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ABSTRACT Economic load dispatch (ELD) in power system problems involves scheduling the power
generating units to minimize cost and satisfy system constraints. Although previous works propose solutions
to reduce CO2 emission and production cost, an optimal allocation needs to be considered on both cost
and emission—Ileading to combined economic and emission dispatch (CEED). Metaheuristic optimization
algorithms perform relatively well on ELD problems. The gradient-based optimizer (GBO) is a new
metaheuristic algorithm inspired by Newton’s method that integrates both the gradient search rule and
local escaping operator. The GBO maintains a good balance between exploration and exploitation. Also,
the possibility of the GBO getting stuck in local optima and premature convergence is rare. This paper
tests the performance of GBO in solving ELD and CEED problems. We test the performance of GBO
on ELD for various scenarios such as ELD with transmission losses, CEED and CEED with valve point
effect. The experimental results revealed that GBO has been obtained better results compared to eight
other metaheuristic algorithms such as Slime mould algorithm (SMA), Elephant herding optimization
(EHO), Monarch butterfly optimization (MBO), Moth search algorithm (MSA), Earthworm optimization
algorithm (EWA), Artificial Bee Colony (ABC) Algorithm, Tunicate Swarm Algorithm (TSA) and Chimp
Optimization Algorithm (ChOA). Therefore, the simulation results showed the competitive performance of
GBO as compared to other benchmark algorithms.

INDEX TERMS Gradient-based optimizer (GBO), economic load dispatch (ELD), combined economic and
emission dispatch (CEED), metaheuristics, optimization.

ABBREVIATIONS
ELD Economic Load Dispatch SMA  Slime mould algorithm
PSO Particle Swarm Optimization MBO  Monarch butterfly optimization
QBA  Quantum Bat Algorithm CEED  Economic and Emission Dispatch
MBA  Mine Blast Algorithm TCO  Termite Colony Optimization
MFO  Moth Flame Optimizer ACS  Artificial Cooperative Search

ALO Ant Lion Optimization

SSA Salp Swarm Algorithm

GA Genetic Algorithm

ADFA  Ameliorated Dragonfly Algorithm
GBO Gradient-Based Optimizer

ACTO  Aggrandized CTO

MODE Multi-objective DE

SHO Spotted Hyena Optimizer

GWO  Grey Wolf Optimizer

ACCS  Adaptive Charged System Search
ISFS Improved Stochastic Fractal Search
LFA Lighting Flash Algorithm

MSSA  Modified Social Spider Algorithm
TSA Tunicate Swarm Algorithm
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EHO  Elephant herding optimization
EWA  Earthworm optimization algorithm
CTO Class Topper Optimization

BA Bat Algorithm

FA Firefly Algorithm

WOA  Whale Optimization Algorithm
AEFA  Artificial Electric Field Algorithm
ABC  Artificial Bee Colony

MFO  Moth Flame Optimization

SOS Symbiotic Organism Search
FPA Flower Pollination Algorithm

ChOA  Chimp Optimization Algorithm

DE Differential evolution

WCA  Water Cycle Algorithm

MSA  Moth search algorithm

TLBO Teaching Learning Based Optimization

I. INTRODUCTION

Engineers of 21%" century are curious about the increasing
complexity of the societal and technological challenges
such as the parameter extraction problem in photovoltaic
(PV) [1] and the problem of the Economic Load Dispatch
(ELD) [2]. The ELD involves involves minimizing produc-
tion costs by allocating power produced by each power
system unit economically [3]. Although some solutions are
proposed to reduce emissions and production costs [4] by
considering both cost and emission optimally, leading to com-
bined economic and emission dispatch (CEED), the ELD and
CEED solutions require efficient optimization algorithms.

Several metaheuristic optimization algorithms are
proposed to solve a wide range of real-life problems. For
example, nature-inspired algorithms mimic the biological,
physical, or environmental processes [5]-[7]. The meta-
heuristic algorithms’ versatility and gradient-free features
consider black-box problems in addition to the theoreti-
cal developments and significant advantages. The resulting
search space is not limited, making the algorithms scalable
for solving different problems. Real problems are solved
more effectively since solutions are not restricted to locally
optimal approaches. The metaheuristic algorithms are applied
in various fields and proved helpful [8]-[12].

Several metaheuristic optimization algorithms are
proposed to solve a wide range of real-life problems. For
example, nature-inspired algorithms mimic the biological,
physical, or environmental processes [5], [6]. Nature-inspired
algorithms are designed to mimic the biological, physical,
or environmental processes they are modeled after [7], [8].
The metaheuristic algorithms’ versatility and gradient-free
features consider black-box problems in addition to the
theoretical developments and significant advantages. The
resulting search space is not limited, making the algorithms
scalable for solving different problems. Real problems are
solved more effectively since solutions are not restricted to
locally optimal approaches. The metaheuristic algorithms
are applied in various fields and proved helpful [9], [10].
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Metaheuristics have proved to be useful in various problems,
including this one [11]-[13].

The Economic Load Dispatch (ELD) plays an important
role in powering the electrical loads and reducing emissions
with the guarantee of meeting the equality and inequality
constraints [14]-[17]. Metaheuristic optimization algo-
rithms (MHs) performs relatively well on the ELD problem.
This work tests the performance of Gradient Based Opti-
mizer (GBO) in solving ELD and CEED. GBO is a new
metaheuristic inspired by the gradient based Newton method
involving Gradient search rule (GSR) and local escaping
operator (GEO). GBO has good balance between exploration
and exploitation.

This work uses a new met-heuristic algorithm called
Gradient-Based Optimizer (GBO) [18] was developed by
Ahmadianfar er al. in 2020, which was one of the most
promising algorithms for solving different variants of ELD.
GBO is a metaheuristic inspired by the gradient based New-
ton method involving Gradient search rule (GSR) and local
escaping operator (GEO). To evaluate various characteris-
tics of the GBO, 28 mathematical test functions were first
used and then six engineering problems were optimized
by the GBO. Moreover, the exploitative, exploratory, and
local optima avoidance of GBO was also investigated using
unimodal, multi-modal and composition problems. Finally,
the results show that GBO was capable of finding excel-
lent solutions compared to other well-regarded optimizers.
Also, the possibility of getting stuck in local optima and
premature convergence is rare in GBO. The performance
of GBO on ELD is tested for various scenarios such as
ELD with transmission losses, CEED, CEED with valve
point effect and for various test networks. The perfor-
mance of GBO is compared with compared with eight other
metaheuristic algorithms such as Slime mould algorithm
(SMA) [19], Elephant herding optimization (EHO) [20],
Monarch butterfly optimization (MBO) [21], Moth search
algorithm (MSA) [22], Earthworm optimization algorithm
(EWA) [23], Artificial Bee Colony (ABC) Algorithm [24],
Tunicate Swarm Algorithm (TSA) [25] and Chimp Optimiza-
tion Algorithm (ChOA) [26].

