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Abstract: Emerging infectious diseases are reducing biodiversity on a global scale. Recently, the 

emergence of the chytrid fungus Batrachochytrium salamandrivorans resulted in rapid declines 

in populations of European fire salamanders. Here we screened over 5,000 amphibians from 

across four continents, and combined experimental assessment of pathogenicity with 

phylogenetic methods to estimate the threat that this infection poses to amphibian diversity. 

Results show that B. salamandrivorans is restricted to, but highly pathogenic for salamanders 

and newts (Urodela). The pathogen likely originated and remained in co-existence with a clade 

of salamander hosts for millions of years in Asia. Due to globalization and lack of biosecurity, it 

has recently been vectored into naïve European amphibian populations, where it is currently 

causing biodiversity loss.  

One Sentence Summary: Human mediated pathogen dispersal rapidly endangers a vertebrate 

order. 

Main Text: Emerging infectious diseases play a significant role in the ongoing sixth mass 

extinction (1). Fungi comprise a greater threat relative to other taxonomic classes of pathogens 

and have recently caused some of the most severe die-offs and extinctions among a wide range 

of organisms (2). The classical cause of amphibian chytridiomycosis (Batrachochytrium 

dendrobatidis) has resulted in remarkable disease and declines in a wide variety of amphibian 

species across the three orders [i.e. frogs and toads (Anura), salamanders and newts (Urodela) 

and caecilians (Gymnophiona)] (2). Recently, a second highly pathogenic chytrid fungus (B. 

salamandrivorans) emerged as a novel form of amphibian chytridiomycosis, and extirpated fire 

salamander populations in northern Europe (3,4) in a region where B. dendrobatidis is in a state 

of stable coexistence with the amphibian communities (5). 

To predict the potential impact of B. salamandrivorans on amphibian diversity more 

broadly, we first estimated its host range by experimentally exposing 35 species from the three 

amphibian orders (10 anurans, 24 urodelans and one caecilian) to controlled doses of 5,000 

zoospores for 24h (3) (Table S1). Except for 5 urodelan taxa for which wild caught specimens 

were used, all other experimental animals were captive bred. With the exception of 4 urodelan 

taxa, all experimental animals derived from a single source population.  After exposure, animals 

were monitored daily for clinical signs until at least four weeks after exposure. Infection loads 

were assessed weekly using qPCR on skin swabs (6) and histopathology was performed on all 

specimens that died. Our results show that colonization by B. salamandrivorans was limited to 

Urodela whereas none of the anuran and caecilian species became infected (Fig. 1, squares). 

Alarmingly, 41 out of 44 of the Western Palearctic salamanders (Salamandridae and 

Plethodontidae) rapidly died after infection with B. salamandrivorans. The propensity of B. 

salamandrivorans to infect these species was confirmed by its ability to successfully invade the 

skin of several urodelan, but none of the anuran species. This was demonstrated with an 

immunohistochemical staining of the abdominal skin of amphibians after exposure to 10,000 

zoospores for 24h (Table S1, Fig. S1).  

 To estimate the current range of B. salamandrivorans infections, we used qPCR to screen 

5,391 wild amphibian individuals from four continents for the presence of its DNA in their skin 

(6) (Table S2, Table S3). In accordance with the results of the experimentally determined host 

range, infections were detected only in urodeles. Furthermore, the detection of B. 

salamandrivorans’ DNA (all sequences were 100% identical with GenBank accession number 
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KC762295) was limited to East Asia (Thailand, Vietnam and Japan) in the absence of obvious 

disease, and Europe (The Netherlands and Belgium) where it is associated with severe disease 

outbreaks  [The Netherlands, 2010 (3, 4) and Belgium, 2013 (Eupen, N 50°37’23”; E 6°05’19”), 

2014 (Robertville, N 50°27’12”; E 6°06’11”)]. These findings suggest long term endemism in 

Asia and a recent incursion in Europe.  

 We used the results of our infection experiments as a proxy for classifying amphibians 

into four categories of response to B. salamandrivorans: resistant, tolerant, susceptible and lethal 

(Fig. 1, squares). Although the limited number of source populations used does not allow to 

estimate within-species variation, responses to infection were highly consistent within a given 

population. Lethal responses were observed both in specimens from captive bred (10 of 19 taxa) 

and wild (2 of 5 taxa) urodelans. Our infection experiments indicated three Asian salamanders 

(Cynops pyrrhogaster, Cynops cyanurus and Paramesotriton deloustali) as potential reservoirs. 

