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Abstract—Recent advances in experimental techniques (on-the-
fly and ultrafast techniques) allow measurement of threshold
voltage degradation due to negative-bias temperature instability
(NBTI) over many decades in timescale. Such measurements over
wider temperature range (−25 ◦C to 145 ◦C), film thicknesses
(1.2–2.2 nm of effective oxide thickness), and processing conditions
(variation of nitrogen within gate dielectric) provide an excellent
framework for a theoretical analysis of NBTI degradation. In
this paper, we analyze these experiments to refine the existing
theory of NBTI to 1) explore the mechanics of time transients
of NBTI over many orders of magnitude in time; 2) establish
field dependence of interface trap generation to resolve questions
regarding the appropriateness of power law versus exponential
projection of lifetimes; 3) ascertain the relative contributions to
NBTI from interface traps versus hole trapping as a function of
processing conditions; and 4) briefly discuss relaxation dynamics
for fast-transient NBTI recovery that involves interface traps and
trapped holes.

Index Terms—Fast transient recovery, field acceleration, hole–
trapping, interface traps, negative-bias temperature instability
(NBTI), reaction–diffusion (R-D) model, time exponent.

I. INTRODUCTION

N EGATIVE-BIAS temperature instability (NBTI), as the
name suggests, indicates a temperature-accelerated degra-

dation in PMOS devices when it is stressed with negative
gate voltage. Although NBTI was identified as a reliability
concern in integrated circuits since the mid-1960s [1], its signif-
icance became particularly important below the 130-nm tech-
nology node [2]–[7], as gate oxide thickness was scaled below

Manuscript received January 10, 2007; revised April 26, 2007. This work
was supported by Applied Materials, TSMC, Renesas Technologies, and Semi-
conductor Research Corporation. The review of this paper was arranged by
Editor D. Esseni.

A. E. Islam, H. Kufluoglu, D. Varghese, and M. A. Alam are with the School
of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47907-1285 USA (e-mail: aeislam@purdue.edu).

S. Mahapatra is with the Department of Electrical Engineering, Indian
Institute of Technology, Bombay, Mumbai 400076, India.

Digital Object Identifier 10.1109/TED.2007.902883

2 nm. This transition is a reflection of two prevailing trends:
1) increasing oxide electric field by reducing the oxide thick-
ness, without a corresponding reduction in supply voltage, for
better transistor performance [8], and 2) use of oxinitride gate
dielectric to reduce gate leakage and boron penetration effects
[9]–[11]. NBTI results in variation of transistor parameters
(e.g., threshold voltage, transconductance, saturation current,
etc.) and is generally monitored through threshold voltage shift
(∆VT ), where

∆VT =∆VIT + ∆VH

=α
q∆NIT(t)

Cox
+

∫ Tox

0

∫
E xρH(x,E, t)dE dx

CoxTox
. (1)

Here, ∆VIT and ∆VH refer to the contributions to ∆VT from
interface traps (NIT) and hole trapping (ρH), respectively, Cox

is the oxide capacitance, Tox is the oxide thickness, α accounts
for the fraction of donor type [12] NIT above the Fermi level,
and ρH(x,E, t) represents the trapped holes at location x
(measured into the oxide from the poly/oxide interface) and at
energy E (below the dielectric conduction band).

Based on the data collected over the years, it has been
reported that NBTI shift in devices with pure SiO2, plasma
SiON (e.g., having < 25% atomic N2 dose, determined by XPS
[13] for EOT ∼1.3 nm), or thin thermal SiON gate dielectrics
(henceforth referred as type I devices) may be attributed to NIT

generation [first term in (1)] at the Si/SiO2 interface. For these
type I films, the followings have been suggested.

1) NBTI degradation mainly results from depassivation of
Si–H bonds at the Si/dielectric interface [i.e., ∆VT

∼=
∆VIT in (1)] and resultant diffusion of hydrogen species
into gate dielectric and poly-Si [see Fig. 1(b)]. As
such, several groups have used different versions of
reaction–diffusion (R-D) model to interpret NBTI degra-
dation [2], [4], [6], [7], [12], [14]–[23].

0018-9383/$25.00 © 2007 IEEE



2144 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 9, SEPTEMBER 2007

Fig. 1. (a) Typical nitrogen profile in plasma and thermal nitrided gate
dielectric [13], [54]. (b) Schematic representation of Si–H bond dissociation
and resulting diffusion of hydrogen species (H and H2) through dielectric and
poly-Si [17] during NBTI stress. (c) At long stress time, the diffusion of H2

(concentration NH2) dominates, and the concentration of H (NH) is small.

2) At long stress time (tStress > 10−100 s), ∆VT shows
power-law behavior when plotted with respect to time
(∆VT ∼ tn) with a consistent time exponent n of ∼1/6
(constant over several decades in time [19], [20]). The
R-D model attributes this robust long-term n ∼ 1/6 expo-
nent to the diffusion of molecular hydrogen (H2) [4], [7],
[12]. However, the implication and experimental valida-
tion of the R-D model at a very short stress time is not
studied.

3) This “H2 R-D” model also provides a phenomenological
interpretation of temperature and field dependencies of
NBTI for long-term stress [7], [12], [15], [16]. However,
the physical basis of the temperature and field dependen-
cies has not been extensively explored.

4) The R-D model also anticipates essentially frequency-
independent AC NBTI degradation (shown in [24], [25]),
which has been observed in some [26], [27] but not all
[28] experiments. The origin of this discrepancy is not
fully understood.

5) NBTI recovery contaminates measured ∆VT and should
be avoided by using on-the-fly measurement (OTFM)
[16], [29], [30] or ultrafast measurement (UFM) [19].
However, there is a perception in recent reports [6], [19]
that fast transient recovery of NBTI is inconsistent with
the classical R-D model [19], [31].

