor 5 (DR5) which will bind  

Fas-associated death domain (FADD) independent of the DR5  

ligand, Apo2/TRAIL27. FADD transduces pro-death signals by  

activating caspase 828. Interestingly, DR5 mRNA can be degraded 

via RIDD, highlighting regulatory cross-over between UPR  

signaling pathways27.

ATF4 also impacts cell fate through modulation of apoptosis  

inhibitors such as XIAP. Here, transcriptional induction of  

ubiquitin ligases increases XIAP proteasomal degradation, thereby 

increasing apoptosis. In this instance, however, induction of ubiq-

uitin ligase and subsequent XIAP proteasomal degradation is  

CHOP-independent29. ATF4/CHOP induces GADD34, which 

encodes a protein that directs protein phosphatase 1 (PP1) to 

eIF2α30. The induction of Gadd34 creates a negative feedback loop 

to re-establish global protein translation and can increase protein 

load during ER stress, exacerbating stress and causing cell death31.

PERK also mediates pro-survival and pro-death signaling through 

the mechanistic target of rapamycin (mTOR) pathway (Figure 2). 

mTOR is a kinase that regulates cell growth and proliferation via 

nutrient availability and protein translation and is dysregulated 

in many cancers32,33. PERK has intrinsic lipid kinase activity that 

mediates production of the pro-mitogenic phospholipid, phospha-

tidic acid (PA), via phosophorylation of diacylglycerol34. PA has 

been implicated in mTOR activation via competition with rapamy-

cin and is essential for mTOR complex (mTORC) formation35–37. 

Therefore, PERK’s lipid kinase activity produces PA-mediating 

Figure 2. PERK-mediated regulation of the mTOR-PI3K-Akt pathway. Endoplasmic reticulum (ER) stress sequesters ER resident  
chaperone binding immunoglobulin protein (BiP) away from luminal domain of PERK, leading to PERK activation. Activated PERK contains 
lipid kinase activity and converts diacylglycerol to phosphatidic acid (PA). PA is instrumental in mammalian target of rapamycin (mTOR) 
complex formation. mTOR activation can inhibit insulin receptor substrates via phosphorylation and block PI3K-Akt activation. Alternatively,  
mTOR complex can activate Akt and downstream pathways via phosphorylation. Activating transcription factor 4 (ATF4)-dependent 
expression of SESTRIN2 and regulated IRE1-dependent decay 1 (RIDD1) can indirectly suppresses mTOR activity (indirect regulation 
illustrated by dashed lines). Akt-mediated downstream signaling pathways can have both pro-survival and pro-death impacts on cell  
fate. mTOR, mechanistic target of rapamycin; PERK, protein kinase RNA-like endoplasmic reticulum kinase.
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mTORC formation and subsequent Akt activating phosphorylation 

(Figure 2). Akt downstream signaling pathways are highly complex 

as they both mediate survival and apoptotic responses35,36. Another 

example of PERK-mediated mTOR regulation is the ATF4- 

dependent expression of DNA damage and development 1 (REDD1) 

and SESTRIN2, both of which can suppress mTOR38–41 (Figure 2). 

One of mTOR’s functions is to mediate inhibitory phosphorylation 

of insulin receptor substrate (IRS) docking proteins that activate 

the PI3K pathway42,43. Suppression of mTOR prevents inhibitory 

phosphorylation of IRS docking proteins thereby activating PI3K 

and subsequent Akt signaling pathways (Figure 2).

PERK signaling can also play a role in mitochondrial pro-survival 

signaling44. The ER and mitochondrial membranes are connected 

via mitochondria-associated ER membranes (MAMs)44. Interest-

ingly, activated PERK has been localized to MAMs, suggesting that 

PERK’s activation and downstream signaling pathways can influ-

ence mitochondrial mediated cell survival45. Furthermore, PERK-

ATF4 transcriptionally induces expression of Parkin, a protein that 

mediates autophagy of mitochondria (mitophagy)46,47. Mitophagy 

promotes cell survival by maintaining mitochondrial homeostasis.

