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Abstract

This paper comprehensively reviews the recent development of image deblurring, including non-
blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same
objective of inferring a latent sharp image from one or several corresponding blurry images, while the
blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical
role of image restoration in modern imaging systems to provide high-quality images under complex
environments such as motion, undesirable lighting conditions, and imperfect system components, image
deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-
posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories:
Bayesian inference framework, variational methods, sparse representation-based methods, homography-
based modeling, and region-based methods. In spite of achieving a certain level of development, image
deblurring, especially the blind case, is limited in its success by complex application conditions which
make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and
deep insight into image deblurring in this review. An analysis of the empirical evidence for representative
methods, practical issues, as well as a discussion of promising future directions are also presented.

1 Introduction

Modern imaging sciences, such as consumer photography, astronomical imaging, medical imaging, and mi-
croscopy, have been well developed in recent years and a large number of progressive techniques have emerged.
These developments have enabled the acquisition of images that are of both higher speed and higher res-
olution (also referred to as high-definition). However, intrinsic or extrinsic factors behind such fast and
high-resolution techniques may lead to degradation in the quality of the acquired image, of which blur is one
example and is the focus of this paper. From an artistic viewpoint, image blur in photography is sometimes
intentional, but in the most common imaging situations, the blur effect corrupts valuable image information
and produces visually unattractive images. For example,
1) A fast moving car captured by a surveillance system might exhibit significant blurriness in the video or
image, leading to difficulty in the license-plate recognition (motion blur).
2) It is often difficult for photographers to stabilize hand-held cameras for a long period, especially when
they are taking pictures in dim lighting conditions which require long exposure times, resulting in blurred
images (camera shake blur).
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3) Since most imaging systems have only one focus, the resultant images usually have at most one region
that is focused while the others remain blurred (defocus blur).
4) When capturing a long distance scene, atmospheric particulate matter sometimes prevents photons from
moving directly to the sensor, which produces a blurred image (atmospheric turbulence blur).
5) When a lens has a different refractive index for different wavelengths of light, the lens can fail to focus all
colors to the same convergence point which also results in a blurred image (intrinsic physical blur).

These blurry image data are a nuisance in a variety of high-quality image-based applications, e.g. image
content recognition (Nishiyama et al 2011), medical diagnosis and surgery (Tzeng et al 2010), surveillance
monitoring, remote sensing (Ma and Le Dimet 2009), and astronomy. Therefore, reducing such blur, which is
known as image deblurring or image deconvolution, is a crucial step in improving the resolution and contrast
of high-quality images.

Image deblurring is a traditional inverse problem whose aim is to recover a sharp image from the corre-
sponding degraded (blurry and/or noisy) image. Over the years, numerous methods have been proposed to
tackle the non-blind deblurring problems or the blind deblurring problems, in which classic and well-known
classification schemes are employed. The former case, non-blind deblurring, indicates that the blur kernel is
assumed to be known and a sharp image can be induced from both the blurry image and the kernel. Typi-
cal methods include the Richardson-Lucy method (Richardson 1972; Lucy 1974) and Wiener filter (Wiener
1949). By contrast, the blind deblurring problem, which is more practical, means that the blur kernel is
unknown, and the task therefore becomes one of estimating the sharp image and/or the kernel from the
degraded image. This kind of method dates back to the 1970s (Stockham Jr et al 1975; Cannon 1976). In
recent years, many novel approaches have been presented to handle both the non-blind and blind deblur-
ring problem, driven by a variety of motivations. The above simple classification scheme is not sufficiently
competent to discover the connections and details of modern image deblurring methods, thus we intend in
this survey to manage the organization of this domain through an analysis of ill-posedness. Ill-posedness
is the most severe problem in image deblurring. In the non-blind case, the observed blurry image does not
uniquely and stably determine the sharp image due to the ill-conditioned nature of the blur operator (Bert-
ero and Boccacci 1998). This means that if the assumed/given blur kernel and the true kernel are slightly
mismatched, or if the blurry image is also corrupted by noise, the recovered image may be much worse than
the underlying sharp image. In the blind case, even if the blur operator is not ill-conditioned, the deblurring
problem will still be inherently ill-posed since there is an infinite set of image-blur pairs that can synthesize
the observed blurry image.

Contemporary researchers have been devoted to developing new models and new prototypes, or improving
the efficiency of optimization methods, to deal with ill-posedness. From the model construction perspective,
most methods can be grouped into the following five categories: Bayesian inference framework, variational
methods, sparse representation-based methods, homography-based modeling, and region-based methods. In the
Bayesian inference framework, priors are introduced to impose uncertainty attributes on either the unknown
sharp image or the unknown blur kernel, or both. This operation is intended to reduce the volume of the
search space, where the problem’s solution lies, to suppress the ill-posedness. Variational methods render
the solution unique and stable through the incorporation of regularization techniques whose role is similar to
the prior’s in Bayesian inference, i.e. regularizing the solution into a constraint space. Sparse representation,
a progressive topic in recent years, benefits from the fact that natural images are intrinsically sparse in
some domains. The sparse property of the natural images in these domains is well suited to tackle the
ill-posedness of the deblurring problem. The homography-based modeling and region-based methods are
intentionally proposed for spatially variant deblurring (see Section 2). Since spatially variant blur cannot be
modeled by a single blur kernel with limited support, researchers usually approximate the blurry effect by
using a union of multiple kernels or homographies. Due to the growing number of unknowns, this type of
method lead to a worse situation in the inverse problem. To overcome this issue, homography-based methods
derive the spatially variant kernel as an integration of ”temporal” homographies whose continuity is further
constrained according to the properties of the blur effects in the image. Meanwhile, region-based methods
focus on the restriction of spatial variations of the blur kernels. Other methods which do not fall into the
above frameworks include Projection-based method, kernel regression, stochastic deconvolution, and spectral
analysis.

Besides the above mathematical viewpoint, a progressive direction in deblurring concerns the development
of hardware prototype systems. Traditional camera systems are generally equipped with a single lens, single
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focus, and single consecutive exposure. Using these systems, a blurred image is the only achievable resource,
and a large amount of useful information is lost during imaging (Wehrwein and Scharstein 2010). However,
by using hardware modifications, additional observations or principles can be easily accessed to help the
derivation of either the sharp image or the blur kernel, resulting in reduced ill-posedness.

In reviewing the literatures on image deblurring, we have been attracted by a number of interesting
discoveries. The one such discovery is that more and more approaches have been proposed to use multiple
images to jointly deblur, or at least to assist the deblurring of a target image. These images may be
either correlated or uncorrelated. Multiple image deblurring is possible because a set of common patterns
exist behind natural scenes which could be used to generate all kinds of natural structures. One option to
incorporate multiple images is to learn the deblurring functions or subspaces by using the acquirable sharp-
blurry image pairs from additional datasets. Another option is hardware modification, as noted earlier.
In terms of single image deblurring, another concern claims that the global solutions of certain models do
not necessarily correspond to the true solution of the problem, and a more appropriate model should be
discovered. Considering these findings, the possible future directions in the image deblurring field may be
summarized as learning-based methods and hardware modifications. In fact, research in these areas has
started and is flourishing. As well, new single image deblurring models are necessary yet challenging to be
exploited to complement the drawbacks of existing models.

The rest of this paper is organized as follows: The formulation of image deblurring is first introduced
in Section 2. Five classes of modeling methods are described and comprehensively analyzed in Sections
3-7 and other methods are listed in Section 8. Section 9 discusses several issues usually encountered in
designing deblurring methods. Insights to promising future directions in this field are given in Section 10.
The experimental analyses and evaluations are given in Section 11, and concluding remarks are made in
Section 12.

2 Image Blur Formulation

The blur kernel, also known as (aka) point spread function (PSF), causes an image pixel to record light
photons from multiple scene points. Many factors can extrinsically or intrinsically cause image blur. As
briefed above, blur is generally one of five types: object motion blur, camera shake blur, defocus blur,
atmospheric turbulence blur, and intrinsic physical blur.1 These types of blur degrade an image in different
ways. An accurate estimation of the sharp image and the blur kernel requires an appropriate modeling of
the digital image formation process. Hence before introducing the blur types, we first focus on analyzing the
image formation model.

Recall that image formation encompasses the radiometric and geometric processes by which a 3D world
scene is projected onto a 2D focal plane. In a typical camera system2, light rays passing through a lens’s
finite aperture are concentrated onto the focal point. This process can be modeled as a concatenation of the
perspective projection and the geometric distortion. Due to the non-linear sensor response, the photons are
transformed into an analog image, from which the final digital image is formed by discretization (Delbracio
et al 2012).

Mathematically, the above process can be formulated as

y = S(f(D(P(s) ∗ hex) ∗ hin)) + n, (2.1)

where y is the observed blurry image plane, s is the real planar scene, P(·) denotes the perspective projection,
D(·) is the geometric distortion operator, f(·) denotes the nonlinear camera response function (CRF) that
maps the scene irradiance to intensity, hex is the extrinsic blur kernels caused by external factors such as
motion, hin denotes the blur kernels determined by intrinsic elements such as imperfect focusing, ∗ is the
mathematical operation of convolution, S(·) denotes the sampling operator due to the sensor array, and n
models the noise.

1Strictly speaking, both the object motion blur and the camera shake blur belong to motion blur, while the defocus blur is
an instance of the intrinsic physical blur. Here we separate them to highlight the focus of different approaches.

2Different imaging systems correspond to different image formulation models. Here, we start with the camera system and
end with the most common formulation for other systems: see equation (2.3).

3



The above process explicitly describes the mechanism of blur generation. However, what we are interested
here is the recovery of a sharp image having no blur effect, rather than the geometry of the real scene. Hence,
focusing on the image plane and ignoring the sampling errors, we obtain

y ≈ f(x ∗ h) + n, (2.2)

where x is the latent sharp image induced from D(P(s)), and h is an approximated blur kernel combining hex
and hin, as assumed by most approaches. The effect of the CRF in this formulation, which will be discussed
in Section 2.2, will have a significant influence on the deblurring process if it is not appropriately addressed.
For simplification, most researchers neglect the effect of the CRF, or explore it as a preprocessing step. Let
us remove the effect of the CRF to obtain a further simplified formulation:

y = x ∗ h+ n. (2.3)

This equation is the most commonly-used formulation in image deblurring.
Given the above formulation, the general objective is to recover an accurate x (non-blind deblurring), or

to recover x and h (blind deblurring), from the observation y, while simultaneously removing the effects of
noises n. Taking into account a whole image, equation (2.3) is often represented as a matrix-vector form:

y = Hx+ n, (2.4)

where y, x and n are lexicographically ordered column vectors representing y, x and n, respectively. H is a
Block Toeplitz with Toeplitz Blocks (BTTB) matrix derived from h.

While the noise may originate during image acquisition, processing, or transmission, and is dependent
on the imaging system, term n is often modeled as Gaussian noise (Levin et al 2011b; Delbracio et al 2012),
Poisson noise (Kenig et al 2010; Carlavan and Blanc-Féraud 2012; Lefkimmiatis and Unser 2013; Ma et al
2013) or impulse noise (Chan et al 2010; Cai et al 2010). Equation (2.3) is not suitable for describing these
noises since it only characterizes the plus case and the signal-uncorrelated case. On the other hand, Poisson
and impulse noise are usually signal-correlated. A more detailed summary of the specific degradation models
with respect to different noise assumptions can be found in Table 1. In this paper, we prefer to consider
Gaussian noise.

Table 1: Summary on different noise assumption

Noise
Assumption

Image Degradation
Model

Noise Distribution

Gaussian
noise

y = x ∗ h+ n p(y|x, h) =
∏

i
1

σ
√
2π

exp
(

−
(yi−(x∗h)i)

2

2σ2

)

Poisson
noise

y = n(x ∗ h) p(y|x, h) =
∏

i
((x∗h)i)

yi exp(−(x∗h)i)
yi!

Impulse noise y = n(x ∗ h)
p(yi|(x ∗ h)i) =











(x ∗ h)i, with probability 1− r

nmax, with probability r/2

nmin, with probability r/2

p(yi|(x ∗ h)i) =

{

(x ∗ h)i, with probability 1− r

ni, with probability r

Notes: All noises are assumed i.i.d. with respect to the image location {i}. In the Gaussian case, the noise is assumed to be of
mean zero and variance σ2. Impulse noise includes two types: salt-and-pepper noise (the upper model) and random-valued impulse
noise (the lower model). In salt-and-pepper case, nmax and nmin denote the maximum and minimum of the intensity range, while in
random-valued case ni is sampled from a uniform distribution in [nmin, nmax].

Traditionally, the blur kernel in image deblurring methods is usually assumed to be spatially invariant
(aka uniform blur), which means that the blurry image is the convolution of a sharp image and a single
kernel (Lucy 1974; Wiener 1949; Fergus et al 2006; Kenig et al 2010). However in practice, it has been
noted that the invariance is violated by complex motion or other factors. Thus spatially variant blur (aka
non-uniform blur) is more practical (Levin et al 2011b), but is hard to address. In this case, the matrix H in
equation (2.4) is no longer a BTTB matrix since different pixels in the image correspond to different kernels.
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(a) Simulated linear motion (b) Real motion

Figure 1: Object Motion Blur

The number of unknown variables in the blind deblurring problem is therefore significantly increased, but
fortunately, H can be characterized by the specific properties of the blur types. If we are given the specific
motions or factors which cause the blur, the problem can be effectively constrained by prior knowledge.
Next, we will introduce the attributes of the five blur types mentioned above.

2.1 Blur Types

2.1.1 Object Motion Blur

Object motion blur is caused by the relative motion between an object in the scene and the camera system
during the exposure time. This type of blur generally occurs in capturing a fast-moving object or when a
long exposure time is needed. If the motion is very fast relative to the exposure period, we may approximate
the resultant blur effect as a linear motion blur, which is represented as a 1D local averaging of neighboring
pixels and given by

h(i, j;L, θ) =

{
1
L , if

√
i2 + j2 ≤ L

2 and i
j = − tan θ,

0, otherwise,
(2.5)

where (i, j) is the coordinate originating from the center of h, L the moving distance and θ the moving
direction. Fig. 1a gives a simulated example of a Lena standard test image corrupted by 30◦-directional
motion. In practice, however, real motions are extremely complex and cannot be approximated by such a
simple parametric model. An appropriate way to handle this issue is to use the non-parametric model, i.e.
no explicit shape constraint is imposed on the blur kernel, and the only assumption is that the kernel needs
to follow the motion path. A more serious issue is in an image where only the region of moving objects is
disturbed by the blur kernel, while other regions remain clear. As shown in Fig. 1b, the bus was moving fast
while the surroundings were static when the picture was taken. In this case, we cannot uniformly process the
whole image by a single kernel even if the kernel accurately represents the true motion (Levin 2006). Since
moving objects (e.g. the bus) occupy parts of the image, the most commonly-used approach to handle this
problem is to segment the blurry regions from the clear background (Chakrabarti et al 2010), which will be
detailed in Section 7, or to simulate the motion as a sequence of homographies (Tai et al 2010b), which will
be discussed in Section 6.