Again, for type II devices (e.g., having gate dielectrics like
thick thermal SiON, high-K, etc.), it has been suggested that in
addition to NIT generation:

6) Hole trapping in preexisting defects plays an important
role in determining overall time kinetics of NBTI degra-
dation [28], [30], [32]–[35]. So far, these effects have
been modeled by adapting the theories of thick oxides

that consider trapping into the preexisting bulk traps
but no detrapping from there [30]. [32], [35]. It is not
known whether more detailed models for thin oxides,
which account for both trapping and detrapping, would
corroborate these conclusions.

Recently, 1) advances in measurement techniques (UFM [19],
delay ∼1 µs), 2) availability of NBTI data over broader tem-
perature range (−25 ◦C to +145 ◦C) and for films of various
N2 concentrations and thicknesses [18], and 3) refinement of
the R-D models [36], [37] provide us with an opportunity to
explore both the short-term NBTI degradation and fast tran-
sient relaxation, as well as detailed physical mechanisms of
the phenomenological parameters of both the R-D model and
hole trapping kinetics in much greater detail than previously
possible. We will systematically discuss these generalizations
in this paper. Our discussion is divided into four parts.

1) Time exponents. For type I devices, the classical “H2

R-D” model naturally interprets the robust long-term
n ∼ 1/6 power-law time exponent of NBTI. However, it
cannot quantitatively explain the short-term (< 1–10 s)
degradation, particularly that obtained by UFM, with
power-law dependence with a time exponent of n > 1/6
[19], [29], [32]. Quantitative explanation must consider
gradual transformation [see Fig. 1(b)] of atomic to mole-
cular hydrogen (H to H2) rather than instantaneous trans-
formation, as assumed in the “H2 R-D” model [4], [12].
The resultant generalized R-D model is presented in
both numerical and analytical formats in Sections II-A
and B, respectively. In addition, different experimental
groups have observed n > 1/6 region at a different OTFM
timeframe [16], [19], [29], [32]. We show in Section II-C
that this discrepancy results from the previously unappre-
ciated role of time-zero delay for OTFM [37]. Finally, in
addition to very short term transients in < 10 s, we ex-
plore the possible origin of n < 1/6 (very soft saturation)
at a very long time stress time in Section II-D.

2) Field dependence. The physical basis of the phenomeno-
logical field acceleration parameter γ in the R-D model,
which was first demonstrated in [2], has never been fully
explored. In Section III, we explore the origin of field
dependence in the R-D model and show how it explains
field-dependent NBTI data for type I devices, in addition
to other experimental observations [18].

3) Hole trapping. We also consider the possible effect of
hole trapping in NBTI degradation for type II devices,
as considered in [28] and [32]–[34]. In these films, hole
trapping has unique signatures on time exponents and
activation energies [33]. We provide a consistent inter-
pretation of these effects in Section IV.

4) Recovery. In Section V, we briefly comment on the
origin of logarithmic time dependence in measured ∆VT

recovery for type I devices, which is recently reported
in [6], [19], [28], within the context of the R-D model.
This is a work in progress, and details of the theory
will be published elsewhere; however, the issue is im-
portant enough to merit at least a brief discussion in this
article.
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II. GENERALIZED R-D MODEL (FOR TYPE I DEVICES)

A. Numerical Analysis of NBTI Degradation, Including
Short-Term Transient

The classical R-D model [7], [12] assumes that NBTI re-
sults from dissociation of Si–H bonds into positively charged
Si dangling bonds and atomic H. These atomic H instanta-
neously dimerize (compared to relevant timescale of available
long-term experimental data) into molecular hydrogen (H2)
before diffusing away from the interface. As one may suspect,
such an assumption of instantaneous dimerization would not
be appropriate to interpret very short term NBTI data. Such
would require explicit consideration of H within the R-D
framework, as this should be the first byproduct after interface
trap generation, before getting transformed to H2 [4], [12].
Although neutral charge state may not be a stable form of
atomic hydrogen, its transient formation is indeed possible [38].
Therefore, diffusion of both H and H2 as well as H ↔ H2

conversion are explicitly incorporated in the generalized R-D
framework by the following [36], [37]:

dNIT

dt
= kf (N0 −NIT) − krNITN

(0)
H (2)

δ

2
dN

(0)
H

dt
=DH

dN
(0)
H

dx
+

dNIT

dt
− δkH

[
N

(0)
H

]2

+ δkH2N
(0)
H2

(3a)

δ

2
dN

(0)
H2

dt
=DH2

dN
(0)
H2

dx
+

δ

2
kH

[
N

(0)
H

]2

− δ

2
kH2N

(0)
H2 (3b)

dNH

dt
=DH

d2NH

dx2
− kHN2

H + kH2NH2 (3c)

dNH2

dt
=DH2

d2NH2

dx2
+

1
2
kHN2

H − 1
2
kH2NH2. (3d)

Equation (2) represents the passivation/depassivation effects
of Si–H bond, where kf , kr, N0, NIT, and N

(0)
H are defined

as the Si–H bond-breaking rate, the Si–H bond-annealing rate,
the initial bond density available before stress, the interface
trap density, and the hydrogen density at the Si/dielectric in-
terface, respectively. Equations (3a) and (3b) correspond to the
conservation of fluxes of diffusing hydrogen species (H and
H2) near the interface (along x-axis), whereas (3c) and (3d)
describe the diffusion (along x-axis) of H and H2. kHN2

H and
kH2NH2 terms in (3) incorporate the H−H2 conversion within
the generalized R-D framework. Among the symbols used in
(3), kH and kH2 represent the generation and dissociation rates
of H2, DH and DH2 represent the diffusion coefficients for H
and H2, NH and NH2 represent the concentration of atomic
and molecular hydrogen, and δ is the interfacial thickness
(∼ 1−2 Å).

The solid lines in Fig. 2(a) show that the numerical solution
of (2) and (3) interprets the data from [19] very well.1 The

1Note that any uncertainty in measurement of voltage and/or time at very
early phases may modify the fitting parameters used in Fig. 2. However,
based on our unpublished results, we believe that the features are generally
reproducible, and the parameters should be reasonably consistent across various
experiments.