The rest of the paper is organized as follows. Section III
elaborates the ELD problem, then an overview for the
Gradient-Based Optimizer (GBO) is presented in Section IV.
The obtained findings and discussion is introduced in
Section V. Finally, Section VI concludes the work.

Il. RELATED WORK

An overview of metaheuristics used for solving the different
variants of ELD is as shown in Table 1. In [27], authors have
used CTO and ACTO to solve ELD as well as CEED. It was
observed that CTO performs better than other metaheuris-
tics such as TLBO, DE, GA, PSO etc. Dynamic ELD was
solved by hybrid PSO TCO [28]. The hybridization of PSO
and TCO favoured faster convergence and produced better
quality of solutions. The authors performed ELD considering
renewable resources [29]. A modified version of BA was used
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for solving the problem. In [30], a quantum inspired BA was
solved for using ELD. It was observed that the premature con-
vergence was avoided by the modified quantum inspired BA.
Dynamic ELD considering renewable sources was solved by
multiswarm PSO [31]. Quantum inspired BA was used for
solving ELD considering valve point effect [32]. In [33],
the authors utilized ACO to solve different variants of ELD.
Non-convex ELD was solved by ACS in [17]. The authors
have hybridized BA and FA for solving ELD and CEED
in [34]. A self-adaptive version of Jaya algorithm was used
for solving ELD in [34]. It was observed that the modified
version of Jaya algorithm performed better that the basis Jaya
algorithm and TLBO in solving the ELD problem. In [35],
the authors proposed MBS for solving CEED with valve point
effect. A drift mechanism in the self-adaptive version of PSO
was introduced and used for solving the ELD problem [36].
In [37], the authors proposed a hybrid ED SHO for
solving ELD.

In the same context, in [38], [39], WOA, and MFO were
used to solve different variants of ELD. In [40], ELD with
valve point effect was solved by using modified GWO.
In [41], ELD was solved by an improved version of
PSO with inertia weights factor. In [42], [43], AEF, and
ALO were used for solving ELD for a small-scale power
system. In [44] adaptive charged system search algorithm
is applied to solve EED of power systems. In [45], [46]
the authors have utilized improved version of PSO for solv-
ing ELD. Authors solved the ELD problem for 24-hour
load pattern by GWO [47]. An enhanced version of BA
for solving ELD was proposed in [48], [49]. In [50], mod-
ified ABC algorithm was used for solving non-smooth
dynamic ELD. A modified version of cultural algorithm hav-
ing a local search component for solving ELD and CEED was
proposed in [51]. A chaotic firefly algorithm having muta-
tion operator is used for solving ELD in case of large scale
power system having valve point effect and multiple fuel
options [52].

In [53], the dynamic ELD problem was solved by mod-
ified TLBO. In [54], smooth as well as non-smooth ELD
was solved by WCA. The ELD problem in presence of
wind power was attacked by hybrid BA [55]. In [56]-[58],
multi-area ELD was solved by SSA, FSA, and MFO
algorithm. In [59], the authors used an improved ver-
sion of TLBO for solving ELD problem considering dis-
tributed generation. A modified version of GWO was used
for solving non-convex ELD for current power system
scenario in [60]. In [61], dynamic ELD was solved by
hybrid GA PSO. LFA and SSA was used for solving
large scale dynamic ELD in [62], [63]. In [64], GWO was
used for solving ELD and CEED with valve point effect.
An improved version of DFA was used for solving ELD
considering demand response and renewable resources [65].
In [66]-[68], chaotic bat, modified social spider and FPA
algorithm was used for solving ELD. In [69] Levy flight
Moth-Flame optimizer is proposed to solve the ELD. A novel
parallel hurricane algorithm was used to solve ELD as well as
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CEED in [70]. An improved version of DE was used to solve
ELD with and without valve point effect in [71].

From Table 1, it is observed that metaheuristics such as
PSO, GA, BA, GWO are widely used by researchers in
solving different variants of ELD. Despite the availability and
use of different metaheuristics for solving ELD, researchers
are still proposing new and novel algorithms for its solution.
The prime motivation behind this is the No Free Lunch (NFL)
theorem [72]. NFL theorem states that a single algorithm does
not perform equally well on all the optimization problems.
Hence, it is justified to propose new more efficient algorithms
and improve the existing algorithms.

Ill. ECONOMIC LOAD DISPATCH PROBLEM

ELD is one of the prime and complex problems of mod-
ern power system planning and operation. The objective of
ELD is to maximize the economic welfare of the power
system subject to certain operational constraints thereby opti-
mally allocating each production units and reducing the net
fuel cost consumption. The different variants of ELD is elab-
orated in this section.

A. ECONOMIC LOAD DISPATCH (ELD) WITH LOSSES

The mathematical formulation of ELD with losses is
explained in this section. For operating n generators, the over-
all fuel cost is:

Min(F) = Fi (P1) + -+ - Fy (Pp) ey

where F is the overall fuel cost, F; is the fuel cost of 1st
generator and F, is the fuel cost of nth generator.

The fuel cost function is further approximated in quadratic
form as:

n n
Min(F) =Y F;(P) =Y aP;+biPi+c (2
k=1 k=1

where a, b, c are the weight constants of the fuel cost The
minimization of fuel cost is performed subject to constraints
given by equation (3) and (5)

n
> Pk—Pp—PL=0 3)
k=1

where Pp represents net demand of the network and
P; represents the transmission losses of the network

n n
PL=) ) PiByP “
i=1 j=1

where Bj; is the loss coefficient, P; is the power generated at
ith generator, and P; is the power generated at jth generator

qu'n < Pk < Pkmax (5)
B. COMBINED ECONOMIC LOAD DISPATCH (CEED)
Stress has been laid on reduction of emission also in addition

to production cost. Hence, optimal allocation is done consid-
ering both cost and emission leading to Combined Economic
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TABLE 1. Recent research studies on ELD.