2.1.2 Camera Shake Blur

Camera shake blur is induced by camera motion during the exposure period. This is particularly common
in handheld photography and in low light situations, e.g. inside buildings or at night. This blur, like object
motion blur, can be very complex, since the hands may move in an irregular direction when photographing,
causing the camera translation or rotation in-plane or out-of-plane (Whyte et al 2010, 2012). An ideal
situation exists if the camera is only slightly translated when capturing a long distance scene and the
resultant blur is approximately spatially invariant, and can be modeled as linear motion blur in equation
(2.5). However this invariance will be violated when the camera undergoes significant translation or rotation
during the exposure. In Fig. 2a, for example, the flowers are at different distances from the focal plane,
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(a) Camera translation (b) Camera rotation

Figure 2: Camera Shaken Blur

implying that during the camera’s translation, the nearer flowers undergo a large shift with respect to the
focal plane, while the distant flowers experience a slight shift. Camera rotation is a more complicated case
which includes in-plane rotation and out-of-plane rotation in terms of focal plane. In the case of in-plane
rotation, the blur kernel varies significantly across the image, especially for the regions far from the axis
along which the camera is rotated, as shown in Fig. 2b. For out-of-plane rotation, the degree of spatial
variance across the image is dependent on the focal length of the camera (for more detail see (Whyte et al
2012)). Clearly, the spatially variant blur is more suitable to explain all cases mentioned above than the
spatially invariant blur. Fortunately, as Harmeling et al (2010) point out, it is reasonable to expect that the
blur kernel will vary smoothly across the whole image if the depth of the scene varies smoothly, in spite of
the fact that this is not true when the objects have very different distances from the focal plane.

2.1.3 Defocus Blur

As a result of imperfect focusing by the imaging system or different depths of scene, the fields outside the
focus field are defocused, giving rise to defocus blur, or out of focus blur. This blur is familiar in our everyday
photos. For example, it is often hard for a photography beginner to focus on the target object by hand. Also,
when a camera is equipped with only one lens, scenes outside the depth of field (DOF, which is the range
covered by all objects in a scene that appear acceptably sharp in an image) are all blurred in the resultant
image, e.g. Fig. 3b. Traditionally, a crude approximation of a defocus blur is made as a uniform circular
model:

h(i, j) =

{
1

πR2 , if
√
i2 + j2 ≤ R,

0, otherwise,
(2.6)

where R is the radius of the circle. This is valid if the depth of scene does not have significant variation and
R is properly selected. A simulated instance is shown in Fig. 3a. Practically, focusing on a target object
is not difficult for modern consumer cameras since most of them are equipped with an auto-focus function;
however, due to the limited DOF, it is not always possible to make the entire image sharp, as illustrated in
Fig. 3b. To recover a full-focused image, the focus sweep technique is usually utilized to sweep the plane
of focus through a desired depth range during exposure, so that the depth of field is enlarged (Bando et al
2013). An alternative way of handling this limit is to use coded aperture pairs (Zhou et al 2011), by which
the depth of the scene can be also recovered.

2.1.4 Atmospheric Turbulence Blur

Atmospheric turbulence blur generally happens in long-distance imaging systems such as remote sensing and
aerial imaging. This is mainly because of the randomly varying refractive index along the optical transmission
path. For long-term exposure through the atmosphere, the blur kernel can be described by a fixed Gaussian
model (Zhu and Milanfar 2010), i.e.

h(i, j) = Z · exp

(
−
i2 + j2

2σ2

)
, (2.7)
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(a) Simulated defocus blur (b) Real defocus blur

Figure 3: Defocus Blur

(a) Simulated blurry image (b) Real blurry image

Figure 4: Atmospheric Turbulence Blur

where σ encodes the size of the kernel and Z is the normalizing constant ensuring that the blur has a unit
volume. It has been noted that the above equation is impracticable and in fact, this blur is a mixture of
multiple degradations like geometric distortion, spatially and temporally variant defocus blur, and possibly
motion blur (Hirsch et al 2010; Zhu and Milanfar 2011, 2013). Fig. 4 illustrates a blurry cameraman image
degraded by the kernel in (2.7), as well as a real image of Moon Surface from (Zhu and Milanfar 2013).

2.1.5 Intrinsic Physical Blur

Intrinsic physical blur is inherent in a number of imaging systems, due largely to intrinsic factors such as
light diffraction, lens aberration, sensor resolution, and anti-aliasing filters. An important instance of this
type is the optical aberration. In an ideal optical system, all rays of light from a point in the real world will
converge to the same point on the focal plane, generating a sharp image. In reality, however, any departure
of an optical system from this principle is called an optical aberration. For a real system with spherical
optics, it is unrealistic that the light rays from a point source are all parallel with the optical axis, leading to
monochromatic aberration, which is a branch of optical aberration. Another branch is chromatic aberration.
Since lenses have different refractive indexes for different wavelengths of light, it is difficult to focus all colors
on the same convergence point. Generally, the acquired image is corrupted by various optical aberrations,
and the induced blur is spatially variant (Schuler et al 2012). See Fig. 5 for an example. To address this
type of blur, additional calibration techniques are introduced to assist the estimation of the blur, such as the
utilization of Poisson noise pattern (Delbracio et al 2012), or the checkerboard test chart (Kee et al 2011).
Schuler et al (2011) proposed that all optical aberrations could be corrected by digital image processing, and
Tzeng et al (2010) exploited the specific property of the fluidic lens camera system in which one of three
color planes remains sharp in the imaging process.
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Figure 5: Optical Aberration

(a) Input image
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Figure 6: Effects of the nonlinear CRF on deblurring results (Kim et al 2012b)

2.2 Effects of the CRF f(·)

Recall that the camera response function f(·) in equation (2.2) is a nonlinear model mapping the scene
irradiance to image intensity. The purpose of this design is to mimic the response of the human visual
system or to compress the dynamic range of scenes, or for aesthetic consideration (Grossberg and Nayar
2004; Lin and Zhang 2005). However, inappropriate processing of CRF leads to severe ringing artifacts in
deblurring problems. Chen et al (2012) have theoretically pointed out three kinds of CRF effects on blur
inconsistency ∆ = f(x̃ ∗ h) − x ∗ h. Here x̃ is the sharp irradiance image corresponding to x. These effects
are:
1) The nonlinear CRF has no influence on the intensity of the uniform regions, i.e. ∆ = 0;
2) In low-frequency regions, the irradiance is approximately equal to its corresponding intensity, i.e. ∆ ≈ 0,
under the condition of small kernel h and smooth function f(·);
3) In high-frequency high contrast regions, the nonlinearity of f(·) can significantly damage the blur consis-
tency, particularly when the local minimum and maximum pixel intensities are very different.

From these claims, we readily find that even if a spatially invariant blur h is assumed to be in irradiance,
f(·) could turn h into a spatially variant case in the intensity domain (Kim et al 2012a). To estimate the
function, given a blurry/sharp image pair, Chen et al (2012) exploited Generalized Gamma Curve Model
(GGCM) to fit f(·). Kim et al (2012a) and Tai et al (2013) addressed the estimation in two ways, one of
which is based on a least-squares formulation when the blur kernel is known, while the other is solved via
rank minimization without the need for a known kernel. Fig. 6 illustrates a result of (Kim et al 2012a,b),
indicating that large number of artifacts remain in the selected regions of the deblurred image without the
CRF correction.

In summary, each of the five blur types discussed in this section has specific properties, inspiring re-
searchers to develop effective and efficient algorithms for deblurring. Needless to say, a good deblurring
model should be suitable for all blur types which, however, is difficult to be explored. Fortunately, in the
deblurring community, there have been many progressive methods proposed in recent years. In the following
sections, we will discuss the five categories of existing methods from the modeling perspective in detail. First
let us focus on Bayesian inference framework.
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3 Bayesian Inference Framework

In statistics, Bayesian inference updates the states of a probability hypothesis by exploiting additional
evidence. Bayes’ rule is the critical foundation of Bayesian inference and can be expressed as

p(A|B) =
p(B|A)p(A)

p(B)
, (3.1)

where A stands for the hypothesis set and B corresponds to the evidence set. This rule states that the
true posterior probability p(A|B) is based on our prior knowledge of the problem, i.e. p(A), and is updated
according to the compatibility of the evidence and the given hypothesis, i.e. the likelihood p(B|A). In our
scenario for the non-blind deblurring problem, A is then the underlying sharp image x to be estimated, while
B denotes the blurry observation y. For the blind case, a slight difference is that A means the pair of (x, h)
since h is also a hypothesis in which we are interested. Explicitly (3.1) can be written for both cases as

Non-blind: p(x|y, h) =
p(y|x, h)p(x)

p(y)
, (3.2)

Blind: p(x, h|y) =
p(y|x, h)p(x)p(h)

p(y)
. (3.3)

Note that either x or y and h are usually assumed to be uncorrelated. Irrespective of case, the likelihood
p(y|x, h) is dependent on the noise assumption, as listed in Table 1. How to further infer the equation (3.1)
in the literatures inspires us to explore three directions: maximum a posteriori, minimum mean square error,
and variational Bayesian methods.

3.1 Maximum a Posteriori

The most commonly-used estimator in a Bayesian inference framework is the maximum a posteriori (MAP).
This strategy attempts to find the optimal solution A∗ which maximizes the distribution of the hypothesis
set A given the evidence set B in (3.1). In the blind case,

(x∗, h∗) = argmax
x,h

p(x, h|y)

= argmax
x,h

p(y|x, h)p(x)p(h), (3.4)

while in the non-blind scenario, the term p(h) is discarded according to equation (3.2). Fig. 7 shows a
diagram of this type of method.

3.1.1 Maximum Likelihood Estimation

We start with the introduction of a classic non-blind algorithm, Richardson-Lucy (RL) deconvolution
(Richardson 1972; Lucy 1974), which is widely used in astronomical imaging and medical imaging.3 As-
suming that the prior p(x) takes the form of a uniform distribution, the MAP estimator then becomes a
maximum likelihood estimator (MLE), i.e.

x∗ = argmax
x

p(y|x, h)

= argmin
x

− log p(y|x, h), (3.5)

where in the second equation the minimized equation is known as negative log-likelihood. Under the noise
assumption of Poisson distribution (Shepp and Vardi 1982), (3.5) is derived as

x∗ = argmin
x

∑

i

((x ∗ h)i − yi log(x ∗ h)i) . (3.6)

3In the standard RL, no specific noise assumption is assumed. Here, we introduce RL from the MLE perspective under
Poisson noise assumption to facilitate the ongoing analysis.
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Input blurry image

Noise assumption

Likelihood

Prior on sharp image: 

Prior on blur kernel: 

(Blind)

Restored image

Figure 7: MAP framework for image deblurring

Taking the derivative with respect to x and setting it to zero, we can get
(
1−

y

x ∗ h

)
∗ h− = 0, (3.7)

where y
x∗h denotes the point-wise division, 1 is the spatially invariant function which is one everywhere, and

h− is the symmetrical reflection of h, meaning h−(i, j) = h(−i,−j). From the unit property of h−, i.e.,
1 ∗ h− = 1, (3.7) can be written as

y

x ∗ h
∗ h− = 1. (3.8)

Multiplying both sides by x and utilizing the Banach fixed-point theorem yields

xt+1 = xt ⊙
[( y

xt ∗ h

)
∗ h−

]
, (3.9)

where ⊙ is point-wise multiplication. The above RL deconvolution procedure produces a sequence of esti-
mations xt and eventually converges to the optimal solution x∗. If we take the blind case into consideration,
(3.9) should be incorporated with an additional step for the estimation of h in each iteration:

xt+1 = xt ⊙
[( y

xt ∗ ht

)
∗ ht−

]
, (3.10)

ht+1 =
ht

1 ∗ xt−
⊙
[( y

xt ∗ ht

)
∗ xt−

]
. (3.11)

Note that this iterative process is not guaranteed to converge to the global solution since min(x,h) − log p(y|x,
h) is not convex, and a small error in h will lead to significant artifacts in the resultant images. To handle
this ill-posedness, the penalized MLE has been introduced:

(x∗, h∗) = argmin
x,h

∑

i

((x ∗ h)i − yi log(x ∗ h)i)

+λxΨ1(x) + λhΨ2(h), (3.12)
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where Ψ1(·) and Ψ1(·) are the penalty functions on x and h, respectively. Direct derivation leads to the
iterations for the penalized version, i.e.,

xt+1 = xt ⊙

(
y

xt∗ht

)
∗ ht−

1+ λx
∂Ψ1(xt)

∂xt

, (3.13)

ht+1 = ht ⊙

(
y

xt∗ht

)
∗ xt−

1 ∗ xt− + λh
∂Ψ2(ht)

∂ht

. (3.14)

Under this formula, Temerinac-Ott et al (2012) utilized the total variation (TV) regularization for Ψ1(x)
and derived a multi-view RL algorithm. In their method, the underlying sharp 3D image is composed
of images observed from multiple viewpoints, each of which is corrupted by a different blur kernel. The
multiple blurry images are integrated in a unified formulation from which the sharp image is jointly deduced.
Lefkimmiatis and Unser (2013) employed the Schatten norms of Hessian matrix on each image pixel as the
regularization on x. This kind of regularizer is based on the second-order derivatives instead of the first-order
derivatives, thus favoring piecewise-smooth solutions, as opposed to TV which produces piecewise-constant
solutions.

