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ABSTRACT Economic load dispatch (ELD) in power system problems involves scheduling the power

generating units to minimize cost and satisfy system constraints. Although previous works propose solutions

to reduce CO2 emission and production cost, an optimal allocation needs to be considered on both cost

and emission—leading to combined economic and emission dispatch (CEED). Metaheuristic optimization

algorithms perform relatively well on ELD problems. The gradient-based optimizer (GBO) is a new

metaheuristic algorithm inspired by Newton’s method that integrates both the gradient search rule and

local escaping operator. The GBO maintains a good balance between exploration and exploitation. Also,

the possibility of the GBO getting stuck in local optima and premature convergence is rare. This paper

tests the performance of GBO in solving ELD and CEED problems. We test the performance of GBO

on ELD for various scenarios such as ELD with transmission losses, CEED and CEED with valve point

effect. The experimental results revealed that GBO has been obtained better results compared to eight

other metaheuristic algorithms such as Slime mould algorithm (SMA), Elephant herding optimization

(EHO), Monarch butterfly optimization (MBO), Moth search algorithm (MSA), Earthworm optimization

algorithm (EWA), Artificial Bee Colony (ABC) Algorithm, Tunicate Swarm Algorithm (TSA) and Chimp

Optimization Algorithm (ChOA). Therefore, the simulation results showed the competitive performance of

GBO as compared to other benchmark algorithms.

INDEX TERMS Gradient-based optimizer (GBO), economic load dispatch (ELD), combined economic and

emission dispatch (CEED), metaheuristics, optimization.

ABBREVIATIONS
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SMA Slime mould algorithm

MBO Monarch butterfly optimization
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TCO Termite Colony Optimization

ACS Artificial Cooperative Search

SHO Spotted Hyena Optimizer

GWO Grey Wolf Optimizer

ACCS Adaptive Charged System Search
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MSSA Modified Social Spider Algorithm
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EHO Elephant herding optimization

EWA Earthworm optimization algorithm

CTO Class Topper Optimization

BA Bat Algorithm

FA Firefly Algorithm

WOA Whale Optimization Algorithm

AEFA Artificial Electric Field Algorithm

ABC Artificial Bee Colony

MFO Moth Flame Optimization

SOS Symbiotic Organism Search

FPA Flower Pollination Algorithm

ChOA Chimp Optimization Algorithm

DE Differential evolution

WCA Water Cycle Algorithm

MSA Moth search algorithm

TLBO Teaching Learning Based Optimization

I. INTRODUCTION

Engineers of 21st century are curious about the increasing

complexity of the societal and technological challenges

such as the parameter extraction problem in photovoltaic

(PV) [1] and the problem of the Economic Load Dispatch

(ELD) [2]. The ELD involves involves minimizing produc-

tion costs by allocating power produced by each power

system unit economically [3]. Although some solutions are

proposed to reduce emissions and production costs [4] by

considering both cost and emission optimally, leading to com-

bined economic and emission dispatch (CEED), the ELD and

CEED solutions require efficient optimization algorithms.

Several metaheuristic optimization algorithms are

proposed to solve a wide range of real-life problems. For

example, nature-inspired algorithms mimic the biological,

physical, or environmental processes [5]–[7]. The meta-

heuristic algorithms’ versatility and gradient-free features

consider black-box problems in addition to the theoreti-

cal developments and significant advantages. The resulting

search space is not limited, making the algorithms scalable

for solving different problems. Real problems are solved

more effectively since solutions are not restricted to locally

optimal approaches. Themetaheuristic algorithms are applied

in various fields and proved helpful [8]–[12].

Several metaheuristic optimization algorithms are

proposed to solve a wide range of real-life problems. For

example, nature-inspired algorithms mimic the biological,

physical, or environmental processes [5], [6]. Nature-inspired

algorithms are designed to mimic the biological, physical,

or environmental processes they are modeled after [7], [8].