Ref | Year | Type Algorithm

[27] | 2020 | ELD, ELD with valve point effect, CEED CTO

[28] | 2020 | Dynamic ELD PSO TCO

[29] | 2020 | ELD considering renewable sources Modified BA
[30] | 2020 | ELD with losses QBA

[31] | 2020 | Dynamic ELD considering renewable sources PSO

[32] | 2020 | ELD with valve point effect QBA

[33] | 2020 | ELD with losses PSO

[17] | 2019 | Non convex ELD ACS

[34] | 2019 | CEED Hybrid FA BA
[73] | 2019 | ELD Jaya Algorithm
[35] | 2018 | ELD with valve point effect, CEED MBA

[36] | 2017 | ELD with valve point effect, ramp rates and prohibited zones | Improved PSO
[37] | 2018 | Convex and non-convex ELD SHO

[38] | 2018 | ELD with ramp rates and prohibited zones WOA

[39] | 2018 | Convex, non-convex and dynamic ELD MFO

[40] | 2019 | ELD with valve point effect Hybrid GWO
[41] | 2019 | ELD with losses Improved PSO
[42] | 2019 | ELD with losses AEFA

[43] | 2017 | Non- convex ELD ALO

[44] | 2018 | ELD with losses ACSS

[45] | 2018 | ELD with losses Adaptive PSO
[46] | 2017 | ELD with losses Enhanced PSO
[47] | 2020 | ELD with losses GWO

[48] | 2017 | ELD with losses Enhanced BA
[49] | 2019 | CEED QBA

[50] 2018 | Dynamic ELD, CEED Modified ABC
[51] | 2018 | CEED Enhanced Cultural algorithm
[52] | 2018 | Dynamic CEED Chaotic FA
[53] | 2020 | Dynamic CEED TLBO

[54] | 2017 | Smooth and non-smooth ELD WCA

[55] | 2018 | ELD with renewable resources Hybrid BA

[56] | 2020 | Multi-area ELD SSA

[74] | 2019 | Multi-area ELD Hybrid Jaya TLBO
[57] | 2019 | Multi-area ELD ISFS

[75] | 2018 | CEED with renewable sources MOEA/D

[58] | 2017 | Multi-area ELD MFO

[59] | 2019 | CEED Improved TLBO
[60] | 2018 | ELD with losses Modified GWO
[61] | 2018 | Dynamic ELD GA PSO

[62] | 2017 | ELD with valve point effect LFA

[63] | 2017 | Dynamic ELD with valve point effect SOS

[64] | 2016 | Non convex ELD GWO

[65] | 2019 | ELD considering renewable energy sources ADFA

[66] | 2016 | ELD with losses Chaotic BA
[67] | 2016 | ELD with losses, valve point and ramp rates MSSA

[68] | 2016 | ELD, CEED FPA

[14] | 2016 | ELD MFO

[70] 2018 | ELD, CEED Hurricane algorithm
[71] | 2016 | ELD with and without valve point Improved DE
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and Emission Dispatch (CEED). In CEED, both economic
and emission dispatch are taken into consideration.

The emission dispatch problem is concerned with mini-
mization of the gases from power plants. Mathematically,
the emission factor is given by:

Min(E) =Y E(P) =) axPi+BPi+wn  (6)
k=1 k=1

The objective function of the CEED problem is:

n n
objective function = Min (Z Ei(P;) + h, Z Fi(Pi)> (7

k=1 k=1
where /. is the price penalty factor as in equation 8:

_ Fi(Pimax)
Ei(Pimax)

The optimization is performed subject to constraints given by
equations (3) and (5).

he ®)

a: CEED WITH VALVE POINT EFFECT:

In modern era, steam turbines have multiple valves causing
valve point effect. The valves make the cost function nonlin-
ear as in equation 9:

n n
Min(F) = ZF,' = Zakl)i + by Py + ci
k=1 k=1
+ lex sin(fc X (Pomin — Pi))l - (9)

where e and f; are the coefficients reflecting valve point
effect of kth generator. The optimization is concerned with
minimization of both cost and emission subject to constraints
as in equations (3) and (5).

IV. GRADIENT-BASED OPTIMIZER (GBO)

Researchers have invented the GBO metaheuristic algo-
rithm which mimics the population-based and gradient-based
methods [18]. To explore the search space for a set of search
metrics, Newton’s approach is utilized. The main steps of
GBO are as follows:

A. THE INITIALIZATION PROCESS
In GBO, the control parameters («) and probability rate
are used to balance and switch from the exploration to
exploitation. Population and iterations numbers are related
to the problem’s complexity. In GBO, the vector of
N vectors in D-dimensional space can be described. The
initial vectors for the GBO are usually randomly generated
in the D-dimensional search space.

Xn = Xiin + rand (0, 1) X (Xinax — Ximin) (10)
where X,,i,,, and X,,,4, are the bounds of decision variables X,
and rand(0, 1) is a random number in [0, 1].
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B. GRADIENT SEARCH RULE (GSR) PROCESS

In GBO algorithm, a significant factor p is employed to
achieve balanced exploration of significant search space
regions while still achieving near optimum and global
points.The p is employed as follows:

pr =2 xrand X ¢ — « an

. (3T 37
o= ‘ﬁx51n(7+51n<ﬂx7>>‘ (12)
3\ 2
B = Bnin + (Bax — Buin) X (1 -(37) ) (13)

where; Bmin is a constant value of 0.2 and Bmax is a con-
stant value of 1.2, while m represents the current iteration
number, while M represents the total number of iterations.
The parameter p; is responsible to balance the exploration
and exploitation based on the sine function. This parameter
value changes during optimization iterations, beginning at a
large value to facilitate wider variety, then decreasing over
the iterations to speed up convergence. The parameter value
increases through defined iterations within a range. This
increases diversity in solutions, and allows the algorithm to
explore multiple solutions to the problem. Described above,
the GSR can be calculated as follows:.