Regarding Ψ2(h), Keuper et al (2013) discovered a specific property of the wide-field fluorescence mi-
croscopy (WFFM) system, which suggests that the optical transfer function (OTF), i.e. the Fourier transform
of the kernel h, is well localized and smooth. They proposed imposing the TV constraint on both x to pre-
serve edges, and OTF to ensure the smoothness of the kernel. Kenig et al (2010) developed a novel approach
to restrict h to a kernel subspace which was produced by either linear or kernel principal component analysis
(PCA) based on the general forms of the WFFM PSF. This is easily integrated into the iterative RL decon-
volultion procedure. Additionally, the residual denoising operation is employed to avoid over-smoothing the
useful high-frequency details, which is also used in (Keuper et al 2013).

Most of the above methods are based on the assumption of a spatially invariant kernel. Tai et al (2011)
developed the projective motion RL algorithm to tackle the spatially variant case. Under the proposed
projective motion blur model, the operations of convolution and correlation in the conventional RL algorithm
are replaced by a sequence of forward projective motions and their inverses via homographies, which will be
discussed in Section 6. Various regularizers are applicable in their framework.

3.1.2 Priors for MAP

The penalized MLE in equation (3.12) is exactly the MAP since the penalty functions act as the priors in that
p(x) = exp(−λxΨ1(x)) and p(h) = exp(−λhΨ2(h)). Various MAP based methods focus on the development
of priors to obtain attractive deblurring results.

It is commonly agreed that for a natural image, the gradients of the sharp image tend to obey a heavy-
tailed distribution, meaning that the distribution of gradients has most of its mass on small values but assigns
significantly more probability to large values than a Gaussian distribution (Field 1994; Fergus et al 2006).
Thus natural images often contain large regions of constant intensity or gentle intensity whose gradients are
interrupted by occasional large changes at the edges or occlusion boundaries. To express such a prior, various
approximations of the heavy-tailed distribution are used to describe the gradients. One classic method is to
inform a Laplace distribution on the magnitude of the gradients:

pLap(∇x) =
∏

i

1

2b
exp

(
−
‖∇xi‖1

b

)
, (3.15)

where ∇ is the gradient operator, ‖ · ‖1 is the ℓ1 norm, and b denotes the scale parameter. Additionally,
for computation efficiency, a generalized Gaussian model is used by Levin et al (2007) in their design of an
optimal aperture filter, and a Gaussian prior is imposed on the gradient patches instead of gradient pixels
by Hu et al (2012). The autocorrelation function of the blur kernel is shown in relation to the covariance
matrix of the Gaussian distribution. Through the Fourier transform of the autocorrelation matrix and an
additional phase retrieval stage, the blur kernel can be easily recovered. Unlike the MAP methods involving
repeated reconstructions of the sharp image, this approach directly relies on basic statistics of the blurry
image and is therefore efficient.

11



Due to the imperfect fitness of the above priors to the real gradient distribution of sharp natural images,
these methods tend to remove mid-frequency textures, even though structures such as edges can be preserved.
To improve the fitness to the heavy-tailed distribution, Fergus et al (2006) proposed using a Gaussian mixture
model (GMM) having finite mixture numbers. Chakrabarti et al (2010) extended this to Gaussian scale
mixture (GSM) which is a mixture of infinite Gaussian models with a continuous range of variances. The
form of the corresponding zero-mean GMM and GSM are respectively

pGMM (∇x) =
∏

i

C∑

c=1

N (∇xi|0, ξc), (3.16)

pGSM (∇x) =
∏

i

∫

ξ

N (∇xi|0, ξ)p(ξ)dξ, (3.17)

where ξ is the standard derivation of the Gaussian distribution, c and C in GMM is the index and the total
number of mixtures, and p(ξ) in GSM is a probability distribution on ξ. In terms of GSM, a critical issue is
the infinite selection of ξ, which makes it computationally expensive. According to the theoretical analysis
by Palmer et al (2005), equation (3.17) can be derived from the variational perspective as

p(∇x) =
∏

i

sup
ξi>0

N (∇xi|0, ξi)p(ξi), (3.18)

where p(ξ) takes the form of exp(f( ξ2 )). This theoretical convenience is directly utilized by (Chakrabarti
et al 2010) and further investigated by Zhang et al (2013a); Zhang and Wipf (2013). In (Zhang et al 2013a),
authors proposed an adaptive sparse prior based on (3.18). They coupled multiple blurry observations in a
joint deblurring procedure by assuming that the parameters {ξi} in (3.18) are shared across all images. In
their subsequent work (Zhang and Wipf 2013), the idea of the shared parameter is extended to the single
image deblurring problem by additionally assuming the homography expression of blur kernels. In both
works, the sparse regularizer is adaptively adjusted according to the noise level estimated in each iteration.

Another question raises: even though the assumed prior coincides perfectly with the gradient distribution
of the sharp image, is the recovered gradient distribution able to fit our prior as we expected? A recent
research by Cho et al (2012c) responded in the negative. According to their analysis, the above heavy-
tailed priors are generally independently forced on each pixel or each local patch, failing to capture the
global statistics of gradients. Thus the reconstructed image favors flat regions, resulting in the gradient
distribution of the MAP estimates failing to match that of the original sharp image. To address this issue,
the authors proposed penalizing the Kullback-Leibler (KL) divergence between the gradient distribution of
the estimated image pe(∇x) and a reference distribution pr(∇x),

KL(pe||pr) =

∫

∇x

pe(∇x) ln

(
pe(∇x)

pr(∇x)

)
d∇x, (3.19)

which induces a constraint and can be combined with (3.4). The reference distribution is characterized as
the generalized Gaussian model and immediately estimated from the blurry image by using the approach of
(Cho et al 2010a). Taking the same idea, Zhuo et al (2010) presented a more direct method which forces the
gradients of the deblurred image close to those of the reference image. It is direct because: 1) a Lorentzian
error norm is imposed on the difference of the two gradients rather than the difference of their distributions,
i.e.

ρ(∇xe,∇xr) = log

(
1 +

1

2

(
∇xe −∇xr

̺

)2
)
, (3.20)

where ̺ is a predefined constant; and 2) the reference image is a flash image of the same scene which is sharp
but corrupted by a degraded illumination.

Besides the priors on image gradients, the knowledge on image intensities or transformed domains is
extremely helpful in specific applications. For example, Chen et al (2011) developed a content-aware prior
for document image deblurring in which the histogram of the whole image is the weighted sum of the
histogram of the foreground (dark pixels) and of the background (white pixels). Additionally, a local upper-
bound constraint together with TV is imposed to restrain the artifacts in the resultant images. Similarly,
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Cho et al (2012a) excavated the specific properties of text images which were then used in the deblurring
process. In both methods, the domain-specific knowledge is incorporated into the optimization by employing
the variable splitting techniques. Shaked and Michailovich (2011) saddled the generalized Gaussian prior on
the representing coefficients in a linear transformed domain and then derived an efficient algorithm to solve
the corresponding MAP problem.

As with the PCA technique used in RL deconvolution (Kenig et al 2010), subspace techniques have
recently attracted researchers’ attention. The above-mentioned priors express general aspects of human
knowledge about natural images. As noted, however, natural images are composed of repetitive local pat-
terns, and some classes of images, such as faces, even lie on a subspace. Discovering this information can
help to develop novel priors under the MAP framework. Joshi et al (2010b) proposed a specific restoration
problem for personal photo images. Under the MAP framework, they constrained the target face image
close to the space expressed by eigen-faces and mean-face generated from the photos of the same person.
Benefitting from this space constraint and a sparse gradient constraint, more facial details can be recovered
in the resultant photo, while the artifacts are well suppressed. A more general example is for natural images,
where the extracted patches can be constrained to be close to a low dimensional manifold (Peyré 2009).
Based on this observation, Ni et al (2011) derived a non-blind deblurring method based on a manifold prior
learnt from databases. The benefit of these subspace-based priors is the incorporation of more collaboration
between the sharp and blurry images, rather than only imposing human heuristic assumptions. This idea
is also the key in hardware modification-based methods, as well as learning-based methods, which will be
discussed in Section 10.

3.1.3 Edge Emphasizing Operation

In the MAP framework, an auxiliary operation is usually employed to produce promising deblurring results;
that is, the edge emphasizing operation. Typically, the aim of the edge emphasizing operation is to detect
and restore the large-scale step edges which generally occur when the blurred edges drift far away from the
latent sharp edges, meaning that the blur kernel is large. These operations include the shock filter (Osher
and Rudin 1990), the fuzzy operator (Russo and Ramponi 1992), the morphological filtering (Schavemaker
et al 2000), the forward-and-backward diffusion process (Gilboa et al 2002), and the recently proposed edge
prediction techniques (Joshi et al 2008; Cho et al 2011b). However, these methods often fail when narrow
edges or highly textured regions appear in the image, since these patterns exhibit a wide spread of edges in
the blurring process. Edge emphasizing operations manipulates over local structures in an image, and thus
occasional noise can significantly influence the performance of these operations (Wang et al 2012a, 2013;
Faramarzi et al 2013).

To handle this issue, Wang et al (2012a) conducted both theoretical and empirical analyses on the
relationship between edge emphasizing operations and MAP estimators. They showed that the advantages
of MAP could compensate for the drawbacks of edge emphasizing operations because MAP depends on image
statistics which cannot be affected by local structure variations and noises. Nevertheless, the MAP estimator
is based on specific blur models and lacks generalization with respect to different models. Fortunately, edge
emphasizing operations can address various blur models without any adaptation. Therefore, incorporating
the edge emphasizing operation into the iterative MAP estimation can remedy the limitations of both types
of method, resulting in improved performance (Cho and Lee 2009). In Wang et al.’s work, the large-scale
step edges are recovered by pre-smoothing and shock filter. The narrow edges are then restored by proposing
a strongness-aware prior for the MAP scheme, measuring the strongness of local structures. The deblurring
procedure is iterated between the large-scale step edge sharpening and MAP estimation. Faramarzi et al
(2013) also proved that the edge-emphasizing smoothing operation is beneficial for an accurate estimation
of blur kernels. They employed the method of Xu et al (2011) to simultaneously sharpen the edges and
remove large numbers of low-amplitude structures via the ℓ0 gradient minimization. Alternatively, Cho
et al (2011b) showed that the Radon projections of a blur kernel can be derived from the edges detected in
the blurry image, and the kernel can be recovered by enough Radon projections. As a result, a constraint
on the blur kernel expressed by Radon projections is added to the likelihood p(y|x, h), forming the so-
called RadonMAP. Almeida and Almeida (2010) instead described the edge emphasizing operation as a prior
modeled as a response of a set of edge detectors in different directions. They imposed a sparse assumption on
this prior, favoring piece-wise constant image estimates. To avoid over-smoothing, the operation of gradually
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decreasing the regularization parameter was used to produce a promising result. Xu and Jia (2010) pointed
out that not all strong edges are profitable for kernel estimation. They proposed a new metric to measure
the usefulness of the image edges. The selected edges according to this metric are then used to induce the
kernel formation. What follows is an adaptive kernel refinement procedure which is to ensure the sparseness
of the estimated kernel without damaging its large-valued elements.

3.1.4 Marginalization Techniques

Even though appropriate priors or suitable edge emphasizing operations have been utilized in the MAP
framework and have resulted in improved performance, intrinsic problems remain. A recent outstanding
research by Levin et al (2009, 2011b) comprehensively analyzes the failure of the MAP scheme and points
out how to make the MAP estimation successfully recover the true blur kernel. The MAPx,h scheme for
blind deconvolution in (3.4) can be rewritten as

(x∗, h∗) = argmin
x,h

‖y − x ∗ h‖2 + λ(
∑

i

|∇hxi|
α + |∇vxi|

α) (3.21)

under the Gaussian noise assumption and a sparse derivative prior or heavy-tailed prior on image gradients.
∇h and ∇v are horizontal and vertical derivatives of the image. According to Levin et al.’s conclusions,
the solution of (3.21) under the sparse prior usually favors a blurry result rather than a sharp result, even
though y is generated up to infinitely large image samples from the perfect prior. This observation is also
known as the no-blur explanation or delta effect of MAP, which means that the solution of (3.21) has a
higher probability of being {

x∗ = y

h∗ = δ
(3.22)

than the true solution. From the estimation theory perspective, it is evident that we cannot gather sufficient
measurements for the MAPx,h problem since the number of unknown variables grows with the image size,
even to infinity.

As noted by Levin et al (2009, 2011b), the strong asymmetry between the dimensionality of x and h
provides a favorable property for handling the blind deconvolution. This means that while the dimensionality
of x increases with the image size, the support of h remains fixed and is small relative to the image size.
From this viewpoint, h can achieve an increased number of measurements when the image size becomes
large. Thus, estimation theory tells us through sufficient measurements on h that the recovered blur kernel
under MAPh can be arbitrarily close to the true kernel. Mathematically, the MAPh is

h∗ = argmax
h

p(h|y)

= argmax
h

∫
p(x, h|y)dx, (3.23)

where h∗ is the true kernel, as stated in Claim 3 of (Levin et al 2011b). Once the kernel is estimated, x can
then be solved in a non-blind deblurring scheme. In their subsequent work (Levin et al 2011a), Levin et al.
noted that MAPh is generally complex and hard to directly compute because the marginalization in (3.23)
involves all possible x explanations, which is computationally intractable. An approximation method was
proposed to derive the MAPh. To estimate the blur kernel, they assumed the i.i.d. Gaussian imaging noise
and the GMM prior on image derivatives, as well as a uniform distribution on h. Equation (3.23) can then
be written as

h∗ = argmax
h

p(y|h)

= argmax
h

∫
p(x, y|h)dx. (3.24)

The above problem is solved by the expectation-maximization (EM) framework that alternates between the
estimation of p(x|y, h) which is still a Gaussian (E-step), and the computation of h under the minimum
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mean square error (M-step). In the E-step, however, calculating the mean and covariance of p(x|y, h) under
a sparse prior is generally hard, so the authors proposed approximating the conditional distribution by using
variational inference, which will be discussed in Section 3.3.

Wang et al (2013) have discovered several intrinsic issues between edge emphasizing operations and image
statistics through a large number of experiments on ImageNet (Deng et al 2009) composed of 1.2 million
images in total. Their research points out that the limited number of large scale step edges within a natural
image cannot ensure a robust estimation of the blur kernel. Additionally, due to the diversity of natural
images, the sparse derivative priors are not consistent across them and it is almost impossible to find a robust
measurement that favors sharp explanations for all of them. Different from their previous work (Wang et al
2012a) which uses MAPx,h, they adopted the marginalization scheme in (3.23) and developed an adaptive
sparse prior composed of two components to ensure robustness. The first component is the commonly-used
sparse derivative prior, while the second encodes the edge emphasizing operation.

