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Abstract: The urge to develop high-speed data transfer technologies for futuristic electronic and com-
munication devices has led to more incidents of serious electromagnetic interference and pollution.
Over the past decade, there has been burgeoning research interests to design and fabricate high-
performance porous EM shields to tackle this undesired phenomenon. Polymer nanocomposite foams
and aerogels offer robust, flexible and lightweight architectures with tunable microwave absorption
properties and are foreseen as potential candidates to mitigate electromagnetic pollution. This review
covers various strategies adopted to fabricate 3D porous nanocomposites using conductive nanoin-
clusions with suitable polymer matrices, such as elastomers, thermoplastics, bioplastics, conducting
polymers, polyurethanes, polyimides and nanocellulose. Special emphasis has been placed on novel
2D materials such as MXenes, that are envisaged to be the future of microwave-absorbing materials
for next-generation electronic devices. Strategies to achieve an ultra-low percolation threshold using
environmentally benign and facile processing techniques have been discussed in detail.

Keywords: polymer nanocomposites; porous; foams; aerogels; EMI shielding; microwave absorption

1. Introduction

Electromagnetic (EM) pollution is a severe concern that needs to be addressed by
microwave engineers and material scientists working on next-generation electronic de-
vices functioning at a higher bandwidth of the microwave region. With the quest towards
miniaturization of electronic gadgets, there has been a tremendous impact on the modern
technology and operating speeds of these devices. This miniaturization of electronic com-
ponents eventually paved the way for undesirable mixing of electronic impulses, which is
termed electromagnetic interference (EMI) and is envisaged to have detrimental effects on
the overall performance and lifespan of high-frequency devices. There is no confirmed evi-
dence of health risk from EM radiation generated by mobile phones. However, particularly
in work environment the EM pollution could be increase the body temperature or affect the
functioning of e.g. pacemakers [1–3]. Most of the medical implant devices such as hearing
aids, insulin pumps and cardiac pacemakers also work on EM signals and could result
in malfunctioning upon exposure to alternating EM fields [4]. Military communication
systems mostly rely on distinct GHz frequencies and are also vulnerable to the problem
of EMI, which is a serious national threat to the defense and allied sectors. Convention-
ally, thin metallic foils were used to suppress EM radiation, but they scatter the incident
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signals due to the mismatch of impedance between the incoming EM wave and the metal
surface. The presence of free valence electrons in metals paves the way to interact with the
microwave radiation and eventually reduces the intensity of the incident waves. However,
this creates further EM pollution and is not considered as an effective way to prevent EMI.
Numerous demerits viz. poor corrosion resistance, low flexibility and high density further
limits their use as EMI shields. Hence, to mitigate this undesired phenomenon, researchers
are working in an interdisciplinary fashion to devise high-performance EMI shielding
materials that primarily absorb EM radiation. Therefore, EMI shielding of devices using
conductive, robust, flexible and lightweight polymer nanocomposite foams and aerogels
have attracted researchers in the past few decades [5].

The main criterion for designing polymeric EMI shields with high shielding effective-
ness is by inclusion of electric and magnetic dipoles into the system [6]. EM waves, being
a synchronous propagation of mutually perpendicular electric and magnetic fields, can
interact with the electric and magnetic dipoles, hence reflecting or absorbing the incident
EM waves. Owing to the ease of processability, superior mechanical properties, flexibility
and tailored functional properties, polymer nanocomposites are potential candidates for
designing efficient EMI shielding materials [7–16]. Effective EMI shields with a predomi-
nant absorption mechanism can be formulated by incorporating magnetic and dielectric
nanostructures, which will in turn enhance the complex permittivity and permeability of
the shields [17–19]. Numerous polymer nanocomposites with judicious combinations of
conducting fillers, such as 1D fillers (carbon nanofibers [20–22], carbon nanotubes [23–31],
metal nanowires [32–35]), 2D fillers (graphene [36–39], reduced graphene oxide [40–43],
hBN [44–47], MoS2 [48–51], MXene [52–56]), magnetic fillers (Fe3O4 [57–59], Fe2O3 [60,61],
nickel ferrite [62,63]) and dielectric fillers (BaTiO3 [64], barium strontium titanate [65,66]
and TiO2 [67,68]) have been extensively studied for designing efficient EMI shielding mate-
rials that can overcome the drawbacks of conventionally used metallic shields. In addition,
conducting polymers such as polyaniline [69–72], polypyrrole [73–76], PEDOT:PSS [77–79]
and polythiophene [80–82] have also been extensively utilized to shield EM waves. They
offer tunable electrical conductivities but have poor processability and film-forming capa-
bilities, which hinders their viability as robust shields. Hence, conducting polymers are
incorporated as fillers or blended with commodity polymers to fabricate EM shields for
commercial applications. However, for designing thinner and lighter shields with a very
low percolation threshold of nanofillers, many pitfalls in existing EMI shielding materials’
research should be addressed [83].

It is well-known that the electrical conductivity is of paramount importance and di-
rectly governs the EMI shielding performance of any polymer nanocomposite shield [84].
For any shield to absorb EM radiation, it is also highly desired to tune the dielectric constant
to be very close to that of air. The shields mostly reflect back signals due to the mismatch
of impedance between the propagating signal medium and the shield surface. Hence,
foaming of polymer nanocomposites is regarded as an impending strategy to fabricate
lightweight and high-performance EMI absorbers. The relative volume of air entrapped
within the porous framework of foams and aerogels is indeed very high, which facilitates
better impedance matching. The porous network of conducting nanofillers within the
foams also provides multiple filler–polymer interfaces that will result in multiple internal
scatterings or reflections. This will eventually lead to microwave absorption and heat
dissipation. Aerogels are yet another class of porous materials, like polymer foams, with
excellent physicochemical attributes, such as ultra-low density (0.003–0.500 g/cm3) and
higher porosities (80–99.8%), that are useful for high-end technological applications such as
thermal insulation, oil recovery and catalysis [85–87]. However, in the context of EMI shield-
ing applications, polymer nanocomposite foams and aerogels possess many similarities in
the mechanism of shielding due to the presence of a well-interconnected porous network,
which is available to scatter EM radiation. Moreover, the key challenge for designing high-
performance polymer nanocomposite foams and aerogels is proper selection of the polymer
matrix and nanofiller system. The wettability, degree of dispersion and nanofiller–polymer
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interaction is of paramount importance to achieve good electrical conductivity and high
EMI shielding efficacy in polymer nanocomposite shields. Henceforth, in this review, vari-
ous strategies adopted to fabricate polymer nanocomposite foams and aerogels for superior
microwave absorption and high EMI shielding performance have been discussed in detail.
Methodologies adopted to achieve an ultra-low percolation threshold at minimal nanofiller
concentrations are also discussed in detail. In the last decade, a significant amount of work
has been published in the area of EMI shielding material, especially focused on designing
porous structures such as foam and aerogels. Figure 1 shows the number of publications
reported during the last decade (2011–2020) in ScienceDirect and Web of Science databases,
with keywords such as electromagnetic interference shielding, porous, foam and aerogels,
which clearly depicts the rising interest among the research community to fabricate porous
microwave absorbers for next-generation technologies.
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2. Terminologies in EMI Shielding

Firstly, there are two major parameters that need to be quantified for characterizing the
efficiency of any electromagnetic shield material. The first is the shielding effectiveness (SE)
and the second is the reflectivity (R) of the shield. The former corresponds to the measure of
power which is transmitted through the shield material (PT) to the incident power (PI), and
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the latter corresponds to the power reflected back from the shield (PR) to the incident power.
In general, the shielding effectiveness is expressed in terms of reductions in the magnitude
of the incoming power when power is transmitted through the shield. In general, the total
shielding efficiency of a shield is expressed on a logarithmic scale, as shown below [88]:

SET(dB) = SEA + SER + SEM = 10 log10

(
PT

PI

)
= 20 log10

(
ET

EI

)
= 20 log10

(
HT

HI

)
(1)

where PI (EI or HI) and PT (ET or HT) are the power (electric/magnetic field intensities) of
incoming and transmitted EM waves, respectively. The aforementioned equation clearly
suggests that the total electromagnetic shielding efficiency of a material depends on the
sum of the three different mechanisms, viz. shielding by absorption (SEA), reflection (SER)
and multiple internal reflections (SEM). Figure 2 depicts a schematic illustration of the
different electromagnetic shielding mechanisms.
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The incident EM wave is either reflected back to the surrounding areas or is transmitted
through the material, or will be absorbed inside the material. However, it is highly desirable
to fabricate materials which have high conductivity and low reflectivity. For instance, metals
are used as conventional EMI shielding materials with high SE values, but at the same time,
most of the incoming EM wave is reflected back to the adjacent electronic circuits. This
leads to further EM interference, and hence there is a strong need to develop microwave-
absorbing materials which have high SE values and low reflectivity in the noted frequency
region. For such materials, they must exhibit high conductivity (for high SE values) and a
low dielectric constant (for low reflectivity).