2Ax X X,
GSR = randn x p; X (14)
(Xworst — Xbest + €)

The GBO algorithm uses a random behavior to create
a randomized exploration mechanism that includes finding
local optima. In Equation (14), it is specified the random
offset that deals the difference between the best solution
(xpesr) and a randomly selected solution x;”l The meaning Ax
of the variable is altered by iterations due to the following
equation. (17). Additionally another random number (randn)
is included to allow for exploration as follows:

Ax = rand(1l : N) x |step | (15)
Xpest — X1 ) + 8
step = —( best 2“) (16)

m m m m
1 +xr2 +xr3 +xr4 —

n n > 7)

where rand(1 : N) is a random vector of N elements in the
range of € [0, 1].

The four randomly selected integers are r1, r2, r3, and r4
such that (r1 # r2 # r3 # r4 # n). step represents a phase
scale, which is quantified by xpes and x;”I.

To achieve convergence, directional movement is
employed in order to converge across the solution field x;,.
In order to provide a convenient local search tendency with a
major effect on GBO convergence, the term DM uses the best
vector from a set of candidate vectors and transfers the current
vector (x;) in the direction of the best vector (xpess — X;,) and
is computed as follows:

8=2xrandx(

DM = rand x pp X (Xpest — Xn) (18)

where, rand is a uniform distributed number within range €
[0, 1], a function of two parameters, and p; is a random
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m Rank
FIGURE 1. Friedman rank test for case 1.

TABLE 2. Parameter settings of GBO and all other competed algorithms.

Algorithms Parameters setting
Common Settings | Population size: N = 30
Maximum iterations: ¢4 = 1000
Number of independent runs 30
ABC MR =0.8, colony size =40, M C'N = 6000
EWA a=0.98, 8o =0.1,v=0.9
MSA Bo=1.5,Smaz =1
MBO Smaz =1, BAR=5/12, peri =1.2
EHO a=0.5and 8=0.1
SMA Z =0.03
ChOA a decreases linearly from 2 to 0 (Default)
TSA Poin=1 and Py, qs=4 (Default)
GBO FADs=0.2, Pr =0.5

TABLE 3. Test cases.

Case | Description Test system | Demand (MW)
700
1 ELD 6 1000
1200
700
2 CEED 6 1000
1200
3 CEED with valve point effect | 10 2000

parameter employed to adjust phase size of each vector agent,
besides the py parameter considers of significant parameters
of the GBO exploration process. This is how the p, parameter
is computed:

P2 =2 xrand X a — «. (19)

Finally, based on the words GSR and DM, Eq. 20 and 21
are modified based on the current vector location (x,,").

X1" = x"—GSR + DM (20)

where, X1 is the modified vector resulting from
modifying X17". According to (13), (18), the transformation
of X 17" can be defined as:.

2Ax x X
Oy — yap + )
+ randn x py X (xbest - x,’f) €2y

X17 =x)' — randn X p1 x
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TABLE 4. Statistical results for fitness function of case 1.

Demand (MW) | Algorithm | Best Average Worst SD
GBO 8685.549188 | 24919.83349 | 262153.549 47322.75726
TSA 210758.0329 | 13246569.28 | 46985262.44 11671889.45
ChOA 2853186.277 | 151906508.7 | 860192164 174654055
SMA 8706.33765 10228.4272 14496.01421 1435411121
700 EHO 2973884.734 | 133421320.8 | 460410140.1 127091384
MBO 9305.924329 | 411336.7757 | 10995801.76 1999680.718
MSA 8407.954306 | 8802.07288 9124.64661 166.1269287
EWA 213216419 34600771.85 1577589147 39613470.25
ABC 895842.5443 | 50562707.72 | 193652436.8 | 41521859.27
GBO 12643.35353 | 33618.03327 | 352137.1764 | 62598.53743
TSA 528150.5477 | 2174244155 | 67121464.62 | 20059279.53
ChOA 4780211.892 | 86022589.34 | 225405206.5 | 68112191.62
SMA 12334.7719 14060.36459 | 26255.76917 | 2744.191485
1000 EHO 276971.101 46260786.71 | 282058559.4 | 58248102.28
MBO 13447.83996 | 33788.89758 165898.9357 28621.36091
MSA 12135.486 12304.2484 12727.55517 115.870386
EWA 42655.58313 | 24992802.66 | 179592008.1 43120730.13
ABC 1738136.181 37391815.75 137622278 34046433.01
GBO 14905.29219 | 26346.61414 | 196633.6921 33442.94929
TSA 206685.1467 | 1678872829 | 119598234 23703490.08
ChOA 142680.7814 | 105558363 350408704.5 | 94088147.73
SMA 14928.6678 16517.4336 32838.98118 [ 3534.804878
1200 EHO 105334722.3 | 1626274160 | 7859331183 1845294906
MBO 15283.91213 | 724059550.9 | 21721034896 | 3965695530
MSA 14849.22045 14939.65519 15013.28197 43.71791147
EWA 70678.7321 90693915.36 | 967534926.7 187625885.6
ABC 4662407.156 | 66969975.67 | 218065260.7 | 53093537.28

TABLE 5. Best costs of case 1 at various demand setting in $ per hour.

Algorithm | 700 MW 1000 MW 1200 MW

GBO 8596.2688 12288.39245 | 14865.88322
TSA 8797.414047 | 12375.42954 | 14933.35395
ChOA 8440.90984 12341.01675 | 14925.73293
SMA 8688.39929 12279.57551 | 14907.55555
EHO 9569.329425 | 14049.35905 | 16540.28986
MBO 9318.537106 | 14685.03214 | 16771.76311
MSA 9837.746036 | 14243.00936 | 17382.97919
EWA 9276.574594 | 14227.62604 | 17497.59526
ABC 10504.18364 | 12958.16337 | 15719.35108

where ypJ', yg' are equal to y, + Ax, and y, — Ax, y, vector
is equal to the average of two vectors: current solution x,,
and z,,41.

2AXx X Xp

Znt1 = Xp—randn X (22)
" " (Xworst — Xbest + &)

although x, is current solution vector, randn is a random
solution vector of dimension 7, Xyyrs; and Xpes represent best
and worst solutions, and Ax is given by equation.(15).