The metaheuristic algorithms’ versatility and gradient-free

features consider black-box problems in addition to the

theoretical developments and significant advantages. The

resulting search space is not limited, making the algorithms

scalable for solving different problems. Real problems are

solved more effectively since solutions are not restricted to

locally optimal approaches. The metaheuristic algorithms

are applied in various fields and proved helpful [9], [10].

Metaheuristics have proved to be useful in various problems,

including this one [11]–[13].

The Economic Load Dispatch (ELD) plays an important

role in powering the electrical loads and reducing emissions

with the guarantee of meeting the equality and inequality

constraints [14]–[17]. Metaheuristic optimization algo-

rithms (MHs) performs relatively well on the ELD problem.

This work tests the performance of Gradient Based Opti-

mizer (GBO) in solving ELD and CEED. GBO is a new

metaheuristic inspired by the gradient based Newton method

involving Gradient search rule (GSR) and local escaping

operator (GEO). GBO has good balance between exploration

and exploitation.

This work uses a new met-heuristic algorithm called

Gradient-Based Optimizer (GBO) [18] was developed by

Ahmadianfar et al. in 2020, which was one of the most

promising algorithms for solving different variants of ELD.

GBO is a metaheuristic inspired by the gradient based New-

ton method involving Gradient search rule (GSR) and local

escaping operator (GEO). To evaluate various characteris-

tics of the GBO, 28 mathematical test functions were first

used and then six engineering problems were optimized

by the GBO. Moreover, the exploitative, exploratory, and

local optima avoidance of GBO was also investigated using

unimodal, multi-modal and composition problems. Finally,

the results show that GBO was capable of finding excel-

lent solutions compared to other well-regarded optimizers.

Also, the possibility of getting stuck in local optima and

premature convergence is rare in GBO. The performance

of GBO on ELD is tested for various scenarios such as

ELD with transmission losses, CEED, CEED with valve

point effect and for various test networks. The perfor-

mance of GBO is compared with compared with eight other

metaheuristic algorithms such as Slime mould algorithm

(SMA) [19], Elephant herding optimization (EHO) [20],

Monarch butterfly optimization (MBO) [21], Moth search

algorithm (MSA) [22], Earthworm optimization algorithm

(EWA) [23], Artificial Bee Colony (ABC) Algorithm [24],

Tunicate SwarmAlgorithm (TSA) [25] and ChimpOptimiza-

tion Algorithm (ChOA) [26].

The rest of the paper is organized as follows. Section III

elaborates the ELD problem, then an overview for the

Gradient-Based Optimizer (GBO) is presented in Section IV.

The obtained findings and discussion is introduced in

Section V. Finally, Section VI concludes the work.

II. RELATED WORK

An overview of metaheuristics used for solving the different

variants of ELD is as shown in Table 1. In [27], authors have

used CTO and ACTO to solve ELD as well as CEED. It was

observed that CTO performs better than other metaheuris-

tics such as TLBO, DE, GA, PSO etc. Dynamic ELD was

solved by hybrid PSO TCO [28]. The hybridization of PSO

and TCO favoured faster convergence and produced better

quality of solutions. The authors performed ELD considering

renewable resources [29]. Amodified version of BAwas used
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for solving the problem. In [30], a quantum inspired BA was

solved for using ELD. It was observed that the premature con-

vergence was avoided by the modified quantum inspired BA.

Dynamic ELD considering renewable sources was solved by

multiswarm PSO [31]. Quantum inspired BA was used for

solving ELD considering valve point effect [32]. In [33],

the authors utilized ACO to solve different variants of ELD.

Non-convex ELD was solved by ACS in [17]. The authors

have hybridized BA and FA for solving ELD and CEED

in [34]. A self-adaptive version of Jaya algorithm was used

for solving ELD in [34]. It was observed that the modified

version of Jaya algorithm performed better that the basis Jaya

algorithm and TLBO in solving the ELD problem. In [35],

the authors proposedMBS for solving CEEDwith valve point

effect. A drift mechanism in the self-adaptive version of PSO

was introduced and used for solving the ELD problem [36].