2.1. Shielding by Absorption (SEA)

When an EM wave passes through any medium, its intensity becomes exponentially
reduced. The critical thickness at which the EM field strength reduces to 1/e of the incident
field is known as the skin depth (δ). This decay occurs as currents induced in the material
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produce ohmic losses, which also heats up the material. The absorption losses within a
shield can be expressed by the following equation [89]:

SEA = −20
t
δ

log10 e = −8.68
(

t
δ

)
= −8.68 t

(σTµrω

2

) 1
2 (2)

where t is the thickness of the shield in inches, δ is the skin depth and f is the frequency
in Hz. It is also evident from the above expression that SEA is directly proportional to the
square root of the product of permeability (µr) and conductivity (σT). In addition, the SEA
of a given material also increases with increasing frequency. The skin depth (δ) of a shield
can be expressed as the following equation [89]:

δ =

√
2

fµσ
= −8.68× t

SEA
(3)

where t is the thickness of the shield, f is the frequency and σ is the electrical conductivity,
respectively. However, it is evident that the skin depth of the shielding material has a direct
relation with the thickness of the shield. In such case, two situations are possible.

When (t << δ): The material is called electrically thin when the thickness of the shield
is less than the skin depth, and this generally occurs at lower frequencies. In this situation,
the shielding due to absorption can be ignored and attenuation occurs mostly through the
reflection mechanism. Then, the total shielding becomes independent of frequency and can
be expressed in terms of free space impedance, as follows [89]:

SE (dB) = −20 log10

(
1 +

Z0

2
tσT

)
(4)

where Z0 is the impedance of the free space (=377 Ω).
When (t >> δ): The material is called electrically thick when the skin depth is much

lower compared to the thickness of the shield. Here, the total SE can be calculated after
making a good conductor approximation.

2.2. Shielding by Reflection (SER)

The reflection losses of a shield material under far-field conditions can be expressed
as follows [89]:

SER(dB) = −10 log10

(
σT

16ωε0µr

)
(5)

where σT is the total conductivity, µr is the relative permeability and f is the frequency in Hz.
The above equation shows that reflection losses are a function of the ratio of conductivity
and permeability, i.e., (σT/µr). In addition, for a shield material with constant σT and µr,
SER decreases with increasing frequency.

2.3. Shielding Due to Multiple Internal Reflections (SEM)

When the thickness of the shield is low, the incident EM waves are reflected between
the first and second boundaries. The shielding effectiveness due to multiple internal
reflections, SEM, is expressed as the following equation [89]:

SEM = 20 log10

(
1− e−2t/δ

)
= 20 log10

[
1− 10

−SEA
10

]
(6)

From the above equation, it is clear that SEM is directly related to absorption losses
(SEA). This loss is of more importance in foamed polymer nanocomposite materials, where
air is present in the pores and hence reduces the dielectric constant of the material (dielectric
constant of air = 1). As the dielectric constant decreases, the reflection losses will be minimal,
and hence the shielding mechanism will be mostly governed by the absorption mechanism.
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SEM can be neglected when the thickness of the shield is high, then the SEA value will be
high, and by the time the EM waves reach the second boundary, its amplitude becomes
negligible. In addition, if SEA ≥ 10 dB, SEM can be neglected [89]. SEM is usually important
in cases of thin conductors when used at lower frequencies (in the KHz region). However,
for absorbing shields in the high-frequency region (GHz region), if SEA ≥ 10 dB, SEMR can
be considered negligible.

The ability of any shield material to attenuate EM waves is termed as EMI shielding
effectiveness (EMI SE), and is usually expressed in terms of decibels (dB). It can also be
expressed in terms of percentage (%), which can be calculated with the following equation [90]:

Shielding efficiency (%) =

(
1

10
SE
10

)
× 100 (7)

3. Reflection Loss (RL) and Microwave Absorption

As per the transmission line theory, when an electromagnetic wave of fixed-frequency
impinges perpendicularly on the surface of a single-layer absorbing material, the power
reflection of the material can be calculated with the reflection loss coefficient, RL (dB), given
be the following equation [91]:

RL(dB) = 20 log
∣∣∣∣Zin − Z0

Zin − Z0

∣∣∣∣ (8)

Zin = Z0

√
µr
εr

tanh
[

j
(

2πfd
c

)
√
µrεr

]
(9)

where Z0 ≈ 377 Ω, i.e., free space impedance, µr = complex permeability (µr = µ′ − jµ”),
εr = complex permittivity (εr = ε′ − jε”), f = frequency, d = thickness of the material and
c = speed of light. The percentage of microwave absorption and reflection loss, RL, is
governed by the following equation [92]:

Microwave Absorption (%) = 100−
[

10(
RL
10 ) × 100

]
(10)

The absorption efficacy of any EM absorber depends on the frequency of the EM wave,
the thickness of the shield and the relative complex permeability and permittivity of the
material. Another factor for enhanced EM absorption is better impedance matching. The
condition for impedance matching is given by Zin = Z0, which means that the impedance
at the shield surface should be made close to that of air so as to facilitate the passage of
EM waves into the shield [93]. This can be made possible by introducing porosity and also
fine-tuning the material properties such as permeability and permittivity. The RL value
is usually negative, and the larger the absolute value of RL, the smaller the energy of the
electromagnetic wave reflected by the material surface. This indicates that the majority of
the EM energy is being absorbed and the material has better absorption efficiency. Table 1
presents a comparison between shielding effectiveness (dB) with shielding efficiency (%),
and reflection loss (RL) with microwave absorption. For instance, −10 dB shielding effec-
tiveness corresponds to 90% attenuation of incident electromagnetic radiation. Similarly,
a −20 dB EMI SE represents 99% blockage. Whereas an RL value less than −10, −20 or
−30 dB infers that more than 90%, 99% or 99.9% of the incident EM energy is absorbed.
Usually, the bandwidth with RL values less than −10 dB is considered as an effective
electromagnetic absorption bandwidth (EAB) [94]. In practice, excellent microwave ab-
sorber materials should showcase an RL value less than −10 dB within a broad frequency
bandwidth at very low thickness. For commercial applications, a minimum of −20 dB
shielding and RL values lower than −10 dB over a wide range of bandwidth with minimal
thickness is considered as an effective EMI shielding material.
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Table 1. The correlation between the EMI shielding effectiveness value (dB) with shielding efficiency
(%) and the reflection loss (RL) value with microwave absorption (%). Reprinted/adapted with
permission from Ref [90]. Copyright 2016, The American Association for the Advancement of Science.

EMI Shielding
Effectiveness (dB)

Shielding Efficiency
(%)

Reflection Loss (RL)
(dB)

Microwave
Absorption (%)

0 0 0 0
−10 90 −10 90
−20 99 −20 99
−30 99.9 −30 99.9
−40 99.99 −40 99.99
−50 99.999 −50 99.999
−60 99.9999 −60 99.9999
−70 99.99999 −70 99.99999
−80 99.999999 −80 99.999999
−90 99.9999999 −90 99.9999999
−92 99.99999994 −92 99.99999994

4. Tuning Microwave Absorption for Superior EMI Shielding in Porous Materials

For any EMI shielding material to absorb excess EM radiation impinging on its surface,
one should keep the dielectric constant equal to one or close to that of air. The reflection of
EM radiation is primarily due to the impedance mismatch between the wave impedances
of the signal propagating in air and those of the absorber material. A facile approach
for this impedance matching is fabricating porous architectures of conductive polymer
nanocomposites. The relative volume of air in these porous polymer nanocomposites is
indeed very high, and thus facilitates better impedance matching at the shield/air interface.
Nevertheless, the presence of air bubbles in the cells can reflect and scatter EM radiation and
make it difficult to escape from the porous structure, and it eventually becomes absorbed
and transferred as heat energy, as shown in Figure 3. The EMI SE value of these porous
nanocomposites is mostly absorption-dominant due to this phenomenon. In addition,
porous structures create multiple filler–polymer interfaces, where large amounts of charges
would accumulate, thereby increasing the interfacial/space charge polarization and thus
the EM attenuating capacity [95].
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In general, porous materials are usually considered to be composites that are com-
posed of solid and air components, where the Maxwell Garnett (MG) theory is an emblem-
atic mechanism for understanding the variation of the effective permittivity. As per the
MG theory, the effective permittivity in any porous material can be expressed as in the
equation below [96]:

εMG
eff = ε1

[
(ε2 + 2ε1) + 2f(ε2 − ε1)

(ε2 + 2ε1)− f(ε2 + ε1)

]
(11)

where ε1 = permittivity of the solid component, ε2 = permittivity of air and f = volume
fraction of air. The permittivity of air is 1, and the solid component possesses a value higher
than 1. From the above equation, one can deduce that the effective permittivity decreases
with the increasing pore volume or void content. This will now facilitate towards better
impedance matching and also promote incoming EM waves to enter into the absorber more
easily. The presence of a porous architecture will therefore reduce complex permittivity.
In general, EM attenuation capacity and good impedance matching are the fundamental
design principles for high-performance microwave absorption. The characteristic input
impedance can also be expressed in terms of relative complex permittivity (εr) and complex
permeability (µr), as follows [97]:

Zin =

√
µ0
ε0

√
µr
εr

(12)

where ε0 and µ0 are the permittivity and permeability of the vacuum. It is well-known that
εr is usually larger than µr for any absorber material. Therefore, if the value of εr decreases,
it will help to bring the Zin/Z0 value close to 1 and result in better impedance matching
and enhanced microwave absorption.