Seven specimens of these species were capable of limiting clinical disease, and either persisted 

with infection for up to at least five months with recurring episodes of clinical disease, or even 

totally cleared the infection (Table S1, Fig. S2). The combined evidence of natural occurrence 

and experimental maintenance of B. salamandrivorans infections indicates that at least these 

three species may function as a reservoir in Asia. 

 To investigate whether these amphibian communities may have constituted a reservoir of 

infection in the past, we estimated when B. salamandrivorans diverged from B. dendrobatidis 

and used present-day patterns of susceptibility to reconstruct amphibian susceptibility through 

time. Our Bayesian estimates of divergence time with a broad prior calibration range resulted in 

a mean estimate of 67.3 million years ago (mya) (Fig. S3) and a 95% highest posterior density 

interval of 115.3 to 30.3 mya, indicating that B. salamandrivorans diverged from B. 

dendrobatidis in the Late Cretaceous or early Paleogene (Fig. 1, grey bar). Maximum Parsimony 

and Maximum Likelihood ancestral reconstructions (Fig. 1) of amphibian susceptibility suggest 

that the potential of being a reservoir evolved in the ancestors of modern Asian newts between 

55 and 34 mya in the Paleocene (Fig. 1, orange branch), shortly after the origin of their pathogen. 

These ancestors reached Asia after withdrawal of the Turgai Sea (7), suggesting that Asia has 

been a natural reservoir for B. salamandrivorans for the past 30 million years. Our detection of B. 

salamandrivorans in an over 150 year old museum sample of the Asian newt Cynops ensicauda 

(Table S4, RMNH RENA 47344) is consistent with this reservoir hypothesis. 

Given the discontinuity of the global distribution of B. salamandrivorans, introduction 

from Asia into Europe must have been human-mediated. Asian salamanders and newts are being 

traded internationally in large numbers annually (for instance, more than 2.3 million individuals 

of Cynops orientalis were imported into the USA during 2001-2009) (8). To assess the potential 

of B. salamandrivorans spread by captive amphibians, 1,765 skin samples from amphibians in 

pet shops in Europe, London Heathrow airport and an exporter in Hong Kong (Table S5, Table 

S6) and 570 samples from other captive amphibians (Table S7, Table S8) were tested for B. 

salamandrivorans. We found three positive samples from captive individuals of the Asian newt 

species Tylototriton vietnamensis, two of which were imported to Europe in 2010. Furthermore, 

our transmission experiments showed that B. salamandrivorans can effectively be transmitted 

across multiple urodelan species (e.g. from Cynops pyrrhogaster to Salamandra salamandra, Fig. 

S4) by direct contact demonstrating the potential for pathogen spillover.  

Our infection experiments show B. salamandrivorans is lethal to at least some of the New 

World salamandrid species (genera Taricha and Notophthalmus). Although these combined 
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genera contain only 7 species, together they have a widespread distribution and are often very 

abundant. The outcome of exposure of three lineages of plethodontids (a family comprising 66% 

of global urodelan diversity) to B. salamandrivorans ranged from a lack of any detectable 

infection (Gyrinophilus), to transient skin invasion (Plethodon) and lethal infection 

(Hydromantes), making it likely that other species in this large family are vulnerable.  

Our study demonstrates that the process of globalisation with its associated human and 

animal traffic can rapidly erode ancient barriers to pathogen transmission, allowing the infection 

of hosts that have not had the opportunity to establish resistance. Thus pathogens, such as those 

we describe here, have the potential to rapidly pose a threat of extinction. 
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Figure 1. Amphibian susceptibility to Batrachochytrium salamandrivorans (Bs) through 

time. Molecular timescale for 34 species: rectangles indicate the category in which the species 

were categorized based on the experimental infection tests. Resistant - no infection, no disease; 

tolerant - infection in the absence of disease; susceptible - infection resulting in clinical disease 

with possibility of subsequent recovery; lethal - infection resulting in lethal disease in all infected 

animals. Coloured dots on nodes indicate the results of the Maximum Likelihood ancestral 

reconstructions (P > 0.95). The clade of susceptible Asian salamanders that originated in the 

early Paleogene is indicated in orange. The 95% highest posterior density for time of divergence 

between B. salamandrivorans and B. dendrobatidis is indicated in grey.  
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