Fig. 2. (a) Simulation of the generalized R-D model (H−H2 system) ex-
plains the experimental trends [19] at any stress time. R-D model parameters
(consistent with literature [12], [17]): kf = 6 × 10−3Ec exp(0.65Eox) s−1

(Ec: oxide electric field due to mobile carriers; Eox: total oxide elec-
tric field), N0 = 5 × 1012 cm−2, kr = 3 × 10−9 cm3s−1, DH = 3 ×
10−13 cm2s−1, DH2 = 1.8 × 10−14 cm2s−1, kH = 1.4 × 10−3 cm3s−1,
and kH2 = 95.4 s−1. (b) Comparison of (lines) numerical solution of (2) and
(3) with (lines with symbols) the analytical solution of (7).

Fig. 3. Comparison of (lines) numerical results from (2) and (3) with (lines
with symbols) analytical results for kHN2

H(0)
and kH2NH2(0). Although

analytical NH2(0) prediction is incorrect at short stress time (whereas NH(0)

prediction is excellent), dominance of kHN2
H(0)

over kH2NH2(0) still makes

the analytical solution of NIT appropriate for all stress time.

solution reflects the dominance of H ↔ H2 conversion during
short-term stress (< 10 s) and extends the transition between
the reaction-limited region (n ∼ 1 [2], [12], [23]) and the H2

diffusion-limited region (n ∼ 1/6 [7], [12]) by several orders
of timescale, which enables intuitive interpretation of short-
term NBTI degradation. Fig. 3 shows the time-dependent for-
mation of H and H2 at the Si/SiO2 interface and explicitly
supports the notion that H−H2 transformation governs NBTI
generation at short timescales. Later, when H ↔ H2 conversion
reaches quasi-equilibrium (see Fig. 3), the dominance of H2

diffusion results in n ∼ 1/6. We use field dependence of kf (see
Section III) to interpret the voltage-dependent data in Fig. 2.
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In discussing Fig. 2(a), it is important to note that the
inability of the classical H2 R-D model to reproduce the initial
transient has been perceived as a fundamental limitation of the
R-D model itself and has led some to speculate the existence
of hole trapping at the initial stages of degradation [19]. Our
analysis clearly shows that the limitation of the classical model
can be traced to the (convenient and appropriate) assumption of
instantaneous dimerization of H into H2 to analyze long-term
stress data but not to any inherent limitation of the R-D model
itself.

B. Analytical Solution for NBTI Degradation

Although numerical models (2) and (3) adequately interpret
the experimental data, an analytical model may be easier to use
and provides additional insight. Assuming N0 � NIT [2], [12]
and dNIT/dt ∼ NIT/t [23], (2) simplifies to

N
(0)
H =

kfN0 −NIT/t

krNIT
. (4)

Moreover, the numerical solutions indicate that for continuous
NBTI stress, dN (0)

H /dt and diffusion of H are negligible at all
stress time so that (3a) reduces to

NIT

t
= δkHN

(0)2
H − δkH2N

(0)
H2. (5)

As stated earlier, H−H2 diffusion reaches steady state at long
tStress, when H2 diffusion dominates. Under that condition,
simulation shows that

NIT ≈ N
(0)
H2

√
6DH2t. (6)

Eliminating N
(0)
H and N

(0)
H2 from (4)–(6), we have

NIT

t
− δkH (kfN0 −NIT/t)

2

k2
rN

2
IT

+
δkH2NIT√

6DH2t
= 0. (7)

Equation (7) is the analytical expression of the H−H2

R-D model presented in (2) and (3), and their comparison
is presented in Figs. 2(b) and 3.2 Fig. 2(b) shows that (7)
1) reduces to the reaction-limited solution (NIT = kfN0t)
when the first and third terms become negligible (compared
to the second term) at a very short stress time; 2) reduces
to the H2 diffusion-limited solution [NIT = (kH/kH2)1/3

(kfN0/kr)2/3(6DH2t)1/6] when NIT/t becomes negligible
at a long stress time; and 3) at an intermediate stress
time, when the diffusive term (third term) in the equation
(7) is negligible and kfN0 � NIT/t, a solution of
NIT = (kfN0/kr)2/3(δkHt)1/3 provides a signature of
dominant H−H2 conversion [36]. Indeed, Fig. 2(b) suggests
that the analytical solution of (7) is good enough to reproduce
the numerical solution of (2) and (3) over ∼10 decades in
stress time (maximum error of 20% in the transition region)!
Moreover, a very good agreement between the numerical

2A simple MATLAB code for evaluating (7) is given below: Nitcal =
inline([′(Nit∧3/t − delta∗kh/kr∧2∗(kf∗N0 − Nit/t)∧2 − delta∗kh2∗Nit∧3/
sqrt(6∗DH2∗t))′], ′Nit′, ′t′, ′kf′, ′kr′, ′kh′, ′kh2′, ′N0′, ′DH2′, ′delta′);
Nit = fzero(Nitcal, [1 3∗N0], options, time, kf, kr, kh, kh2, N0, DH2, delta).

Fig. 4. (a) Experimental results from several groups [16], [19], [29], [32]
show a widespread of stress time, at which the system reaches steady state
with H2 diffusion (n ∼ 1/6). Here, datasets are arbitrarily shifted along the
y-axis for clarity, i.e., relative magnitude between different datasets has no real
significance. (b) Effect of time-zero delay in OTFM measurements can explain
such spread in stress time, which indicates steady state. Here, ∆VT (t − t0) ∼
|(NIT(t) − NIT(t0))/NIT(t0)|. Simulation with t0 = 0 is matched with
experimental data from [19] at VG,Stress = −2.2V, 125 ◦C. As t0 is increased,
there is an increase in time exponent at a particular (t − t0) mainly in the short-
term stress and also a rightward shift of the apparent transition point where the
system reaches steady state with H2 diffusion.

solution (solid lines) and the analytic solutions (dashed lines)
in Fig. 3 suggests that (4) and (5) capture the dynamics of
NH(x = 0, t) and NH2(x = 0, t) very well. The inaccuracy
of NH2 at very early times is inconsequential because NIT

generation in this timescale is dictated by the generation and
the transformation of NH .