Non-coding RNA mediated pro-death and pro-survival 
signaling
The role of non-coding RNAs in cell fate has become an area 

of intense investigation. Two non-coding RNAs—microRNA 

(miRNA) and long non-coding RNA (lncRNA)—are regu-

lated by the UPR and play significant roles in cell survival and 

cell death signaling. miRNAs are small regulatory non-coding 

RNA molecules approximately 22 nucleotides in length with a  

seven-nucleotide seed sequence that recognizes complemen-

tary sequences in target mRNA. Upon recognition, the most  

miRNAs mediate target mRNA degradation or inhibit their trans-

lation. However, some miRNAs can lead to mRNA-specific  

upregulation48. Advances in high-throughput sequencing tech-

nology facilitated the identification of up to 86 differentially  

expressed miRNAs following ER stress induction49. Much of the 

miRNA regulation that influences cell fate occurs through the PERK 

arm of the UPR. Interestingly, one miRNA, miR-204, directly  

targets and inhibits PERK signaling50. Repression of PERK sign-

aling blocks expression of most genes necessary to overcome ER  

stress and leads to cell death.

Downstream of PERK, ATF4-dependent expression of miR-211 and 

NRF2-dependent repression of miR-214 promote cell survival51,52 

(Figure 3). MiR-211 contains a seed sequence targeting the pro-

moter region of chop51. Repression of chop inhibits pro-apoptotic 

signaling and promotes cell survival. MiR-214 targets both ATF4 

and EZH2. Decreased expression of miR-214 enables ATF4 and 

EZH2 expression, which increases transcription of pro-survival 

genes and represses pro-apoptotic protein BiM, respectively52. 

Cell survival is also promoted by ER stress-induced expression of  

Figure 3. Activation of unfolded protein response and downstream pro-survival, pro-death, and tumorigenic related non-coding 
RNA. Endoplasmic reticulum (ER) stress induces complex non-coding RNA, both microRNA (miRNA) and long non-coding RNA (lncRNA), 
regulatory pathways that influence cell fate and tumorigenesis. Two miRNAs—miR-204 and miR023a~27a~24-2—repress and activate protein 
kinase RNA-like ER kinase (PERK) activity, respectively. Furthermore, multiple miRNAs and lncRNAs are induced or repressed following 
PERK activation. Black arrows represent pathways that can lead to either pro-survival or pro-death signaling, blue arrows represent pathways 
that lead to pro-survival signaling, red arrows represent pathways that lead to pro-death signaling, and green arrows represent pathways that 
influence tumorigenesis. Dotted lines represent indirect regulatory pathways.
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miR-7a and subsequent indirect repression of pro-apoptotic tran-

scription factor CHOP49. CHOP induces expression of miR-216b, 

which mediates translational repression of c-Jun and sensitizes 

cells to ER stress-induced apoptosis53. Interestingly, miR-216b is  

indirectly regulated by the IRE1 branch of the UPR, suggesting 

cross-over in miRNA regulation53 (Figure 3).

miRNAs that are within adjacent regions and transcribed in the  

same orientation can form miRNA clusters. Most clusters contain 

two to three miRNAs, and different miRNAs within a cluster can 

have different targets54. PERK-mediated induction of ATF4 and  

NRF2 downregulates expression of miR-106b-25 cluster and  

increases cell death55. Repression of this cluster enhances ER 

stress-induced apoptosis because miR-106b-25 cluster antago-

nizes pro-apoptotic protein BiM translation. Furthermore, PERK/ 

NF-κB induces miR-30c-2-3p expression which targets the  

IRE1-dependent transcription factor XBP156. Spliced XBP1 

(XBP1s) induces transcription of important pro-survival genes; 

therefore, decreased XPB1 can induce cell death. Regulation of 

miR-30c-2-3p also demonstrates cross-talk between arms of the 

UPR. Interestingly, in contrast to ER stress inducing miRNA expres-

sion, miR-23a~27a~24-2 cluster induces ER stress and increases 

expression of pro-apoptotic proteins CHOP and Bim57 (Figure 3).