The attenuation constant (α) is another parameter that determines the extent of mi-
crowave absorption performance. It can be expressed in terms of the dielectric and magnetic
losses in an absorber using the following equation [97]:

α =

√
2πf
c

√
µ′′ ε′′ − µ′ε′ +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (13)

where f = frequency of electromagnetic wave propagation and c = velocity of light.

5. Solid vs.Porous EMI Shielding Materials

Electromagnetic shielding is directly correlated with the electrical properties of the
nanocomposites. Several conducting nanoinclusions have been incorporated into polymer
matrices, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, MXenes,
magnetic NPs and ferrites, to fabricate electrically conductive polymer nanocomposites
for EMI shielding and microwave absorption. The formation of a long-order intercon-
nectivity of these nanofillers within the polymer matrix is of paramount importance to
achieve the desired electrical conductivity and EMI shielding performance. In polymer
nanocomposites, at a particular filler concentration there exists a critical point where a
conductive filler network is formed, and the DC conductivity substantially increases. This
point at which a nanocomposite becomes capable of conducting direct current is termed
the percolation threshold. It is also well-established that below this percolation threshold,
polymer composites act as mere insulators. As per the classical percolation theory, the
relationship between the DC conductivity of a polymer/filler composite (σdc) and the
volume fraction of the conducting filler (vf) can be expressed as follows [98]:

σDC = σ0

(
∅ f −∅c

)t
(14)

where σ0 = conductivity of the filler, ∅ f = volume fraction of the filler, ∅c = percolation
threshold and t = critical exponent. This equation is valid for concentrations higher than
the percolation threshold, i.e., ∅ f > ∅c, and the critical exponent value depends on the
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dimension and aspect ratio of the filler used in the system. In this region, the overall
electrical conductivity is enhanced due to possible charge transport mechanisms, viz. con-
duction, tunneling or hopping. Conduction occurs when there is physical contact between
neighboring fillers so that electrons can be transferred from one filler to another. However,
for hopping and tunneling mechanisms, physical contact is not required for charge trans-
port. Several strategies have been adopted to reduce the percolation threshold and achieve
higher conductivity at extremely low filler concentrations. Fabricating porous polymer
nanocomposites such as foams/aerogels is the mostly widely used technique to reduce the
percolation threshold and enhance microwave absorption. A schematic representation of
how the percolation threshold varies in foam and bulk polymer nanocomposites is depicted
in Figure 4. Foamed polymer nanocomposites showcase similar electrical conductivity
at lower volume fractions of filler (φfoam < φBulk) when compared to their bulk counter-
parts. In this context, Ling et al. [95] fabricated lightweight and porous polyetherimide
(PEI)/graphene composite foams and examined the dependence of electrical conductiv-
ity and microwave absorption with solid nanocomposites. Interestingly, it was observed
that via the foaming process, the percolation threshold significantly reduced from 0.21 to
0.18 vol.% for solid and foam nanocomposites, respectively. It is also worth mentioning
that the percentage of microwave absorption in foam nanocomposites was found to be
8.1–14.4% more than in the solid shields [95].
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Figure 4. Schematic comparison of percolation behavior in bulk and porous polymer nanocomposites.

Hamidinejad et al. [99] performed extensive studies to understand the effect of foam-
ing on the electrical conductivity and EMI shielding performance of HDPE-graphene
nanoplatelet (GnP) composite foams. These composite foams were fabricated by physical
foaming using the injection molding process. The degree of foaming greatly affected the
electrical conductivity of these nanocomposites. The percolation threshold drastically
decreased from 19 to 9.1 vol.% GnP at a 7% degree of foaming and due to the volume
exclusion effect induced by the gas phase. In addition, a maximum EMI SE value of 31.6 dB
was recorded for the composite foams, and this was 45% higher than the total SE value
of solid nanocomposites (see Figure 5) [99]. The prime mechanism of shielding was also
dominated by absorption of EM waves in the foamed nanocomposites. Nevertheless, via
physical foaming, the density of the HDPE-GnP nanocomposites was also reduced by up
to 26%, which opens up new avenues for designing lightweight EMI shielding materials at
very low percolation thresholds.
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6. Measuring EMI Shielding Effectiveness (EMI SE) of Porous Polymer Nanocomposites

The most widely used instrument to measure the EMI SE of polymeric nanocomposite
shields is placing the test samples inside the waveguide of a Vector Network Analyzer
(VNA), where one can measure both the magnitude and phase of the EM signals. However,
by using a Scalar Network Analyzer (SNA), one can only measure the magnitude of the
signals and cannot measure the complex permittivity and permeability of test specimens.
Hence, VNA is the most preferred instrument to elucidate the shielding performance. The
incoming and transmitted EM waves from a two-port VNA can be expressed in terms
of scattering parameters (viz. S11, S21, S22, S21), where S11 and S21 are forward reflection
and transmission coefficients, and S22 and S21 are reverse reflection and transmission
coefficients. As per the EMI shielding theory, the relation between power coefficients of
reflectance (R), absorbance (A) and transmittance (T) is expressed as [100]:

A + R + T = 1 (15)

where
T = |S12|2 = |S21|2 (16)

R = |S11|2 = |S22|2 (17)

The EMI SE can be calculated using the following equations [100]:

SER = −10 log(1− R) (18)

SEA = −10 log
(

T
(1− R)

)
(19)

SETotal = SEA + SER + SEMR = −10 logT (20)

Herein, SEMR is the shielding due to multiple internal scatterings which can be ne-
glected when SEA ≥ 10 dB [101].

7. Methods to Fabricate Polymer Foams and Aerogels

Polymer foams are mostly fabricated with the addition of chemical blowing agents,
which release gases into the bulk polymer matrices due to a reaction that is mostly exother-
mic in nature. If the entrapped gas attains roughly spherical and separate pores, it results in
the formation of a rigid closed-cell foam. Meanwhile, if the pores are well-interconnected,
it gives rise to flexible open-cell foam. The open-cell foams are mostly used as upholstery
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and acoustic insulation, whereas closed-cell foams are widely utilized for thermal insula-
tion. There are several industrial techniques for the production of thermoplastic foams,
viz. batch foaming, foam extrusion and foam injection molding [102]. The selection of a
particular foaming process depends on the final product and end application of the foam.
Moreover, the use of chemical blowing agents may lead to contamination as undesired
residues can remain in the matrix even after the foaming process. Hence, physical blowing
agents are more desirable for creating porous networks. Currently, the main focus is on the
usage of supercritical CO2 due to its non-flammability, chemical inertness, efficient process
control, relative ease of handling and good interaction with polymers compared to other
inert gases [103]. Moreover, it expediently replaces conventional volatile solvents, viz. chlo-
rofluorocarbons (CFCs), butane or pentane, which are infamous for their contribution to
the depletion of the ozone layer. Therefore, next-generation polymer-based EMI shielding
foams are preferably manufactured by the CO2-aided technique.

Aerogels are a class of porous solids which possess extremely low density, high
surface area and tunable porosities (90–99%) that can be prepared from various polymeric
precursors by sol–gel method and subsequent freeze/supercritical drying to remove the
solvents from the wet gels and replace them with air [104]. However, aerogels possess
even higher porosity and lower densities than polymeric foams and are hence suitable for
high-end technological applications such as sensors, energy storage, biomedical scaffolds
and many more [105]. The higher production cost associated with aerogel fabrication is the
main drawback that restricts its commercial application. Depending on the morphology,
aerogels can be further classified as isotropic and anisotropic aerogels. A rapid immersion
of the polymer precursor into liquid N2 will arrest the molecular motions within the
solution, thereby preserving its original structure. This results in the formation of isotropic
aerogels. However, when we adopt slower freezing of the precursor solution on copper
plates using liquid N2, it leads to the formation of anisotropic aerogels. This technique
is also known as unidirectional ice templating (IT) [104]. In this process, the ice crystals
slowly start to grow in one direction, which results in the formation of 2D pores/cells that
are aligned parallel to the freezing direction, which eventually results in a honeycomb-
like structure in the aerogels. In this review, we primarily focus on the fabrication of
various conductive polymer nanocomposite aerogels and foams that can deliver high EMI
shielding performance.