3.2 Minimum Mean Square Error

The Bayesian framework aims to estimate x or h from the posterior p(x, h|y) and a loss function L((x∗, h∗), (x,
h)). The expected loss is computed over all unknown variables,

L̃((x∗, h∗), (x, h)|y) =
∫
L((x∗, h∗), (x, h))p(x, h|y)dxdh, (3.25)

which is called Bayesian expected loss (Brainard and Freeman 1997). The optimal solution (x∗, h∗) is
then chosen to minimize L̃((x∗, h∗), (x, h)). If we take L((x∗, h∗), (x, h)) as a Dirac delta loss function,
i.e. L((x∗, h∗), (x, h)) = 1 − δ((x∗, h∗) − (x, h)), (3.25) becomes the MAPx,h problem. Alternatively, if
L((x∗, h∗), (x, h)) is the square error loss, we can obtain the minimum mean square error (MMSE) formula-
tion:

(x∗, h∗) = argmin
x̂,ĥ

∫
‖x̂− x‖2‖ĥ− h‖2p(x, h|y)dxdh

= argmin
x̂,ĥ

E{x, h|y}. (3.26)

For the non-blind deblurring case, the above equation turns into

x∗ = argmin
x̂

∫
‖x̂− x‖2p(x|y, h)dx

= argmin
x̂

E{x|y, h}. (3.27)

The equivalence between MMSE and MAP has been proved by Levin et al (2011b), that is if p(h|y) has
a unique maxima, then for large images, the MAPh estimator followed by an MMSEx image estimation is
equivalent to a simultaneous MMSEx,h estimation of both x and h.

In spite of this, the empirical demonstrations on image denoising have shown the advantages of MMSE
over MAP approaches (Schmidt et al 2010). MAP solutions usually exhibit piecewise constant regions and
result in incorrect statistics of the output image, as previously noted, whereas MMSE can achieve the desired
statistics by exploiting the uncertainty of the model. Furthermore, the image restoration performance of the
MMSE estimator is highly correlated with the generative quality of the model. This observation is particu-
larly useful since MMSE benefits from a powerful learnt generative model even without any regularization
weight. As is well known, the regularization parameter is related to the noise level of the degraded image.
By taking the above superiority of MMSE, Schmidt et al (2011) integrated the noise estimation process into
the MMSE framework by treating the noise standard deviation as a variable of the posterior, i.e., given h
and y,

p(x|y, h) =

∫
p(x, σ|y, h)dσ. (3.28)

Compared with MAP, one problem in MMSE remains. Due to the lack of complete knowledge on the
joint distribution (p(x, h|y) and p(x|y, h)) in real applications, it is difficult to take expectation in (3.26) and
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(3.27) over all possible explanations. To handle this problem, Schmidt et al (2010, 2011) proposed to use
the Gibbs sampling method to alternatively generate the sequence of the variable samples, e.g. in deblurring
{(x1, z1, σ1), ..., (xT , zT , σT )} where z is a latent variable. Another way to address the above issue is to
abandon the full optimality requirements and use a particular class of estimators to approximate MMSE,
such as linear MMSE:

E{A|B} =WB + v, (3.29)

where A and B are as those in (3.1), and W and v are the parameters encoding the deblurring process.
Minimizing E{‖A−WB − v‖2} with respect to W and v can result in the optimal W and v expressed as

{
W = CABC

−1
B ,

v = E{A} −WE{B},
(3.30)

where CAB denotes the cross-covariance matrix between A and B, CB is the auto-covariance matrix of B.
Thus the linear MMSE estimator is given by

A∗ = CABC
−1
B (B − E{B}) + E{A}. (3.31)

Clearly, the linear MMSE estimator is dependent on the first- and second-order moments of A and B.
In a multi-image deblurring setting, the underlying sharp image is generally interrupted by different

degradation operations, yielding multiple observations. A typical case is a pair of blurry/noisy images.
These two images are correlated with each other and can be restored simultaneously. To be clear, the noisy
image can first be denoised to produce a nearly sharp image which can then be used as a guideline or a
constraint in the deblurring process. A recent approach by Michaeli et al (2012) has exploited this strategy by
proposing the partially linear MMSE (PLMMSE) estimator. Denoting the denoised image C as a constraint
on the estimation of W and v in (3.29), PLMMSE is

E{A|B,C} =W (C)B + v(C), (3.32)

where W (C) and v(C) are functions of C. However, the above estimator is not applicable since it needs the
knowledge of the conditional covariance CAB|C which is difficult to acquire (Michaeli et al 2012). Therefore
a relaxation of the restriction is conducted, resulting in a separable partially linear MMSE:

E{A|B,C} =WB + v(C). (3.33)

In this case, the PLMMSE estimator is given by

A∗ = CAB̃C
−1

B̃
B̃ + E{A|C}, (3.34)

where
B̃ = B − E{B|C}. (3.35)

For more details of the derivation, please see the Appendix in (Michaeli et al 2012). The superiority of
PLMMSE over LMMSE lies in the fact that PLMMSE only requires the knowledge of the second-order
statistics of A and B, and this estimator can reach the lowest worst-case MSE among all estimators which
depend solely on the second-order statistics of A and B.

3.3 Variational Bayesian methods

Variational Bayesian methods approximate the intractable integrals arising in a Bayesian inference frame-
work. This situation occurs when there are unknown variables and latent variables over which we want to
marginalize without explicitly computing them, such as the marginalization over x in the above MAPh prob-
lem. This type of method, on one hand, provides an analytical approximation of the posterior probability
of the unobserved variables to deduce the statistical properties of these variables (Fergus et al 2006). On
the other hand, it derives a lower bound for the marginal likelihood of the observed data, which can be used
to model selection (Levin et al 2011a) and high-order statistics analysis on the likelihood of the unobserved
variables (Zhang et al 2010).
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Variational Bayesian methods have recently been applied to image deblurring. Levin et al (2011b) have
made the important comment that the variational Bayes approximation experimentally outperforms all
existing methods with a different estimation strategy in motion deblurring tasks.

The most frequently-used type of variational Bayes is known as mean-field variational Bayes. Recall that
the posterior distribution p(A|B) is over the set of unobserved variables A given the observed data B. Here
we try to approximate p(A|B) by finding a variational distribution q(A) that is restricted to a family of
distributions with a simpler form than p(A|B), i.e. q(A) ≈ p(A|B). The mean-field variational Bayes utilizes
the KL divergence to measure the difference between the two distributions,

L(q) := DKL(q||p) =

∫
q(A) log

q(A)

p(A|B)
dA. (3.36)

To apply this strategy to the deblurring task, Miskin and MacKay (2000) developed an ensemble learning
strategy. In their method, the unobserved set A is an ensemble of the sharp image x, the blur kernel h and
the noise variance σ2 if the Gaussian noise is assumed. The addition of σ2 frees the user from tuning this
parameter, as well as adaptively balancing the data-fidelity term and the prior term. For simplification, a
separable factorization of the q distribution is employed, which corresponds to the mean field theory (Bishop
2006),

q(x, h, σ2) = q(x)q(h)q(σ2). (3.37)

This leads to

L(q) = Eq(x)

{
log

q(x)

p(x|y)

}
+ Eq(h)

{
log

q(h)

p(h|y)

}

+Eq(σ2)

{
log

q(σ2)

p(σ2|y)

}
. (3.38)

The variable B in (3.36) is the observed blurry image y. Our goal is to minimize L(q) with respect to
q(x, h, σ2). By taking the convenience of the above factorization, we can take an alternating update procedure
of coordinate descent to solve (3.38), that is: minimizing one factor (for example q(x)) while marginalizing
out the other factors (q(h) and q(σ2)). The updates are performed by computing the closed-form optimal
parameter updates, and performing line-search along the direction of these updated values. According to
(Bishop 2006), the optimal factors obtained from the corresponding sequential updates are given by the
expectation of the joint distribution with respect to all unobserved variables except the one of interest, and
thus

log q∗(x) = Eq(h),q(σ2){log p(x, h, σ
2, y)}+ const

= Eq(h){log p(y|x, h)}+ log p(x) + const,

(3.39)

log q∗(h) = Eq(x),q(σ2){log p(x, h, σ
2, y)}+ const

= Eq(x){log p(y|x, h)}+ log p(h) + const,

(3.40)

log q∗(σ2) = Eq(x),q(h){log p(x, h, σ
2, y)}+ const

= log p(σ2) + const,

(3.41)

Following the calculation of the above equations, the final estimates of the sharp image x, the blur kernel
h and the noise variance σ2 are taken as the mean values of the distributions q∗(x), q∗(h) and q∗(σ2),
respectively.

Using this framework, Fergus et al (2006) and Whyte et al (2010, 2012) operated the variational for-
mulation on the gradient domain, i.e., x in the above equations is replaced by the image gradients ∇x, to
facilitate the statistical assumption on model priors, such as sparse gradients. Babacan et al (2012)] proposed
a super-Gaussian prior over the image intensities and treated the parameter of this prior as a latent variable
in the variational inference. The optimal solutions are similar to equations (3.39-3.41).
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Levin et al (2011a) employed the variational inference to handle the marginalization problem in MAPh.
By re-arranging the equation (3.36), a free energy is defined as

F(q) =

∫
q(x, z) log q(x, z)dzdx

−

∫
q(x, z) log p(y, x, z|h)dzdx

= DKL(q(x, z)||p(x, z|y, h))− log p(y|h), (3.42)

where z is an auxiliary latent variable specifying the prior distribution. Due to the non-negativeness of
the KL-divergence, minimizing F(q) is equivalent to maximizing the lower bound of the likelihood p(y|h)
which is the goal of MAPh. Following an iterative optimization procedure, the optimal distribution can be
solved. Levin et al.’s method differs from Fergus et al (2006) and Whyte et al (2010, 2012) in that the
target distribution to be approximated is p(x|y, h) rather than p(x, h|y). However, Fergus et al.’s approach
selects h∗ from the estimated q(x, h) distribution by marginalizing out all possible x’s, and thus belongs to
the MAPh approach.

Rather than applying variational inference for deblurring tasks, Zhang et al (2010) explored a different
application that compares the reliability of two restoration tasks in the camera shake situation: one is to
estimate from a blurry image (deblurring) and the other addresses a sequence of noisy images (denoising).
The posterior probabilities of these two tasks are pb = p(x|yb, σ

2
b ) and pn = p(x|{ykn}

N
k=1, σ

2
n), respectively,

where yb is the blurry image, ykn is the k-th noisy image, σ2
b and σ2

n are the noise variance in two types of
image. Since the Hessian matrices of log pb and log pn with respect to x provide an uncertainty measurement
associated with the estimation of x, the authors applied the variational distributions over the hidden variables
(here, the motion paths) to approximate the posterior, i.e. Lb(q) = DKL(q||pb) and Ln(q) = DKL(q||pn).
The comparison result between the Hessian matrix of Lb(q) and that of Ln(q) reveals that restoration by
denoising multiple images is generally more reliable than deblurring a single image.

4 Variational Methods

Variational methods stem from the calculus of variations and are typically used as approximation methods
in a wide variety of settings, such as quantum mechanics, classical mechanics, finite element analysis, and
statistics. Such approximations are engaged to convert an ill-posed problem into a well-posed problem
which is characterized by exploring additional constraints to reduce the size of the solution space of the
unknown variables (Jordan et al 1999). To approximate the problem, a typical setting involves the extremum
(maximum or minimum) of a functional composing a function and the associated constraints:

min
A

Φ(A;B) + λΨ(A), (4.1)

where A is the undetermined variables and B is the observations. In variational principle, Φ(A;B) is called
the data-fidelity function, Ψ(A) is the regularization function, and λ denotes the regularization parameter.
Under this formulation, the non-blind image deblurring problem can be written as

min
x

Φ(x; y, h) + λxΨx(x), (4.2)

while the blind case is
min
x,h

Φ(x, h; y) + λxΨx(x) + λhΨh(h). (4.3)

The term Φ is determined according to the noise assumptions listed in Table 1. In this section, we generally
assume the Gaussian noise model, and the corresponding Φ is given by

Φ = ‖y − x ∗ h‖22. (4.4)

The discussion of the variational methods is organized from three aspects: regularization, optimization, and
analysis/synthesis reformulation.
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4.1 Regularization Techniques

Similar to the character of the prior in the Bayesian inference framework, the regularizers in a variational
framework express human knowledge on the interested blurry images. Such knowledge can constrain the
solution space such that the deblurred images are favored by human sense.

4.1.1 Regularization in Single-image Deblurring

Classically, to stabilize the deblurring result, it is expected the solution to have a small norm, and thus the
Tikhonov-Miller regularizer (Tikhonov 1963) is imposed on the sharp image:

Ψx(x) = ‖x‖2. (4.5)

However, this choice is rarely used in modern deblurring tasks because of the property whereby the resultant
images will have over-smoothed edges. With this regard, the development of the first-order regularizers
which maximally preserve the significant details is more frequently adopted. A typical example is the total
variation (TV) proposed by Rudin et al (1992)

TVi(x) = ‖
√
|∇hx|2 + |∇vx|2‖1, (4.6)

where the subscript i means it is the isotropic version. Complementarily, the anisotropic TV is

TVa(x) = ‖|∇hx|+ |∇vx|‖1. (4.7)

Both TVi and TVa enhance the visualization of edges in the resultant images. They mainly differ from
each other in their sensitivity to edge directions. From the formulations, we can see that TVi enforces the
same strength on the edges with different directions, whereas TVa favors certain directions. Both methods
have proven to be useful in numerous applications, such as image denoising, decomposition, super-resolution,
inpainting, and non-blind deblurring. Nevertheless, when applied to blind deblurring problems, some failures
occur.

Note that TV is intrinsically an ℓ1 norm of the image gradients, and thus induces sparsity over image
gradients. According to the delta-effect of MAP mentioned in Section 3, simultaneously estimating x and h
will result in a blurry image. Another perspective from the ℓ1 properties can assist the understanding of TV
failure. For a sharp image of natural scenes, the gradient magnitude is typically sparse, meaning that most
values are either zero or very small, but may occasionally be large. If a blur kernel is operated on this image,
the high-frequency bands will be attenuated, leading to the magnitudes being un-sparse. To recover the
original sparsity, a natural choice is the ℓ0 measure, an important property of which is the scale-invariance,
i.e., min ℓ0(∇x) = min ℓ0(a · ∇x) for any positive values of a. Minimizing ℓ0 will only lead to a sparse effect,
without destroying the magnitudes of large values, thus preserving the energy of original gradients. However,
ℓ0 is difficult to optimize because of the lack of derivative information everywhere, and then ℓ1 is utilized
as an alternative to approximate ℓ0. Unfortunately, the blurring process in itself reduces the ℓ1 norm of the
gradients. Minimizing ℓ1 fails to preserve or recover the energy of the original gradients. Additionally, the
scale variant property makes ℓ1 sensitive to the setting of the regularization parameter λ. Therefore, various
methods of approximating the ℓ0 norm while maintaining the scale-invariance property are proposed.