In [37], the authors proposed a hybrid ED SHO for

solving ELD.

In the same context, in [38], [39], WOA, and MFO were

used to solve different variants of ELD. In [40], ELD with

valve point effect was solved by using modified GWO.

In [41], ELD was solved by an improved version of

PSO with inertia weights factor. In [42], [43], AEF, and

ALO were used for solving ELD for a small-scale power

system. In [44] adaptive charged system search algorithm

is applied to solve EED of power systems. In [45], [46]

the authors have utilized improved version of PSO for solv-

ing ELD. Authors solved the ELD problem for 24-hour

load pattern by GWO [47]. An enhanced version of BA

for solving ELD was proposed in [48], [49]. In [50], mod-

ified ABC algorithm was used for solving non-smooth

dynamic ELD. A modified version of cultural algorithm hav-

ing a local search component for solving ELD and CEEDwas

proposed in [51]. A chaotic firefly algorithm having muta-

tion operator is used for solving ELD in case of large scale

power system having valve point effect and multiple fuel

options [52].

In [53], the dynamic ELD problem was solved by mod-

ified TLBO. In [54], smooth as well as non-smooth ELD

was solved by WCA. The ELD problem in presence of

wind power was attacked by hybrid BA [55]. In [56]–[58],

multi-area ELD was solved by SSA, FSA, and MFO

algorithm. In [59], the authors used an improved ver-

sion of TLBO for solving ELD problem considering dis-

tributed generation. A modified version of GWO was used

for solving non-convex ELD for current power system

scenario in [60]. In [61], dynamic ELD was solved by

hybrid GA PSO. LFA and SSA was used for solving

large scale dynamic ELD in [62], [63]. In [64], GWO was

used for solving ELD and CEED with valve point effect.

An improved version of DFA was used for solving ELD

considering demand response and renewable resources [65].

In [66]–[68], chaotic bat, modified social spider and FPA

algorithm was used for solving ELD. In [69] Levy flight

Moth-Flame optimizer is proposed to solve the ELD. A novel

parallel hurricane algorithmwas used to solve ELD as well as

CEED in [70]. An improved version of DE was used to solve

ELD with and without valve point effect in [71].

From Table 1, it is observed that metaheuristics such as

PSO, GA, BA, GWO are widely used by researchers in

solving different variants of ELD. Despite the availability and

use of different metaheuristics for solving ELD, researchers

are still proposing new and novel algorithms for its solution.

The primemotivation behind this is the No Free Lunch (NFL)

theorem [72]. NFL theorem states that a single algorithm does

not perform equally well on all the optimization problems.

Hence, it is justified to propose newmore efficient algorithms

and improve the existing algorithms.

III. ECONOMIC LOAD DISPATCH PROBLEM

ELD is one of the prime and complex problems of mod-

ern power system planning and operation. The objective of

ELD is to maximize the economic welfare of the power

system subject to certain operational constraints thereby opti-

mally allocating each production units and reducing the net

fuel cost consumption. The different variants of ELD is elab-

orated in this section.

A. ECONOMIC LOAD DISPATCH (ELD) WITH LOSSES

The mathematical formulation of ELD with losses is

explained in this section. For operating n generators, the over-

all fuel cost is:

Min(F) = F1 (P1) + · · ·Fn (Pn) (1)

where F is the overall fuel cost, F1 is the fuel cost of 1st

generator and Fn is the fuel cost of nth generator.