8. Elastomer Nanocomposite Foams for Electromagnetic Interference Shielding

Owing to their superior compressibility and flexibility, elastomer-based nanocompos-
ite foams have been widely explored for their EMI shielding ability and microwave ab-
sorption performance. Amongst elastomers, silicon rubber, natural rubber and butadi-
ene rubber have been converted into three-dimensional porous foams by using chemi-
cal/physical blowing agents or via the supercritical carbon dioxide (Sc-CO2) foaming tech-
nique. Yang et al. [106] fabricated flexible and very lightweight methyl vinyl silicon rubber
(VMQ)/multi-walled carbon nanotubes (MWCNTs)/ferriferous oxide (Fe3O4) nanocompos-
ite foams using Sc-CO2 foaming, as shown in Figure 6. The microwave-absorbing abil-
ity of these nanocomposite foams was found to be enhanced due to the formation of a
porous structure, thereby considerably reducing the secondary EM pollution due to the
reflection of microwaves. These flexible and compressible foams showcased low density
(~0.48 g.cm−3), with an average EMI SE of 27.5 dB and an average absorption efficiency of
64% in the X-band region (8.2–12.4 GHz) [106]. It was reported that, at 1.78 vol.% filler loading,
a maximum electrical conductivity of ~14.6 S/m and specific EMI SE of ~72 dB·g−1 cm3 were
achieved by using this process. It is also worth mentioning that the foams exhibited excellent
EMI shielding stability, with a 96.2% retention of EMI SE even after 1000 bending cycles.
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Backfilling an elastomer into a preformed three-dimensional (3D) conductive skeleton
of nanofillers is yet another burgeoning approach for developing highly conductive elas-
tomer nanocomposite foams. Li et al. [107] made use of this strategy to fabricate porous EMI
shielding materials with enhanced microwave absorption properties. Herein, an elastomer
matrix, i.e., polydimethylsiloxane (PDMS), was used to reinforce a highly conductive and
robust three-dimensional bi-continuous skeleton of graphene/silver nanowires. Initially,
GO suspension was added to AgNWs dispersion and homogenized to form stable hydro-
gels. This was followed by a thermal reduction of the hybrid hydrogel into rGO/AgNWs
networks, which were eventually freeze-dried for 48 h to form 3D bi-continuous conductive
structures. This porous network was then immersed in PDMS with a curing agent to form
robust and compressible PDMS-reinforced GACs (PGACs), as shown in Figure 7A. The
EMI shielding value of these hybrid foams reached 34.1 dB at 0.43 wt.% rGO and 0.33 wt.%
AgNWs loading, and showcased superior conductivity of 10.6 S/cm and high specific
EMI shielding effectiveness of 22.43 dB/unit filler wt.%/mm [107]. In addition, these
monoliths demonstrated excellent compressibility, thermal stability and flame retardancy
(see Figure 7B).

In another work, Zhao and co-workers developed flexible and high-performance EMI
shielding foams from PDMS/rGO/SWCNTs nanocomposites using a similar backfilling
approach by exploiting a preformed rGO/SWCNTs aerogel as a 3D conductive skeleton.
These nanocomposite foams were fabricated based on a two-step process using GO and
pristine SWCNTs, as shown in Figure 8. Initially, a sol–gel self-assembly of reduced GO and
SWCNTs was performed, and they were subsequently freeze-dried to create a robust 3D
rGO/SWCNTs aerogel skeleton. The next step was penetration of PDMS into the formed
porous network, followed by the curing process. The 3D bi-continuous carbonaceous
network in the foams created a highly efficient pathway for the electron transport and
demonstrated high electrical conductivity of 1.2 S/cm, with a maximum EMI SE of 31 dB
in the X-band region at very low loading of 0.28 wt.% rGO and SWCNTs [108].
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Figure 8. (a) Schematic depicting the fabrication of rGO/SWCNTs/PDMS aerogel. (b) Digital photo-
graph of the ultralight aerogel. (c) A photograph of aerogels demonstrating excellent compressibility
and super-elasticity. (d,e) Optical images of these aerogels in diverse shapes (d) and bending of aero-
gels demonstrating outstanding flexibility (e). Reproduced with permission from [108]. Copyright
2018, American Chemical Society.
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9. Thermoplastic Foams for Electromagnetic Interference Shielding

Thermoplastic foams are widely used across diverse technological domains due to
their lightweight nature, low thermal conductivity, high energy absorption and their supe-
rior strength/weight ratio. Owing to their excellent properties, thermoplastic foams have
been utilized for building, construction, biomedical, automotive, sports, electronics and
packaging applications. Fabrication of porous conductive thermoplastic nanocomposites
with low density and high microwave absorption performance are very much favorable for
practical device application. Chen et al. [109] fabricated porous and lightweight nanocom-
posites with segregated conductive networks of polystyrene (PS) and multi-walled carbon
nanotube (MWCNT) by combining high-speed mechanical mixing and scCO2 foaming. PS
powder and MWCNT were subjected to high speeds of 28,000 rpm in a mixer, which gener-
ated static electricity to facilitate the coating of MWCNT on PS powders via electrostatic
adsorption. The coated nanocomposite powder was then compression-molded at 160 ◦C,
which resulted in the formation of a segregated conductive network, as shown in Figure 9a.
The solid nanocomposite sheets were then subjected to foaming using scCO2, which accords
with the sustainable fabrication of PS/MWCNT foams. Interestingly, at 1.88 vol.% MWCNT
loading and a very low thickness of 1.8 mm, these nanocomposite foams exhibited a very
low density of 0.47 g/cm3, electrical conductivity of 8.05 S/m and maximum EMI SE of
23.2 dB in the X-band region [109]. It is also worth mentioning that at the same MWCNT
vol.% (i.e., 7%), the nanocomposite foam exhibited higher microwave absorption (95.9%)
than the solid shields (90.5%). This enhancement and absorption-dominant shielding
mechanism were ascribed to ohmic losses and polarization losses in PS/MWCNT foams.
This is an environmentally friendly technique to fabricate high-performance microwave
absorbers for next-generation electronic devices.
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(b) Schematic demonstrating the formation of a double-segregated structure within PP/CNTs/CB
nanocomposite foams. Reproduced with permission from [110]. Copyright 2020, Elsevier Ltd.
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Polypropylene is yet another thermoplastic polymer that is widely used to fabricate
flexible and robust olefinic foams which have diverse applications in upholstery, roofing,
construction, biomedical and automotive sectors. However, its application as an efficient
high-performance microwave absorber is very limited and is yet to be discerned. Ju and
co-workers made use of a similar strategy adopted by Chen et al., to fabricate lightweight
polypropylene (PP)/carbon nanotubes (CNTs)/carbon black (CB) nanocomposite foams.
Herein, PP powders were blended with CNT/CB powder at different weight ratios in a
grinder at 20,000 rpm/min at 100 ◦C. In due course, the filler is adsorbed to PP due to
electrostatic forces, coupled with the surface heating effect. The blended powder composi-
tions were then compression-molded at 180 ◦C, which resulted in the formation of a highly
conductive segregated network, which was eventually foamed into porous PP/CNT/CB
nanocomposites, as shown in Figure 9b. These porous foams showcased a very low den-
sity in the range of 0.082–0.101 g/cm3 and an extremely low percolation threshold of
0.016 vol.%, which was likely due to the hybrid combination of the fillers. A maximum of
20 dB EMI SE value was attained at a 2.5 mm thickness, with specific EMI SE as high as
72.23 dB·cm3/g with an absorption-dominant shielding behavior [110].

10. Polyurethane Foams for Electromagnetic Interference Shielding

Polyurethane foams are synthetic porous materials with excellent physicochemical
properties, high compressive strength, excellent chemical resistance and ease of process-
ability, which makes them an ideal candidate for a wide range of applications in emerging
sectors, such as high-frequency electronics, aerospace and automobile sectors. PU foams
with tailor-made properties can be achieved by altering the ratio of hard and soft segments,
polydispersity, molecular weight and also the degree of crosslinking. The presence of
strong hydrogen bonding in polyurethane creates linkages between polymer chains, which
in turn enhances the overall mechanical properties of PU foams. The increasing demand
for high-performance and lightweight materials has motivated researchers to fabricate
porous architectures by incorporating nanofillers such as carbon nanotube (CNT), carbon
nanofibers and graphene. Mostly, these nanofillers are introduced into polyol, chain exten-
der or prepolymer during PU synthesis, before adding the foaming agent. The resulting
conducting polyurethane nanocomposite foams have been exploited for a plethora of appli-
cations, such as oil absorption, thermal insulation, sensors and EMI shielding. Li et al. [111]
fabricated a series of multilayered thermoplastic polyurethane/graphene (PUG) compos-
ites by stacking single-layered PUG foams one above the other. By arranging PUG foams
in different orders, they could realize a gradient in the concentration of graphene, which
in turn enhanced the microwave absorption performance of PUG composites, without
significant changes in their EMI SE values. Figure 10a shows the strategy adopted to
fabricate large-scale manufacture of PU/graphene nanocomposite foams. Sandwiching
PUG foams in a particular fashion was also another approach which was found to be more
advantageous in improving the EMI SE values of these foams, and an optimized design
also enabled the PUG foams to absorb more than the gradient foams. A maximum EMI SE
of 24 dB was obtained at 18 GHz, with minimal reflection of EM waves [111].