Krishnan et al (2011) recently extended the ℓ1 norm to a normalized version:

Ψ(∇x) =
‖∇x‖1
‖∇x‖2

. (4.8)

To understand this regularizer, let us focus on the denominator, ℓ2 norm. The blurring process reduces the
ℓ2 norm of the gradients as well. Fortunately, ℓ2 is reduced more than the numerator ℓ1 norm, leading to an
increased ratio of the two terms. Fig. 8c illustrates that the minimum of this ratio is along the axes. The
blurry effect will drive the ratio away from the axes. Therefore, minimizing this regularizer will deduce the
blurry effect in the image without destroying the magnitude of the true gradient because ℓ1/ℓ2 is evidently
scale invariant, just as we expected.

Another example of the approximation is the unnatural ℓ0 regularizer which is proposed by Xu et al (2013).
The unnaturalness stems from the observation that in most iterative deblurring methods, the intermediate
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(f) Unnatural ℓ0 (ǫ = 0.1)

Figure 8: Visualization of different measures

image results only contain high-contrast and step-like structures while suppressing others. These images
are different from natural scenes, and hence the term ’unnatural’ is exploited. To incorporate the step-edge
properties in an unnatural representation, the authors utilized the unnatural ℓ0 scheme to preserve the salient
changes (i.e., the gradients) in the image. The resultant regularizer is formulated as

Ψ(∇hx) =
∑

i

ψ(∇hxi), (4.9)

where

ψ(z) =

{
1
ǫ2 |z|

2, if |z| ≤ ǫ,

1, otherwise.
(4.10)

The definition on the vertical derivative ∇vxi is similar. Depending on the formulation, the gradient mag-
nitudes smaller than ǫ are penalized by ψ(·) while the larger values result in a constant 1 in the objective
function. Minimizing this regularizer will remove fine structures and keep useful salient details in the result.
Fig. 8d-8f illustrates three plots under different values of ǫ. When ǫ approaches to zero, this regularizer can
be fitted perfectly to the ℓ0 norm. Another property ensuring the unnatural ℓ0 superior to ℓ1 is its scale
invariance property, as previously stated. By using this regularization technique in the estimation of blur
kernels, the deblurring performance has been notably improved.

While the above regularizers are all based on first-order derivatives, second-order regularization techniques
have also proven to be useful in image denoising tasks, and have recently been introduced to deblurring
images. Lefkimmiatis et al (2012) extended the first-order TV functional to two second-order cases by
defining the mixed norms including ℓ1 − ℓ∞ and ℓ1 − ℓ2. These regularizers maintain favorable properties of
TV (such as convexity, homogeneity, rotation and translation invariance) well, and can effectively suppress
the staircase effect. To solve the resultant variational problem, an efficient algorithm is proposed based
on the majorization-minimization approach. Rather than only enforcing the second-order regularization in
deblurring tasks, Papafitsoros and Schönlieb (2014) handled the combined problem involving both first- and
second-order functionals. The benefit is that the first-order term recovers the step-edges as well as possible,
while the second-order term eliminates the artifacts of the staircase produced by the first-order regularizer,
without introducing any serious blur in the reconstructed image. Further, the existence and uniqueness of
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the solution to the combined problem is proved, and numerical solutions are provided based on the split
Bregman iteration (Goldstein and Osher 2009).

A limitation of most regularizers is noted to be based on the local principle, i.e. regularizing the local
structures, which can be overcome by the nonlocal ideas. Inspired by the development of nonlocal TV (Gilboa
and Osher 2007, 2008) in the image deblurring task (Lou et al 2010), Jung et al (2011) derived a nonlocal
Mumford-Shah (MS) regularizer by applying the nonlocal operators to the multichannel approximations of
the MS regularizer. Due to the repetitiveness of the textures in nature, this regularizer performs better than
the local counterpart in various image applications.

4.1.2 Regularization in Multi-image Deblurring

In the case of multi-image deblurring, the regularizers should not only express human knowledge but also
exhibit mutual constraints among different images. In this setting, we need to involve a multiple blurring
model:

yk = x ∗ hk + nk, for k = 1, 2, ... (4.11)

Different observation yk is obtained by convolving the same latent image x with a different kernel hk,
interrupted by specific noise nk. Given equation (4.11), the blind deblurring process can be written as a
joint variational formulation:

(x∗, {h∗k}) = argmin
x,{hk}

∑

k

‖yk − x ∗ hk‖
2
2 + λxΨx(x)

+λh
∑

k

Ψh(hk). (4.12)

Detailed discovery of the relationship among the kernels {hk} can help us handle the above inverse prob-
lem. Specifically in terms of two-image deblurring, Li et al (2011a) presented a theory of Coprime Blurred
Paris (CBP). CBP means that in the blurry image pair, the z-transforms of the two kernels are coprime.
Mathematically, the equations in (4.11) are transformed into

{
ỹ1(z1, z2) = x̃(z1, z2) · h̃1(z1, z2) + ñ1(z1, z2)

ỹ2(z1, z2) = x̃(z1, z2) · h̃2(z1, z2) + ñ2(z1, z2)
, (4.13)

where ỹ, x̃, h̃ and ñ are the z-transform of y, x, h and n, respectively. The coprimeness between h̃1(z1, z2)
and h̃2(z1, z2) will theoretically lead to an approximation of the optimal solution x∗, that is

x̃∗ = GCD{ỹ1(z1, z2), ỹ2(z1, z2)}, (4.14)

where GCD is the abbreviation of the greatest common divisor (Pillai and Liang 1999), a classic method in
Number Theory. However, computing (4.14) requires great computation power and system memory, making
GCD impractical in deblurring tasks. To address this issue, the authors suggested recovering the sharp image
by factoring the Bézout Matrix of ỹ1 and ỹ2 to determine the coprimality and can be efficiently solved.

With the assistance of additional hardware, Li et al (2011b) captured two images of the same scene
disturbed by camera shake blur. These two images are correlated according to a mapping g, and can be
formulated as {

y1 = x ∗ h+ n1

y2 = g(x) ∗ h+ n2
. (4.15)

The mapping g, as expected, needs to be bijective isometry, and satisfies that g−1(a ∗ b) = g−1(a) ∗ g−1(b)
for all a, b ∈ R

n. Imposing the inverse mapping of g to the second equation of (4.15), we obtain

g−1(y2) = x ∗ g−1(h) + n2 = x ∗ h′ + n2, (4.16)
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where h′ = g−1(h). Substituting these two observation models into equation (4.12), the two-step optimization
is 




h∗ = argmin
h

‖y1 − x ∗ h‖22 + ‖y2 − g(x) ∗ h‖22

+λhΨh(h),

x∗ = argmin
x

‖y1 − x ∗ h‖22 + ‖g−1(y2)− x ∗ g−1(h)‖22

+λxΨx(x).

(4.17)

In practice, the mapping g is instantiated as rot90, i.e. an image is the 90◦-rotated version of the other.
This is achieved by employing a beam splitter in the consumer camera. An advantage of this method is the
avoidance of the blurry image alignment which, if not properly processed, brings serious artifacts into the
restored images.

Even though the alignment problem is crucial in multi-image deblurring, it is possible to handle with-
out an accurate alignment. Hacohen et al (2013) addressed the deblurring task by discovering the dense
correspondence (HaCohen et al 2011) between a blurry image and a sharp reference image. The reference
image acts as a regularizer such that the blurry information can be restored from the corresponding sharp
information. An assumption in this method is that the two images are required to share the same content
but undergo non-rigid geometric transformations; and there is no need to construct an alignment between
them.

4.2 Optimization Methods

In a variational framework, as well as in other related schemes, a good optimization algorithm can achieve
a fast convergence rate and produce an accurate solution. For the problem of deblurring, the general
formulation is

min
x

1

2
‖y −Hx‖2 + λΨ(x), (4.18)

where we utilize the matrix-vector expression in (2.4). Even though this is for the non-blind deblurring
problem, we can see from the discussion in previous sections that the blind case is generally decomposed
into a two-step procedure, in which the blur kernel is first estimated by a similar function to (4.18) and the
sharp image is then calculated according to (4.18).

A standard algorithm for solving the problem of (4.18) is the so-called iterative shrinkage/thresholding
(IST) algorithm, which depends on the shrinkage/thresholding function. For example, if we set the Ψ as the
ℓ0 norm on x, the corresponding shrinkage/thresholding function is the hard-threshold function (Donoho
and Johnstone 1994):

Tλℓ0(w) = w ⊙ 1
w≥

√
2λ, (4.19)

wherew is the observation to be approximated, 1
w≥

√
2λ is the indicator function determined by the condition

of the subscript. If Ψ is ℓ1 norm, the soft-threshold function (Donoho and Johnstone 1994) is then utilized:

Tλℓ1(w) = sign(w)⊙max(|w| − λ, 0). (4.20)

For solving (4.18), the IST iteration is given by

xt+1 = TλΨ

(
xt −

1

γ
H∗(Hxt − y)

)
, (4.21)

where H∗ is the adjoint of the matrix H, and 1
γ is the step size. The convergence rate of IST is determined

by the parameter λ and the matrix H. Small values of λ and/or the ill-condition of H results in slow
convergence. To accelerate IST, variants have been proposed including the two-step IST algorithm (Bioucas-
Dias and Figueiredo 2007), fast IST algorithm (Beck and Teboulle 2009), and sparse reconstruction by
separable approximation (Wright et al 2009b). Michailovich (2011) worked on a more general version of TV
which is based on multidirectional gradients rather than only the horizontal and vertical derivatives in TVi

and TVa, and then derived an IST-type algorithm to solve the model.
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Another popular scheme for solving the problem (4.18) is the alternating direction method of multipliers
(ADMM), a variant of the augmented Lagrangian Method (ALM). Formally, (4.18) can be transformed into
the following constrained problem by introducing an auxiliary variable z:

min
x,z

f1(x) + f2(z),

s.t. x = z, (4.22)

where f1(x) =
1
2‖y−Hx‖2 and f2(z) = λΨ(z). This procedure is called variable splitting. By incorporating

the ALM techniques, (4.22) can be further written as

min
x,z,β

Lµ(x, z,β) = f1(x) + f2(z) +
µ

2
‖x− z‖22 − βT (x− z), (4.23)

where µ ≥ 0 is the penalty parameter and β is a vector of Lagrange multipliers. Then ADMM alternatively
optimizes x and z (Boyd et al 2011), associated with an additional step to estimate the Lagrange parameters

xt+1 = argmin
x

Lµ(x, z
t,βt), (4.24)

zt+1 = argmin
z

Lµ(x
t+1, z,βt), (4.25)

βt+1 = βt + µ(xt+1 − zt+1). (4.26)

If a transformed signal (say the gradients) of x is regularized, the constraint in (4.22) is replaced by the
corresponding equations (Gx = z whereG is the matrix expression of the derivatives). Under this framework,
Afonso et al (2010) recently proposed a so-called SALSA (split augmented Lagrangian shrinkage algorithm)
to tackle the problem (4.18) with a non-smooth regularizer (e.g. TV or ℓ1 norm on wavelet coefficients).
Carlavan and Blanc-Féraud (2012) used the same scheme to deblur Poisson noisy images. Yang et al (2013)
presented the multidimensional anisotropic TV problem which is then solved by ADMM. To accelerate the
algorithm, it is recommended to decompose the original multidimensional problem into a set of independent
1D TV problems, which can be processed in parallel, thus reducing the time cost. Ng et al (2013) unified
the image deblurring, decompositioin and inpainting problem into one formulation, and recommended an
algorithm based on ADMM to solve it.

Newton’s method and its variants are also used to solve (4.18). Barbero and Sra (2011) developed a
Newton-type method under the dual formulation of the TV-proximity problem to solve the ℓ2-TV problem.
Similarly, in Chan et al (2010)’s work, Fenchel-duality and semi-smooth Newton techniques are utilized to
handle a ℓ1-TV problem.

A crucial issue in solving the variational problem is the determination of the regularization parameter. A
good selection of the parameter will result in a promising deblurring result, whereas a bad choice may lead to
slow convergence as well as the existence of severe artifacts in the results. Generally, when the degradation
in the blurry image is significant, the value of λ needs to be set large, to reduce the blur as much as possible.
However, in the continuing iterations, the blurry effect is decreased gradually. In this case, small value of
λ is required since a large value will damage the fine detail in the image. By considering these effects, a
direct implementation is to set λ from large to small according to an empirical reduction rule (Tai et al 2011;
Almeida and Almeida 2010; Faramarzi et al 2013):

λt+1 = max(λt · r, λmin), (4.27)

which depends on the initial value λ0, the minimal value λmin and the reduction factor r ∈ (0, 1). Usually,
r = 0.5. This setting ensures the improvement of the convergence speed of the algorithm if, at each step in
the outer iteration, the optimal solution of its immediate predecessor is used as a starting point for the inner
iterative steps (warm start). The adaptive adjustment of the parameter by considering the intermediate
images in each iteration is more favorable. For example, Montefusco and Lazzaro (2012) proposed an update
rule based on the values of the loss function in two previous iterations. If we define the loss function in (4.18)
as L(x, λ), we then have

λt+1 = λt ·
L(xt, λt)

L(xt−1, λt−1)
. (4.28)
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If the penalty in (4.18) is ℓ1-based functional, the utilization of this adaptive rule can guarantee the con-
vergence of the forward-backward splitting algorithm. Almeida and Figueiredo (2013b) suggested using the
residual whiteness measure as a guideline for the parameter selection and the stopping criterion. The ratio-
nale is that if the restored image is well-estimated, the residual image is spectrally white. Their strategy is
experimentally demonstrated in both blind and non-blind deblurring tasks.

