
Recent Models and Algorithms for One-to-One

Pickup and Delivery Problems

by

Jean-François Cordeau1

Gilbert Laporte2

Stefan Ropke2

November 2006

1Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000, chemin de la Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7

cordeau@crt.umontreal.ca
2Canada Research Chair in Distribution Management, HEC Montréal, 3000, chemin de la Côte-Sainte-

Catherine, Montréal, Canada H3T 2A7

{gilbert,sropke}@crt.umontreal.ca

Abstract

In one-to-one Pickup and Delivery Problems (PDPs), the aim is to design a set of least

cost vehicle routes starting and ending at a common depot in order to satisfy a set of

pickup and delivery requests between location pairs, subject to side constraints. These

requests apply to the transportation of goods or people, in which case the problem is

often called the dial-a-ride problem. In recent years, there have been several significant

developments in the area of exact and heuristic algorithms for PDPs. The purpose of

this article is to report on these developments. It contains two main sections devoted to

single vehicle and multi-vehicle problems, respectively. Each section is subdivided into

two parts, one on exact algorithms and one on heuristics.

Key Words: Pickup and delivery, one-to-one, dial-a-ride, branch-and-cut, column gen-

eration, tabu search.

1 Introduction

In one-to-one Pickup and Delivery Problems (PDPs), the aim is to design a set of least cost

vehicle routes starting and ending at a common depot in order to satisfy a set of pickup

and delivery requests between location pairs, subject to side constraints. These problems are

called “one-to-one” because each request originates at one location and is destined to one other

location (see Hernández-Pérez and Salazar-González, 2004). In some contexts, like in courier

services, these requests apply to the transportation of goods, whereas in other contexts, like

in dial-a-ride problems (DARPs), they apply to the transportation of people.

Formally, PDPs are defined on a directed graph G = (V,A), where V is the vertex set and

A is the arc set. The vertex set is partitioned into {P,D, {0, 2n + 1}}, where P = {1, . . . , n}
is a set of pickup vertices, D = {n + 1, . . . , 2n} is a set of corresponding delivery vertices,

and {0, 2n + 1} contains two copies of the depot, serving as the starting and ending points of

m vehicle routes. The set of vehicles is denoted by K = {1, . . . ,m}, and Qk is the capacity

of vehicle k. The arc set is defined as A = {(i, j) : i = 0, j ∈ P, or i, j ∈ P ∪ D, i 6= j and

i 6= n + j, or i ∈ D, j = 2n + 1}.
With each arc (i, j) are associated a travel time tij and a travel cost cij , or ck

ij if one

wishes to stress that the cost is vehicle-dependent. The maximum allowed duration of the

route traveled by vehicle k is denoted by Tk. With each vertex i ∈ V are associated a load

qi and a service duration di satisfying q0 = q2n+1 = 0, qi > 0 for i ∈ P , qi = −qi−n for

i ∈ D, di ≥ 0 for i ∈ P ∪ D, and d0 = d2n+1 = 0. A time window [ei, ℓi] is associated

with each vertex i ∈ V , where ei and ℓi are the earliest and latest time service may start at

vertex i. In passenger transportation, it is common to impose a ride time limit L equal to

the maximum time a passenger may spend in the vehicle. The problem consists of designing

m vehicle routes of least total cost, starting and ending at the depot, in order to perform all

delivery requests subject to the following constraints: vertex i is visited before vertex n + i

(precedence), and both of these vertices are visited by the same vehicle (pairing), each vertex

is visited within its time window, vehicle capacities are never exceeded, and in some contexts,

ride time constraints are satisfied.

Applications of PDPs to goods transportation have been described by Shen et al. (1995)

in the context of courier services, and by Fisher and Rosenwein (1989), Christiansen and

Nygreen (1998a,b) and Brønmo et al. (2007) in the context of bulk product transportation

by ship, a sector in rapid expansion. Solanki and Southworth (1991) and Rappoport et al.

(1992, 1994) have studied PDP applications to military airlift planning. Dial-a-ride planning

1

systems have been described by a number of authors. Madsen et al. (1995) have constructed

a system capable of handling in a dynamic fashion 50,000 requests per year in the city of

Copenhagen. Toth and Vigo (1996, 1997) have developed a parallel insertion heuristic which

has been applied to a complex DARP involving taxis and minibuses in Bologna. Borndörfer

et al. (1997) have proposed a set partitioning based heuristic which can solve a problem

containing between 1,000 and 1,500 transportation requests per day in Berlin. More recently,

Rekiek, Delchambre and Saleh (2006) have developed a genetic algorithm for the DARP and

have tested their system on real data provided by the City of Brussels. This instance contains

164 requests and 18 vehicles. An important DARP variant is the dial-a-flight problem, faced

by about 3,000 businesses offering charter flight services in the United States (Cordeau et al.,

2007). Recent survey articles on the PDP and its applications are those of Desaulniers et al.

(2002), Cordeau and Laporte (2003a), Cordeau et al. (2007), and Berbeglia et al. (2007).

The early research efforts on PDPs can be traced back to the work of Wilson et al.

(1971, 1976) who developed scheduling algorithms for the DARP. Since then several exact

and heuristic algorithms have been proposed for PDPs associated with the transportation of

goods or people. Significant progress has occurred in the past five years, with the development

of new exact and approximate algorithms for several types of PDPs. These exact algorithms

employ decomposition techniques such as branch-and-cut and branch-and-cut-and-price, while

the new heuristics are based on tabu search, simulated annealing and variable neighbourhood

search. While all these algorithmic techniques have now been known for some time, their

massive application to PDPs is significant and has enabled researchers to break new grounds

in the difficulty and size of problems that can be tackled. Our aim is to report on these new

and exciting developments.

This article contains two main sections devoted to single vehicle and multi-vehicle prob-

lems, respectively. Each section is subdivided into two parts, one on exact algorithms and

one on heuristics. Conclusions follow.

2 Single vehicle pickup and delivery problems (SVPDPs)

While most routing problems arising in practice involve several vehicles, the single vehicle

case is instrumental in developing insights into the problem structure and in putting forward

new algorithmic concepts. As a case in point, several exact and approximate algorithms for

the Classical Vehicle Routing Problem (VRP) (see, e.g., Toth and Vigo 2002), are rooted

in concepts that were first developed for the Traveling Salesman Problem (TSP), (see, e.g.,

2

Lawler et al. 1985). In the same vein, all known algorithmic approaches for single-vehicle

PDPs stem from TSP algorithms.

2.1 Exact algorithms for the SVPDP

The first algorithms developed for the SVPDP and its variants, including the Traveling

Salesman Problem with Precedence Constraints (TSPPC), were based on branch-and-bound

(Kalantari, Hill and Arora, 1985), dynamic programming (Desrosiers, Dumas and Soumis,

1986; Bianco, Mingozzi and Ricciardelli, 1994), and branch-and-cut (Balas, Fischetti and

Pulleyblank, 1995). In addition, Fischetti and Toth (1989) have developed an additive lower

bounding procedure which can be embedded within a branch-and-bound framework, and have

applied this methodology to the solution of the TSPPC.

2.1.1 A branch-and-cut algorithm for the SVPDP

The most popular methodology for the solution of the SVPDP is now branch-and-cut. The

two key components of this method are the generation of valid inequalities and the design

of separation procedures. Our emphasis is on the modeling aspects. Recent branch-and-cut

algorithms for single vehicle PDPs are rooted in the work of Ruland (1994) and Ruland and

Rodin (1997). These authors have considered the undirected case, i.e., when the problem is

defined on a graph G = (V,E) where E = {(i, j) = (j, i) : i, j ∈ V, i < j} is an edge set, and

the solution is a Hamiltonian cycle.

In addition to the notation already introduced, define S̄ = V \S for S ⊆ V , π(S) = {i ∈
P : n + i ∈ S} as the set of predecessors of S ⊆ V \{0}, and σ(S) = {i ∈ D : i − n ∈ S} as

the set of successors of S ⊆ V \{2n + 1}. Let δ(S) = {(i, j) : i ∈ S, j /∈ S} be the set of edges

with exactly one end-vertex in S ⊆ V . For simplicity, we write δ(i) instead of δ({i}). For

S, T ∈ V , let (S : T) = {(i, j) : i ∈ S, j ∈ T} be the set of edges with one end-point in S, and

one in T . The single-vehicle PDP can be formulated with binary variables xij equal to 1 if

and only if edge (i, j) belongs to the optimal cycle. For E′ ⊆ E, let x(E′) =
∑

(i,j)∈E′

xij; for

S ⊆ V , let x(S) =
∑

i,j∈S
xij. We write x(S : T) instead of x ((S : T)). The model proposed by

Ruland is then as follows.