Taking the previous formula and substituting current solu-
tion vector x;' with new solution vector xps in it, we get
current solution vector X2/

2Ax x x!
(P = ya + ¢)
~+ randn x py x (xj”l - x;"z) (23)

X2 = xpest — randn x py X

The GBO algorithm aims to improve discovery and
exploitation by making each more profitable than the next
using using Eq. (21). To help the global search on the dis-
covery process and to boostEq. (23) is used to boost the
exploitation process of the local search. Finally, a new version
of the solution is found as follows

XM=, x (ro x X1+ (1 — 1) x X20))
+(—r) xX3"  (24)
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TABLE 6. Allocation vector at best fitness function using all algorithms for case 1 at 700 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC

189.5616586 | 149.44244 341.3132267 | 185.7135056 | 66.44209243 | 73.62897905 | 56.83489394 | 70 301.8958987
101.689967 86.8705366 50 50.51695339 | 69.56621478 | 90.6969419 59.94476851 | 84.53333333 | 25.12490159
147.8302654 | 146.154003 113.5773156 | 298.9869879 | 83.98385487 | 99.15531604 | 71.87398307 | 112.0322222 | 174.6556292
89.61369411 | 55.910796 50 50.00032437 | 113.4233433 | 100.2939772 | 83.1495189 127 171.7820666
98.97821595 | 155.7067605 | 72.44884018 | 79.08102815 | 116.4156123 | 150 125.3403864 | 132 375.4694066
84.96718005 | 120 83.61343611 | 50.00012025 | 262.0815035 | 200 314.0113024 | 187 23.02519716

TABLE 7. Allocation vector at best fitness function using all algorithms for case 1 at 1000 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC

499.8308274 | 500 500 479.141796 70.91256905 | 50 50.21399887 | 68.00014638 | 115.3298661
189.2454428 | 54.91450856 | 51.09100804 | 50.75277544 | 101.3029624 | 97 65.54577834 | 74.00006839 | 168.0112459
161.6041441 | 137.880252 300 197.539091 127.8586154 | 100 134.9641294 | 84.21154656 | 343.9736182
50.07806391 | 58.84231778 | 60.65076508 | 50.00010544 | 134.3265124 | 101 147.1481687 | 182.9998604 | 124.4705483
50.24321015 | 200 56.56901973 | 185.5525677 | 175.5065586 | 179 206.5396705 | 217.9996438 | 202.8838002
70.11253675 | 72.2482933 54.43694594 | 61.00932017 | 413.4851986 | 495.0938002 | 418.907567 397.9997587 | 75.79661423

TABLE 8. Allocation vector at best fitness function using all algorithms for case 1 at 1200 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC

446.0656723 | 490.0641928 | 500 457.4740366 | 111.5133965 | 87.80868946 | 55.0227177 84 373.4243039
136.1821761 | 192.3807862 | 200 199.9998079 | 119.7265688 | 120 110.6578847 | 91.27257153 | 275.1957334
250.6336747 | 300 300 272.1978148 | 169.237804 150 151.6459541 | 164.1219416 | 304.1841199
122.7149098 | 97.0175366 76.00801196 | 55.420549 185.26913 200 166.9030794 | 193.2239142 | 285.5176576
197.7869545 | 69.4396344 93.65269981 | 199.9933025 | 263.0320301 | 300 254.1660547 | 245.3686708 | 71.02010523
82.55237513 | 84.4404838 63.64575047 | 50.30025955 | 387.7545655 | 380.8939961 | 495.4057489 | 481.2169083 | 69.52165244

v s "
T T

Titness funectian

FIGURE 2. Robustness curves for all algorithms for case 1 at 700 MW load demand.

where r,, and r, are random numbers determined in range
[0, 1], and X 3" is defined as:

X3m = X" _ plox (X2" — X1 (25)
C. THE LOCAL ESCAPING OPERATOR (LEO) PROCESS
The LEO is implemented to add extra power to an optimiza-
tion algorithm by helping to solve tricky engineering prob-
lems. The LEO operator helps the algorithm to quickly switch
out of local optima points to speed up the convergence of the
algorithm. To build a new solution with a superior efficiency,
the LEO operator targets (X;;), by many solutions (Xpe
best solution, the solutions X 17", X 17" are randomly selected
from population, X7}, X 1'%, randomly generated solutions),
so that the current solution can effectively be modified,

44328

the procedure is performed based on a scheme that is as
follows:.
If rand < pr

X 4 1 (w1 xvest — uax}?)

+ o (22— x12)
xm o _ +uy ()c;"1 —x}"z) /2, if rand < 0.5

FEO T Xl 4 1 (ropest — uxy")
+ 01 (uz (X200 — X17))
+up (xf'l - x;"z) /2, otherwise
(26)

End

where pr is a probability value, pr = 0.5, the values fi,
and f» are uniform distribution random numbers € [—1, 1],
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5 Convergence curve of case 1 at 700 MW load demand
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FIGURE 3. Convergence curves for all algorithms for case 1 at 700 MW load demand.

Robustness curve of case 1 with 1000 MW load demand
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FIGURE 4. Robustness curves for all algorithms for case 1 at 1000 MW load demand.

Convergence curve of case 1 at 1000 MW load demand
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FIGURE 5. Convergence curves for all algorithms for case 1 at 1000 MW load demand.
and uy, up, uz are random values generated as following: oy = rand ifpu; <0.5 (28)
1 otherwise
2 xrand if 1 < 0.5 _ Jrand ifpy <05 20
U = (27) uz = . (29)
1 otherwise 1 otherwise
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Robustness curve ofcase 1 at 1200 MW lcad demand
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FIGURE 6. Robustness curves for all algorithms for case 1 at 1200 MW load demand.

e Convergence curve of case 1 at 1200 MW load demand
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FIGURE 7. Convergence curves for all algorithms for case 1 at 1200 MW load demand.

where rand is a random number between 0 and 1, while mu;
is an arbitrary value from the interval [0, 1].