C. “Time-Zero” Delay in OTFMs

In the previous section, we have discussed how the H−H2

R-D model can capture the experimental trends that are ob-
tained using the UFM technique [19]. Fig. 4(a) shows short-
term experimental data from a number of groups [16], [19],
[29], [32]. If the theory described above is correct, then one
might justifiably wonder why these short-term measurements
from various groups on the state-of-the-art samples and careful
measurement setup provide a diverse set of initial exponents
as well as various transition times to the steady-state n ∼ 1/6
regime, not a universal curve anticipated in the R-D model
discussed in Sections II-A and B. Indeed, whereas UFM done
by Reisinger et al. [19] shows a steady state before ∼1 s, the
same signature is observed at ∼1 s [16] and ∼100 s [29], [32]
for OTFM measurements. This puzzle is resolved (discussed
below) by a careful consideration of initial-delay contamination
in the so-called “delay-free” OTFM experiments (similar delay
contamination in OTFM is also reported in [28] and [37]).

Consider the definitions of ∆VT in OTFM measurements:
1) ∆VT (t) = |(Idlin(t)−Idlin(t0))/Idlin(t0)|∗VGT0 [15], [16],
[29], 2) ∆VT (t) =M |(Idlin(t)−Idlin(t0))/Idlin(t0)| [30],



ISLAM et al.: RECENT ISSUES IN NEGATIVE-BIAS TEMPERATURE INSTABILITY 2147

Fig. 5. Decrease in long-term NBTI exponent results from the reduction of
stress field (for constant voltage stress) with time. Here, thick lines consider
such reduction in electric field over time, whereas thin lines do not consider
such “self-saturation” effect.

[32], etc. These methods give comparable results for long-term
NBTI stress [30]. Obviously, an exact ∆VT measurement using
OTFM necessitates the use of t0 = 0. Yet, OTFM setups (using
conventional source-measure unit-based electronics) require
some time (≥ 1 ms) before measuring Idlin(t0). Hence, t0 �= 0
(termed as time-zero delay) in such measurements, which will
introduce an error in degradation estimates. Fig. 4(b) shows the
solution of the R-D model with various t0. Here, the UFM of
[19] is considered to have t0 ∼ 0 because the first measurement
of ∆VT is done before the device is stressed; moreover, the
∼1-µs measurement delay used in the UFM shows a negligible
effect [19, Fig. 3]. It is clear from Fig. 4(b) that such a time-
zero delay results in an “apparent and artificial” increase of
n mainly in short-term NBTI degradation and also in a shift
in the time at which steady state is reached. Therefore, for
type I devices, our results imply that once the t0 delay is
corrected for, the OTFM results would be consistent with each
other and predict the same degradation as the UFM method.
Furthermore, these t0-corrected experimental data can then be
interpreted by the H−H2 model (Sections II-A and B). If such
t0 correction in OTFM is difficult (as may be the case in
practice), Fig. 4(b) also suggests that a reasonable projection
for NBTI lifetime can still be made, for example, if t0 is kept
below 1 ms and the projection is based on the data above 10 s.
We emphasize that if this short-term region (higher time expo-
nent region) is not excluded during reliability projection, the
degradation exponent will be contaminated by sub 10-s time
exponent and will result in unnecessarily pessimistic lifetime
prediction.

D. Long-Term Reduction in the NBTI Exponent

Finally, we consider the soft saturation of ∆VT at a long
stress time. Fig. 5 shows measured time exponent as a function
of time for various stress biases. Note that the time exponent
reduces from the robust n ∼ 1/6 value at a long stress time (e.g.,
δn ∼ 0.005/decade), the reduction being higher for higher
stress VG. This reduction arises from the decrease in oxide elec-
tric field at a constant voltage stress due to the increase in ∆VT

over time. The figure predicts a decrease in n to ∼0.15 for the
stress condition at 2.8 V, 125 ◦C in Fig. 2, and such exponent is
consistently observed in experiments [15], [16], [18], and [19].

Fig. 6. γ and γV variation with EOT. As predicted for the field-dependent
NBTI model, (dashed) γ remains almost constant, and (solid) γV keeps around
1/EOT line. For ∆VT measurements, necessary delay corrections have been
accounted for.

To summarize this section on time dependence, we have
both analytically and numerically shown that the short, long,
and very-long term characteristics of time exponents of NBTI
degradations for type I devices can be consistently explained by
the R-D model.

III. FIELD DEPENDENCE WITHIN THE R-D MODEL

A. Field- Versus Voltage-Dependent Degradation

In order to explain how NBTI degradation for type I devices
varies with stress voltage, we first need to identify whether
NBTI is a field-dependent or a voltage-dependent phenomenon
[2]. Applying same stress voltage to bias a PMOS in inversion
and NMOS in accumulation, Mahapatra et al. [39] have shown
that PMOS device, having higher electric field due to flat-
band voltage difference, degrades more compared to the NMOS
device. They have also shown that both PMOS and NMOS
equally degrade for the same surface electric field. Therefore,
interface trap generation is expected to be a field-dependent
phenomenon in these devices.