The fuel cost function is further approximated in quadratic

form as:

Min(F) =

n
∑

k=1

Fi (Pi) =

n
∑

k=1

akP
2
k + bkPk + ck (2)

where a, b, c are the weight constants of the fuel cost The

minimization of fuel cost is performed subject to constraints

given by equation (3) and (5)

n
∑

k=1

Pk − PD − PL = 0 (3)

where PD represents net demand of the network and

PL represents the transmission losses of the network

PL =

n
∑

i=1

n
∑

j=1

PiBijPj (4)

where Bij is the loss coefficient, Pi is the power generated at

ith generator, and Pj is the power generated at jth generator

Pmink ≤ Pk ≤ Pmaxk (5)

B. COMBINED ECONOMIC LOAD DISPATCH (CEED)

Stress has been laid on reduction of emission also in addition

to production cost. Hence, optimal allocation is done consid-

ering both cost and emission leading to Combined Economic
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TABLE 1. Recent research studies on ELD.
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and Emission Dispatch (CEED). In CEED, both economic

and emission dispatch are taken into consideration.

The emission dispatch problem is concerned with mini-

mization of the gases from power plants. Mathematically,

the emission factor is given by:

Min(E) =

n
∑

k=1

Ei(Pi) =

n
∑

k=1

αkP
2
k + βkPk + γk (6)

The objective function of the CEED problem is:

objective function = Min

(

n
∑

k=1

Ei(Pi) + he

n
∑

k=1

Fi(Pi)

)

(7)

where he is the price penalty factor as in equation 8:

he =
Fi(Pimax)

Ei(Pimax)
(8)

The optimization is performed subject to constraints given by

equations (3) and (5).

a: CEED WITH VALVE POINT EFFECT:

In modern era, steam turbines have multiple valves causing

valve point effect. The valves make the cost function nonlin-

ear as in equation 9:

Min(F) =

n
∑

k=1

Fi =

n
∑

k=1

akP
2
k + bkPk + ck

+ |ek sin(fk × (Pkmin − Pk ))| (9)

where ek and fk are the coefficients reflecting valve point

effect of kth generator. The optimization is concerned with

minimization of both cost and emission subject to constraints

as in equations (3) and (5).

IV. GRADIENT-BASED OPTIMIZER (GBO)

Researchers have invented the GBO metaheuristic algo-

rithm which mimics the population-based and gradient-based

methods [18]. To explore the search space for a set of search

metrics, Newton’s approach is utilized. The main steps of

GBO are as follows:

A. THE INITIALIZATION PROCESS

In GBO, the control parameters (α) and probability rate

are used to balance and switch from the exploration to

exploitation. Population and iterations numbers are related

to the problem’s complexity. In GBO, the vector of

N vectors in D-dimensional space can be described. The

initial vectors for the GBO are usually randomly generated

in the D-dimensional search space.

Xn = Xmin + rand(0, 1) × (Xmax − Xmin) (10)

where Xmin, and Xmax are the bounds of decision variables X,

and rand(0, 1) is a random number in [0, 1].

B. GRADIENT SEARCH RULE (GSR) PROCESS

In GBO algorithm, a significant factor ρ is employed to

achieve balanced exploration of significant search space

regions while still achieving near optimum and global

points.The ρ is employed as follows:

ρ1 = 2 × rand × α − α (11)

α =

∣

∣

∣

∣

β × sin

(

3π

2
+ sin

(

β ×
3π

2

))
∣

∣

∣

∣

(12)

β = βmin + (βmax − βmin) ×

(

1 −

( m

M

)3
)2

(13)

where; βmin is a constant value of 0.2 and βmax is a con-

stant value of 1.2, while m represents the current iteration

number, while M represents the total number of iterations.

The parameter ρ1 is responsible to balance the exploration

and exploitation based on the sine function. This parameter

value changes during optimization iterations, beginning at a

large value to facilitate wider variety, then decreasing over

the iterations to speed up convergence. The parameter value

increases through defined iterations within a range. This

increases diversity in solutions, and allows the algorithm to

explore multiple solutions to the problem. Described above,

the GSR can be calculated as follows:.