The previous equations for uy, us, u3, can be explained as
follow:

uy =Ly x2xrand + (1 — L) (30)
up = Ly x rand + (1 — Ly) 31
us = Ly x rand + (1 — Ly) (32)

where L is a binary parameter take value 0, 1, such as if
parameter 1 < 0.5, then value of L1 = 1, otherwise L; = 0.
where the solution x;" is generated as follow:

o Xrand if p < 0.5 33)
k xl',” otherwise

Xrand 18 arandom generated solution according to following
formula:

Xrand = Xmin + 1and(0, 1) X (Xmax — (34)

and x;' is a random selected solution from population,
iy is a random number € [0, 1]. For more details about
GBO see [18].

min )
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8D
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FIGURE 8. Friedman rank test for case 2.

V. EXPERIMENTAL RESULTS AND NUMERICAL ANALYSIS
The performance of GBO on different variants of GBO is
compared with other metaheuristics such as; Slime mould
algorithm (SMA) [19], Elephant herding optimization (EHO)
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Robustness curve of case 2 at 700 MW load demand
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FIGURE 9. Robustness curves for all algorithms for case 2 at 700 MW load demand.

Convergence curve of case 2 at 700 MW load demand
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FIGURE 10. Convergence curves for all algorithms for case 2 at 700 MW load demand.

Robustness curve of ca
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FIGURE 11. Robustness curves for all algorithms for case 2 at 1000 MW load demand.

[20], Monarch butterfly optimization (MBO) [21], Moth
search algorithm (MSA) [22], Earthworm optimization algo-
rithm (EWA) [23], Artificial Bee Colony (ABC) Algo-
rithm [24], Tunicate Swarm Algorithm (TSA) [25] and

VOLUME 9, 2021

Chimp Optimization Algorithm (ChOA) [26]. The compar-
ison results are reported in this section.

The obtained results of the proposed GBO as well as
the considered competitor algorithms to solve the Economic
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Convergence curve of case 2 with 1000 MW load demand
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FIGURE 12. Convergence curves for all algorithms for case 2 at 1000 MW load demand.
o Robustness curve of case 2 at 1200 MW load demand
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FIGURE 13. Robustness curves for all algorithms for case 2 at 1200 MW load demand.

Convergence curve of case 2 at1200 MW load demand
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FIGURE 14. Convergence curves for all algorithms for case 2 at 1200 MW load demand.

Load Dispatch (ELD) problems.All the experiments are A. PARAMETER SETTINGS

implemented by coded through MATLAB R2016a and exe-  For fair comparison, the algorithms are tested with the fol-
cuted on Intel(R) Core i7 CPU- 2.80 GHz with 8 GB RAM  lowing settings: population size N = 30, maximum iterations
and operating system (Windows 10). tmax = 1000, and number of independent runs is 30 for all the
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Convergence curve of case 3 at 2000 MW load demand
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FIGURE 15. Convergence curves for all algorithms for case 3 at 2000 MW load demand.
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FIGURE 16. Robustness curves for all algorithms for case 3 at 2000 MW load demand.

TABLE 9. Statistical results for fitness function of case 2.

TABLE 10. Costs at the best fitness function for case 2 at all various

demand.

Demand (MW) | Algorithm | Best Average Worst SD
GBO 14017.1375 | 30846.5297 267814.481 47239.5965 Algorith 700 MW 1000 MW 1200 MW
TSA 216788.13 13252541.9 | 46991553.2 | 116718641 orithm T (S per houn) | emission (b) | Tuel (§ per houn) | Emission (5) | Tuel (§ perhoun | emission(b)
ChOA 785854431 151912122 860197559 174653982 GBO 8596.2688 6.24E+03 12170.42256 10139.75021 14900.25503 13790.0282
TSA 8797.414047 7002.552521 12375.42954 9261.482867 14877.97606 14962.83278
SMA 13951.6739 | 16079.3504 | 18092.9311 | 1054.53798 ChOA 899090084 3802992618 | 1234101675 1545744634 | 1497634025 1690531524
700 EHO 1844902.97 | 164473687 1165285104 | 216677362 SMA 8463442192 5164.536366 | 12211.26945 11771.83064 | 14932.41298 12709.73616
MBO T5143.5719 | 3852192.32 | 113785874 | 207632252 EHO 924325197 9526058727 | 1352417541 238724555 | 17106.28264 | 52020.11236
MSA 13549.502 145222371 15628.6549 597.038018 MBO 9436.142766 13536.43573 | 1449231598 47609.4206 17197.50699 51619.05094
MSA 9745.611902 19188.66611 13840.51253 3.17E+04 17370.46043 52585.57961
EWA 340877.537 421102219 176051262 46198481.3 EWA 10237.18289 13630.94618 13778.05316 2.56E:04 17148.55275 51219.41855
ABC 1782940.05 | 452225443 163747197 44115528.8 ABC §858.421948 14448.08295 | 12191.25218 12506.13166 | 15026.75598 17521.29827
GBO 22252.1745 | 436545268 | 361955.166 | 62544.638
TSA 538440.142 | 217526098 | 67131455.5 | 20059070.3
ChOA 4790838.24 | 86032963.1 | 225415259 | 681121426
SMA 22039.7803 | 24264563 | 33331.9981 | 2366.63301
1000 EHO 152337633 | 55351077 | 269667029 | 5805724738 B. COMPARISON OF GBO WITH TSA AND CHOA
MBO 246565505 | 61653.7154 | 237739.235 | 45456.4532 ) ] .
MSA 21635.2641 | 22262.0805 | 23689.2616 | 429.887368 The comparison results of GBO with TSA and ChOA is
EWA 359452227 | 31790728 178571263 | 481044383 . . . ..
ABC 39584808 | 387135245 | 152276546 | 363077524 reported in this section. The analysis is done for the test
GBO 282563199 | 394012656 | 149954.967 | 26615.5129 . .
TSA 02779 G0 14309365 12007 22939 1008 cases as shown in Table3. The ELD problem is solved for
ChOA 675391.413 | 140396231 | 516094443 | 126893506 ;
s I TRIE N G e LT TN B[ ant R ) all the test cases repqrted in Tab'le 3. Ta'ble 4 reports the
1200 EHO 31304760.5 | 2105542396 | 7345510175 | 2021393472 best, worst, average fitness function obtained by the three
MBO 28807.6531 | 703414998 | 1.9417E+10 | 3547827656 . .
MSA 28035.8981 | 28445.6287 | 29340.6699 | 336.625021 aforesaid algorithms. Table 5 reports the best fuel cost for
EWA 473053256 | 124648523 | 827830270 | 190917552 1 . d d . Th . f
ABC 4054724.14 | 716890282 | 213489243 | 56300578.6 case 1 at various demand setting. The superior performance
of GBO is clear from the obtained result. Figure 1 shows
the Friedman rank of the three algorithms. It is observed that
experiments. Table 2 reported the parameters setting of each GBO has obtained the best rank followed by TSA for case 1.
algorithm. Table 6 to Table 8 reports the allocation vector obtained by