4.3 Analysis & Synthesis

There are two different kinds of formulation for modelling the variational image restoration problem, which
are called analysis and synthesis respectively (Elad 2010; Elad et al 2007). In the analysis formulation, the
image x is associated with an analysis operator U by which x is effectively decomposed in a transformed
domain, forming the analysis representation Ux. Constraining this representation and merging it with the
Gaussian noise assumption, the problem is formalized as

x∗ = argmin
x

‖y −Hx‖22 + λ‖Ux‖p, (4.29)

where ‖ · ‖p is the ℓp norm. The TV problem is an instance of the above formulation by setting U as the
gradient operator and p = 1. For different forms of U and p, we can find various examples of the analysis
representation in Section 4.1, and iterative optimization methods in Section 4.2.

The synthesis formulation indicates that the vectorized image x ∈ R
N is to be represented as a linear

combination of atoms taken from the columns of a full-rank matrix D ∈ R
N×M , where N ≤ M . The

synthesis representation is then taken as x = Dα, where α ∈ R
M is expected to be sparse. Under the same

noise assumption as in the analysis case, the synthesis formulation is given by

α∗ = argmin
α

‖y −HDα‖22 + λ‖α‖p, (4.30)

and the optimal solution x∗ = Dα∗. Synthesis-based methods stem from the basis pursuit method by Chen
et al (1998) and have been well developed in the past years. A particularly popular synthesis representation
is sparse representation, which will be detailed in the next section. Curvelet (Candes and Donoho 2000),
contourlet (Do and Vetterli 2005), ridgelet (Candès and Donoho 1999) and their variants are all excellent
works under this framework and most of them are focused on the denoising problem. In terms of deblurring,
Tzeng et al (2010) recently exploited the collaborative property of multiband deblurring in the fluid lens
camera system. Since the green plane of the image remains sharp in the image formation process, this
sharp information can be used to recover the contourlet coefficients of other blurry planes. Zhang and
Hirakawa (2013) proposed the double discrete wavelet transform (DDWT) whose coefficients possess near-
blur-invariant properties, thus enabling the identity of the blur kernel in the DDWT domain. Under the
tight wavelet frame system, Ji and Wang (2012a) derived a deblurring scheme by considering the kernel error
in a unified formulation, whereas Cai et al (2012) used framelet decomposition to derive an analysis-based
sparse prior rather than the synthesis-based prior.

Analysis and synthesis modeling share a similar structure in their formulation, but the resultant x from
them are not necessarily equal, and may even be significantly different from each other in most cases.
According to (Elad et al 2007), the equivalence between the two solutions occurs in anyone of the following
three situations: 1) if U takes as a square and non-singular analyzing operator and D = U−1; 2) if H = I,
U ∈ R

L×N (L ≤ N) is a full-rank operator, and D = U+; or 3) if p = 2, U ∈ R
L×N (L > N) is a full-

rank operator, and D = U+. Even if one of these equivalences exist, the difference between the analysis
scheme and the synthesis scheme suggests each has merits and demerits in specific tasks. For example, the
redundancy of the operators U and D has a different effect on the analysis approach and the synthesis
approach, respectively. While a redundant D enables the synthesis scheme to describe more complex signals,
redundant U in the analysis case makes the signal inconsistent. On the other hand, in the synthesis scheme,
considering the dependence among the atoms in D, the incorrect selection of one atom can propagate to
the others; in contrast, for the analysis scheme, considering each pixel is related to its neighbor pixels, this
dependence is significantly reduced, which ensures the imprecise estimation of one pixel will not seriously
affect the estimation of the other pixels (Elad et al 2007).

The above analysis is based on a single analysis formulation or a single synthesis formulation. Never-
theless, a recent state-of-the-art work (Danielyan et al 2012, 2010) suggested a combined scheme to address
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the deblurring problem, i.e. block-matching 3-D (BM3D) image modeling (originally proposed for the im-
age denoising task (Dabov et al 2007)). Danielyan et al (2012, 2010) deduced the BM3D modeling from
both the analysis formulation and the synthesis formulation, proposing the so-called BM3D frames. Within
the formulations of (4.29) and (4.30), the authors extended BM3D modeling to modern variational image
restoration techniques. Furthermore, a combination of analysis/synthesis is formulated as a generalized Nash
equilibrium (GNE) problem including two objective functions, which are




x∗ = argmin

x

‖y −Hx‖22, s.t. ‖x−Dα∗‖22 ≤ ε1,

α∗ = argmin
α

λ‖α‖p, s.t. ‖α−Ux∗‖22 ≤ ε2,
(4.31)

where ε1, ε2 > 0 and p = 0, 1. The optimization algorithm iteratively solves the two functions. As noted by
the authors, simultaneously minimizing the two functions cannot be achieved since minimization of either
one of them will lead to an increase of the other. This effect is called the Nash equilibrium and provides a
balance between the fit of the restoration x to observation y and the complexity of the model ‖α‖p. This
balance plays a vital role in the image restoration.

Xie and Rahardja (2012) and Shen et al (2011) worked on the balanced formulation:

min
α

‖y −HDα‖22 + γ‖(I−DTD)α‖22 + λT |α|, (4.32)

where D and α are same as those in (4.30), I is the identity matrix, γ > 0, λ is a given nonnegative weight
vector, and | · | denotes the element-wise absolute operator. This formulation can be viewed as a combination
of the analysis formulation and the synthesis formulation. Specifically, when γ = 0, the problem (4.32) is
turned into the synthesis scheme, and while γ = ∞, (4.32) is then reduced as the analysis problem. Therefore,
by taking 0 < γ < ∞, this formulation balances the sparsity of the coefficients α and the smoothness of
the reconstructed image. To solve (4.32),Xie and Rahardja (2012) proposed a fast ADMM-type algorithm
by exploiting the special structures of H and D. In Shen et al (2011)’s work, it is noted that the problem
in (4.32) is not strictly convex, and thus the optimal solution is not unique. The authors addressed this
issue by adding an additional regularizer ‖α‖22 to constrain the solution space, and an accelerated proximal
gradient algorithm was developed to solve the problem.

5 Sparse Representation-based Methods

Sparse representation accounts for a decomposition that represents a signal x ∈ R
N as a sparse linear

combination of basis atoms Dm ∈ R
N (m = 1, ...,M). Given an over-complete dictionary D = [D1, ...,DM ]

where N ≪M , the underlying sharp image x in (2.4) is sparsely represented as follows

x = Dα,

s.t. ‖α‖0 ≪ N,

‖y −Hx‖2 < ǫ, (5.1)

where α ∈ R
M , ǫ > 0 and the second constraint stems from the Gaussian noise assumption. Taking into

consideration the noise and the representation error, the above problem can be formulated as

min
α

‖y −HDα‖22 + λ‖α‖0. (5.2)

Since solving this ℓ0 regularized problem is NP-hard and computationally prohibitive (Bruckstein et al 2009),
approximation algorithms are usually considered. A general scheme is to replace the ℓ0 with an ℓ1 norm,
leading to a reformulation of (5.2) as

min
α

‖y −HDα‖22 + λ‖α‖1, (5.3)

which can be solved by basis-pursuit (BP) (Chen et al 1998) or LASSO (Tibshirani 1996). More general
optimization methods for (5.3) are reviewed in (Zibulevsky and Elad 2010).
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5.1 Smooth Enhancement

The sparse representation framework has been successfully applied to various image processing tasks, such
as denoising (Elad and Aharon 2006), deblurring (Cai et al 2009), inpainting (Elad et al 2005), and super-
resolution (Yang et al 2010). In these approaches, the sign x in the above equations typically represents a
patch in the image. Mathematically, the minimization over the whole image can be written as

min
α

∑

i

‖Riy −HDαi‖
2
2 + λ

∑

i

‖αi‖1, (5.4)

where α = [α1, ...,αK ], K is the total number of patches, Ri denotes the extraction of the patch at location
i, and the patch xi = Dαi. To reconstruct the sharp image, the estimated patches need to be fused. A
general operation is to chop the image into overlapping patches, which are then averaged to calculate each
pixel’s value. However, as noted by Cai et al (2012), a crude fusing scheme in the synthesis approach often
leads to visible artifacts along the image edges, exhibiting less smoothness in the reconstructed image.

To suppress the artifacts and enhance the smoothness, additional constraints have been proposed that
involve kinds of formations. For example, Ma et al (2013) added a TV regularizer about the estimated
image into the sparse formulation, since the TV regularization in the analysis approaches has the effect of
enhancing edges and restraining the changes in non-edge regions. Based on the Poisson noise assumption,
the objective (5.4) changes to

min
α,x,D

γ < Hx− y logHx,1 > +
∑

i

‖Rix−Dαi‖
2
2

+
∑

i

µi‖αi‖0 + η‖∇x‖1, (5.5)

where γ and η balance the corresponding terms, and < ·, · > denotes the inner product. An algorithm based
on the variable splitting method is also proposed to iteratively solve different unknown variables.

Inspired by the superiority of nonlocal strategy over the local estimation strategy, Dong et al (2011b)
introduced a combination of two adaptive regularizers, one of which involves a set of auto-regression (AR)
models {a1, ...,aL} characterizing the local structures, while the other encodes the nonlocal similarity. The
resultant formulation is

min
α

∑

i

‖Riy −HDαi‖
2
2 +

∑

i

λi‖αi‖1

+ γ
∑

i

‖xi − aTl x\i‖
2
2

︸ ︷︷ ︸
AR regularization

+ η
∑

i

‖xi − bT
i βi‖

2
2

︸ ︷︷ ︸
Nonlocal regularization

, (5.6)

where {λi}, γ, η are regularization parameters. For the i-th patch, xi and x\i are the central pixel and the
non-central pixels respectively, al denotes the parameters of the selected l-th AR model, βi collects the central
pixels of similar patches searched across the whole image, and bi lists the corresponding nonnegative weights.
The elements of bi are required to sum to 1, i.e.

∑
j bi,j = 1. This scheme considers both local smoothness

and nonlocal structure similarity, which in cooperation with sparse representation, will provide an accurate
estimation of the pixel by excavating as much of the information in the image as possible. In Dong et al
(2011a, 2013)’s subsequent work, the same idea of nonlocal regularization is employed. Rather than directly
estimating the central pixel according to the nonlocal similarity, the authors impose this regularization onto
the sparse codes α by replacing the last term in (5.6) with

∑

i

‖αi −Aiωi‖p, (5.7)

where p = 1 or 2, the columns of Ai correspond to the sparse codes of the similar patches which are collected
via block matching over all extracted patches, and ωi is the same weight vector as bi in (5.6). The resultant
model is named centralized sparse representation. The rationale behind this nonlocal regularization comes
from an empirical investigation, showing that the sparse codes αe calculated according to (5.4) usually have
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sparse coding noise with respect to the true codes αt, i.e. αe = αt + nα where nα is the noise that can
be approximately characterized by Laplace distribution. The authors proposed using Aiωi to approximate
αt, and thus minimizing the regularization in (5.7) would restrain the noise emerging in the optimization
procedure.

5.2 Dictionary Learning

The selection of the dictionary D is crucial in the sparse representation-based methods, since a suitable
D will result in low reconstruction error, otherwise high error will be caused. A classic selection is the
predefined regular dictionary, such as the redundant discrete cosine transform (DCT) (Guleryuz 2006a,b)
and the overcomplete Haar dictionary. These dictionaries can be pre-calculated before the optimization of
problem (5.2) or (5.3), saving a large amount of computational source, but these choices provide limited
performance due to the ignoring of the real data.

Alternatively, a task-specific dictionary learning strategy has been proven to be advantageous. A typical
example is the K-SVD (Elad and Aharon 2006; Aharon et al 2006), in which the redundant dictionary is
leaned from a training set of high quality images or the currently processed degraded images. In this method,
the optimization alternates between solving the sparse codes α and the dictionary D, thus increasing the
computational cost compared with using a predefined regular dictionary. Fortunately, the performance of
K-SVD is enhanced, and it is also shown that the scheme in which the dictionary is learned from the currently
processed image is superior to other schemes that utilize a training set to learn the dictionary. This highlights
the importance of task-specificity.

The K-SVD algorithm is utilized by Ma et al (2013) to update the dictionary in each iteration for
debluring. Besides, Perrone et al (2012) used a dictionary D composed of two parts, one of which consists
of blurry patches extracted from the current processed image y, denoted as Dy, while another collects the
patches from a sharp dataset and corrupts them using the known blur kernel, denoted as Dd. Thus we can
write D = [Dy,Dd], corresponding to the self-similarity-based and dataset-based dictionaries, respectively.
Instead of solving the ℓ1 optimization problem, the authors computed the representation of the blurry image
on D by employing the nonlocal mean method and a subsequent refinement. This representation, denoted
as αnlm, is then regarded in a variational formulation as a constraint on the sharp image. The problem is
written as

min
x,n,e

1

2
‖x−Dαnlm‖22 + λ‖∇x‖2 +

η

2
‖n‖22 + γ‖e‖1,

s.t. y = Hx+ n+ e, (5.8)

where λ, η, γ balance the different terms, and e denotes the error introduced by the inaccurate blur kernel.
The effectiveness of this formulation is experimentally demonstrated when a noisy blur kernel is assumed.

Generally, the local structures of the natural images exhibit a certain level of correlations and can be
synthesized by similar atoms in a redundant dictionary. By intentionally arranging the dictionary atoms, the
estimated sparse patterns will be constrained to a specific subset of atoms. This is the so-called structured
sparse representation. By exploring structured sparse representation, Dong et al (2011a,b, 2013) introduced
a PCA-based dictionary learning method. In the training phase, a large number of patches are extracted
from an additional dataset of natural images, followed by a clustering procedure to create a set of clusters
(say K clusters), each of which encodes a certain type of local structure. Then PCA is applied to each cluster
(denoted by its centroid µk, 1 ≤ k ≤ K), in which all the affiliated patches are vectorized. The calculated
principal components, which encode the structural information, are utilized as the subdictionary (denoted
as Dk) for the corresponding cluster. Thus the final dictionary is a concatenation of all subdictionaries, i.e.
D = [D1, ...,DK ]. In the sparse coding phase, a patch x is adaptively assigned a subdictionary whose index
is

k∗ = argmink ‖D̃kx− D̃kµk‖2, (5.9)

where D̃k collects the first several most significant components in Dk. Following the selection of the sub-
dictionary, the sparse codes of x are solved by optimizing (5.3). Since x is degraded by blur and noise, the
selection in (5.9) may be not optimal. The authors proposed to iteratively implement (5.9) and (5.3) until
the estimation of x converged. This PCA-based structured sparsity is shown to be equivalent to piecewise
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linear estimation (PLE) under the GMM assumption (Yu et al 2012). By contrast, a MAP-EM algorithm is
proposed in (Yu et al 2012) to solve the PLE problem instead of using PCA, showing that PLE can stabilize
and improve traditional nonlinear sparse inverse problems.