Another approach adopted by Jiang et al. [112] was to fabricate porous thermoplastic
PU/graphene oxide nanocomposite foams without the usage of any organic volatile sol-
vents or a solution mixing process. Initially, TPU-coated RGO powders were prepared by
mixing TPU particles in GO suspension with ascorbic acid and in situ reduction of GO to
form TPU/RGO powders. These nanocomposite powders were then compression-molded
into sheets by subjecting to 10 MPa at 120 ◦C for 10 min to generate a segregated network
structure, as shown in Figure 10b. The solid nanocomposites sheets were then exposed
to scCO2 to fabricate porous TPU/RGO nanocomposites. At 3.71 vol.%, solid TPU/RGO
nanocomposites showcased a higher EMI SE value of 24.7 dB, whereas porous nanocom-
posites recorded only 21.8 dB, with much higher absorption characteristics and minimal
reflection [112]. It is also worth mentioning that there was only a slight decree of 5 dB in the
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attenuation of TPU/RGO nanocomposites, even after 100 bending cycles, which portrays
the efficiency of the segregated network structure in these nanocomposites.
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All the aforementioned protocols require multiple steps to fabricate and design porous
polymer nanocomposites. Hence, it is quite necessary to formulate a process which is facile
and scalable at the same time. In this view, Shen et al. [113] developed conductive, ultralight
and compressible PU foams by facile solution dip-coating of graphene onto commercially
available PU foams. The resultant PU/graphene foams exhibited very low density of
~0.027–0.030 g/cm3 and demonstrated superior broadband EM attenuation performance
with an absorption-dominant shielding mechanism. Figure 11 depicts the dipping process,
coating uniformity, morphology and compressive nature of the PU/graphene nanocom-
posite foams. A maximum EMI SE value of 39.4 dB was recorded at 12 GHz and 6 mm
thickness [113]. Moreover, owing to their outstanding compressibility, the shielding per-
formance of the PU/graphene foams could be fine-tuned by mechanical compression,
which endows its adjustable EMI shielding characteristics. In addition, these foams also
exhibited good cycling stability with stable EMI values even after 50 compression cy-
cles, and demonstrated huge prospects for large-scale production of PU-based microwave
absorber foams.
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Figure 11. (A) Stepwise fabrication process of PU/graphene foams, including dip-coating GO sheets
onto PU foams followed by hydrothermal reduction using hydrazine vapor. (B) A piece of foam
showing uniform coating after being torn from the middle portion. (C) A block of foam on the
leaf of an asparagus fern. (D,E) Optical and SEM images of pristine PU sponge and PU/graphene
foam. (F) Compressing and releasing these foams depicting excellent compressibility and recovery.
Reproduced with permission from [113]. Copyright 2016, American Chemical Society.

11. Bioplastic Foams for Electromagnetic Interference Shielding

The replacement of conventional fossil fuel-derived synthetic polymeric foams with
bio-sourced, biodegradable and sustainable alternatives will be crucial for promoting a
circular economy. Synthetic foams such as polystyrene (PS) and polyolefin foams end up as
landfill after their lifecycle and are estimated to remain in soil for generations and wreak
havoc on the environment. Recently, much attention has been focused on PLA, which is a
linear aliphatic polyester sourced from renewable feedstocks such as corn, potato, sugar
and other agricultural sources.

In general, there are three types of PLA, viz. poly(D-lactic acid) (PDLA), poly(L-
lactic acid) (PLLA) and a racemic blend of D,L-PLA (PDLLA). Nowadays, a majority
of sustainable research is inclined towards poly(lactic acid) (PLA) foams and they are
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being widely explored as promising biodegradable substitutes for synthetic foams, which
currently own a major stake in the industry. This is primarily due to the ease of processing,
good barrier and mechanical properties of PLA, accompanied by their environmentally
friendly nature. Besides the packaging industry, there are huge prospects for PLA foams
for use in biomedical, energy, sensors and EMI shielding applications. In this context,
Wang et al. [114] fabricated a facile and eco-friendly route for the large-scale production of
biodegradable and ultra-low-threshold PLA/MWCNT porous nanocomposites for superior
thermal insulation and EMI shielding. Herein, PLA beads were foamed using a bead-
foaming process to obtain expanded PLA (EPLA) beads, followed by mechanical mixing
with (0.25–2.5 wt.%) MWCNT dispersion. This resulted in a uniform coating of MWCNT
onto EPLA beads, which were then sintered together by the steam-chest molding process
to fabricate bulk PLA/MWCNT porous nanocomposites with 3D segregated MWCNT
networks distributed between the EPLA pellets, as shown in Figure 12A. It also worth
mentioning that porous nanocomposites fabricated in this fashion exhibited an ultra-low
percolation threshold of 0.00094 vol.% and a density of 0.045 g/cm3, as seen in Figure 12B.
A maximum EMI SE value of ~50 dB was recorded at 8 GHz, and a specific EMI SE value
of 1010 dB·cm3·g−1 [114]. Moreover, the shielding mechanism in these porous structures
was primarily governed by absorption of incident EM waves.
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Figure 12. (A) Schematic representation of the fabrication technique used to design segregated
MWCNT networks in porous PLA/MWCNT foams. (B) Variation of the electrical conductivity of
these foams with respect to MWCNT content. The inset plot shows σ vs. (ϕ − ϕc). (C) Schematic
illustration of the segregated 3D conductive networks of MWCNTs at the periphery of EPLA beads.
Reproduced with permission from [114]. Copyright 2017, American Chemical Society.

However, PLA exhibits relatively less heat resistance and can hardly be used in
extremely hot conditions above 100 ◦C. Therefore, to enhance the thermal stability of PLA
foams, another strategy that was adopted by Cui and coworkers is creating stereo complex
crystallites (sc) between enantiomeric poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)
via stereo complexation crystallization. Initially, CNT was homogeneously dispersed in the
PLLA/PDLA/dichloromethane (DCM) solution by ultrasonic dispersion and mechanical
mixing. Hexane was then added dropwise to promote the formation of stereo complex
crystallites, which will then form a 3D network-like structure due to gelation. The porous
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PLLA/PDLA/CNT foams were then prepared via a non-solvent-induced phase separation
and freeze-drying, as shown in Figure 13. The CNT/scPLA foam with 1.48 vol.% CNT
demonstrated a lower foam density of 0.10 g/cm3 and a maximum EMI SE value of 21.6 dB,
as well as a specific EMI SE value as high as 216 dB·cm3.g−1 [115]. It was also observed
that the formation of stereo complex crystallites with a high crystallinity of ~45% and
well-interconnected CNT networks portrayed good dimensional stability of PLA foams,
with only minimal shrinkage of 4.3% at 220 ◦C.
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12. Porous Polyimide Nanocomposites for Electromagnetic Interference Shielding

Polyimides (PI) are a class of high-performance polymer materials which contain
the imide group (-CO NHCO-) in the chain backbone. They are well-known for their
excellent mechanical strength, creep resistance, thermo-oxidative stability, chemical resis-
tance, superior electrical insulation and remarkable dielectric properties. Owing to these
exceptional properties, polyimides find application in microelectronic devices, flexible
electronics, aircraft composite structures, cryogenic insulation and radiation shielding
films. The synthesis of polyimides generally proceeds via a two-step condensation reac-
tion mechanism, preferably in melt or solution polymerization using aromatic diamines
and aromatic tetracarboxylic dianhydrides. In the first step, a soluble polymer precur-
sor, poly(amic acid) (PAA), is formed from the ring-opening reaction of the dianhydride
with diamine, followed by ring closure (imidization) of PAA to form aromatic polyimides.
Recently, there is a growing need for high-performance polymer foams, especially in the
aerospace industry for applications such as fireproof panels, cryogenic tank insulation
and energy absorbers, which has led to the use of polyimide foams to meet these require-
ments. Henceforth, researchers are also making efforts to develop robust PI nanocomposite
foams for potential use as high-performance microwave absorbers in aerospace, satellite
communication and military sectors. In this context, Wang et al. [116] fabricated an array
of robust and lightweight polyimide (PI)/carbon nanotube (CNT) foams with superior
microwave absorption and thermal resistance. Initially, aqueous CNT suspension was
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stabilized with poly(vinyl pyrrolidone), and later ultrasonicated in different wt.% with
PAA to form a homogeneous CNT/PAA solution, which was then freeze-dried to form
CNT/PAA foam. These foams were heated at gradient temperatures of 150–300 ◦C to
induce thermal imidization to form PI/CNT foam, as shown in Figure 14a. The foam
exhibited an average EMI SE of 41.1 dB, an 82.3% absorption coefficient (A) and a foam
density as low as 32.1 mg·cm−3 [116]. It is noteworthy that, even after subjecting these
foams at 300 ◦C for 48 h, PI/CNT foams showed a 35 dB EMI SE value. The performance
of PI nanocomposite foams portrays their tremendous application potential for use in the
harsh condition requirements of aerospace, defense and military sectors.