VOLUME 9, 2021
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TABLE 11. Allocation vector at best fitness function using all algorithms for case 2 at 700 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC
189.5616586 | 149.442441 341.3132267 | 378.9366313 | 79.54701954 | 68 52.05532709 | 72.00000805 | 244.1834959
101.689967 86.8705366 50 75.37433756 | 90.23498241 | 99.99842184 | 67.85545034 | 89.05319703 | 39.35143406
147.8302654 | 146.1540035 | 113.5773156 | 80.21206995 | 98.13130859 | 100.0014739 | 89.10876811 | 128 327.7581268
89.61369411 | 55.9107966 50 50.06590784 | 101.4400667 | 100.0163097 | 96.5103462 132.2194799 | 74.63261663
98.97821595 | 155.7067605 | 72.44884018 | 55.95878995 | 165.099417 110.9367445 | 108.0121203 | 148.9834814 | 37.74249925
84.96718005 | 120 83.61343611 | 69.66723407 | 178.5420941 | 2353278444 | 297.7656245 | 216 70.17299783
TABLE 12. Allocation vector at best fitness function using all algorithms for case 2 at 1000 MW load demand.
GBO TSA ChOA SMA EHO MBO MSA EWA ABC
461.570441 500 500 434.4797434 | 97.09276335 | 82 67.3961078 69.07238424 | 380.6523155
123.2116856 | 54.91450856 | 51.09100804 | 50.35862217 | 101.8463667 | 85 83.58519529 | 87.14055458 | 89.76147203
176.6255197 | 137.8802528 | 300 217.8071943 | 133.4393152 | 100 157.1225566 | 127.6017913 | 225.350198
78.60560553 | 58.84231778 | 60.65076508 | 105.8636912 | 149.3393125 | 120 160.1194502 | 178.9058122 | 144.2181793
98.92455763 | 200 56.56901973 | 139.1466943 | 236.6763081 | 148 189.8577173 | 248.7546264 | 101.8788624
83.35778802 | 72.248293 54.43694594 | 76.44769788 | 306.9697441 | 487.5702429 | 366.3652719 | 314.9569037 | 82.37420716
TABLE 13. Allocation vector at best fitness function using all algorithms for case 2 at 1200 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC
459.0589771 | 500 500 499.488136 111.2833768 | 67.550198 75.67767094 | 78.20754461 | 413.2126295
198.6849562 | 200 66.92036408 | 188.298177 117.8809823 | 120 98.87255155 | 88.07865235 | 235.2901806
251.5009682 | 268.4404202 | 273.6642867 | 206.7031703 | 134.9003054 | 166.2354635 | 138.8659866 | 173.7696489 | 267.0830323
54.82964292 | 89.67677903 | 150 53.47086713 | 146.9153126 | 200 142.0625883 | 182 46.04408805
199.7553995 | 122.6330863 | 180.0481543 | 198.3139709 | 225.0190675 | 200 278.5784557 | 231.0071992 | 111.6957993
71.47096762 | 52.51861086 | 65.0296636 88.25018247 | 498.2686034 | 481.3641117 | 499.9933777 | 480.749139 162.6237884

TABLE 14. Statistical results for fitness function of case 3.

Demand (MW) | Algorithm | Best cost Average cost ‘Worst cost SD
GBO 219799.1059 | 238094.2967 313512.3747 | 20453.30556
TSA 526049.3651 | 30314739.91 82394729.03 | 25862437.39
ChOA 14724151.54 | 161954969.3 574814303.1 165602544.3
SMA 2210482919 | 233852.8048 | 255144.2964 | 8369.574912

2000 EHO 2708607.303 | 88773458687 | 2.19E+11 62069182459
MBO 256541.9032 | 74521649305 | 8.09E+11 1.76E+11
MSA 221757.381 228824.0022 | 236631.2423 | 3869.245477
EWA 16986001.28 | 8655562888 2.11E+11 38288367019
ABC 2689228.652 | 225008720.1 1036718216 | 258946901.8

TABLE 15. Costs at the best fitness function for case 3 at 2000 MW load
demand.

Demand (MW) | Algorithm | Fuel cost with valve (3 per hour) | Fuel cost without valve (3 per hour) | Emission (1)
GBO 113454.2075 113192.2176 4123.37858

TSA 115635.895 1154296047 4083769908

ChOA 116718.3433 176499.79 F128.714921

SMA T13420.5547 TT3211.8298 9364.964345

2000 EHO TT4819.3837 1146221343 43178109
MBO T15876.0282 1156985327 4233946211

MSA T14456.837 1142669468 FT61.150569

EWA 116436.9316 1162926838 4154.508192

ABC TS4779.744 T54528.2801 13149.51024

the aforesaid algorithm for demand 700 MW, 1000 MW,
and 1200 MW respectively. Figure 2, Figure 4, Figure 6
shows the robustness curve of case 1 for demand 700 MW,
1000 MW, and 1200 MW respectively. It is observed that
GBO produces uniform solutions for different runs as com-
pared to other algorithms. Figure 3, Figure 5, Figure 7
shows the convergence curve for case 1 in case of different
demand.

The best, worst, average value of fitness function for
case 2 is reported in Table 9. It is observed that GBO
performs well as compared to other algorithms. Table 10
reports the fuel cost and emission for case 2 obtained by the
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three algorithms. It is observed that GBO maintains a good
balance between cost and emission. Figure 8 shows the
Friedman rank obtained for case 2. It is observed that GBO
has obtained the best rank followed by ChOA. Table 11,
Table 13, and Table 13 reports the allocation vector for
demand 700 MW, 1000 MW, and 1200 MW respectively.
Further, the convergence and robustness of GBO is compared
with TSA and ChOA. Figure 9, Figure 11, Figure 13 shows
the robustness curve of case 2 with load demand 700 MW,
1000 MW, and 1200 MW respectively. Figure 10, Figure 12,
Figure 14 shows the convergence curve of case 2 with load
demand 700 MW, 1000 MW, and 1200 MW respectively. It is
observed that in case of GBO a faster convergence towards the
optima is favoured.