lncRNAs, RNA molecules of more than 200 base pairs, regulate 

cellular processes at both the transcription and translational level, 

and some evidence suggests regulation at the post-translational 

level58. Multiple lncRNAs are regulated under ER stress states and 

play a role in UPR-mediated cell fate. The lncRNA TUG1 protects 

hepatocytes from apoptosis by repressing expression of essential 

UPR proteins BiP/GRP78, PERK, phosphorylated eIF2α, and 

CHOP59. CHOP induces expression of lnc-mGC, a lncRNA that 

binds a megacluster of 40 miRNAs and promotes cell death through 

changes in multiple miRNA-mediated translation regulation  

pathways60. Furthermore, PERK-dependent ATF4 expression 

induces expression of ATF5, which subsequently induces expres-

sion of GAS526 (Figure 3). GAS5 expression can promote apop-

tosis by multiple hypothesized mechanisms, including repression 

of steroid receptor–induced transcriptional activation, inhibition of  

miR-21, and sensitizing cells to external stressors61. More research 

is needed to identify UPR-mediated lncRNA and elucidate  

their highly complex role in determining cell fate.

ER stress-induced tumor suppression versus tumor 
progression
Malignant transformation and tumor progression must bypass ER 

stress, which is induced by factors including aberrant expression of 

oncogenes and a microenvironment with disordered vasculature that 

contributes to nutrient restriction, hypoxia, and increased ROS62,63. 

Given the propensity of the UPR and PERK to induce pro-survival 

signaling, significant efforts have been devoted to elucidate its con-

tribution to tumor progression with the underlying assumption that 

PERK will be pro-tumorigenic; if so, the expectation was tumor 

addiction to PERK signaling. However, many genetic experiments 

support both a tumor-suppressive and tumor-promoting function for 

PERK.

Activation of the potent oncogene, HRAS, in non-cancerous  

melanocytes increased cellular senescence in a PERK- 

dependent manner, suggesting that PERK mediates senescence 

in pre-malignant cells64. Furthermore, some cancer cell lines dis-

play decreased PERK-mediated eIF2α signaling, suggesting that 

PERK activation and CHOP expression may attenuate malig-

nant transformation and progression under certain conditions or 

in a cell type–dependent manner62,65. Consistent with this notion,  

PERK displays characteristics of a haploinsufficient tumor sup-

pressive in melanocytes66. ER stress-induced PERK activation can 

also influence immunological recognition of malignant cells. For  

example, PERK activation upregulates the ER chaperone calreti-

culin, which can be translocated to the cell surface of malignant  

cells and act as a phagocytic signal for immune cells67.

PERK-dependent non-coding RNAs can also act as tumor suppres-

sors. For example, CHOP-dependent miR-708 targets neuronatin, 

which decreases intracellular calcium levels, resulting in reduced 

metastasis68,69. Likewise, lncRNA-p21 induces ER stress through 

PERK activation and mediates hepatocellular carcinoma apop-

tosis70. In addition, CHOP mediates expression of ATF5, which 

induces expression of lncRNA GAS5, which is pro-apoptotic in 

different cancers61,71. Ultimately, PERK activation- or deactivation-

mediated tumor suppression signaling may be cancer-specific and 

further investigation is needed.