This field dependence of interface trap generation, hence,
NBTI for NIT-dominated type I devices, has been consid-
ered using several empirical models, e.g., exponential model
∆VT ∝ exp(γE) [20], [40], power-law model ∆VT ∝ (E)p

[41], mixed model ∆VT ∝ E exp(γE) [2], [12], [16], [18],
etc. Although a study in [41] shows the power-law model to
give better results compared to the exponential model, their
experimental data have saturating trends, a possible artifact
due to recovery [16]. In the next section, a physically based
field-dependent model is developed by considering both the
dipolar effects of Si–H bond as well as field-dependent hole
tunneling. It is shown that E exp(γE) model (developed on a
more physical basis [2], [18]) gives a consistent explanation of
the field dependence in NBTI. Such model avoids the necessity
of NBTI field dependence that purely comes from dipolar dis-
sociation (as suggested in [14]) and anticipates that neither the
power law nor the exponential model gives a proper estimation
of NBTI lifetime; rather, they misinterpret low-voltage NBTI
degradation by overestimating or underestimating the lifetime,
respectively, as shown later.
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B. Experimental Validation of the Phenomenological
E exp(γE) Model

Fig. 6 shows the field acceleration parameter γ and the
voltage acceleration factor γV , which is defined as the number
of decades change in lifetime for unit change in gate voltage [2],
as functions of EOT from a wide range of experiments done by
several groups (also compared with some of our results). Here,
we use (10) (the origin of which is discussed in the next section)
for interpreting the experimental results and found that as
EOT changes, γ remains almost constant (∼0.6 ± 0.05) as ex-
pected for a field-dependent degradation, whereas γV varies as
∼1/EOT. To understand the γV versus EOT dependence (for
constant γ), consider two oxides of same EOT being stressed at
two stress voltages V1 (electric field, E1) and V2 (E2) to pro-
duce the same NBTI degradation after time t1 and t2, respec-
tively, so that E

2/3
1 exp(2γE1/3)tn1 = E

2/3
2 exp(2γE2/3)tn2

by (10). Using E ∼ V/EOT (where units of E, V , and EOT
are MV/cm, V, and Å, respectively) and n ∼ 1/6, we obtain

γV (in dec/V) ≈ log10 (t1/t2)
(V2 − V1)

∼ 40
0.23(EOT)

(
γ +

ln (E1/E2)
E1 − E2

)
. (8)

Equation (8) suggests an inverse relationship between γV and
EOT (see Fig. 6 and [2]) for the constant field acceleration
parameter γ; however, the constant of proportionality depends
on the electric field used to extract the data. This electric field
dependence is clearly seen in the deviation from inverse EOT
relationship in Fig. 6 due to the use of “different E1 and E2” for
different devices. For example, E1 − E2 is higher for EOT =
13 Å device compared to EOT = 50 Å device. As a result, when
∼1/EOT line is drawn in Fig. 6 through EOT = 13 Å data
point, the drawn line falls below EOT = 50 Å data point. As a
result, γV values are on and above the solid line drawn in Fig. 6
for the respective devices considered.3 Our analysis of degra-
dation measurements performed by several groups validates the
universality of the phenomenological E exp(γE) field model.
Moreover, we have used this model to fit the voltage-dependent
degradation data of Fig. 2. Excellent fitting at all stress time
also justifies the applicability of the model in explaining NBTI
stress at any timescale.

C. Physical Hole-Assisted Field-Enhanced Thermal
Dissociation Model

As shown in Section II [see the discussion below (7)], the
“H−H2 R-D” model anticipates that for type I devices at a long
stress time,

NIT =
(

kH

kH2

)1/3 (
kfN0

kr

)2/3

(6DH2t)1/6. (9)

3As electric fields for devices (taken from references) considered in Fig. 6
are estimated, a distinction between E exp(γE) and exp(γE) models may
appear to be tentative. However, based on the discussion in Section III-C and
the prediction of deviation in Fig. 6 by (8), E exp(γE) model appears more
plausible.

Fig. 7. (a) Model for hole-assisted field-enhanced thermal dissociation of
Si–H bond resulting kf ∝ Ec exp(γT Eox) exp[−(EF − aEox)/kBT ] ∝
Ec exp(γEox). Resultant field acceleration factor can be written as γ = γT +

a/kBT . (b) Hole penetration at 1.5 Å (for clarity, the band diagram in the inset
is drawn upside-down), which is modeled using A1Ec exp(γT Eox), gives an
estimate of γT . (c) Polarization properties of Si–H bond (polarization vector is
opposite in direction of the applied field under NBTI stress).

Now, the field dependence of NIT generation must reflect
the field dependencies of kf , kr, DH2, kH , and kH2. As the
diffusing hydrogen species is neutral [2], [18], kr, DH2, kH ,
and kH2 are field independent. As such, the field dependence
must be encapsulated in kf and is explained by Fig. 7(a).
The proposed model for kf assumes that inversion layer holes
with concentration ph (∝ Ec; the electric field due to mobile
carriers, which excludes the depletion charge contribution from
total electric field Eox in inversion and equals Eox in accumula-
tion) near the Si/dielectric interface tunnel into [with tunneling
probability of TH ∼ exp(γTEox), where γT is a constant that
depends on tunneling environment; see Fig. 7(b)] and are
captured by Si–H bonds (capture cross section, σ) ∼1.5 Å
(Si–H bond length) away from the interface, which leads to
a hole-assisted field-enhanced thermal generation of interface
traps, having a reaction rate B ∝ exp(−(EF − aEox)/kBT )
[see Fig. 7(a) and (c)]. Here, EF represents the activation
energy for Si–H bond dissociation (after a hole is captured),4

and aEox represents thermal barrier lowering due to positioning

4Please note that although the first-principle calculation of EF [42] questions
the form of Si–H dissociation that is considered in the R-D model, it anticipates
an activation energy of 0.36 eV, which is completely different from experimen-
tal observations of ∼0.1 eV [12], [15]–[19], [33]. However, the calculation in
[42] suggests a reduction in Si–H dissociation energy with hole capture, which
is used in our field model.
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of the polar Si–H bond in the electric field, with a being the
effective dipole moment [43]. In sum, kf ∝ phTHσB, so that

∆VIT =
q (α∆NIT)

Cox

=A∗EOT∗(Ec)2/3 exp
(

2γEox

3

)
exp

(
−nED1

kBT

)
tn

(10)

where

γ = γT + a/kBT (11a)

nED1 =nED + 2/3(EF − ER). (11b)

ER and ED are the activation energy for kr and the combined
activation energy for DH2, kH , and kH2, respectively. For
(10), Cox is the dielectric capacitance, and EOT is obtained
from a fit of experimental C–V using simulators like [44] that
includes the effects of multisubband electron/hole quantization,
polydepletion, etc. The overall activation energy for ∆VIT from
(10) can also be written as

ET ≡ nEA = nED + 2/3(EF − ER − aEox). (11c)

D. Theoretical Estimates of γT and a

To theoretically estimate γT for (11a), first, we deter-
mine the amount of hole that can reach Si–H bond (∼1.5 Å
away from the inverted channel) using the self-consistent
Schrödinger–Poisson solution of MOS electrostatics [44]. Elec-
tric field dependence of hole penetration (phTH), when mod-
eled using A1Ec exp(γTEox) [Fig. 7(b)], gives γT in the
range of 0.16–0.18, which is approximately independent of the
nitrogen concentration in the dielectric.