Figure 14. (a) Schematic illustrating the preparation of PI/CNT foam. Reproduced with permission
from [116]. Copyright 2020, American Chemical Society. (b) Schematic demonstration of the fabrica-
tion process of carbon foams from PI foam. Reproduced with permission from [117]. Copyright 2020,
Elsevier Ltd.
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Carbonization of polymeric foam/aerogel often results in superior electrical conduc-
tivity and an enhancement in the specific surface area, which has a tremendous impact
on the overall microwave absorption performance. In order to elucidate the effect of car-
bonization, PI foams were converted to carbon foams by subjecting them to extremely
high temperatures in the range of 1000–1200 ◦C. This strategy was employed by Li and
coworkers, wherein they fabricated rigid PI foams from the starting monomers, as show in
Figure 14b. The PI foams were then carbonized at different temperatures (600 to 1500 ◦C)
for 1 h under an N2 environment to yield carbon foams with a maximum electrical con-
ductivity of 0.215 S.cm−1. Interestingly, foams carbonized at 1500 ◦C demonstrated high
volume shrinkage of 46%, which can be ascribed to the highly crosslinked structure of
the precursor PI foams. These carbon foams had a density of 0.091 g·cm−3 and showed a
superior EMI SE value of ~54 dB and specific EMI SE of 593.4 dB·cm3/g, respectively, at
10 GHz and at a thickness of 2.0 mm [117]. It is also worth mentioning that no conductive
nanofillers were used during the fabrication of carbon foams.

Numerous porous nanocomposite foams and aerogels have been comprehensively
studied for their microwave absorption performance and EMI shielding ability. Table 2
summarizes the EMI shielding properties (SETotal, SSE), electrical conductivity, thickness,
density and test frequency range of some porous nanocomposites studied in the literature.

Table 2. Measurement technique, shield thickness (mm), frequency (GHz), electrical conductivity
(S/m), SETotal (dB) and specific EMI SE (dB.g−1.cm3) of some porous nanocomposites reported in
the literature.

Sr No. Aerogel/Foam
Composition

Measurement
Technique

Thickness
(mm)

Density
(g/cm3) Frequency (GHz)

Electrical
Conductivity

(S/m)

SETotal
(dB)

Specific
EMI SE

(dB.g−1.cm3)
Ref

1 CNT sponge waveguide 1.8 10.0 8–12 150–300 54.8 5480 [118]

2 CNT/PDMS waveguide 2.0 8–12 150–300 46.3 - [118]

3 rGO/epoxy
composite - >0.1 ~0.01 38 35.3 [119]

4 PEI/G@Fe3O4 foam - 0.28−0.4 8−12 ~41.5 - [120]

5 GAF coaxial 1.4 0.06 0.1–3 2.5 × 105 ~135 - [121]

6 GAF coaxial 0.12 0.41 2–18 6600 70–105 - [121]

7 GAs waveguide 4 0.43 8–12 4.32 30 - [122]

8 Ni-NiO/NCA - 1.5 0.42 15.2 −41.9 - [123]

9 carbon/Fe3O4@Fe - 2 13–18 −49.6 - [124]

10 CNT sponge coaxial 2–3.5 0.02 1–18 278 20 1100 [125]

11 CNT/Epoxy
composite - 5–10 5 8–12 516 33 - [126]

12 RGO/LDC Aerogel waveguide 2 8.0 8.2–12.4 - 49.2 53,250 [127]

13 RGO/LDC Aerogel waveguide 2 2.0 8.2–12.4 - 21.3 10,650 [127]

14 Graphene Aerogel - 3 7.6 14.6 - 30.53 - [128]

15 CF@G@PPy aerogels - 3 8.8 9–12.6 - 40.59 - [128]

16 GA-CT - 2 0.07 - - 27 371–385 [129]

17 GA-CT - 3 0.07 - - 37 514–528 [129]

18 CNTs/GNS@CoFe2O4 waveguide 3.0 0.095 8.2–12.4 - 29.1 - [130]

19 epoxy/TGA - 4 8–12 - 27 - [7]

20 epoxy/TAGA (axial) - 4 8–12 980 25 - [7]

21 epoxy/TAGA (radial - 4 8–12 96 32 - [7]

22 Epoxy/pGAs Coaxial 4 4.0 8–12 73 35 [131]

23 RGO/Ti3C2TX foam waveguide 3.22 0.0033 8.2–12.4 - 14, 299.2 [132]

24 MXene aerogels Waveguide 4 0.004 8.2–12.4 22 75 990 [133]

25 Ti3C2Tx MXene/
cellulose aerogel Coaxial 2 0.31 11.2 - −43.4 - [121]

26 MXene Foams - 3.2 58 00 ≈70 - [134]
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Table 2. Cont.

Sr No. Aerogel/Foam
Composition

Measurement
Technique

Thickness
(mm)

Density
(g/cm3) Frequency (GHz)

Electrical
Conductivity

(S/m)

SETotal
(dB)

Specific
EMI SE

(dB.g−1.cm3)
Ref

27 Graphene/PDMS
foam coaxial ~1 0.06 1.5–30 200 ~30 500 [135]

28 GN/CNA coaxial 2 52.1 8.2–12.4 19.1 58.4 [136]

29 Polypropylene/carbon
fiber composite foams Coaxial - - 8.0–12.4 - 24.9 - [137]

30
Porous

graphene/polystyrene
foam composite

- 2.5 0.45 8.2–12.4 1.25 29 64.4 [138]

31
Polypropylene/

stainless-steel fiber
composite foams

Coaxial - - 8.2–12.4 - 47.6 75 [139]

32
Silver Nanowire

Hybrid Polyimide
Composite Foams

Waveguide 5.0 0.014–0.022 30 MHz–1.5 GHz - 17 772 [140]

33 Polyimide/reduced
graphene oxide Waveguide 0.8 0.28 8.2–12.4 0.8 17-21 75 [141]

34

Graphene foam/
poly (3,4-

ethylenedioxythiophene):
poly(styrenesulfonate)

Composite

Waveguide - 0.0182 8.2–12.4 43.2 91.9 3124 [142]

35
Polyetherimide/

graphene@Fe3O4
composite foams

Waveguide 2.5 0.28–0.4 8.2–12.4 - 14.3–18.2 41.5 [120]

36

Reduced graphene
oxide/waterborne

polyurethane
composites

coaxial 1 - 8.2–12.4 16.8 34 - [143]

37 PU/(rUL-GO) foam Waveguide - 0.053–0.092 8.2–12.4 4.04 20 253 [144]

38 Fluorocarbon/
MWCNT foam Waveguide 3.8 1.2 8.2–12.4 - 50 - [145]

39
Polypyrrole and

reduced
graphene oxide

Coaxial 1.5–5 - 2–18 - −54.4 - [146]

40

Natural rubber/
magnetic iron oxide

(Fe3O4) and reduced
graphene oxide

- 1.6 - 8.2–12.4 6.1 42.4 26.4 [147]

41

Multilayered
thermoplastic

polyurethane/graphene
composite foams

Waveguide 6.5 0.42 12–18 3 24 - [111]

42
Polymer-derived
ceramic aerogels

(PDCA)
Coaxial 2-4.5 0.19 2–18 - −43.37 - [148]

43

Polystyrene/
functionalized

graphene
nanocomposite foams

- - - 8.2–12.4 0.1 18 - [149]

44
polycarbonate/

graphene
nanocomposite foams

Waveguide - - 8.2–12.4 - - 39 [150]

45

Epoxy/functionalized
multi-walled carbon

nanotube
microcellular foam

Waveguide 2.5 - 12–18 1.04 × 10−5 20.5 - [151]

46 PP/CNT Foam Waveguide 8 0.87 25–40 3.93 30–35 - [152]

47
PVDF/graphene

nanoplatelet
composites

Waveguide 2.5 - 26.5–40 0.52 27 - [15]

48

Graphene
nanoplatelets/

carbon nanotubes/
polyurethane
composites

Waveguide 3 - 12.4–18 ~10−2 −47 - [153]
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13. Nanocellulose Aerogels for Electromagnetic Interference Shielding