3

(SVPDP)

Minimize

2n
∑

i=0

2n+1
∑

j=i+1

cijxij (1)

subject to x0,2n+1 = 1 (2)

x(δ(i)) = 2 (i ∈ V) (3)

x(S : S̄) ≥ 2 (S ⊂ V) (4)

x(U : Ū) ≥ 4 (U ∈ U) (5)

xij = 0 or 1 ((i, j) ∈ E) , (6)

where U is the collection of all sets U ⊂ P ∪D satisfying 3 ≤ |U | ≤ |V |−2, 0 ∈ U , 2n+1 /∈ U

and there exists i ∈ P\U with n + i ∈ U . In this model, (3) are the degree constraints, (4)

are the connectivity constraints, and (5) are the precedence constraints. Indeed, any feasible

solution must contain a chain between each of the following four vertex pairs: 0 and i, i and

n + i, n + i and 2n + 1, 2n + 1 and 0, and each of these chains contains an edge connecting

U and Ū . This model can be reinforced through the introduction of valid inequalities. Each

family of valid inequalities gives rise to another family by interchanging the roles of pickup

and delivery vertices, and the roles of the two depots.

Generalized order constraints (Ruland and Rodin, 1997)

Let S1, . . . , Sh ⊂ P ∪ D be disjoint sets such that Si ∩ σ(Si+1) 6= ∅ (i = 1, . . . , h), where

Sh+1 = S1. Then the inequality

h
∑

i=1

x(Si) ≤
h

∑

i=1

|Si| − h − 1 (7)

is valid for the SVPDP.

Similar constraints called precedence cycle breaking inequalities, were proposed by Balas,

Fischetti and Pulleyblank (1995).

4

Order-matching constraints (Ruland and Rodin, 1997; Dumitrescu et al., 2006)

For i1, . . . , ih ∈ P and H ⊆ (P ∪ D)\{n + i1, . . . , n + ih} such that {i1, . . . , ih} ⊆ H, then

the inequality

x(H) +

h
∑

j=1

xij ,n+ij ≤ |H| (8)

is valid for the SVPDP.

Ruland and Rodin (1997) proved this result for h even. Dumitrescu et al. (2006) have

shown that it also holds for h odd.

Generalized order matching constraints (Cordeau, 2006)

For i1, . . . , ih ∈ P,H ⊆ V \{0, 2n + 1}, Tj ⊂ P ∪ D (j = 1, . . . , h) such that {ij , n + ij} ⊆
Tj, Ti ∩ Tj = ∅ (i 6= j) and H ∩ Tj = {ij} (j = 1, . . . , h), the inequality

x(H) +
h

∑

j=1

x(Tj) ≤ |H| +
h

∑

j=1

|Tj | − 2h (9)

is valid for the SVPDP.

Constraints (9), which generalize (8), were proved by Cordeau in the context of the DARP

but they also apply to the SVPDP.

σ-inequalities (Balas, Fischetti and Pulleyblank, 1995)

For S ⊆ V \{0}, the inequality

x
(

S\σ(S) : S̄\σ(S)
)

≥ 1 (10)

is valid for the SVPDP.

These inequalities were introduced by Balas, Fischetti and Pulleyblank (1995) in the

context of the TSPPC.

Lifted subtour elimination constraints (Dumitrescu et al., 2006)

Let S ⊆ P ∪ D be such that there exists i ∈ P such that i ∈ S, n + i ∈ S. Then the

inequality

5

x(S) +
∑

j∈P∩S,n+j∈S̄

xi,n+j ≤ |S| − 1 (11)

is valid for the SVPDP.

Dumitrescu et al. (2006) also prove the following generalization of (11).

Generalized lifted subtour elimination constraints (Dumitrescu et al., 2006)

Let S ⊂ P ∪ D be such that there exists i ∈ P ∩ S with n + i ∈ S. Let Tk ⊂ P ∪ D,

k = 1, . . . , p, be p sets such that there exists ik ∈ P ∩ S and n + ik ∈ Tk, Tk ∩ S = {i} for

k = 1, . . . , p, and Tj ∩ Tk = {i} for all j, k = 1, . . . , p, j 6= k. Then the inequality

x(S) +

p
∑

k=1

x(Tk) ≤ |S| − 1 +

p
∑

k=1

(|Tk| − 2) (12)

is valid for the SVPDP.

Terminal inequalities (Dumitrescu et al., 2006)

Let S ⊂ V and T ⊂ D be such that 0 ∈ S, 2n + 1 ∈ S̄, S ∩T = ∅ and π(T)∩S = ∅. Then

the inequality

2x(S) + x(S : T) ≤ 2(|S| − 1) (13)

is valid for the SVPDP.

Dumitrescu et al. (2006) also provide a number of other more complicated valid inequalities

for the SVPDP. It is worth noting that constraints (7) are not in general facet defining for

the SVPDP polytope, constraints (8) are facet defining for H = {i1, . . . , ih}, and precedence

constraints (5) are sometimes facet defining.

The branch-and-cut algorithm of Dumitrescu et al. (2006) embeds exact separation pro-

cedures for constraints (4) and (5) (Ruland and Rodin, 1997), as well as exact separation

procedures for constraints (7) with h = 2, for constraints (8) with h = 2 or 3, and for con-

straints (11). It also contains heuristic separation procedures for constraints (7) with h ≥ 3,

and for constraints (9), (10), (12) and (13).

The algorithm was run on an AMD Opteron 250 computer (2.4 GHz) running Linux,

using CPLEX 10.0 and the Concert library. It was tested on random instances with vertices

generated in [0, 1000]2 , and containing between 5 and 30 requests (between 12 and 62 vertices),

6

as well as on the Renaud, Boctor and Laporte (2002) instances which were adapted from some

TSPLIB instances (Reinelt, 1991), and contain up to 50 requests. Results show that the lower

bound at the root of the search tree after the generation of connectivity constraints (4) and

precedence constraints (5) is on average over 85% of the optimal solution value. Generating

valid inequalities (7) to (13) closes between 47% and 74% the residual gap, depending on the

type of instances. The largest instance solved to optimality within two hours of computing

time contain 30 requests (62 vertices).

2.1.2 A branch-and-cut algorithm for the SVPDP with LIFO constraints

An interesting variant of the SVPDP arises when a last-in-first-out (LIFO) rule is imposed

on the pickup and delivery operations. This means that when a load is picked up, it is

placed on top of a stack and can only by unloaded when it is in that position. This problem,

abbreviated as SVPDPL, was recently modeled and solved by Cordeau et al. (2006). It arises

naturally in the transportation of heavy or fragile goods which are loaded linearly into a

vehicle equipped with a single back door. Levitin and Abezgaouz (2003) describe another

application encountered in the operations of multi-load automated guided vehicles operating

in a LIFO fashion. The first exact algorithms proposed for this problem used branch-and-

bound (Pacheco, 1995).

The structure of a feasible SVPDPL solution (i1 = 0, i2, . . . , i2n+2 = 2n+1) is such that if

the solution is arranged on a line, and the origin of each request is linked to its destination by

an arc, then no arcs will cross. Put differently, if vertex n + i is relabeled i, then the solution

consists of nested palindromes.

Cordeau et al. (2006) have proposed three formulations for the SVPDPL. We only report

the third one which is the most compact in terms of the decision variables, and also yields

the best performance. Because the SVPDPL is naturally directed, it is defined on a graph

G = (V,A), where A = {(i, j) : i, j ∈ V, i 6= j} is the arc set. Binary variables xij take the value

1 if and only if arc (i, j) belongs to the optimal circuit. The sets δ+(i) = {(i, j) : j ∈ V \{i}}
and δ−(i) = {(j, i) : j ∈ V \{i}} contain the arcs leaving and entering i, respectively.

(SVPDPL)

Minimize
∑

i∈V

∑

j∈V

cijxij (14)

subject to x(δ+(i)) = 1 (i ∈ V \{2n + 1}) (15)

7

x(δ−(i)) = 1 (i ∈ V \{0}) (16)

x(S) ≤ |S| − 1 (S ⊆ P ∪ D, |S| ≥ 2) (17)

x(S) ≤ |S| − 2 (S ∈ U) (18)

x(i : S) + x(S) + x(S : n + i) ≤ |S| (S ∈ W, i, n + i /∈ S, i ∈ P) (19)

xij = 0 or 1 ((i, j) ∈ A) , (20)

where W is the collection of all subsets S ⊂ P ∪D for which at least one request (j, n + j) is

such that j ∈ S and n+j /∈ S, or j /∈ S and n+j ∈ S, and U has been defined in Section 2.1.1.