Next, the parameter a is estimated as follows [Fig. 7(c)].
According to the Pauling scale [45], electronegativity differ-
ence between Si (xSi = 1.8) and H (xH = 2.1) is 0.3. The
corresponding ionic bond energy UH−Si = 1.3(xSi − xH)2 =
0.1 eV allows one to estimate the effective charge transfer
within Si–H dipole, i.e.,

√
(4πε0rUH−Si) = 0.1q [43], [45],

where q is the electron charge, and r is the Si–H bond length
(∼1.5 Å).5 The resultant dipole moment in Si–H bond is
p = 0.15q Å. Considering that the Si–H dipole resembles a
dipolar orientation normal to a thin slab, the local electric field
[47] is given by Eloc = (1 + Lχint)Eox = εintEox = (3.9 −
8)Eox, where L = 1 (depolarization factor [47]), χint is the
dielectric susceptibility at interface, and εint is the dielectric
permittivity (relative) at interface having values approximately
3.9 (SiO2) to 8 (average of SiO2 and Si) [48]. Therefore,
a = pεint = 0.6−1.2q Å. In other words, when the Si–H bond
is placed in an electric field, applied opposite to the polarization

5Similar charge transfer is also calculated in [46] based on Sanderson’s scale.

Fig. 8. (a–d) Fitting ∆VT (measured by OTFM) versus t (log–log scale) at
different T and VG by (10) gives A, γ, and n as fitting parameters. Here, n =
0.15−0.16, and N2 dose is 8%. (e) Obtained γ is plotted against 1/kBT , which
results in γT = 0.27 ± 0.05 decade/MV/cm and a = 0.8 ± 0.15q Å.

vector (which is the field polarity for NBTI stress), its energy
will be increased by pEloc = pεintEox = aEox.

E. Experimental Determination of γT and a

In experimentally determining γT and a, first, we use (10)
to fit a wide range of experimental ∆VT versus t data that are
measured at different voltages and temperatures, as shown in
Fig. 8(a)–(d), which gives A, γ, and n as the fitting parameters
for each temperature (effect of ED1 can be included in A).
A plot of γ versus 1/kBT gives the tunneling parameter γT as
the intercept at T → ∞ and the effective dipole moment a as
the slope [see (11a)]. Alternately, as EA changes with Eox [see
(11c)], 0.25dEA/dEox can also be used to determine a [18].
A statistical summary of a, which is obtained using different
experimental and theoretical approaches, is presented in Table I
and is remarkably consistent with the values obtained by our
theory and measurements.

F. Predicting Lifetime Using Field Model
(for NIT-Specific Degradation)

The field-dependent model that is just developed can be used
to calculate the safe operating voltage for a given lifetime (say,
5 years) and failure criteria (e.g., 60 mV of ∆VT ; Fig. 9). Our
calculation suggests that neither the exponential nor the power-
law fit of ∆VT data (taken at higher stress condition) provides
exact estimations of safe operating voltage. The exponential fit
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TABLE I
COMPARING a DETERMINED BY VARIOUS METHODOLOGIES

Fig. 9. Comparison between the exponential and the power-law fit of ∆VT

data for obtaining safe operating condition using stress data. The exponential
fit underestimates lifetime, whereas the power-law fit overestimates.

underestimates the lifetime for the device considered, whereas
the power-law fit overestimates. The power-law fit can provide
a good estimate if low stress field data are used in lifetime
projection (which will be time consuming).

In summary of this section, we observe that part of the field
dependencies of NIT-specific NBTI in type I devices arises
from Eox dependence of TH and another part from Eox-induced
thermal barrier lowering. This, we believe, is the first consistent
interpretation of field dependence of NBTI degradation within
the R-D framework. Previous analysis of delay-contaminated
NBTI data [14] suggested experimental values of a that were
three to four times larger than theoretically expected values.
It appears that similar to resolution of puzzles that involve
time exponent (n = 0.25 → 0.16) and temperature dispersion
parameter (d = 1 − kBT/E0 = 0.6 → 0, where E0 is the char-
acteristic width for density of states of hydrogen-trapping sites
in dispersive transport [6], [16]), zero-delay measurements and
partitioning γ into γT and a/kBT (previous work incorrectly
assigns γ = a/kBT [14] or to γ = γT [2] exclusively) hold the
key for the consistent estimation of field acceleration of NBTI
degradation.

IV. HOLE TRAPPING UNDER NBTI STRESS

The paper presented so far analyzes type I devices having
SiO2 and plasma SiON gate dielectric, where NBTI predom-
inantly results from NIT generation. There could be cases,
however, where additional hole trapping [term 2 in (1)] is
known to affect NBTI degradation, particularly in type II
devices with highly nitrided dielectric [28], [32], [33] or in
high-K materials [35]. For these films, additional contributions
from hole trapping must be explicitly considered.

There are three points of view regarding the relative contri-
bution of hole trapping to NIT generation of NBTI [see (1)].

1) Some suggest that NBTI is primarily a phenomenon
of (dispersive) hole trapping (for all devices), and any
contribution from ∆NIT, if present, is small [28], [30].

2) Both hole trapping and ∆NIT are present; however,
∆NIT involves (dispersive) reaction-limited generation
of interface traps [5], [32].