PERK-mediated tumor progression can occur at multiple stages in 

cancer development. PERK activation can help pre-malignant cells 

cope and survive ER stress conditions enabling neoplastic trans-

formation72. Recent studies have demonstrated the importance of 

PERK activation in tumor metastasis by mediating pathways that 

promote tumor cell epithelial-to-mesenchymal transition (EMT) 

and detachment and invasion73–76. The PERK-dependent lncRNA 

Malat1 is a marker in numerous cancers and plays an important role 

in lung cancer progression and metastasis77–79. Tumor angiogen-

esis can be indirectly induced by ATF4-dependent induction of the 

aryl hydrocarbon receptor and subsequent expression of vascular 

endothelial growth factor in hepatoblastoma cells80. Interestingly, 

PERK activation can further promote therapy resistance and resist-

ance to hypoxia81. The dynamic role of PERK-mediated signaling 

in tumor progression and resistance makes PERK and its down-

stream pathways attractive for therapeutic intervention.

Therapeutic potential
The contribution of PERK-dependent gene expression to cell 

survival stimulated the development of strategies for therapeutic 

intervention. Recently, a potent PERK inhibitor, GSK2606414, 

was synthesized and specifically inhibits PERK activation as well 

as decreases tumor growth in human tumor xenograft mice82. 

GSK2606414 was later modified to a more pharmacological stable 

form, GSK2656157, which demonstrated dose-dependent inhibi-

tion of human tumor xenograft growth in mice and the potential for 

further clinical implementation83,84.

Targeting PERK may not be without consequence. PERK sign-

aling is critical for enabling normal cells to overcome ER stress. 
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PERK also elicits anti-proliferative signals through silencing of G
1
  

cyclins and induction of pro-apoptotic pathways85,86. In addi-

tion, while PERK is non-essential in most adult tissues, PERK  

deletion or inhibition can lead to pancreatic failure and  

hyperglycemia87. Further investigation of PERK inhibition– 

associated risks in in vivo models is needed to determine  

therapeutic potential.

Other approaches to therapeutic intervention have demonstrated 

promising anti-tumor potential. For example, the eIF2α phosphatase 

complex inhibitor, salubrinal, induced apoptosis, increased chemo-

therapy efficiency, and restored treatment sensitivity in chemo-

resistant cancer cells88–91. Also, salubrinal treatment in conjunction 

with a proteasome inhibitor increased apoptosis in leukemic cells88. 

Inhibition of GRP78 demonstrated anti-angiogenic potential, and 

indirect inhibition of the PERK/eIF2α/ATF4 pathway inhibited 

EMT92,93.

Additionally, two small molecules—guanabenz and Sephin1—

have been reported to selectively inhibit the eIF2α phosphatase 

complex94,95. Decreased dephosphorylation of eIF2α prolongs glo-

bal protein translation repression in stressed cells and increases 

chaperone-folding ability. Guanabenz and Sephin1 blocked eIF2α 

dephosphorylation by inducing a conformational change that dis-

rupts recruitment of eIF2α to its phosphatase complex96. Efficacy 

of the aforementioned therapeutics, though promising, may hinder 

their clinical impact as some have suggested that guanabenz and 

Sephin1 do not interfere with eIF2α dephosphorylation97. Com-

binatorial studies of PERK and downstream target inhibitors with 

other drugs such as proteasome inhibitors may be one approach to 

increasing efficacy and reducing toxicities.

Concluding remarks
PERK-mediated signaling pathways are complex and vary between 

tissue and cell type but play a clear role in cell fate and tumorigene-

sis. PERK activation and downstream signaling pathways have also 

been implicated to play a role in other pathologies such as neurode-

generation and diabetes87,98,99. The findings presented in this review 

demonstrate the tremendous progress toward understanding PERK 

biology. However, while we are beginning to elucidate signals that 

drive these PERK-mediated responses, there remain significant 

gaps in our knowledge that will compromise our ability to trans-

late inhibitors successfully into the clinic. Furthermore, the role 

and mechanisms of ER stress-induced non-coding RNAs remain 

incompletely understood. Ultimately, a deeper understanding of 

these remaining questions will help elucidate the role of PERK in 

different pathologies for more effective therapeutic intervention.
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