In this model, constraints (15) and (16) are degree constraints, while connectivity, precedence

and LIFO restrictions are enforced through constraints (17), (18), and (19), respectively.

Since the SVPDPL is a restriction of the SVPDP, any inequality valid for the SVPDP

is also valid for the SVPDPL. In addition, Cordeau et al. (2006) show that the following

inequalities are valid for the SVPDPL.

Incompatible successor inequalities (Cordeau et al., 2006)

Let Sn+j(i, j) = {n + i} ∪ (P\{i}) be the set of possible successors of vertex n + j if arc

(i, j) is used. Then the inequalities

xij +
∑

ℓ/∈Sn+j(i,j)

xn+j,ℓ ≤ 1 (i, j ∈ P, i 6= j) (21)

are valid for the SVPDPL.

Incompatible predecessor inequalities (Cordeau et al., 2006)

Similarly, let Pi(n + i, n + j) = {j} ∪ (D\{n + j}) be the set of possible predecessors of

vertex i if arc (n + i, n + j) is used. Then the inequalities

xn+i,n+j +
∑

ℓ/∈Pi(n+i,n+j)

xℓi ≤ 1 (i, j ∈ P, i 6= j) (22)

are valid for the SVPDPL.

8

Hamburger inequalities (Cordeau et al., 2006)

The inequality

xij + xn+i,n+j + xn+j,i + xn+i,j ≤ 1 (i, j ∈ P, i 6= j) (23)

is valid for the SVPDPL. Also, let k ≥ 3 and consider an ordered subset of requests defined

by the indices {i1, . . . , ik}, where ik+1 = i1 and i0 = k. Then the inequality

k
∑

j=1

xij ,ij+1
+

k
∑

j=1

xn+ij ,n+ij+1
+

k
∑

j=1

xn+ij ,ij−1
≤ k − 1 (24)

is valid for the SVPDPL.

Incompatible path inequalities (Cordeau et al., 2006)

Let Pij be the arc set of a path from i to j not containing vertex n + i. Similarly, let

Pn+i,n+j be the arc set of a path from n + i to n + j. Then the inequality

∑

(h,k)∈Pij

xhk +
∑

(h,k)∈Pn+i,n+j

xhk ≤ |Pij | + |Pn+i,n+j| − 1 (25)

is valid for the SVPDPL.

Cordeau et al. (2006) have devised a branch-and-cut algorithm for the SVPDPL, incor-

porating these inequalities. Exact procedures are used for the separation of constraints (17),

(18), and (19), while heuristics are used for the remaining valid inequalities. The algorithm

was tested on the 36 benchmark instances of Carrabs, Cordeau and Laporte (2006) containing

at most 25 requests (52 vertices). Twenty-nine of these instances could be solved to optimality

within an hour on a Pentium IV 3 GHz, using CPLEX 9.0 as ILP solver. The percentage gap

at the root was only 1.82%.

2.2 A variable neighbourhood search heuristic for the SVPDPL

Carrabs, Cordeau and Laporte (2006) have developed a variable neighbourhood search (VNS)

heuristic for the SVPDPL. This technique, put forward by Mladenović and Hansen (1997), is

a local search framework in which the neighbourhood structure is allowed to vary during the

search.

9

The search procedure applies eight operators. The first four were introduced by Cassani

and Righini (2004), the next three are due to Carrabs, Cordeau and Laporte (2006), and

the last one calls four of the seven first operators. When implementing these operators one

must ensure that the LIFO property of the solution remains satisfied. In several cases, pre-

serving LIFO feasibility requires carrying out complicated checks and handling appropriate

data structures in order to maintain a low complexity. Here is a short description of these

operators.

1) Couple-exchange: Select two requests (i, n + i) and (j, n + j). Swap the positions of

i and j and of n + i and n + j.

2) Block-exchange: A block Bi is the path (i, . . . , n + i). This procedure works like the

previous one, except that it swaps blocks Bi and Bj , instead of just their extremities.

3) Relocate-block: This procedure relocates a block Bi in the best possible position.

4) Relocate-couple: This operator relocates a request (i, n + i) in the best position.

5) Multi-relocate: This operator works like relocate-couple, except that it first computes

the cost of relocating each request and implements the best move. However, it saves

in a queue every request whose relocation produces a better tour to relocate the best

request identified, and then attempts to relocate as many requests as possible to further

improve the tour.

6) 2-opt-L: Denote a solution by (i1 = 0, . . . , i2n+2 = 2n + 1). This procedure is an

adaptation of the classical 2-opt operator for the TSP (Croes, 1958). It substitutes two

arcs (ij , ij+1) and (ik, ik+1) with two other arcs (ij , ik) and (ij+1, ik+1) and reverses the

path (ij+1, . . . , ik).

7) Double-bridge: This operator is used to perturb the solution during the VNS algo-

rithm. It works as the classical double-bridge operator (Lin and Kerninghan, 1973). It

replaces the arcs (ij , ij+1), (ik, ik+1), (iℓ, iℓ+1) and (ih, ih+1) with (ij , iℓ+1), (ik, ih+1),

(iℓ, ij+1) and (ih, ik+1).

8) Shake: This is another perturbation operator which randomly calls couple-exchange,

block-exchange, relocate-couple, or relocate-block.

10

Procedures 1, 2, 3, 6, 7 were implemented to run in O(n2) time while procedures 4 and

5 require O(n3) time. In the VNS heuristic, local search is applied to a starting solution s

until a local minimum s1 has been reached, and is perturbed into another solution s2. Local

search is again applied to s2 until a local minimum s3 is reached. Finally, a decision criterion

is applied to determine whether the search should restart from s3 or from the incumbent s∗.

The larger the cost of s3 and the number of different arcs between s3 and s∗, the lower is the

probability of restarting from s3.

The starting solution is obtained through one of the eight constructive procedures de-

scribed by Cassani and Righini (2004). The neighbourhoods couple-exchange, block-exchange,

relocate-block, 2-opt-L and multi-relocate are then applied in one of two possible orders. To

perturb the solution, the double-bridge and shake operators are applied, with a tabu mecha-

nism in the latter case.

Tests were performed on 42 instances derived from TSP instances of TSPLIB (Reinelt,

1991), and containing between 12 and 350 requests. All instances were solved using the VNS

heuristic and the variable neighbourhood descent (VND) heuristic of Cassani and Righini

(2004). In all cases, VNS produced better solutions than VND, at the expense of an increase

in computing time. In half the cases the difference in solution costs between the two algorithms

was in excess of 5%. Tests were also performed to study the individual impact of each operator

by successively removing each of them. The multi-relocate operator proved to be the most

useful, while couple-exchange and 2-opt-L were the least useful. Comparisons with the optimal

values of the Cordeau et al. (2006) algorithm show that on instances with 7 ≤ n ≤ 25, the VNS

heuristic yields solutions whose values lie on average within 0.19% of the optimum (Carrabs,

2006).

3 Multi-vehicle pickup and delivery problems (MVPDPs)

Most of the research effort on PDPs is related to the multi-vehicle case. The most popular

exact algorithms for static MVPDPs are based on column generation (Dumas, Desrosiers and

Soumis, 1991; Savelsbergh and Sol, 1998; Xu et al., 2003). Heuristics make use of insertion

procedures (Jaw et al., 1986), cluster-first, route-second methods (Cullen et al., 1981; Bodin

and Sexton, 1986; Dumas, Desrosiers and Soumis, 1989; Desrosiers et al., 1991; Toth and

Vigo, 1996; Borndörfer et al., 1997), and tabu search (Toth and Vigo, 1997; Nanry and

Barnes, 2000). In what follows we present some of the most recent exact and approximate

algorithms for MVPDPs.

11

3.1 Exact algorithms for the MVPDP

Within a very short time span, three exact algorithms have been put forward for two basic

variants of the MVPDP, and each improves upon its predecessors. The first two use classical

branch-and-cut, while the third also embeds a pricing mechanism.

3.1.1 A branch-and-cut algorithm for the DARP

Cordeau (2006) formulates the DARP on a directed graph G = (V,A), using binary three-

index variables xk
ij equal to 1 if and only if arc (i, j) is traversed by vehicle k. For S ⊆ P ∪D,

let q(S) =
∑

i∈S
qi. In addition, let uk

i be the time at which vehicle k starts servicing vertex i,

wk
i the load of vehicle k upon leaving vertex i, and rk

i the ride time of user i (corresponding

to request (i, n + i) on vehicle k). The model is then as follows.