3) Others believe that hole trapping saturates very quickly
(approximately tens of milliseconds), and any subsequent
shift in ∆VT reflects diffusion-limited generation of inter-
face traps within the R-D framework [19].6

As hole trapping has negligible temperature activation, view-
point 1 cannot explain experimental results for type I devices
[33], although it may be the case for type II devices [33].
Note that the original presumption that even type I devices are
dominated by hole trapping is based on the erroneous compar-
ison of charge pumping with ID–VG (or OTFM) stress data,
without considering NIT relaxation due to measurement delay
and difference in scanned energy zones (within the bandgap)
between the two technique, as discussed in detail in [33].
Viewpoint 2 suggests T -dependent long-term power-law time
exponent [5], [32], which has been shown to be an artifact of
measurement delay [16]. Accordingly, we will later generalize
the third viewpoint to interpret the experimental results in
Section IV-B.

A. Hole Trapping in Oxides With High Interfacial N
Concentration

To investigate the effect of hole trapping in type II devices,
we use a simple elastic trapping/detrapping model, in which
holes from the inversion layer are first trapped in the preexisting
defects within the oxide, and then, these trapped holes detrap
toward the empty states in poly-Si and channel. Trap filling
probability fT evolves with time according to

dfT

dt
= σvth [phT1(1 − fT ) − nST1fT − nGT2fT ] (12)

where ph is the inversion layer hole density, vth is the
thermal velocity, nS and nG are the concentration of de-
trapping states at substrate and poly-Si, respectively, and
T1 and T2 are the tunneling probability (obtained using
the Wentzel–Kramers–Brillouin approximation) of holes from
Si/dielectric interface to trap and trap to poly, respectively. Note
that ρH(x,Ei, t) = N0δ(E −Ei)fT (x,Ei, t) for (1), where
N0 is the density of preexisting traps, and Ei is the energy
level at which elastic trapping is possible. Let us emphasize

6Note that for the specific case of [19], the discussion of Fig. 2 suggests that
any contributions to ∆VT from hole trapping for this particular experiment are
actually negligible, and the experimental data 125 ◦C can solely be understood
in terms of the generalized R-D model. In fact, since activation energies
for hole trapping, H and H2 diffusion, and NIT generation [12], [16], [49],
[50] (represented by EA(HT), EA(H), EA(H2), EA(IT), respectively) are
such that EA(HT) � EA(H) < EA(H2) ∼ EA(IT), therefore, models that
involve hole trapping would be inconsistent with temperature-dependent data
for type-I devices.
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Fig. 10. Simulated time evolution of ∆VIT, ∆VH , and total ∆VT for device,
having thick oxide with uniform distribution of traps. Only elastic hole trapping
is considered in the calculation of ∆VH . As a result, hole trapping controls
total degradation at a short stress time. It also results in a decrease in n at
an intermediate stress time. Inset shows tunneling probabilities T1 (into/out of
traps from/toward substrate) and T2 (into/out of traps from/toward gate) for the
elastic hole trapping/detrapping model that is considered in the text.

that the role of detrapping—although negligible in thick films
(as for the case in [51])—is fundamentally important in the
trapping dynamics of thin films. The detrapping process in thin
oxides limits the possibility of hole trapping in sites located
near the gate—an important consideration that remains poorly
appreciated in NBTI literature.

Analytical solution of (12) gives

fT =
T1 [1 − exp (−σvth (phT1 + nsT1 + nGT2) t)]

(1 + nS/ph)T1 + nGT2/ph
. (13)

We estimate the maximum occupancy fT (max) = T1/
[(1 + nS/ph)T1 + nGT2/ph] at different trapping sites,
which involves elastic tunneling of carriers into and out of
traps (named as elastic traps) with tunneling probability T1

for trap/substrate transition and T2 for trap/gate transition
(inset of Fig. 10), for a nitrided sample. Here, we assume
σ = 10−17 cm2 (which is within the range of ∼10−13 cm2 [52]
and ∼10−20 cm2 [35] used in literature for bulk trapping),
ph = 1020 cm−3 at 4 eV above valence band tip at the
Si/dielectric interface (typical value in an inverted channel,
verified using [44]), nS ∼ 0 (no empty states in substrate,
already occupied by holes), and nG = 1020 cm−3 (approximate
electron concentration in the valence band of poly within an
energy range of ∼kBT , which can act as elastic hole
detrapping sites). Using TPHY = 37 Å (corresponding to
EOT = 24 Å for nitrided oxide having ∼25% N2 dose [18]),
calculated fT (max) for hole traps that are located at 20 Å is
approximately four orders-of-magnitude lower compared to
that for the site that is located at 10 Å. Hence, the time constant
τ = 1/σvth(phT1 + nsT1 + nGT2) for the hole trapping
component of ∆VT (∆VH) will be dominated by the traps that
are located close to the substrate. Additional contributions due
to inelastic capture in shallow level hole traps may broaden

Fig. 11. Trapped hole profile for (a) plasma and (b) thermal nitrided oxides,
having similar %N2 dose. Thermal-nitrided oxides trap more holes compared
to plasma-nitrided oxides. Only elastic traps are considered in simulation.

the trapping time constant. Finally, inelastic trapping into
deep level hole traps (discussed in [34] and [53]) may further
increase the time constant. Moreover, if detrapping from deep
traps is blocked by poly-bandgap, contributions from the traps
close to gate may also become possible.