5.3 Combined Tasks under Sparse Representation

Image deblurring is a low-level task aiming to produce high quality images for the subsequent high-level
vision tasks. Several recent sparse representation-based methods combine the deblurring problem and other
elements, such as compressed sensing (Amizic et al 2013; Rostami et al 2012) and object recognition (Zhang
et al 2011), into a unified scheme. In Amizic et al (2013)’s work, the blind image deconvolution technique
is integrated into the compressed sensing (CS)-based imaging system. In this system, a blurry image is
represented as

y = Mx̃+ n = MHx+ n, (5.10)

where M is the CS measurement matrix, and x̃ = Hx. To sample the signal x̃, CS involves the following
optimization problem:

min
α

‖y −MWα‖22 + τ‖α‖1, (5.11)

which is similar to (5.3), and W denotes the redundant transformation by which x̃ = Wα can be sparsely
represented. Combined with the variational framework for blind image deblurring in (4.3), a unified objective
function can be obtained

min
x,H,α

‖y −MWα‖22 + τ‖α‖1 + λxΨx(x) + λhΨh(H),

s.t. Hx = Wα. (5.12)

As noted, the advantage of (5.12) compared to the sequential approach (a two-step approach in which CS
is followed by blind image deblurring) is the capacity of imposing an additional structural constraint on the
sparse codes α because in the sequential case, α is determined when completing CS and cannot be changed
in the subsequent deblurring procedure. Rostami et al (2012) introduced a derivative compressed sensing
(DCS) technique to derive the generalized pupil function (GPF) of the short-exposure optical system, where
the GPF can uniquely determine the PSF introduced by air turbulence. Once the estimation of PSF via
DCS is completed, a non-blind deconvolution procedure under the variational framework is conducted to
produce the restored optical images.

The performance of face recognition heavily depends on the quality of the captured face images. When
images are degraded by blur or noise, the extracted features may be significantly disturbed. To address
this issue, Zhang et al (2011) proposed a framework to simultaneously blind-restore the face images and
recognize the face labels. The whole framework stems from the sparse representation-based classification
(SRC) (Wright et al 2009a) which assumes that the data samples belonging to the same class lie in the same
low-dimensional subspace. Different from SRC, the target image to be labeled in this method is a blurry
face image, and the results include an estimated kernel, a restored image and its associated label. Formally,
the proposed objective function is

min
x,H,α,c

‖y −Hx‖22 + η‖x−Dα‖22 + τ‖α‖1

+λxΨx(x) + λhΨh(H), (5.13)

where the dictionary D includes a set of C subdictionaries, each of which contains the training face images
of one specific class, i.e. D = [D1, ...,DC ], and c is the class label embedded in D and α. In the above
formulation, x, H, α, c are optimized alternatively. It should be noted that D is realized as the collection
of sharp training images when optimizing x and H, whereas in the estimation of α and c, D is corrupted
by the intermediate estimation of H to generate the blurry dictionary Db, i.e. Db = HD. Compared with
the state-of-the-art blind deblurring algorithms and SRC, this framework obtains a significant performance
improvement.
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6 Homography-based Methods

In this section and the next section, our discussion will mainly focus on the modeling and associated pro-
cessing of the spatial variant blur effect.

Homography-based modeling is generally proposed to simulate the blur effect induced by the camera’s
egomotion or camera shake. Recall that in the image formation process, a 3D scene point (u, v,m) is mapped
to a 2D image plane point (i, j), which can be formulated in the homogeneous coordinates as

(it, jt, 1)
T = Pt(u, v,m, 1)

T , (6.1)

where t denotes the time index. In the case of camera motion, Pt may vary with time as a function of camera
translation and rotation, causing a fixed point in the scene to be projected onto different locations in the
image plane at each time. As is well-known, when using a pinhole camera, all views seen by the camera are
projectively equivalent except for the boundaries (Whyte et al 2010; Joshi et al 2010a). This means that
for a static scene with constant depth, the 2D images projected at different instances of time are related via
a homography. Denoting the image point at time t = 0 as (i0, j0), the homography and projected point at
time t are modeled as

Ht(d) = K

(
Rt +

1

d
TtN

T

)
K−1, (6.2)

(it, jt, 1)
T = Ht(d)(i0, j0, 1)

T , (6.3)

for a particular depth d, where K is the camera’s internal calibration matrix, Rt and Tt are the rotation
matrix and translation vector at time t, and N is the unit vector orthogonal to the image plane. Based on
this formulation, the image captured at any time is expressed by the initial image x0, i.e.

xt(i, j) = x0(Ht(d)(i, j, 1)
T ). (6.4)

For simplicity, we express the coordinates as a column vector i and the homography as Ht, and then (6.4)
can be rewritten as

xt(i) = x0(Hti). (6.5)

Thus we can define the blurry image y as the accumulated result over the exposure duration τ , which is
given by

y(i) =

∫ τ

t=0

x0(Hti)dt, (6.6)

where we omit the noise term. We rewrite (6.5) in the matrix-vector form as

xt = Htx0, (6.7)

where Ht is a sparse resampling matrix that implements the image warping and resampling due to the
homography, and then (6.6) becomes

y =

∫ τ

t=0

Htx0dt. (6.8)

However, due to the successive duration [0, τ ] in (6.6) and (6.8), infinite instantiations of Ht will be created,
causing the ill-posedness of the problem. To handle this issue, two methods can be employed: one which
discretizes the time duration and one which decomposes Ht into the basis transformations.

6.1 Time Discretization

If we suppose that the duration τ is segmented to N equivalent periods, in each of which the homography
H is approximately consistent, the equation (6.6) becomes

y(i) ≈
1

N

N∑

t=1

x0(Hti). (6.9)
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The left hand side of (6.9) is equal to the right hand side when N → ∞. If N is set to a limited value, the
unknown variables in {Ht} will be well-constrained, reducing the ill-posedness of the problem. Equation (6.9)
is nothing but the projective motion blur model proposed by Tai et al (2011). To estimate each homography,
the motion is assumed to be uniform in the exposure time. Each Ht can therefore be computed directly
according to the whole homography generated from t = 0 to τ , i.e. Ht = N

√
H[0,τ ]. Based on this formulation,

Tai et al (2011) also developed the projective motion Richardson-Lucy algorithm which has been mentioned
in Section 3.1.1. Following this model, Tai et al (2010b) proposed a coded exposure technique to introduce
discontinuities during the exposure period for the purpose of reducing the discretization error existing in
equation (6.9), while at the same time preserving the high-frequency spatial information. The captured
image provides more details for the recovery of the blur kernel. In conjunction with the matting technique,
the moving object in the image is isolated and deblurred appropriately.

A strong assumption in equation (6.9) is the consistent homography in each equivalent period, which
may not fit to the reality. A more general formulation is

y(i) ≈
N∑

t=1

wtx0(Hti), (6.10)

where wt denotes the proportion of the period occupied by Ht, and
∑

t wt = 1. Under this model, Cho et al
(2012b) proposed a registration-based method to estimate the homographies {Ht} and the weights {wt} by
using the Lucas-Kanade algorithm (Szeliski and Shum 1997). This estimation method is extended into a
multiple image deblurring scheme.

6.2 Homography Decomposition

This strategy decomposes the homography into a set of basic operations, i.e. representing Ht in (6.7) and
(6.8) as a weighted sum of predefined transformations or homographies. This leads to the formulation as

y =

L∑

l=1

wlHlx0, (6.11)

where {Hl} denotes the basis set with cardinality of L, wl is the weight assigned to the l-th basis, and∑
l wl = 1.
A typical example is the transformation spread function (TSF)-based modeling proposed by Chan-

dramouli and Rajagopalan (2010). Their method focuses on the modeling of the camera’s translations
and in-plane rotations. {Hl} is assumed to be the set of possible geometric transformations the image points
can undergo during the exposure. TSF w(Hl) is defined as

w(Hl) : {Hl} → R+, (6.12)

and (6.11) is rewritten as

y =

L∑

l=1

w(Hl)xHl
, (6.13)

where xHl
= Hlx0 denotes the reference image x0 warped by the transformation Hl. A direct understanding

of this formulation is similar to that in (6.10), i.e. the transformed images are weighted according to their
exposure time. Depending on (6.13), Chandramouli et al. derived the relationship between TSF and the
spatial variant PSF. Let h(i;u) denote the PSF where i is the location in the image plane and u is the
position in the 2D PSF. Then

h(i;u) =

L∑

l=1

w(Hl)δ(u− (i− il)), (6.14)

in which δ(·) is the Kronecker delta function, and il denotes the coordinate of the point projected from i

according to Hl. Applying this model to the deblurring problem, TSFs w(·) are estimated by solving a least-
squares problem. Vijay et al (2013) subsequently employed TSF-based modeling in the high dynamic range
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(HDR) image reconstruction problem which involves blurry/noisy image pairs or multiple blurry images. In
their formulation, the TV regularization and the image pair collaborative constraint are utilized to ensure
the smoothness and recoverability of fine details. Note that the equation (6.13) is limited to the situation
of constant depth (Chandramouli and Rajagopalan 2010). If there are depth variations in the scene, the
blurry effect cannot be modeled using (6.13) where only one TSF is involved. Paramanand and Rajagopalan
(2013) proposed a method involving two TSFs to handle the blurry image by capturing a bilayer scene which
consists of two dominant layers of different depths. The two TSFs, each of which corresponds to a certain
depth, are estimated as follows. Local blur kernels are first calculated at different image locations, followed
by a grouping operation on the kernels according to the depth of each location. Each TSF is then estimated
from the blur kernels in the corresponding depth layer under a regularization framework.

Another scheme for setting the basis set {Hl} was proposed by Whyte et al (2010, 2012). Considering
all-directional rotation of the camera, the homographies are correlated with the camera’s orientation. The
resultant formulation is

y(i) =

∫

Θ

w(θ)x0(Hθi)dθ, (6.15)

and its discretized version is
y(i) =

∑

θ

w(θ)x0(Hθi), (6.16)

where Hθ is the homography specifying the orientation θ of the camera rotation, and w(θ) denotes the
weighting function of θ. By setting {Hθ} according to the rotations along the three Cartesian axes, the
spatially variant blur kernel can be well-approximated. This model is applied to a single image deblurring
problem using the variational Bayesian method, as well as a blurry/noisy image pair deblurring problem
under the regularized least-squares formulation. Note that an integral over Θ implies a search over the full
orientation space, incurring a high computational cost when the camera rotates significantly. Instead, Hu and
Yang (2012a) proposed to constrain the camera poses by imposing an initial guess of the pose subspace and
searching the optimal solution within this subspace. This initialization of the pose subspace is implemented
using back-projection. Compared with the method in (Whyte et al 2010, 2012), Hu and Yang (2012a)’s
method produces more favorable results.

Motion density function (MDF) proposed by Gupta et al (2010) is similar to the above two schemes,
and has the formulation of (6.11). Here the basis set {Hl} is called the motion response basis (MRB) while
{wl} is called MDF. In the method, MRB is again pre-computed according to both camera translation and
rotation, while the sharp image x0 and the MDF {wl} are iteratively optimized using the proposed RANSAC
(short for ”Random Sample consensus”)-based scheme. Zheng et al (2013) applied this type of method to a
more practical scenario that is forward/backward motion blur removal.

7 Region-based Methods

The spatial variant blur kernel implies that the local kernels vary from region to region, or more strictly, from
point to point. Region-based methods express the blur model in that each region, or ideally, each point is
assigned to a local consistent kernel (Levin 2006). The local kernel at the location i of the image is denoted
as hi, and the windowing operation extracting the fixed size patch whose center is located at i is denoted as
ωi. The blurry image is then modeled as

yi = c(hi ∗ (ωi ⊙ x)), (7.1)

where c(·) is a function to extract the center point of the patch. Thus the set {hi} forms the spatial variant
blur model. Note that in equation (7.1), only the correspondence between yi and the center of the patch
hi ∗ (ωi ⊙ x) is accessible due to the operation of c(·), and thus it is impractical to estimate x and all {hi}.
By considering the redundancy information (in particular, the overlaps between sampled patches) in the
modeling, the operator c(·) is generally replaced by the averaging of overlaps, which results in the efficient
filter flow (EFF) model proposed by Hirsch et al (2010) and Harmeling et al (2010),

y =
∑

{i}
hi ∗ (ωi ⊙ x). (7.2)
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In (7.2), for computational efficiency, the overlapping patches are only extracted at the locations indicated
by the set {i} (not all locations in the image). ωi encodes not only the extracting operation, but also the
averaging operation. Thus its values are not necessarily 0 or 1 but in the range of [0, 1], and furthermore
the normalization constraint

∑
{i} ωi = 1 should be satisfied. Thanks to the matrix-vector-multiplication

expression of convolution, equation (7.2) can be rewritten as y = Hx, where

H = ZT
y

∑

{i}
CT

i F
HDiag(FZhhi)FCiDiag(ωi). (7.3)

Here Diag(v) is a diagonal matrix that has vector v along its diagonal, Ci is the chopping matrix for the i-th
patch in the image, F and FH are respectively the Discrete Fourier Transform matrix and its Hermitian, Zh

is the zero-padding matrix used to expand the hi by zero to the patch size, and ZT
y chops out the valid part

of the space-variant convolution. Regarding equation (7.2) as y = Xh, in which the vector h is obtained by
stacking h1, ..., hR, X is given by

X = ZT
y

∑

{i}
CT

i F
HDiag(FCiDiag(ωi)x)FZhBi, (7.4)

where Bi denotes a matrix that chops the blur kernel hi from h. Equations (7.3) and (7.4) provide an efficient
way to obtain H, HT , X and XT , which are essential to iteratively estimate {hi} and x. The experiments
on processing of both atmospheric turbulence blur and camera shake blur show promising recovery accuracy
and computational efficiency.