GSR = randn× ρ1 ×
21x × xn

(xworst − xbest + ε)
(14)

The GBO algorithm uses a random behavior to create

a randomized exploration mechanism that includes finding

local optima. In Equation (14), it is specified the random

offset that deals the difference between the best solution

(xbest ) and a randomly selected solution xmr1 The meaning 1x

of the variable is altered by iterations due to the following

equation. (17). Additionally another random number (randn)

is included to allow for exploration as follows:

1x = rand(1 : N ) × | step | (15)

step =

(

xbest − xmr1
)

+ δ

2
(16)

δ = 2 × rand×

(∣

∣

∣

∣

xmr1 + xmr2 + xmr3 + xmr4
4

− xmn

∣

∣

∣

∣

)

(17)

where rand(1 : N ) is a random vector of N elements in the

range of ∈ [0, 1].

The four randomly selected integers are r1, r2, r3, and r4

such that (r1 6= r2 6= r3 6= r4 6= n). step represents a phase

scale, which is quantified by xbest and x
m
r1.

To achieve convergence, directional movement is

employed in order to converge across the solution field xn.

In order to provide a convenient local search tendency with a

major effect on GBO convergence, the term DM uses the best

vector from a set of candidate vectors and transfers the current

vector (xn) in the direction of the best vector (xbest − xn) and

is computed as follows:

DM = rand × ρ2 × (xbest − xn) (18)

where, rand is a uniform distributed number within range ∈

[0, 1], a function of two parameters, and ρ2 is a random
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FIGURE 1. Friedman rank test for case 1.

TABLE 2. Parameter settings of GBO and all other competed algorithms.

TABLE 3. Test cases.

parameter employed to adjust phase size of each vector agent,

besides the ρ2 parameter considers of significant parameters

of the GBO exploration process. This is how the ρ2 parameter

is computed:

ρ2 = 2 × rand × α − α. (19)

Finally, based on the words GSR and DM, Eq. 20 and 21

are modified based on the current vector location (xmn ).

X1mn = xmn −GSR+ DM (20)

where, X1mn is the modified vector resulting from

modifying X1mn . According to (13), (18), the transformation

of X1mn can be defined as:.

X1mn = xmn − randn× ρ1 ×
21x × xmn

(

ypmn − yqmn + ε
)

+ randn× ρ2 ×
(

xbest − xmn
)

(21)

TABLE 4. Statistical results for fitness function of case 1.

TABLE 5. Best costs of case 1 at various demand setting in $ per hour.

where ypmn , yqmn are equal to yn + 1x, and yn − 1x, yn vector

is equal to the average of two vectors: current solution xn,

and zn+1.

zn+1 = xn−randn×
21x × xn

(xworst − xbest + ε)
(22)

although xn is current solution vector, randn is a random

solution vector of dimension n, xworst and xbest represent best

and worst solutions, and 1x is given by equation.(15).

Taking the previous formula and substituting current solu-

tion vector xmn with new solution vector xbest in it, we get

current solution vector X2mn .

X2mn = xbest − randn× ρ1 ×
21x × xmn

(

ypmn − yqmn + ε
)

+ randn× ρ2 ×
(

xmr1 − xmr2
)

(23)

The GBO algorithm aims to improve discovery and

exploitation by making each more profitable than the next

using using Eq. (21). To help the global search on the dis-

covery process and to boostEq. (23) is used to boost the

exploitation process of the local search. Finally, a new version

of the solution is found as follows

xm+1
n = ra ×

(

rb × X1mn + (1 − rb) × X2mn
)

+ (1 − ra) × X3mn (24)
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TABLE 6. Allocation vector at best fitness function using all algorithms for case 1 at 700 MW load demand.

TABLE 7. Allocation vector at best fitness function using all algorithms for case 1 at 1000 MW load demand.

TABLE 8. Allocation vector at best fitness function using all algorithms for case 1 at 1200 MW load demand.