B. Verification of the Hole Trapping Model

We now verify the hypothesis of hole trapping discussed
above by systematically exploring the thickness-dependent
time exponents (within the range of 1−103 s) for oxides with
low (plasma nitrided [13], [54]) and high (thermal nitrided
[13]) interfacial nitrogen (details are discussed in [33]). We
assume that the hole traps are proportionally distributed to
(presumed) N-profile [cf. Fig. 1(a)] in space. The simple model
involving the elastic hole traps results in the saturation of ∆VH

within ∼1 ms (Fig. 10). Thus, overall ∆VT shows n < 1/6 due
to an additional contribution from ∆VH at the timescale of
∼1–1000 s. Our calculations show that both plasma-nitrided
oxide [PNO, cf. Fig. 11(a)] and thermal-nitrided oxide [TNO,
cf. Fig. 11(b)] films have contributions from hole trapping.
The profile decays from Si/oxide interface toward oxide/poly-
Si interface because of hole detrapping into empty states of
poly. For thicker oxides, the number of trapped holes increases
because detrapping to empty states in poly is difficult. More-
over, since the centroids of the trapped charges shift away from
the poly/oxide interface, in general, thicker oxides have larger
contributions to ∆VT from hole trapping. However, the N-
profile in the PNO films, with a peak near the oxide/poly-Si
interface [Fig. 1(a)], makes the contribution from hole trapping
in PNO films approximately two orders-of-magnitude smaller
than those of TNO films, with a peak near the oxide/substrate
interface [Fig. 1(a)]. As such, the time exponents of PNO
continue to be dominated by ∆VIT and remain essentially
unchanged with thickness (see Fig. 12). However, the contri-
butions from hole trapping in TNO film are significant enough
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Fig. 12. (a) Experimental thickness dependence of average power-law
time exponents obtained from on-the-fly Idlin in PNO and TNO devices.
(b) Simulated (involving elastic hole traps) thickness dependence under the
same condition.

[Fig. 11(b)] to reduce the overall ∆VT time exponent (Fig. 12),
and one anticipates a reduction in n with increasing oxide
thickness. In short, the role of hole trapping in the devices
studied is significant for any thick film with significant in-
terfacial N concentration and must be accounted for as an
additional contribution to overall NBTI degradation. Therefore,
n < 0.1 reported in [28] can be attributed to the existence
of increased amount of traps within the oxide, in addition to
the suppression of relative contribution from interface traps to
∆VT in room temperature. Finally, we believe that the relative
contributions of deep traps in the samples that are considered in
this study are small because the model based on simple elastic
trapping/detrapping appears to explain the experimental data
(cf. Fig. 12) well. This does not exclude the possibility of such
deep trapping in other films [28], [32], [34].

V. NBTI RELAXATION

The discussion in Section II-D focused on the stress phase of
NBTI degradation due to NIT generation and hole trapping, as
per (1). Once the effect of measurement delay is corrected for
by using the OTFM or UFM techniques, the NBTI results are
generally understood in terms of the R-D model and the hole
trapping kinetics in type I and type II films.

NBTI relaxation, however, is an important consideration,
particularly for typical CMOS operation where input voltage
switches between “0” and “1” repeatedly. The R-D model for
NIT relaxation anticipates a relaxation of the form NIT ∼
N

(0)
IT (1 −

√
t/2t0/

√
1 + t/t0), where N

(0)
IT is the interface

trap generated at t = t0, that had appeared to be generally
consistent with experiment [24]. Recently, however, there are
new reports of logarithmic time (log t) dependence of NBTI
recovery based on the UFM for type I devices stressed at 125 ◦C
[19] and the ultrafast OTFM for type II devices stressed at room
temperature [28]. The NBTI relaxation by UFM spans over a
timescale of eight to ten orders of magnitude, whereas the R-D
model anticipates a slower recovery of over 1–2 decades in
timescale [19], [31]. Although the fast relaxation in type II
devices [28], [34] is understood as a consequence of hole
detrapping and, as such, has not been particularly surprising,
however, the fast and sustained log t relaxation in long-term
125 ◦C stressed type I films [19] is more difficult to understand
because the stress phase of type I films appears to be domi-

nated by NIT generation with negligible contribution from hole
trapping at high temperature (discussed in Sections II and IV).
Therefore, this substantial discrepancy in interpreting the re-
covery experiments in [19] has instigated researchers to look
for alternate models that involve hole detrapping [19], [28],
dispersive diffusion [6], etc., in explaining NBTI recovery even
for type I devices.

Here, we outline a model that explains this log t dependence
of NBTI recovery for type I films and that fits naturally within
the R-D framework (details will be discussed elsewhere). We
attribute the discrepancy between experiment and theory to the
inappropriate use of the quasi steady-state relationship ∆VT =
q∆NIT/Cox to ultrafast transient conditions. For example, dur-
ing the relaxation phase, the capture of valence band electron
by donor-type interface traps (Si+ + e− → Si) neutralizes the
donor and is reflected in the measured log t dependence of
NBTI recovery of ∆VT ; however, this neutralization does not
cause NIT recovery as calculated by the R-D model. NIT

recovery occurs only through repassivation by hydrogen species
that diffuse back toward the interface—a much slower process.
In sum, dynamics of electron capture/neutralization of donor
states in the relaxation phase can initially result in log t de-
pendence of measured ∆VT recovery (as in [19]), followed by
the slower NIT recovery (as encapsulated by the R-D model)
by back-diffusion of hydrogen species. As such, the perceived
failure of the R-D model in explaining recovery experiments for
type I devices, therefore, does not reflect an intrinsic limitation
of the model itself; rather, it is a result of an improper interpre-
tation of measured recovery using the R-D model. Details about
the UFM-based NBTI recovery within the R-D framework will
be published elsewhere.

VI. CONCLUSION

In this paper, we have systematically explored the time-
dependent NBTI degradation over all timescales for different
types of devices that have wide variation in nitrogen concentra-
tion within the dielectric film. Our analyses not only provide a
sound physical basis of NBTI degradation but also allow us to
resolve differences in NBTI measurements based on the OTFM
and UFM methods. We have also developed and validated the
first physical explanation of field dependence within the R-D
framework, describing NBTI experiments for devices where
∆VT is dominated by NIT generation. Analyses that involve
thick oxide devices with high nitrogen profile at the interface.
Highlight the importance of hole trapping in determining the
characteristics of NBTI degradation. Finally, we have briefly
discussed ultrafast NBTI relaxation within the R-D framework,
which we believe will be able to explain the fast transient
recovery of NBTI. Our discussion broadens the theoretical
framework of NBTI degradation in such a way that it may help
the conceptual organization of existing experiments and design
of newer experiments to further refine the NBTI analysis.
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