(DARP)

Minimize
∑

k∈K

∑

i∈V

∑

j∈V

ck
ijx

k
ij (26)

subject to
∑

k∈K

∑

j∈V

xk
ij = 1 (i ∈ P) (27)

∑

i∈V

xk
0i =

∑

i∈V

xk
i,2n+1 = 1 (k ∈ K) (28)

∑

j∈V

xk
ij −

∑

j∈V

xk
n+i,j = 0 (i ∈ P, k ∈ K) (29)

∑

j∈V

xk
ji −

∑

j∈V

xk
ij = 0 (i ∈ P ∪ D, k ∈ K) (30)

uk
j ≥ (uk

i + di + tij)x
k
ij (i, j ∈ V, k ∈ K) (31)

wk
j ≥ (wk

i + qj)x
k
ij (i, j ∈ V, k ∈ K) (32)

rk
i ≥ uk

n+i − (uk
i + di) (i ∈ P, k ∈ K) (33)

uk
2n+1 − uk

0 ≤ Tk (k ∈ K) (34)

ei ≤ uk
i ≤ ℓi (i ∈ V, k ∈ K) (35)

ti,n+i ≤ rk
i ≤ L (i ∈ P, k ∈ K) (36)

max{0, qi} ≤ wk
i ≤ min{Qk, Qk + qi} (i ∈ V, k ∈ K) (37)

xk
ij = 0 or 1 (i, j ∈ V, k ∈ K). (38)

12

In this formulation, constraints (27) and (29) ensure that each request is served once by the

same vehicle, while constraints (28) and (30) guarantee that each vehicle starts and ends its

route at the depot. Constraints (31) to (33) define starts of service times, vehicle loads and

user ride times, respectively, while constraints (34) to (37) ensure that these will be feasible.

The uk
i variables can be aggregated into vehicle-independent ui variables for i ∈ P ∪ D.

Constraints (31) and (32) can be linearized using standard techniques. These linearized

constraints, as well as constraints (35) and (37) can be lifted as in Desrochers and Laporte

(1991).

Cordeau proposes a number of valid inequalities for this model. Define xij =
∑

k∈K

xk
ij,

x(A′) =
∑

(i,j)∈A′

xij for A′ ⊆ A, and x(S) =
∑

i,j∈S

xij for S ⊆ V .

σ-inequalities and π-inequalities (Balas, Fischetti and Pulleyblank, 1995)

The standard subtour elimination constraints x(S) ≤ |S| − 1 (S ⊆ P ∪ D) are of course

valid for the DARP. In the directed case, precedence relationships yield the following liftings:

x(S) +
∑

i∈S̄∩σ(S)

∑

j∈S

xij +
∑

i∈S̄\σ(S)

∑

j∈S∩σ(S)

xij ≤ |S| − 1 (S ⊆ P ∪ D) (39)

and

x(S) +
∑

i∈S

∑

j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑

j∈S̄\π(S)

xij ≤ |S| − 1 (S ⊆ P ∪ D). (40)

Lifted D+
k and D−

k inequalities (Cordeau, 2006)

The following subtour elimination constraints are obtained by lifting the so-called D+
k

and D−
k inequalities proposed by Grötschel and Padberg (1985) for the asymmetric TSP. Let

S = {i1, . . . , ih} ⊆ P ∪ D, where h ≥ 3. Then the inequalities

h−1
∑

j=1

xijij+1
+ xihi1 + 2

h−1
∑

j=2

xij i1 +
h−1
∑

j=3

j−1
∑

ℓ=2

xijiℓ +
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ h − 1 (41)

13

and

h−1
∑

j=1

xijij+1
+ xihi1 + 2

h
∑

j=3

xi1ij +

h
∑

j=4

j−1
∑

ℓ=3

xijiℓ +
∑

ip∈S̄∩π(S)

xi1,ip ≤ h − 1 (42)

are valid for the DARP.

Capacity constraints (Laporte, Nobert and Desrochers, 1985; Cordeau, 2006)

The standard VRP capacity constraints

x (δ(S)) ≥ 2⌈q(S)/Q⌉ (S ⊆ P ∪ D) (43)

where Q = max
k∈K

{Qk}, are valid for the DARP.

Lifted generalized order constraints (Cordeau, 2006)

Let S1, . . . , Sh ⊂ P∪D be disjoint sets and let i1, . . . , ih ∈ P be such that 0, 2n+1 ∈ Sℓ and

iℓ, n + iℓ+1 ∈ Sℓ for ℓ = 1, . . . , h, where ih+1 = i1. Then the generalized order constraints (7),

can be lifted as follows in the case of a directed formulation:

h
∑

i=1

x(Sℓ) +

h−1
∑

ℓ=2

xi1,iℓ +

h
∑

ℓ=3

xi1,in+iℓ
≤

h
∑

ℓ=1

|Sℓ| − h − 1 (44)

and
h

∑

ℓ=1

x(Sℓ) +
h−2
∑

ℓ=2

xn+i1,iℓ +
h−1
∑

ℓ=2

xn+i1,n+iℓ ≤
h

∑

ℓ=1

|Sℓ| − h − 1. (45)

Infeasible path constraints (Cordeau, 2006)

The following inequalities make use of the maximum ride time constraints and are specific

to the DARP. Assume the tij satisfy the triangle inequality. Then for any path (i, k1, . . . , kp,

n + i) such that tik1
+ dk1

+ tk1k2
+ dk2

+ . . . + tkpn+i > L, the inequality

xik1
+

p−1
∑

h=1

xkhkh+1
+ xkpn+i ≤ p − 1 (46)

is valid for the DARP.

14

Using the DARP model and the associated valid inequalities, Cordeau (2006) has devised

a branch-and-cut algorithm incorporating a preprocessing phase (time window tightening,

arc elimination and variable fixing), as well as separation heuristics for subtour elimination

constraints, capacity constraints, generalized order constraints and infeasible path inequalities.

The algorithm was implemented in C++ with ILOG Concert 1.3 and CPLEX 8.1. It was

run on a 2.5 GHz Pentium 4 computer. The algorithm was tested on 48 randomly generated

instances with 16 ≤ n ≤ 48 (34 ≤ |V | ≤ 98). It is shown that the preprocessing phase played

an important role in reducing the instance size and in increasing the lower bound at the root

of the search tree. Valid inequalities at the root of the tree helped increase the lower bound

by about 5%. Instances containing up to 30 requests could be solved optimally within four

hours.

3.1.2 A branch-and-cut algorithm for the PDPTW and the DARP

More recently, Ropke, Cordeau and Laporte (2006) have proposed two models and a branch-

and-cut algorithm for the PDP with time windows (PDPTW) and for the DARP, where all

vehicles are identical. The PDPTW is a DARP without the maximum ride time constraints.

Here we describe the better of the two models. It works with a homogeneous fleet of vehicles

of capacity Q and two-index variables xij . In this model, R denotes a path, R is the set of

infeasible paths with respect to time windows and maximum ride time constraints, and A(R)

is the arc set of R. The model is as follows.

(PDPTW-DARP)

Minimize
∑

i∈V

∑

j∈V

cijxij (47)

subject to
∑

i∈V

xij = 1 (j ∈ P ∪ D) (48)

∑

j∈V

xij = 1 (i ∈ P ∪ D) (49)

∑

i,j∈S

xij ≤ |S| − 2 (S ∈ U) (50)

∑

i,j∈S

xij ≤ |S| − max{1, ⌈|q(S)|/Q⌉} (S ⊆ P ∪ D, |S| ≥ 2) (51)

∑

(i,j)∈A(R)

xij ≤ |A(R)| − 1 (R ∈ R) (52)

15

xij = 0 or 1 (i, j ∈ V). (53)

In this model, precedence constraints (50) are the same as (18), constraints (51) are capac-

ity constraints, and constraints (52) eliminate infeasible paths. An immediate strengthening

of this constraint is provided by the so-called tournament constraints. Let R = (k1, . . . , kr)

be an infeasible path, then
r−1
∑

i=1

r
∑

j=i+1

xkikj
≤ |A(R)| − 1 (54)

is a valid inequality for the PDPTW. In addition, if R′ = (kr, . . . , k1) is also infeasible, then

r−1
∑

i=1

(

xkiki+1
+ xki+1ki

)

≤ r − 1

is also valid. Finally, if the tij satisfy the triangle inequality and R = (i, k1, . . . , kr, n + i)

violates the time window or ride time constraints, then (46) is also valid. All valid inequalities

developed by Cordeau (2006) for the DARP, except the infeasible path constraints (46), apply

directly to the PDPTW. Some additonal valid inequalities have also been proposed for the

PDPTW.