FIGURE 2. Robustness curves for all algorithms for case 1 at 700 MW load demand.

where ra, and rb are random numbers determined in range

[0, 1], and X3mn is defined as:

X3mn = Xm+1
n − ρ1 × (X2mn − X1mn ) (25)

C. THE LOCAL ESCAPING OPERATOR (LEO) PROCESS

The LEO is implemented to add extra power to an optimiza-

tion algorithm by helping to solve tricky engineering prob-

lems. The LEO operator helps the algorithm to quickly switch

out of local optima points to speed up the convergence of the

algorithm. To build a new solution with a superior efficiency,

the LEO operator targets (XmLEO), by many solutions (Xbest
best solution, the solutions X1mn ,X1mn are randomly selected

from population, Xmr1,X1
m
r2 randomly generated solutions),

so that the current solution can effectively be modified,

the procedure is performed based on a scheme that is as

follows:.

If rand < pr

XmLEO =







































Xm+1
n + f1

(

u1xbest − u2x
m
k

)

+ f2ρ1
(

u3
(

X2mn − X1mn
))

+ u2
(

xmr1 − xmr2
)

/2, if rand < 0.5

Xm+1
n + f1

(

u1xbest − u2x
m
k

)

+ f2ρ1
(

u3
(

X2mn − X1mn
))

+ u2
(

xmr1 − xmr2
)

/2, otherwise

(26)

End

where pr is a probability value, pr = 0.5, the values f1,

and f2 are uniform distribution random numbers ∈ [−1, 1],
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FIGURE 3. Convergence curves for all algorithms for case 1 at 700 MW load demand.

FIGURE 4. Robustness curves for all algorithms for case 1 at 1000 MW load demand.

FIGURE 5. Convergence curves for all algorithms for case 1 at 1000 MW load demand.

and u1, u2, u3 are random values generated as following:

u1 =

{

2 × rand if µ1 < 0.5

1 otherwise
(27)

u2 =

{

rand if µ1 < 0.5

1 otherwise
(28)

u3 =

{

rand if µ1 < 0.5

1 otherwise
(29)
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FIGURE 6. Robustness curves for all algorithms for case 1 at 1200 MW load demand.

FIGURE 7. Convergence curves for all algorithms for case 1 at 1200 MW load demand.

where rand is a random number between 0 and 1, while mu1
is an arbitrary value from the interval [0, 1].

The previous equations for u1, u2, u3, can be explained as

follow:

u1 = L1 × 2 × rand + (1 − L1) (30)

u2 = L1 × rand + (1 − L1) (31)

u3 = L1 × rand + (1 − L1) (32)

where L1 is a binary parameter take value 0, 1, such as if

parameter µ1 < 0.5, then value of L1 = 1, otherwise L1 = 0.

where the solution xmk is generated as follow:

xmk =

{

xrand if µ2 < 0.5

xmp otherwise
(33)

xrand is a random generated solution according to following

formula:

xrand = Xmin + rand(0, 1) × (Xmax − Xmin) (34)

and xmp is a random selected solution from population,

µ2 is a random number ∈ [0, 1]. For more details about

GBO see [18].

FIGURE 8. Friedman rank test for case 2.

V. EXPERIMENTAL RESULTS AND NUMERICAL ANALYSIS

The performance of GBO on different variants of GBO is

compared with other metaheuristics such as; Slime mould

algorithm (SMA) [19], Elephant herding optimization (EHO)
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FIGURE 9. Robustness curves for all algorithms for case 2 at 700 MW load demand.

FIGURE 10. Convergence curves for all algorithms for case 2 at 700 MW load demand.

FIGURE 11. Robustness curves for all algorithms for case 2 at 1000 MW load demand.

[20], Monarch butterfly optimization (MBO) [21], Moth

search algorithm (MSA) [22], Earthworm optimization algo-

rithm (EWA) [23], Artificial Bee Colony (ABC) Algo-

rithm [24], Tunicate Swarm Algorithm (TSA) [25] and

Chimp Optimization Algorithm (ChOA) [26]. The compar-

ison results are reported in this section.