Cellulose is one of the most abundant polysaccharides on the planet and is a key
component present in the cell wall of plants. Basically, it is a linear biopolymer composed
of 1,4-anhydro-D-glucopyranose units and is considered as a replenishable feedstock which
has the potential for meeting the increasing demand for green and sustainable products.
By virtue, cellulose has a fibrillar structure and coexists with hemicellulose and lignin in
the plant cell walls. Inside individual cellulose fibrils, there exists regions that are highly
ordered (crystalline) and disordered (amorphous), with strong inter/intra-molecular hy-
drogen bonding between the hydroxyl groups present in the cellulose backbone. At the
nanoscale level, each macro-cellulose bundle is composed of several elementary cellulose
nanofibers (5–20 nm diameter) that can be extracted and utilized for many technological
applications, such as water purification membranes, substrates for flexible electronics,
electrode materials for batteries and biomedical scaffolds [154]. These applications are
made possible because of the excellent physicochemical properties of nanocellulose, such
as high stiffness, high crystallinity, tunable surface chemistry and impeccable film-forming
ability. However, for designing lightweight and robust solutions to the current challenges
that the industries are facing, cellulose nanofiber (CNF)-based aerogels have gained much
attention. CNF aerogels are highly porous solids with high porosity, ultra-low density and
high specific surface area, and are foreseen as a feasible solution for advanced applications
ranging from oil absorbents to biomedical scaffolds. In this view, Zeng et al. [155] devel-
oped a series of CNF aerogels decorated with silver nanowires (AgNWs) with minimal
density and flexibility for high-performance EMI shielding. Herein, three different aerogel
morphologies were fabricated using bidirectional, unidirectional and randomly directional
freeze-casting methods using facile ice-templated freezing. Figure 15 depicts some of the
key findings, such as the hierarchical structure of CNF, the Tyndall effect confirming the
dispersion stability of CNF in water, different freezing approaches employed for making
anisotropic and honeycomb-like aerogels, interactions of CNF and AgNWs, different aero-
gel morphologies and the bendability/twistability of CNF/AgNW aerogels. These aerogels
demonstrated a maximum EMI SE value of 70 dB, with the highest specific EMI SE value
of 178,235 dB·cm2.g−1, which far exceeds the values reported for biobased aerogels [155].

Upon addition of magnetic nanoparticles, one can enhance the overall permeability
values of the nanocomposites, which can lead to enhanced microwave absorption. This
approach was used by Chen and coworkers for fabricating cellulose/rGO/Fe3O4 aerogels
by decorating Fe3O4 nanoparticles within the porous network of these aerogels. The
steps involved in the fabrication of these aerogels are shown in Figure 16. Cellulose
was dissolved in a sodium hydroxide/urea/H2O mixture along with calculated amounts
of graphene oxide (GO). Vitamin C solution (30 g/L) was used to reduce GO to form
cellulose/rGO hydrogel, which was later freeze-dried for 48 h to form cellulose/GO
aerogels. These hydrogels were also simultaneously immersed in an aqueous FeCl3 and
FeCl2 solution to form Fe3O4-decorated hydrogel and lyophilized in a freeze drier to form
cellulose/rGO/Fe3O4 aerogels. In order to elucidate the effect of porosity, film samples
of these compositions were also fabricated. A maximum EMI SE value of 52.4 dB was
achieved at a 2.0 mm aerogel thickness at 10 GHz [156]. With the increasing magnetic
content and thickness of these aerogels and films, shielding by absorption was also found
to increase. It is worth mentioning that aerogels showcased more shielding performance
than films for same compositions, which can be ascribed to the porosity and the multiple
filler polymer interfaces within the porous structure that facilitate more internal scattering
of microwaves.

In situ coating of the CNF surface with intrinsically conducting polymers is yet
another approach that can be utilized to fabricate high-performance microwave absorbers.
This approach was utilized by Pai et al. [157] for fabricating ultralight and ultra-fast
heat-dissipating PANI/CNF aerogels with 95% microwave absorption ability in X-band
frequencies. Initially, in situ electro-oxidative polymerization of the aniline monomer was
carried out in CNF suspension to stabilize hydrogels, which were later freeze-dried at
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−80 ◦C for 48 h to obtain PANI/CNF aerogels, as shown in Figure 17. These aerogels
demonstrated a maximum EMI SE value of −32 dB at 8.2 GHz and 5.0 mm thickness. It
is noteworthy that owing to the very low density of 0.01925 g/cc, PANI/CNF showcased
a high specific EMI SE value of ~1667 dB.g−1.cm3 and has huge application potential
in telecommunication, military and defense sectors [157]. These aerogels also depicted
ultra-fast heat dissipation behavior when exposed to high-power EM radiation inside a
microwave oven, and could readily absorb excess EM energy emanating from electronic
devices such as a mobile phone.
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Figure 15. (a) Hierarchical structure of CNF and its preparation process. (b) Image of the CNF
dispersion displaying the Tyndall effect. (c) AFM image of pristine CNFs. (d) TEM demonstrating
good attraction and adhesion between the CNFs and AgNWs. Schematic representation of ice crystals’
growth during various freezing approaches of the CNF/AgNW dispersion and SEM images of the
resultant aerogels: (e–g) bidirectional, (h–j) unidirectional and (k–m) uniform/random freezing.
(n) Bendability, twistability and rollability of these ultralight aerogels. (o) Demonstration of large-
area lamellar porous CNF/AgNW aerogels with varying densities (inset, a large-area aerogel held
up by electrostatic force). Reproduced with permission from [155]. Copyright 2020, American
Chemical Society.
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Intrinsically conductive polymers (ICPs) refer to a group of organic polymers with
unique electrical/optical properties that are similar to those of metals and inorganic semi-
conductors. The key advantages of ICPs are that they can be easily synthesized in a simple
and cost-effective manner using less expensive monomers via a simple electro-oxidative
polymerization process. The quest for designing and synthesizing ICPs began in the
mid-1950s, but garnered much more attention in the late 1970s thanks to the pioneering
works of Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, who later won the
Nobel Prize in chemistry in the year 2000. Some of the well-known ICPs are polyacetylene
(PA), polyaniline (PANi), poly[3,4-(ethylenedioxy)thiophene] (PEDOT), polythiophene (PT),
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polypyrrole (PPy) and polyphenylene, which have been widely studied for various ap-
plications such as sensors, OLEDs, batteries, supercapacitors and EMI shielding [158,159].
In the past few decades, ICP aerogels have attracted a great deal of interest owing to
their low density, high surface area and excellent electrical conductivity, especially for
microwave-absorbing applications. In this view, Xie et al. [160] fabricated ultralight and
3D porous polypyrrole/nano-SiO2 aerogels via an in situ gelation process, as shown in
Figure 18a. Pyrrole monomer was dispersed along with nano-SiO2 powder in H2O/ethanol
solution, followed by addition of anhydrous FeCl3 to initiate polymerization. A dark-
colored hydrogel was obtained, which was later dried under vacuum at 50 ◦C to form
PPy/nano-SiO2 aerogels. At 20% SiO2 loading, the maximum effective electromagnetic
absorption (EMA) bandwidth could reach 6.0 GHz at an absorber thickness of 2.5 mm [160].
It is envisaged that nano-SiO2 was added to improve the impedance matching and improve
the broadband EMA performance of the aerogels. In order to enhance the microwave
absorption performance, magnetic materials can also be incorporated in ICP aerogels. In
another study by Sui and coworkers, polydopamine-functionalized carbonyl iron powder-
anchored polypyrrole (CIP@PPy) aerogels were examined for their microwave absorption
ability. Herein, carbonyl iron powder was mechanically mixed along with a surfactant and
dopamine hydrochloride to form polydopamine-coated carbonyl iron powder. This powder
was later blended to a pyrrole monomer in H2O/ethanol solution by ultra-sonication, and
FeCl3 was added dropwise to start polymerization, as shown in Figure 18b. This resulted
in the formation of a black hydrogel, which was washed serval times with distilled water
and ethanol to remove the unreacted monomers and impurities. The hydrogel was then
then dried at 50 ◦C for 12 h to form CIP@PPy aerogels. These aerogels demonstrated two
strong absorption peaks (min RL) of −38.9 and −39.5 dB at 12.2 and 14.2 GHz, respectively,
at a 2.2 mm thickness [161]. It is also noteworthy that they showcased a broad bandwidth
(min RL < −10 dB) of 6.1 GHz in the region of 10 to 16.1 GHz, which infers its commercial
applicability in this frequency region. It is envisaged that this broad-bandwidth microwave
absorption behavior is due to the presence of carbonyl iron powder in these aerogels
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15. Next-Generation 2D Materials for High-Performance Porous EMI Shields