Strengthened capacity constraints (Ropke, Cordeau and Laporte, 2006)

Let S, T ⊂ P ∪D be two disjoint sets such that q(S) > 0. Also define U = π(T)\(S ∪ T).

Then the constraint

x(S) + x(T) + x(S : T) ≤ |S| + |T | −
⌈

q(S) + q(U)

Q

⌉

(55)

is valid for the PDPTW.

Strengthened infeasible path constraints (Ropke, Cordeau and Laporte, 2006)

If travel times satisfy the triangle inequality and the two paths (j, i, n+ j, n+ i, n+k) and

(j, i, n+j, k, n+k, n+i) are infeasible, then the solution cannot contain the path R = (i, n+j, k)

and therefore

xi,n+j + xn+j,k ≤ 1 (56)

is valid for the PDPTW. This inequality generalizes to longer paths.

16

Fork inequalities (Ropke, Cordeau and Laporte, 2006)

If the path R = (k1, . . . , kr) is feasible but the path (i, R, j) is infeasible for every i ∈ S

and j ∈ T , with S, T ⊂ V , then the inequality

∑

i∈S

xik1
+

r−1
∑

h=1

xkhkh+1
+

∑

j∈T

xkrj ≤ r (57)

is valid for the PDPTW.

This inequality can be strengthened into the following outfork inequality. Let R =

(k1, . . . , kr) be a feasible path and S, T1, . . . , Tr ⊂ P ∪ D be subsets such that kj /∈ Tj−1

for j = 2, . . . , r. If for any integer h ≤ r and any vertex pair {i ∈ S, j ∈ Th} the path

(i, k1, . . . , kh, j) is infeasible, then the inequality

∑

i∈S

xik1
+

r−1
∑

h=1

xkhkh+1
+

r
∑

h=1

∑

j∈Th

xkhj ≤ r (58)

is valid for the PDPTW.

Similarly, let kj /∈ Sj+1 for j = 1, . . . , r − 1. If for any integer h ≤ r and any vertex pair

{i ∈ Sh, j ∈ T} the path (i, kh, . . . , kr, j) is infeasible, then the infork inequality

r
∑

h=1

∑

i∈Sh

xikh
+

r−1
∑

h=1

xkhkh+1
+

∑

j∈T

xkrj ≤ r (59)

is valid for the PDPTW.

Reachability constraints (Lysgaard, 2006)

Let i ∈ V , and let A−
i ⊂ A be the minimum arc set such that any feasible path from 0 to i

uses only arcs from A−
i ; similarly, let A+

i ⊂ A be the minimum arc set such that any feasible

path from i to 2n + 1 uses only arcs from A+
i . Let T ⊂ V be such that each i ∈ T must be

visited by a different vehicle. Such a set is said to be conflicting. Define A−
T = ∪i∈T A−

i and

A+
T = ∪i∈T A+

i . For any S ⊆ P ∪ D and any conflicting vertex set T ⊆ S, the inequalities

x(δ−(S) ∩ A−
T) ≥ |T | (60)

17

and

x(δ+(S) ∩ A+
T) ≥ |T | (61)

are valid for the PDPTW.

Ropke, Cordeau and Laporte (2006) have developed a branch-and-cut algorithm for the

PDPTW, using the preprocessing steps of Dumas, Desrosiers and Soumis (1991) and of

Cordeau (2006), as well as several heuristics for the identification of violated valid inequalities.

The algorithm was coded in C++ using ILOG Concert 1.3 and CPLEX 9.0, and run on an

AMD Opteron 250 computer (2.4 GHz). It was tested on 40 PDPTW instances similar to

those of Savelsbergh and Sol (1998), which contain from 30 to 75 requests, and on two sets of

DARP instances created by Cordeau (2006), including maximum ride time constraints, which

contain between 16 and 96 requests. About 75% of the 40 first instances were solved within

two hours and all the Cordeau instances could also be solved within that time limit. These

results clearly outperform those of Cordeau (2006) who could handle instances involving at

most 36 requests.

3.1.3 A branch-and-cut-and-price algorithm for the PDPTW

Ropke and Cordeau (2006) have developed a branch-and-cut-and-price algorithm for the

PDPTW in which all vehicles are identical and have capacity Q. Let Ω denote the set of

all feasible routes r, let cr be the cost of route r, and air the number of times vertex i ∈ P

is visited by route r. Binary variables yr are equal to 1 if and only if route r belongs to the

optimal solution. The set partitioning formulation of the problem is then

(PDPTW)

Minimize
∑

r∈Ω

cryr (62)

subject to
∑

r∈Ω

airyr = 1 (i ∈ P) (63)

yr = 0 or 1 (r ∈ Ω). (64)

In this formulation, constraints (63) ensure that every pickup node is served once. Since

the routes of Ω satisfy pairing, precedence, capacity and time window constraints, the set

partitioning constraints (63) are sufficient to ensure feasibility.

18

Formulation (62)–(64) is solved by a branch-and-bound mechanism in which lower bounds

are computed by solving the LP relaxation by column generation. To improve the lower

bounds, violated valid inequalities are introduced in the column generation master problem

at each node of the enumeration tree. Branching is performed either on the outflow from the

depot (i.e., on the number of vehicles used in the solution) or on the outflow from a set of

vertices S when x(δ+(0)) is integer.

Two pricing problems were considered to generate columns of negative reduced cost: the

Elementary Shortest Path Problem with Time Windows, Capacity, and Pickup and Delivery

(ESPPTWCPD), and the non-elementary relaxation of this problem. In the context of the

PDPTW, the elementary shortest path was first used by Sol (1994) while the non-elementary

case was considered by Dumas, Desrosiers and Soumis (1991). Ropke and Cordeau explain how

effective dominance criteria can be employed within these pricing problems, even when valid

inequalities are introduced in the column generation master problem. Several existing families

of valid inequalities are considered: precedence inequalities (50), infeasible path inequalities

(46), (51) and (54), fork inequalities (58), (59), and reachability inequalities (60), (61). In

addition, two new families of inequalities are introduced.

First, the classical rounded capacity inequalities can be stregthened by considering pre-

decessor and successor sets π(S) and σ(S). This leads to the following inequalities which

strengthen (43) and (51).

∑

i,j∈S

xij ≤ |S| − max

{

1,

⌈

q(π(S) \ S)

Q

⌉

,

⌈−q(σ(S) \ S)

Q

⌉}

. (65)

Second, when travel times satisfy the triangle inequality, 2-path inequalities introduced

by Kohl et al. (1999) in the context of the Vehicle Routing Problem with Time Windows can

also be adapted and strengthened by considering precedence relationships between vertices.

If it is impossible to identify a tour serving all vertices in a vertex set S while satisfying

precedence, capacity and time window constraints, then any feasible solution must use at

least two arcs from the set δ+(S). The idea can be taken further by observing that if a path

serves all vertices of S by entering and leaving the set once, then the vertices π(S) \ S must

be served by this path before entering S, and vertices of σ(S)\S must be served after leaving

S. If such a path cannot be found, then S defines a valid inequality of the form x(δ+(S)) ≥ 2

even though there exists a tour through S satisfying precedence, capacity and time window

constraints.

19

Ropke and Cordeau show that fork inequalities (58) and (59) and reachability constraints

(60) and (61) are in fact implied by the set partitioning formulation when using the

ESPPTWCPD as a pricing subproblem. In addition, precedence inequalities (5) are also

implied by this formulation with either the ESPPTWCPD or its non-elementary relaxation.

To accelerate the solution of the pricing problems, several heuristics are used: label heuris-

tics that limit the number of labels created by working on a reduced graph from which some

arcs have been removed, a randomized construction heuristic based on a cheapest insertion cri-

terion, and improvement heuristics based on the large neighbourhood search (LNS) paradigm

(Shaw, 1998). These heuristics are used sequentially until a negative reduced cost path has

been identified. The exact algorithm is only called if all heuristics in the sequence fail.

The branch-and-cut-and-price algorithm was tested on the instances introduced by Ropke,

Cordeau and Laporte (2006) and on those of Li and Lim (2001). For the first group of

instances, all instances with n ≤ 75 could be solved to optimality in just a few minutes on an

Opteron 250 computer (2.4 GHz). Some larger instances with up to 175 requests were also

solved to optimality within a two hour time limit. For the second group of instances, several

instances with 100 requests were solved to optimality within that time limit. Computational

results have hown that the two pricing problems considered perform similarly on test instances.