The obtained results of the proposed GBO as well as

the considered competitor algorithms to solve the Economic
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FIGURE 12. Convergence curves for all algorithms for case 2 at 1000 MW load demand.

FIGURE 13. Robustness curves for all algorithms for case 2 at 1200 MW load demand.

FIGURE 14. Convergence curves for all algorithms for case 2 at 1200 MW load demand.

Load Dispatch (ELD) problems.All the experiments are

implemented by coded through MATLAB R2016a and exe-

cuted on Intel(R) Core i7 CPU- 2.80 GHz with 8 GB RAM

and operating system (Windows 10).

A. PARAMETER SETTINGS

For fair comparison, the algorithms are tested with the fol-

lowing settings: population sizeN = 30, maximum iterations

tmax = 1000, and number of independent runs is 30 for all the
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FIGURE 15. Convergence curves for all algorithms for case 3 at 2000 MW load demand.

FIGURE 16. Robustness curves for all algorithms for case 3 at 2000 MW load demand.

TABLE 9. Statistical results for fitness function of case 2.

experiments. Table 2 reported the parameters setting of each

algorithm.

TABLE 10. Costs at the best fitness function for case 2 at all various
demand.

B. COMPARISON OF GBO WITH TSA AND CHOA

The comparison results of GBO with TSA and ChOA is

reported in this section. The analysis is done for the test

cases as shown in Table3. The ELD problem is solved for

all the test cases reported in Table 3. Table 4 reports the

best, worst, average fitness function obtained by the three

aforesaid algorithms. Table 5 reports the best fuel cost for

case 1 at various demand setting. The superior performance

of GBO is clear from the obtained result. Figure 1 shows

the Friedman rank of the three algorithms. It is observed that

GBO has obtained the best rank followed by TSA for case 1.

Table 6 to Table 8 reports the allocation vector obtained by
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TABLE 11. Allocation vector at best fitness function using all algorithms for case 2 at 700 MW load demand.

TABLE 12. Allocation vector at best fitness function using all algorithms for case 2 at 1000 MW load demand.

TABLE 13. Allocation vector at best fitness function using all algorithms for case 2 at 1200 MW load demand.

TABLE 14. Statistical results for fitness function of case 3.

TABLE 15. Costs at the best fitness function for case 3 at 2000 MW load
demand.

the aforesaid algorithm for demand 700 MW, 1000 MW,

and 1200 MW respectively. Figure 2, Figure 4, Figure 6

shows the robustness curve of case 1 for demand 700 MW,

1000 MW, and 1200 MW respectively. It is observed that

GBO produces uniform solutions for different runs as com-

pared to other algorithms. Figure 3, Figure 5, Figure 7

shows the convergence curve for case 1 in case of different

demand.

The best, worst, average value of fitness function for

case 2 is reported in Table 9. It is observed that GBO

performs well as compared to other algorithms. Table 10

reports the fuel cost and emission for case 2 obtained by the

three algorithms. It is observed that GBO maintains a good

balance between cost and emission. Figure 8 shows the

Friedman rank obtained for case 2. It is observed that GBO

has obtained the best rank followed by ChOA. Table 11,

Table 13, and Table 13 reports the allocation vector for

demand 700 MW, 1000 MW, and 1200 MW respectively.

Further, the convergence and robustness of GBO is compared

with TSA and ChOA. Figure 9, Figure 11, Figure 13 shows

the robustness curve of case 2 with load demand 700 MW,

1000 MW, and 1200 MW respectively. Figure 10, Figure 12,

Figure 14 shows the convergence curve of case 2 with load

demand 700MW, 1000MW, and 1200MW respectively. It is

observed that in case of GBO a faster convergence towards the

optima is favoured.