The best, worst, average value of fitness function for case 3
is as shown in Table 14. The superior performance of GBO
is prominent from the results reported in Table 14. Table 15
reports the fuel cost and emission for case 3 obtained by the
three algorithms with and without valve point effect. Table 16
reports the allocation vector for case 3. Further, the conver-
gence and robustness of GBO is compared with TSA and
ChOA. Figure 15 and Figure 16 shows the convergence and
robustness curve for case 3 respectively.

C. COMPARISON OF GBO WITH CTO AND ITS VARIANTS

The performance of GBO is compared with CTO and its
variants in solving case 3 of Table 3. The results of CTO and
its variants are taken from ref [27] and the ELD problem is
solved by GBO with the same general parameter setting as
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TABLE 16. Allocation vector at best fitness function using all algorithms for case 3 at 2000 MW load demand.

GBO TSA ChOA SMA EHO MBO MSA EWA ABC

53.42746261 | 33.698925 26.89673845 | 54.86291659 | 16.96206125 | 20 28.99571835 | 28 102.3078875
77.15682841 | 57.2314775 4720099907 | 71.91549278 | 28.82349317 | 40.81027727 | 79.99999985 | 34 4.023651967
113.5029422 | 77.7232758 74.61307679 | 119.9897713 | 119.808397 50 101.5859835 | 87 122.1298362
83.323102 37.2058037 64.49420468 | 129.9999199 | 125.8574639 | 97 111.9962796 | 102.7166666 | 198.7076242
136.8829177 | 160 160 159.2858516 | 136.9372426 | 120 121.9511674 | 145.0000001 | 136.1017189
165.8333622 | 213.980094 240 83.50735483 | 184.514659 240 204.2708322 | 230 215.4571441
220.0906134 | 300 191.6427769 | 299.4084763 | 289.7231679 | 267 286.639065 294.999999 1082.577336
303.3529174 | 294.4096915 | 340 327.189747 320.1530829 | 340 300 305 184.9053026
466.2480961 | 470 470 463.5176487 | 424.8566276 | 440 376.9793254 | 430 461.0022716
465.0401509 | 440.6356112 | 470 373.6755744 | 435.0080636 | 470 469.9939046 | 436 4.691590207

TABLE 17. Comparison of GBO with CTO and its variants.

Algorithm | Cost ($ per hour) | Emission (Ib)
CTO 113385 4007.2
ACTO 134100 4002.52
GBO 113192.21757 4123.37858

TABLE 18. Comparison of GBO with DE, PDE and MODE.

Algorithm | Cost ($ per hour) | Emission (Ib)
DE 111500 4581
MODE 113480 4124.90
PDE 113510 4111.40
GBO 113192.21757 4123.37858

TABLE 19. Comparison of GBO with NSGA-1l and SPEA-2.

Algorithm | Cost ($ per hour) | Emission (Ib)
NSGA IT 113540 4130.20
SPEA 2 113520 4109.10
GBO 113192.21757 4123.37858

in ref [27]. The comparison results are as shown in Table 17.
It is observed GBO is the second-best performing algorithm.

D. COMPARISON OF GBO WITH DE AND ITS VARIANTS
The performance of GBO is compared with DE and its vari-
ants in solving case 3 of Table 3. The results of DE and
its variants are taken from ref [76] and the ELD problem is
solved by GBO with the same general parameter setting as in
ref [76]. The comparison results are as shown in Table 18. It is
observed that GBO performs better than PDE and MODE in
terms of cost. And, GBO performs better than DE and MODE
in terms of emission.

E. COMPARISON OF GBO WITH NSGA-Il AND SPEA-2

The performance of GBO is compared with NSGA II and
SPEA 2 in solving case 3 of Table 3. The results of NSGA-II
and SPEA-2 are taken from ref [76] and the ELD problem is
solved by GBO with the same general parameter setting as
in ref [76]. The comparison results are as shown in Table 19.
It is observed that GBO performs better than SPEA 2 and
NSGA II in terms of cost. Also, GBO performs better than
NSGA II in terms of emission.
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VI. CONCLUSION AND FUTURE WORK

ELD is one of the complex problems of power system.
This work tests the performance of gradient based opti-
mization (GBO) in solving different variants of ELD such
as ELD with losses, CEED, and CEED considering valve
point effect. GBO is a metaheuristic inspired by the gradient
based Newton method involving Gradient search rule (GSR)
and local escaping operator (GEO). GBO has good balance
between exploration and exploitation. Also, the possibility
of getting stuck in local optima and premature conver-
gence is rare in GBO. The performance of GBO is com-
pared with eight other metaheuristic algorithms such as
Slime mould algorithm (SMA), Elephant herding optimiza-
tion (EHO), Monarch butterfly optimization (MBO), Moth
search algorithm (MSA), Earthworm optimization algorithm
(EWA), Artificial Bee Colony (ABC) Algorithm, Tunicate
Swarm Algorithm (TSA) and Chimp Optimization Algo-
rithm (ChOA). In addition, GBO is evaluated against other
existing studies in the literature such as Differential evolution
(DE), Class Topper Optimization (CTO), Non Dominated
Sorting GA (NSGA-II), and Strength pareto evolutionary
algorithm 2 (SPEA-2) for different demands. It is observed
that GBO performs relatively well as compared to the afore-
said algorithms. Further, it is seen that GBO has good balance
between exploration and exploitation and the possibility of
getting stuck in local optima and premature convergence is
rare in GBO. Our future work will focus on:

o Performance of GBO on dynamic ELD considering
renewable resources

o Performance of GBO on other power system problems
such as unit commitment, optimal load flow

o Hybridization of GBO with other metaheuristics for
solving power system optimization problems

In the future studies, the GBO can be a good candidate to
solve the problems in renewable energy for instance solar cell
systems. Due to the great performance of the GBO, future
work may extend to solve various single and multi-objective
optimization problems in different fields.
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