Experiments concerning valid inequalities showed that the 2-path cuts were the most successful

of the inequalities tested, and capacity inequalities were useful for instances with tight capacity

constraints. Overall, this branch-and-cut-and-price algorithm outperforms the branch-and-cut

algorithm of Ropke, Cordeau and Laporte (2006).

3.2 Heuristics for MVPDPs

This section describes four heuristics for the MVPDP. The first three apply to static problems

in which all data are known with certainty when solving the problem. The fourth applies to

dynamic problems in which requests are gradually revealed over time, and the solution can

be updated accordingly.

3.2.1 A tabu search heuristic for the DARP

Cordeau and Laporte (2003a) have developed a tabu search (TS) for the DARP. It is based

on the unified tabu search algorithm (UTSA) (Cordeau, Laporte and Mercier, 2001) which

adapts easily to a host of routing problems.

20

Neighbourhood search

The algorithm starts from a possibly infeasible solution s0 and moves at each iteration

t from the current solution st to the best solution in a subset of its neighbourhood N(st).

The algorithm uses attribute based tabu statuses (Cordeau, Gendreau and Laporte, 1997). To

avoid cycling, solutions possessing some attributes of recently visited solution are forbidden, or

tabu, for a number of iterations, unless they improve upon the best known solution possessing

one of these attributes. The algorithm also embeds a mechanism allowing the exploration of

infeasible solution, a concept introduced by Gendreau, Hertz and Laporte (1994). Denote by

c(s) the routing cost of solution s, and by q(s), d(s), w(s) and t(s) the violations of vehicle

capacity, route duration, time window and ride time constraints, respectively. The algorithm

minimizes the function f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s), when α, β, γ and τ are

positive weights that self-adjust during the search. If a solution is feasible with respect to a

given constraint, then the corresponding weight is divided by a factor 1+ δ, with δ > 0; if the

solution is infeasible, then it is multiplied by 1+δ. This process produces a mix of feasible and

infeasible solutions, which turns out to be particularly useful for tightly constrained instances.

Neighbourhood structure

With each solution s is associated an attribute set B(s) = {(i, k) : request i is served

by vehicle k}. The neighbourhood B(s) of s contains all solutions obtained by removing an

attribute (i, k) from N(s) and replacing it with another attribute (i, k′), where k′ 6= k. This

means that vertices i and n+i are removed from route k, which is then reconnected by linking

the predecessor and successor of each deleted vertex, and the two vertices are then inserted in

route k. The best position for i is first sought, and then n + i is inserted in its best position.

A tabu status is imposed on (i, k) for θ iterations.

Diversification mechanism

As suggested by Taillard (1993), a frequency-based mechanism is used to diversify the

search. Any solution s̄ ∈ N(s) such that f(s̄) ≥ f(s) is penalized by a term p(s̄) =

λc(s̄)
√

nmρik, where λ is a user-controlled parameter and ρik is the number of times attribute

(i, k) has been added to the solution during the search.

Forward time slacks

In order to reduce route durations, the algorithm delays as much possible vehicle depar-

tures from the depot. This can be done by computing the forward time slack Fi of each

21

vertex i (Savelsbergh, 1992) as follows. Consider a route (i0 = 0, . . . , iq = 2n + 1), and let vi

be the waiting time at i and ui the start of service at i. Then Fi can be computed as

Fi = min
1≤j≤q

∑

i<p≤j

vp + (ℓj − uj)

. (66)

The departure time of the vehicle from the depot can then be delayed by F0, which can be

computed in O(q) time. In the Cordeau and Laporte (2003a) algorithm, the computation of

Fi is modified in order not to increase time window or ride time violations, i.e., Fi is redefined

as

Fi = min
1≤j≤q

∑

i<p≤j

vp + (min{ℓj − uj , L − rj})+

, (67)

where (x)+ = max{0, x}, and rj is the ride time of the user whose destination is vertex j if

j ∈ D, and rj = 0 if j ∈ P .

Other features

The algorithm starts with a solution constructed by randomly assigning each request

(i, n+ i) to a vehicle route, and by inserting i and n+ i at the end of the partially constructed

route. Route reoptimizations are periodically performed by means of intra-route exchanges.

The algorithm is run for a prefixed number of iterations.

Three versions of the algorithm were developed. Version 1 minimizes routing costs but

does not minimize route durations; version 2 also minimizes route durations by computing

forward time slacks; version 3 also minimizes the total ride time.

The algorithm was coded in C++ and tested on 20 randomly generated instances (24 ≤
n ≤ 144), and on six real-life instances provided by a Danish consultant (n = 200 and 295).

The algorithm was run on a Pentium 4, 2 GHz for 104 iterations. It solved the randomly

generated instances within an average of 5.16, 8.71 and 33.88 minutes, for versions 1, 2 and 3,

respectively, and the Danish instances within 20.99, 34.78 and 166.12 minutes. Considering

computing time and solution quality, version 2 appears to be the best option.

22

3.2.2 A hybrid heuristic for the PDPTW

Bent and Van Hentenryck (2006) have developed a two-stage heuristic for the PDPTW. The

first stage applies simulated annealing (SA) to minimize the number of routes, while the

second stage minimizes the total route length through LNS (Shaw, 1998).

The SA heuristic minimizes a hierarchical objective < f1,−f2, f3 >. The function f1

represents the number of vehicle routes in the solution; f2 =
∑

k∈K

a2
k, where ak is the number

of requests in route k; f3 is the total routing cost of the solution. The SA algorithm is

implemented with an aspiration criterion as is commonly done in TS, and also contains a

random selection mechanism that biases the search toward good moves.

The LNS mechanism uses nested neighbourhoods N1, . . . , Np, where Nj relocates j re-

quests from the current solution, and p is a user-controlled parameter. Because several re-

quests are considered at once, a branch-and-bound mechanism is used to identify the best

overall relocation scheme. For larger instances, the search is truncated and is only applied

to a subset of the most promising relocations. The LNS mechanism only accepts improving

moves.

The algorithm was run on a 1.2 GHz AMD Athlon Thunderbird IX7 processor running

Linux. It was tested on benchmark PDPTW instances: 56 with 100 requests, 60 with 200

requests, and 60 with 600 requests. These instances, which are described in Li and Lim (2001),

are downloadable from http://www.sintef.no/static/am/opti/projects/top/vrp/

benchmarks.html. Five runs were executed for each of the 100- and 200-request instances,

and ten for the 600-request instances. The SA and LNS heuristics were each allowed to run

for a preset time. On the 100-request instances, the algorithm produced two new best solu-

tions and 54 matches; on the 200-request instances, it produced 28 new best solutions and

24 matches; on the 600-request instances, it produced 46 new best solutions and five matches.

3.2.3 An adaptive large neighbourhood search heuristic for the PDPTW

The PDPTW version considered by Ropke and Pisinger (2006) arises from the problem faced

by a Danish food manufacturer. Each request (i, n + i) can only be served by a subset Ki

of the vehicles, and not all request are necessarily served. The objective is to minimize a

weighted function f = αf1 + βf2 + γf3, where f1 is the routing cost, f2 is the total time

traveled by all vehicles, and f3 is the number of unserved requests. It is normal to assign γ a

very large value.

23

The heuristic proposed by the authors also uses LNS, but it differs from the Bent and Van

Hentenryck (2006) heuristic in several respects. Most importantly, the method uses several

simple request removal and insertion procedures to explore the neighbourhood of the current

solution, as opposed to the rather involved branch-and-bound process proposed by Bent and

Van Hentenryck. In addition, the search mechanism of Ropke and Pisinger is embedded

within an SA framework, whereas Bent and Van Hentenryck used a simple descent process.

The LNS heuristic of Ropke and Pisinger applies three removal heuristics (Shaw’s (1998)

removal procedure, random removal, worst removal), as well as two insertion heuristics (greedy,

and several types of regret-based insertions). The insertion heuristics use the true value of

f to evaluate the quality of a solution, or a perturbed value f + ε, where ε is a randomly

generated noise. During the search, the algorithm maintains a score ϕj which measures how

well heuristic j has performed in the past iterations. At a given iteration, it applies a roulette

wheel selection principle, i.e., it selects heuristic j with probability ϕj/
∑

i
ϕi. Because of

this feature, the authors call their PDPTW heuristic an adaptive large neighbourhood search

(ALNS) heuristic. The heuristic uses an SA-based acceptance rule for neighbour selection

and runs for a preset number of iterations. The algorithm can easily be adapted to minimize

the number of routes. It does so by iteratively deleting a route and reinserting its requests in

other routes.

The algorithm was extensively tested on the 594 Li and Lim (2001) instances which con-

tain 100, 200, 400, 600, 800, and 1000 requests. Comparisons were made with results reported

by Bent and Van Hentenryck (http://www.cs.brown.edu/people/rbent/pickup-appendix.ps).