The best, worst, average value of fitness function for case 3

is as shown in Table 14. The superior performance of GBO

is prominent from the results reported in Table 14. Table 15

reports the fuel cost and emission for case 3 obtained by the

three algorithms with and without valve point effect. Table 16

reports the allocation vector for case 3. Further, the conver-

gence and robustness of GBO is compared with TSA and

ChOA. Figure 15 and Figure 16 shows the convergence and

robustness curve for case 3 respectively.

C. COMPARISON OF GBO WITH CTO AND ITS VARIANTS

The performance of GBO is compared with CTO and its

variants in solving case 3 of Table 3. The results of CTO and

its variants are taken from ref [27] and the ELD problem is

solved by GBO with the same general parameter setting as
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TABLE 16. Allocation vector at best fitness function using all algorithms for case 3 at 2000 MW load demand.

TABLE 17. Comparison of GBO with CTO and its variants.

TABLE 18. Comparison of GBO with DE, PDE and MODE.

TABLE 19. Comparison of GBO with NSGA-II and SPEA-2.

in ref [27]. The comparison results are as shown in Table 17.

It is observed GBO is the second-best performing algorithm.

D. COMPARISON OF GBO WITH DE AND ITS VARIANTS

The performance of GBO is compared with DE and its vari-

ants in solving case 3 of Table 3. The results of DE and

its variants are taken from ref [76] and the ELD problem is

solved by GBO with the same general parameter setting as in

ref [76]. The comparison results are as shown in Table 18. It is

observed that GBO performs better than PDE and MODE in

terms of cost. And, GBO performs better than DE andMODE

in terms of emission.

E. COMPARISON OF GBO WITH NSGA-II AND SPEA-2

The performance of GBO is compared with NSGA II and

SPEA 2 in solving case 3 of Table 3. The results of NSGA-II

and SPEA-2 are taken from ref [76] and the ELD problem is

solved by GBO with the same general parameter setting as

in ref [76]. The comparison results are as shown in Table 19.

It is observed that GBO performs better than SPEA 2 and

NSGA II in terms of cost. Also, GBO performs better than

NSGA II in terms of emission.

VI. CONCLUSION AND FUTURE WORK

ELD is one of the complex problems of power system.

This work tests the performance of gradient based opti-

mization (GBO) in solving different variants of ELD such

as ELD with losses, CEED, and CEED considering valve

point effect. GBO is a metaheuristic inspired by the gradient

based Newton method involving Gradient search rule (GSR)

and local escaping operator (GEO). GBO has good balance

between exploration and exploitation. Also, the possibility

of getting stuck in local optima and premature conver-

gence is rare in GBO. The performance of GBO is com-

pared with eight other metaheuristic algorithms such as

Slime mould algorithm (SMA), Elephant herding optimiza-

tion (EHO), Monarch butterfly optimization (MBO), Moth

search algorithm (MSA), Earthworm optimization algorithm

(EWA), Artificial Bee Colony (ABC) Algorithm, Tunicate

Swarm Algorithm (TSA) and Chimp Optimization Algo-

rithm (ChOA). In addition, GBO is evaluated against other

existing studies in the literature such as Differential evolution

(DE), Class Topper Optimization (CTO), Non Dominated

Sorting GA (NSGA-II), and Strength pareto evolutionary

algorithm 2 (SPEA-2) for different demands. It is observed

that GBO performs relatively well as compared to the afore-

said algorithms. Further, it is seen that GBO has good balance

between exploration and exploitation and the possibility of

getting stuck in local optima and premature convergence is

rare in GBO. Our future work will focus on:

• Performance of GBO on dynamic ELD considering

renewable resources

• Performance of GBO on other power system problems

such as unit commitment, optimal load flow

• Hybridization of GBO with other metaheuristics for

solving power system optimization problems

In the future studies, the GBO can be a good candidate to

solve the problems in renewable energy for instance solar cell

systems. Due to the great performance of the GBO, future

work may extend to solve various single and multi-objective

optimization problems in different fields.
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