Over the past decade, researchers have been actively working towards developing
novel 2D materials with superior electronic, optical and mechanical properties when com-
pared to existing 2D nanostructures such as graphene, boron nitride and metal dichalco-
genides. Very recently, transition metal carbides, carbonitrides and nitrides, known as
MXenes, are the latest additions to the world of 2D material. They were discovered by
the pioneering works lead by Yury Gogotsi and Michel Barsoum from Drexel University,
USA, in 2011 [162]. MXenes are synthesized by selective etching of certain atomic layers
from their layered precursors, MAX phases, which are a family of ternary carbides and
nitrides. MXenes have a general formula of Mn + 1XnTx (n = 1–3), where M corresponds
to an early transition metal (such as Ti, Zr, Hf, Sc, V, Nb, Ta, Cr or Mo), X is C/N and
Tx stands for the surface terminal groups such as hydroxyl, oxygen or fluorine. MXene
showcases a high electrical conductivity of 1400 S.m−1 with a superior ability to form
stable aqueous dispersions, good antibacterial properties and ease of processing. These
unique properties makes MXene suitable for a wide range of applications, such as Li-ion,
Li-S, Na-ion, Mg-ion batteries, supercapacitors, ultra-thin EMI shielding materials, water
purification and biomedical applications. The high electrical conductivity of these 2D
materials has encouraged researchers to fabricate porous architectures via suitable incorpo-
ration into a polymer matrix. In this view, Xu et al. [163] fabricated a series of lightweight,
porous Ti2CTx MXene/poly(vinyl alcohol) (PVA) composite foams and flexible films via a
simple freeze-drying technique and subsequent compressing of these foams, as shown in
Figure 19a. Initially, few-layered Ti2CTx (f-Ti2CTx) was synthesized via a gentle etching of
Ti2AlC using LiF and HCl as etching agents. f-Ti2CTx was then mixed with PVA solutions
at different concentrations to form stable hydrosols and subsequently freeze-dried for 48 h
in a freeze-dryer at 0.1 Pa. These foams were then pressed under a rolling machine to
form MXene/PVA films. The maximum EMI shielding values of these foams and films
were 33 and 26 dB at 5 mm and ~100 µm, respectively. In the case of MXene/PVA foams,
they exhibited a high specific shielding effectiveness of 5136 dB.cm3.g−1 at an ultra-low
MXene content of only 0.15 vol.%, with excellent absorption-dominated shielding perfor-
mance [163]. Upon compression, these foams transform into flexible films that showcase
enhanced conductivity (8.0 × 10−4 S/m), which could have resulted due to a decrease
in porosity. The absorption- or reflection-dominant shielding behavior depends upon
whether the incident EM wave can enter the shield material. In the case of MXene/PVA
composite film, the incident EM wave is reflected back from the shield surface due to poor
impedance matching, similar to metallic surfaces, whereas for the composite foam, a better
impedance matching can be achieved which will minimize EM wave reflection. When
the EM wave enters the bulk of foam, it will undergo multiple internal reflection within
the porous network and the layered structure of the MXene flakes, which will end up as
heat dissipation due to dipolar and interfacial polarization. The possible EMI shielding
mechanism of MXene/PVA foam and film is demonstrated in Figure 19b.

In order to maintain the structural stability and induce the elastic property in MXene
foams, Wu et al. [164] fabricated highly conductive polydimethylsiloxane (PDMS)-coated
MXene foams. Initially, a 3D network of MXene/sodium alginate (SA) aerogel was fabri-
cated by the directional freeze-drying process to form an anisotropic architecture, as shown
in Figure 20. This was followed by coating the MXene/SA aerogel with a thin layer of
PDMS by a vacuum-assisted process to form highly compressible MXene foams. These
hybrid aerogels showcased an excellent conductivity of 2211 S.m−1 and a maximum EMI
shielding value of 70.5 dB (more than 99.99999% incident EM energy is blocked). It is also
noteworthy that the PDMS-coated MXene foam with 6.1 wt.% of MXene demonstrates
high EMI shielding efficiency of 48.2 dB, even after 500 compression cycles [164]. Hence,
PDMS-coated compressible and robust MXene foams demonstrate huge potential for EMI
shielding applications for next-generation telecommunication, IoT systems, military and
defense applications.
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Figure 19. (a) Stepwise fabrication process of f-Ti2CTx/PVA composite film and foam.
(b) Photographs of PVA solution (transparent), f-Ti2CTx solution (black color) and f-Ti2CTx/PVA
solution. (c,d) Images of f-Ti2CTx/PVA foam and film. (e) Piece of this foam on a dandelion, depicting
its ultra-low density. (f) Photograph of this foam supporting more than 5000 times its own weight.
(g) Flexibility of f-Ti2CTx/PVA film. (h) Plausible EMI shielding mechanism of foam- and film-
based MXene/PVA composites. Reproduced with permission from [163]. Copyright 2019, American
Chemical Society.
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16. Conclusions and Future Outlook

This review encompasses various strategies adopted by researchers to fabricate porous
polymer nanocomposites such as foams and aerogels to suppress electromagnetic interfer-
ence via the microwave absorption phenomenon. The roles of nanostructured materials
such as graphene, carbon nanotubes, MXenes and metal nanowires have been of paramount
importance in EMI shielding applications, and the ability of these nanoinclusions to perco-
late within a polymeric system have inspired researchers to develop higher-performance
EMI shielding materials. However, with the advancement of technology, the need for
lightweight materials with superior EMI shielding performances has initiated burgeoning
interest for porous materials for EMI shielding applications. Hence, designing engineered
porous materials is considered as an effective strategy to reduce the overall density of the
EMI shield as well as to reduce the percolation threshold of the system. It can also be
observed that in all the porous engineered systems, the incoming electromagnetic radiation
undergoes multiple internal reflections, and the reflected waves within the pores are even-
tually absorbed and dissipated as heat energy. Nevertheless, the mechanical properties
of these aerogels and foams are also very crucial for their use in practical applications as
microwave absorbers. Table 2 illustrated various aerogel/foam compositions reported in
the literature for EMI shielding applications, with some key parameters depicting their
shielding performance. In the near future, novel 2D materials such as MXene will play a key
role in the development of self-assembled and engineered porous materials, which have the
potential to deliver higher EMI shielding performances even at lower shielding thickness
owing to their higher electrical conductivity and excellent physicochemical properties. The
translation of these materials from the lab to industry is yet another hurdle that needs to
be addressed in the near future. Hence, ultra-lightweight, robust and commercially viable
porous architectures such as nanocomposite foams and aerogels are the most promising
candidates for microwave absorption and suppressing electromagnetic pollution.
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Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AgNWs Silver nanowires
BaTiO3 Barium titanate
CB Carbon Black
CFCs Chlorofluorocarbons
CIP Carbonyl iron powder
CO2 Carbon dioxide
CNFs Carbon nanofibers
CNTs Carbon nanotubes
dB Decibel
DC Direct current
DCM Dichloromethane
EAB Electromagnetic absorption bandwidth
EM Electromagnetic
EMI Electromagnetic interference
EPLA Expanded polylactic acid
FeCl3 Ferric chloride
FeCl2 Ferrous chloride
Fe2O3 Ferric oxide
Fe3O4 Iron oxide
GHz Gigahertz
GO Graphene oxide
GnP Graphene nanoplatelet
hBN Hexagonal boron nitride
HCl Hydrochloric acid
HDPE High-density polyethylene
Hz Hertz
ICPs Intrinsically conducting polymers
LiF Lithium fluoride
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MoS2 Molybdenum disulfide
MG Maxwell Garnett
MWCNTs Multi-walled carbon nanotubes
NPs Nanoparticles
NW Nanowire
PA Polyacetlyene
PAA Polyamic acid
PANI Polyaniline
PbTiO3 Lead titanate
PDLA Poly(D-lactide acid)
PDMS Polydimethylsiloxane
PEDOT Poly(3,4-rthylenedioxythiophene)
PEI Polyethylenimine
PI Polyimide
PLA Polylactic acid
PLLA Poly(L-lactide acid)
PP Polypropylene
PPy Polypyrrole
PS Polystyrene
PSS Polystyrene sulfonate
PT Polythiophene
PU Polyurathane
PUG Polyurathene/graphene
PVA Poly vinyl alcohol
R Reflectivity
RL Reflection loss
rGO Reduced graphene oxide
SA Sodium alginate
ScPLA Stereo complex polylactide
Sc-CO2 Supercritical carbon dioxides
SE Shielding effectiveness
SEA Shielding effectiveness due to absorption
SEM Shielding effectiveness due to multiple reflections
SER Shielding effectiveness due to reflection
SEM Scanning electron microscopy
SiO2 Silicon dioxide
SSE Specific shielding efficiency
SWCNTs Single-walled carbon nanotubes
TEM Transmission electron microscopy
TiO2 Titanium dioxide
TPU Thermoplastic polyurethanes
VMQ Vinyl silicon rubber
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