These tests showed the advantage of using several removal and insertion heuristics, they con-

firmed the superiority of ALNS over LNS, and they also proved the superiority of ALNS over

the Bent and Van Hentenryck heuristic. The heuristic was later used to solve the Capaci-

tated Vehicle Routing Problem, the Vehicle Routing Problem with Time Windows, and the

Multi-Depot Vehicle Routing Problem (Pisinger and Ropke, 2007).

3.2.4 A double-horizon heuristic for the dynamic PDPTW

Mitrović-Minić, Krishnamurti and Laporte (2004) have implemented a double-horizon heuris-

tic for the dynamic PDPTW in which requests occur in real-time. The term double-horizon

means that the insertion of a new request takes into account the short term effect, i.e., an

immediate increase in routing cost, and the long term effect, i.e., a decrease in vehicle slack

time. The algorithm combines a constructive heuristic which is applied whenever a new re-

24

quest occurs, and a tabu search heuristic which is applied periodically. In the constructive

heuristic, the insertion cost of a new request is

c = [(1 − αp)fp + αpgp] + [(1 − αd)fd + αdgd] , (68)

where fp and fd are the route length increases due to the insertion of a pickup and a delivery,

and gp and gd are the corresponding decreases in vehicle slack times. Three insertion costs

were tested: c1 (with αp = αd = 0), c2 (with 0 < αp < 1 and 0 < αd < 1), and c3 (with

αp = αd = 0 if the pickup and delivery both occur within a short term horizon of length s,

and 0 < αp < 1, 0 < αd < 1 otherwise).

The objective function minimized in the tabu search procedure is defined as

z =
ℓ

s
βqS + (1 − p) ((1 − α)qL + αhL) , (69)

where qS is the total length of the route portions falling within the short-term horizon, qL

is the remaining length of the routes, hL is the average slack time over all route portions

belonging to the long-term horizon, ℓ is the length of the long-term horizon, and s is the

length of the short-term horizon. Again, three variants were defined: z1 (with α = β = 0, and

qL is interpreted as the total route length), z2 (with 0 < α < 1, β = 0, qL is the total route

length and hL is the average slack time of all routes), z3 (with 0 < α < 1 and 0 < β < 1).

The authors have also tested several waiting strategies (Mitrović-Minić and Laporte, 2004).

When a new request arrives, the vehicle assigned to it can drive as soon as possible, yielding a

drive-first (DF) strategy, or it can wait as long as possible before moving, yielding a wait-first

(WF) strategy. An intermediate strategy, called advanced dynamic waiting (ADW), works

as follows. Vehicle routes are partitioned into segments, each containing locations that are

reasonably close to each other, and these segments vary dynamically during the course of the

algorithm. The ADW strategy applies DF as long as the vehicle remains in the same segment,

and the WF strategy when it reaches the last location of the segment. The ADW strategy

proved to be the best, but its superiority becomes smaller for large instances.

The double-horizon heuristic was tested with the combinations (c1, z1), (c2, z2) and (c3, z3)

for the DF and ADW waiting strategies. Note that only (c3, z3) yields a true double-horizon

heuristic. Computer runs were performed over three set of 30 instances containing 100, 500

and 1000 requests each. Statistical tests confirmed the superiority of ADW over DF for all

(c, z) combinations, and the superiority of (c3, z3) over (c1, z1) and (c2, z2).

25

More recently, Branke et al. (2005) have conducted another study on waiting strategies.

These authors have proved that for the case of a single vehicle, DF is always optimal. In

the case of several vehicles, they have also defined and compared eight waiting strategies

under the assumption that vehicles return to the depot as soon as they become free. These

strategies are only defined for a vehicle initially positioned at the depot. The authors show

that DF is the worst strategy, while an intermediate strategy called “variable” is the best.

These conclusions are consistent with those of Mitrović-Minić and Laporte (2004).

4 Conclusions

One-to-one Pickup and Delivery Problems arise in several contexts related to the transporta-

tion of goods and people. In the past few years several new and powerful algorithms have

been developed to solve these problems. The best exact solution methodologies are based on

branch-and-cut and on branch-and-cut-and-price. Their success is linked to the identification

of strong valid inequalities and to the development of efficient separation procedures. New

heuristics employ a variety of techniques including tabu search, simulated annealing, variable

neighbourhood search, and large neighbourhood search. The success of these heuristics is

dependent on the design of clever search mechanisms, some of which are of wide applicability.

Acknowledgements

This work was supported by the Canadian Natural Sciences and Engineering Research Council

under grants 227837-04 and 39682-05. This support is gratefully acknowledged.

References

Balas, E., Fischetti, M., and Pulleyblank, W.R. (1995). The precedence-constrained asymmetric trav-

eling salesman polytope. Mathematical Programming, 68:241–265.

Bent, R. and Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery vehicle

routing problems with time windows. Computers & Operations Research, 33:875–893.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup and delivery

problems: A classification scheme and survey. TOP, forthcoming.

Bianco, L. Mingozzi, A., and Ricciardelli, S. (1994). Exact and heuristic preocedures for the traveling

salesman problem with precedence constraints, based on dynamic programming. INFOR, 32:19–31.

26

Bodin, L.D. and Sexton, T. (1986). The multi-vehicle subscriber dial-a-ride problem. TIMS Studies in

Management Science, 26:73–86.

Borndörfer, R., Grötschel, M., Klostermeier, F., and Küttner, C. (1997). Telebus Berlin: Vehicle

scheduling in a dial-a-ride system. Technical Report SC 97–23, Konrad-Zuse-Zentrum für Informa-

tionstechnik Berlin.

Branke, J., Middendorf, M., Noeth, G., and Dessouky, M. (2005). Waiting Strategies for Dynamic

Vehicle Routing. Transportation Science, 39:298–312.

Brønmo, G., Christiansen, M., Fagerholt, K., and Nygreen, B. (2007). A multi-start local search

heuristic for ship scheduling – a computational study. Computers & Operations Research, 34:900–

917.

Carrabs, F. (2006). Heuristics and exact approaches for transportation problems with pickup and de-

livery. Ph.D. Thesis, Università di Salermo, Italy.

Carrabs, F., Cordeau, J.-F., and Laporte, G. (2006). Variable neighborhood search for the pickup

and delivery traveling salesman problem with LIFO loading. INFORMS Journal on Computing,

forthcoming.

Cassani, L. and Righini, G. (2004). Heuristic Algorithms for the TSP with rear-loading. Presented

at the 35th Annual Conference of the Italian Operations Research Society (AIRO XXXV), Lecce,

Italy.

Christiansen, M. and Nygreen, B. (1998a). A method for solving ship routing problems with inventory

constraints. Annals of Operations Research, 81:357–378.

Christiansen, M. and Nygreen, B. (1998b). Modelling path flows for a combined routing and inventory

management problem. Annals of Operations Research, 82:391–412.

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997). A tabu search heuristic for periodic and multi-

depot vehicle routing problems. Networks, 30:105–119.

Cordeau, J.-F. and Laporte, G. (2003a). The dial-a-ride problem (DARP): Variants, modeling issues

and algorithms. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research

Societies, 1:89–101.

Cordeau, J.-F. and Laporte, G. (2003b). A tabu search heuristic for the static multi-vehicle dial-a-ride

problem. Transportation Research B, 37:579–594.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for vehicle routing

problems with time windows. Journal of the Operational Research Society, 52:928–936.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research,

54:573–586.

27

Cordeau, J.-F., Iori, M., Laporte, G., and Salazar-González, J.J. (2006). A branch-and-cut algorithm

for the pickup and delivery traveling salesman problem with LIFO loading. Submitted for publica-

tion.

Cordeau, J.-F., Laporte, G., Potvin, J.-Y., and Savelsbergh, M.W.P. (2007). Transportation on de-

mand. In: C. Barnhart and G. Laporte (eds.), Transportation, Handbooks in Operations Research

and Management Science, Volume 14, Elsevier, Amsterdam, forthcoming.

Croes, G. (1958). A method for solving traveling salesman problems. Operations Research, 6:791–812.

Cullen, F.H., Jarvis, J.J., and Ratliff, H.D. (1981). Set partitioning based heuristics for interactive

routing. Networks, 11:125–143.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M.M., and Soumis, F. (2002). VRP with pickup

and delivery. In: P. Toth and D. Vigo (eds.), The Vehicle Routing Problem, pages 225–242, SIAM

Monographs on Discrete Mathematics and Applications, Philadelphia.

Desrochers, M. and Laporte, G. (1991). Improvements and extensions to the Miller-Tucker-Zemlin

subtour elimination constraints. Operations Research Letters, 10:27–36.

Desrosiers, J., Dumas, Y., and Soumis, F. (1986). A dynamic programming solution of the large-

scale single-vehicle dial-a-ride problem with time windows. American Journal of Mathematical and

Management Sciences, 6:301–325.

Desrosiers, J., Dumas, Y., Soumis, F., Taillefer, S., and Villeneuve, D. (1991). An algorithm for mini-

clustering in handicapped transport. Les Cahiers du GERAD, G–91–02, HEC Montréal.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time windows.

European Journal of Operational Research, 54:7–22.

Dumas, Y., Desrosiers, J., and Soumis, F. (1989). Large scale multi-vehicle dial-a-ride problems. Les

Cahiers du GERAD, G–89–30, HEC Montréal.

Dumitrescu, I., Ropke, S., Cordeau, J.-F., and Laporte, G. (2006). The traveling salesman problem with

pickup and deliveries: Polyhedral results and branch-and-cut algorithm. Submitted for publication.

Fischetti, M., Salazar-González, J.J., and Toth, P. (1998). Solving the orienteering problem through

branch-and-cut. INFORMS Journal on Computing, 10:133–148.

Fischetti, M. and Toth, P. (1989). An additive bounding procedure for combinatorial optimization

problems. Operations Research, 37:319–328.

Fisher, M.L. and Rosenwein, M.B. (1989). An interactive optimization system for bulk-cargo ship

scheduling. Naval Research Logistic Quarterly, 35:27–42.

Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic for the vehicle routing

problem. Management Science, 40:1276–1290.

28

Grötschel, M. and Padberg, M.W. (1985). Polyhedral theory. In: E.L. Lawler, J.K. Lenstra, A.H.G.

Rinnooy Kan and D.B. Shmoys (eds.), The Traveling Salesman Problem, pages 251–305, Wiley,

Chichester.

Hernández-Pérez, H. and Salazar-González, J.J. (2004). Heuristics for the one-commodity pickup-and-

delivery traveling salesman problem. Transportation Science, 38:245–255.

Jaw, J., Odoni, A.R., Psaraftis, H.M., and Wilson, N.H.M. (1986). A heuristic algorithm for the

multi-vehicle advance-request dial-a-ride problem with time-windows. Transportation Research B,

20:243–257.

Kalantari, B., Hill, A.V., and Arora, S.R. (1985). An algorithm for the traveling salesman problem

with pickup and delivery customers. European Journal of Operational Research, 22:377–386.

Kohl, N., Desrosiers, J., Madsen, O.B.G., Solomon, M.M., and Soumis, F. (1999). 2-path cuts for the

vehicle routing problem with time windows. Transportation Science, 33:101–116.

Laporte, G., Nobert, Y., and Desrochers M. (1985). Optimal routing under capacity and distance

restrictions. Operations Research, 33:1050–1073.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985). The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization, Wiley, Chichester.

Levitin, G. and Abezgaouz, R. (2003). Optimal routing and multiple-load AGV subject to LIFO

loading constraints. Computers & Operations Research, 30:397–410.

Li, H. and Lim, A. (2001). A Metaheuristic for the pickup and delivery problem with time windows.

The 13th IEEE Conference on Tools with Artificial Intelligence, ICTAI-2001, Dallas, pages 160–170.

Lin, S. and Kerninghan, B.W. (1973). An effective heuristic algorithm for the traveling-salesman

problem. Operations Research, 21:498–516.

Lysgaard, J. (2006). Reachability cuts for the vehicle routing problem with time windows. European

Journal of Operational Research, 175:210–233.

Madsen, O.B.G., Ravn, H.F., and Rygaard, J.M. (1995). A heuristic algorithm for the dial-a-ride

problem with time windows, multiple capacities, and multiple objectives. Annals of Operations

Research, 60:193–208.

Mitrović-Minić, S., Krishnamurti, R., and Laporte, G. (2004). Double-horizon based heuristics for

the dynamic pickup and delivery problem with time windows. Transportation Research Part B,

38:669–685.

Mitrović-Minić, S. and Laporte G. (2004). Waiting strategies for the dynamic pickup and delivery

problem with time windows. Transportation Research Part B, 38:635–655.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Re-

search, 24:1097–1100.

29

Nanry, W.P. and Barnes, J.W. (2000). Solving the pickup and delivery problem with time windows

using reactive tabu search. Transportation Research B, 34:107–121.

Pacheco, J.A. (1995). Problemas de rutas con carga y descarga en sistemas LIFO: Soluciones exactas.

Estudios de Economı́a Aplicada, 3:69–86.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers &

Operations Research, forthcoming.

Rappoport, H.K., Levy, L.S., Golden, B.L., and Toussaint, K. (1992). A planning heuristic for military

airlift. Interfaces, 22(3):73–87.

Rappoport, H.K., Levy, L.S., Toussaint, K., and Golden, B.L. (1994). A transportation problem

formulation for the MAC airlift planning problem. Annals of Operations Research, 50:505–523.

Reinelt, G. (1991). TSPLIB – A traveling salesman problem library. ORSA Journal on Computing,

3:376–384.

Rekiek, B., Delchambre, A., and Saleh, H.A. (2006). Handicapped person transportation problem: An

application of the grouping genetic algorithm. Engineering Applications of Artificial Intelligence,

19:511–520.

Renaud, J., Boctor, F.F., and Laporte, G. (2002). Perturbation heuristics for the pickup and delivery

traveling salesman problem. Computers & Operations Research, 29:1129–1141.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2006). Models and branch-and-cut algorithms for pickup

and delivery problems with time windows. Networks, forthcoming.

Ropke, S. and Cordeau, J.-F. (2006). Branch-and-cut-and-price for the pickup and delivery problem

with time windows. Submitted to Operations Research.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation Science, 40:455–472..

Ruland, K.S. (1994). Polyhedral solution to the pickup and delivery problem. Ph.D. Thesis, Sever

Institute, Washington University in St.Louis, MO.

Ruland, K.S. and Rodin, E.Y. (1997). The pickup and delivery problem: Faces and branch-and-cut

algorithm. Computers and Mathematics with Applications, 33:1–13.

Savelsbergh, M.W.P. (1992). The vehicle routing problem with time windows: Minimizing route du-

ration. ORSA Journal on Computing, 4:146–154.

Savelsbergh, M.W.P. and Sol, M. (1998). Drive: Dynamic routing of independent vehicles. Operations

Research, 46:474–490.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing

problems. In: CP-98 (Fourth International Conference on Principles and Practice of Constraint

Programming), vol. 1520 of Lecture Notes in Computer Science, pages 417–431.

30

Shen, Y., Potvin, J.-Y., Rousseau, J.-M., and Roy, S. (1995). A computer assistant for vehicle dis-

patching with learning capabilities. Annals of Operations Research, 61:189–211.

Sol, M. (1994). Column generation for pickup and delivery problems. Ph.D. Thesis, Technische Uni-

versiteit Eindhoven.

Solanki, R.S. and Southworth, F. (1991). An execution planning algorithm for military airlift. Inter-

faces, 21(4):121–131.

Taillard, É.D. (1993). Parallel iterative search methods for vehicle routing problems. Networks, 23:661–

673.

Toth, P. and Vigo, D. (1996). Fast local search algorithms for the handicapped persons transportation

problem. In: I.H. Osman, J.P. Kelly (eds.), Meta-Heuristics: Theory and Applications, pages 677–

690, Kluwer, Boston.

Toth, P. and Vigo, D. (1997). Heuristic algorithms for the handicapped persons transportation problem.

Transportation Science, 31:60–71.

Toth, P. and Vigo, D. (2002). The Vehicle Routing Problem, SIAM Monographs on Discrete Mathe-

matics and Applications, Philadelphia.

Wilson, N.H.M., Sussman, J., Wong, H., and Higonnet, B. (1971). Scheduling algorithms for dial-a-ride

systems, Technical Report USL TR–70–13, Urban Systems Laboratory, Massachusetts Institute of

Technology, Cambridge, MA.

Wilson, N.H.M. and Weissberg, H. (1976). Advanced dial-a-ride algorithms research project: Final re-

port, Technical Report R76–20, Department of Civil Engineering, Massachusetts Institute of Tech-

nology, Cambridge, MA.

Xu, H., Chen, Z.-L., Rajagopal, S., and Arunapuram, S. (2003). Solving a practical pickup and delivery

problem. Transportation Science, 37:347–364.

31