In their subsequent work, Schuler et al (2011) apply this framework to the problem of correcting optical
aberrations, which exploits three channels (i.e. RGB) of the captured image. The problem is formulated as
a joint objective function that combines respective constraints on three channels. Additionally, by incorpo-
rating the idea discussed in Section 6.2, Hirsch et al (2011) and Schuler et al (2012) reformulated (7.2) to
model the camera rotation blur by representing the local blur kernel as the weighted sum of a set of bases,
i.e.

y =
∑

{i}
(

K∑

k=1

µkbk,i) ∗ (ωi ⊙ x), (7.5)

where {µk} are the weights assigned to the bases {bk,i}. It should be noted that µk is independent of the
patch with index i, whereas bk,i depends that patch. This is because when modeling the camera rotation
blur, different locations in the sensor may undergo very different routes, i.e. the local kernel in a specific
point is expressible only by the basis kernels at the same point, each of which is induced by different rotation.
Specifically, for modeling the camera rotation blur, we need to first generate the kernel maps, each of which
consists of the local kernel for all points in an image, for different rotations, and then extract the local
kernels at the same point, say i, of all maps to constitute the bases {bk,i}. In such a situation, {µk} and
x are unknown variables in equation (7.5), whose number is significantly decreased. By employing the edge
emphasizing operation in the pre-steps of optimization, the deblurring results on shaken blurred images and
optical aberrant images are impressive. Apart from modeling camera rotation blur, this scheme is applicable
to modeling general camera shaken blur, air turbulence blur, as well as defocus blur.

In contrast to the above EFF methods, Ji and Wang (2012b) proposed an intuitive approach to estimate
point-wise blur kernels. In camera egomotion, the sensor is forced to undergo rigid translation or rotation.
This rigidness naturally implies that without the consideration of depth change, the variation of the local
kernels between two adjacent points is limited, meaning that if we have two kernels located in nearby
positions, the other kernels located within the line between these two points can be recovered by a kernel
interpolation scheme. Based on this strategy, Ji and Wang (2012b)’s method initially estimates the local
kernels for overlapping regions using existing spatially invariant blind deblurring methods. However, because
the scene depth varies in reality, some of the estimated kernels are erroneous and should be corrected
according to the affine relationship between the adjacent regions. The authors then presented a kernel
interpolation algorithm for transforming the region-wise kernels into point-wise kernels. Note that either
kernel initialization or interpolation inevitably introduces errors to the kernel estimation. Based on (Ji and
Wang 2012a), the induced error term is considered in a non-blind deblurring model which is an analysis
formulation (cf. equation (4.29) in Section 4.3).
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Camera translational blur is spatially variant when capturing a scene with depth variation. Xu and Jia
(2012) developed a model by discovering the depth information of the scene. The depth layers, each of which
corresponds to a local region, are produced by a stereo-matching-based disparity estimation algorithm that
involves two blurry images of different views. In the estimation of the blur kernel for each layer, a tree
structure is constructed over all depth layers, where the nodes for two layers having neighboring depths are
merged to form their parent node. The blur kernels are then estimated from the top-level of the tree to the
bottom-level, in which the kernel refinement is operated to make the estimation robust. Once the kernels
are estimated, the two images are simultaneously deblurred in a unified formulation. To produce a pleasant
result, the whole process from disparity estimation to blur removal is required to repeat at least once.

In terms of object motion blur, the blurry image can typically be segmented into two regions, where
one is for the moving object inducing the blur and the other is generally the static background that has
probably been corrupted by defocus blur. In this case, Chakrabarti et al (2010) determined the spatially
variant blur model by mining the statistics of the localized frequency representation, in which each local
region of the blurry image is independently transformed into the frequency domain. To reduce the number
of unknown parameters, pixels in one region correspond to a same local kernel. To handle the boundary
effects in convolution, the statistics, in particular the first- and second-order moments, are involved in a
MAPk formulation. Solving the MAPk provides the estimation of the blur kernel. What follows is a binary
segmentation of the motion-blurred foreground from the background via a Markov Random Field modeling
strategy. The non-blind deblurring procedure is conducted independently in each region. Similarly, Kim
et al (2013) addressed to deblur an image which contains multiple moving objects. Each object occupies a
region and corresponds to a single kernel. In this method, the blur segmentation, the kernel estimation and
the image restoration are alternatively processed in a unified variational formulation (cf. equation (4.3) in
Section 4).

8 Others

In this section, we will discuss several methods which cannot be grouped into the above categories.
Projection-based method : The projection-based methods involve two terms, one of which concerns

knowledge about the true solution that can be incorporated into the prior constraint set, while the other
encodes the noisy blurry image that specifies the observation constraint set. Similar to the variational
framework, this type of method also has the objective of (4.1), containing the above two terms. Specifically,
Li (2011) proposed the following weighted deblurring function:

min
x

1

2

r∑

i=0

‖Bi(y −Hx)‖22 + λΨ(x), (8.1)

where r is a positive integral parameter, and the operator Bi is defined as

Bi = (I− βHH∗)i, i = 0, ..., r, (8.2)

and 0 < β < 1. The first term in (8.1) forms a variant of the problem in the traditional Landweber-iteration
algorithm (Landweber 1951) which is used to deal with the ill-posed linear inverse problem, and can be
solved by the r-times Landweber iteration. As noted by Li, the introduction of the r operators {Bi} has
three advantages. The first is that in the variational framework, the estimated solution is sensitive to the
setting of the regularization parameter λ. However in (8.1), the degree of regularization is scaled by a
factor of 1/r, because of the addition of {Bi}. Thus we can adjust r instead of λ to control the impact
of regularization. Second, operators {Bi} generalize the definition of deblurring error which is determined
by r. When r = 0, the functional (8.1) reduces to the standard variational formulation. When r → ∞,
(8.1) becomes the standard Landweber iteration without regularization. Therefore by setting r ∈ (0,∞),
the global minimum can fall everywhere except the two extremes. The third advantage is that based on the
eigenvalue analysis, {Bi} can be deemed as a weighting scheme for improving the numerical stability of the
Landweber iteration. To solve (8.1), Li proved that the minimization can be realized by a concatenation of r-
times Landweber iteration (projection on the observation constraint set) and regularized filtering (projection
on the prior constraint set). Formally, denoting the projection operator of r-times Landweber iteration as

33



Pl and the projection operator of regularized filtering as Pr, the optimization is then iterated between
xk+1/2 = Plx

k and xk+1 = Prx
k+1/2 until convergence.

Kernel regression : Kernel regression techniques have been widely used in image denoising. However,
for deblurring, this type of method has received relatively less attention. To understand how a kernel
regression framework handles the ill-posedness, local similarity is conventionally investigated to ensure the
smoothness of local structures, whereas more recently, the focus has moved to non-local kernels that can
efficiently exploit the repetitive patterns in the blurry image. Mathematically, kernel regression computes
the central pixel of a window as follows:

x∗
i = argmin

xi

∑

j∈N (i)

(yj − xi)
2Ki(j − i), (8.3)

where i and j are the locations, xi and yj are the corresponding pixels, N (i) denotes the neighbors of location
i, and Ki(·) is a generic spatial kernel at i which typically assigns large weights to the nearby similar pixels
while assigning small weights to the farther dissimilar pixels. To apply (8.3) to deblurring, Takeda et al
(2008) derived a formulation for kernel-based deblurring through exploiting the Taylor expansion of local
structures. In their work, two types of locally adaptive kernel, i.e. bilateral kernel function and steering
kernel function, are utilized in the proposed framework. The bilateral kernel function considers both the
similarity of pixel values and the distance of spatial locations, while the steering kernel function is adaptive
to the local gradients. Zhang et al (2013b) extended the local kernel regression to the nonlocal case, in which
the kernel K(·) encodes the nonlocal similarity of high orders by searching similar patches across the whole
image and calculating the zero-, first- and second-order similarities. In their formulation, both local kernel
and nonlocal kernel are incorporated since the local structures regularize the noisy candidates found by the
nonlocal similarity search, and nonlocal similarity provides the redundancy that prevents possible overfitting
of the local kernel regression. In the application of deblurring, the authors pre-deconvolved the image using
Wiener filtering, which amplifies the effect of the noise. The proposed nonlocal kernel regression is then
employed to suppress the noise, resulting in a deblurred image.

Stochastic deconvolution : It is not easy to develop specific optimization algorithms to solve the
deblurring problems defined under the Bayesian framework (or the variational framework) due to the complex
priors (or the regularizers). To derive a general-purpose deconvolution algorithm, Gregson et al (2013)
proposed stochastic deconvolution, which is not only capable of effectively handling arbitrary priors, but also
of tackling the boundary conditions, saturated pixels and spatial variant kernels. Stochastic deconvolution
is based on the random walk optimization strategy from Stochastic Tomography (Gregson et al 2012), in
which a stochastic coordinate-descent method employs a Metropolis-Hasting style heuristic for picking the
next coordinate axis to descend along. Specifically, this strategy picks a single pixel in each iteration and
checks whether the objective can be improved by adding (or removing) an energy quantum to (or from) this
pixel. Any change will be recorded if the objective is improved, otherwise the process will jump to the next
pixel.

Spectral analysis: The power spectra of sharp natural images exhibit canonical behaviors expressing
strong regularities (Field 1987; Burton and Moorhead 1987):

|x̂(ω)|2 ∝ ‖ω‖−β , (8.4)

for ω 6= (0, 0), where x̂ is the Fourier transform of the sharp image x, ω is the frequency coordinates.
However, such behaviors will be disturbed by the degradation of the blur effect, which might display statistical
irregularities. Goldstein and Fattal (2012) derived the power spectrum of the blurry image y as

|ŷ ∗ d(ω)|2 ≈ c|ĥ(ω)|2, (8.5)

where d denotes the spectral whitening operation and c is a constant. Based on this relationship, the power
spectrum of the blur kernel h can be recovered from the statistics of the whitened spectrum of y (Goldstein

and Fattal 2012; Hu et al 2012). Further, recovering the kernel h given its power spectrum |ĥ|2, requires

the estimation of the phase component of ĥ(ω). This mission is generally accomplished by a phase retrieval
technique. For example, Goldstein and Fattal (2012) proposed a robust version of the relaxed averaged
alternating reflections (RAAR), which was originally developed by Luke (2005) for phase retrieval. Hu et al
(2012) recovered the phase using the error-reduction phase retrieval algorithm (Fienup 1982).
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9 Practical Issues

9.1 Boundary

In image deblurring tasks, pixels located around the boundary of the blurry image are dependent upon
the unknown pixels outside the observed region. Inappropriate processing on these pixels can bring severe
artifacts. Typically, several kinds of boundary condition (BC) are utilized to formulize the boundary issue.
For example, the periodic BC, which assumes a periodic convolution, is frequently used. This condition
facilitates the implementation of fast Fourier transform (FFT) and thus speeds up the optimization. Alter-
natively, two other ways to define the condition are zero BC and reflexive BC. The zero BC pads the external
region with zero values, while the reflexive BC indicates that the pixels outside the image are a reflection of
those near the boundary but in the image. Even though these BCs make the deblurring tasks addressable
and computationally convenient, they are intrinsically an approximate procedure and do not correspond to
the real imaging systems. Deconvolution using these BCs could produce staircase artifacts in the deblurred
image. To properly handle the boundary issue, Almeida and Figueiredo (2013a) and Matakos et al (2013)
proposed the integration of a masking scheme into the image blurring model, which can be formulated as

yM = MHx+ n, (9.1)

where M is a masking matrix designed to select only the subset of pixels which do not depend on the
boundary pixels, and yM = My. In this case, the assumed BC for the convolution is then irrelevant to the
deconvolution.

Note that the above model implies that the pixels around the boundary but inside the image cannot
be estimated. These pixels, however, are calculated in Ji and Wang (2012a)’s method and Sorel (2012)’s
method by extending the size of the mask to involve all the pixels of the observed image. This model can
be summarized as

y = MHx+ n, (9.2)

which biasedly estimates the boundary pixels. In practice, the above models (defined by (9.1) and (9.2)) can
be accordingly employed by considering their specific properties.

9.2 Noise and Outliers

Noises in images are usually caused by insufficient exposure. The longer the exposure time is, the lower the
noise level will be exhibited. In general conditions, we can therefore expect that the noises in blurry images
have not reached a sensitive level, and these noises can be effectively removed by appropriately choosing
the parameters of the noise model in the Bayesian inference framework (Section 3) or the regularization
parameters in variational methods (Sections 4 and 5). Nevertheless, noises should be carefully handled in
extreme cases, such as in low-light conditions, or when capturing a very fast object. This is because deblurring
an image with noticeable noise will produce ringing artifacts in the results. To handle this issue, Tai and
Lin (2012) applied an existing denoising algorithm as a preprocessing step, and successively conducted blind
deconvolution on the denoised image to estimate the blur kernel and the sharp image. However, a drawback
of this method has been noticed by Zhong et al (2013), i.e. the denoising operation can bias the accurate
estimation of the kernel. Thus, Zhong et al. designed a set of denoising filters based on the directional filters
so that the denoising operation has no effect on the estimated kernel.

Another source of deblurring that should be adequately addressed is the outliers. According to Cho et al
(2011a)’s definition, outliers include all factors which cannot be explained by the linear model (2.3), e.g.
saturated/clipped pixels, non-Gaussian noise and nonlinear CRF. If these outliers are processed in the same
way as the inliers, the resultant image will show severe ringing artifacts. In Cho et al (2011a)’s method,
the blurry image is classified into two parts, i.e. inliers and outliers. Different statistical assumptions are
respectively imposed on these two parts, and the estimation of the sharp image and the classification of the
inlier/outlier are alternated until a reasonable result is obtained.
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10 Promising Future Directions

Most of conventional methods for image deblurring process a single blurry image, in either non-blind or blind
ways. The non-blind methods try to suppress the artifacts in the resultant image, while the blind methods
are developed to recover an accuracy blur kernel. However, a single image has very limited information for
the deblurring task. Although the blur kernel is known in the non-blind case, the high frequency information
which is lost in the blurring process, is difficult to be restored from the degraded image. On the other hand,
the deblurring problem is underdetermined in the blind case since the parameters to be estimated (i.e., x and
h) outnumber the observations. In both cases, the performance of deblurring using single image is limited.

Effective options to resolve the above problem include 1) involving multiple images, each of which can
provide different information in recovering the sharp target image, and 2) improving the camera systems to
capture more detailed information that can be exploited in the recovering process. Regarding these options,
two promising directions, learning-based deblurring and hardware modifications, have emerged in recent years,
which are discussed in this section.

Another possible but difficult direction is to develop new models for single image deblurring, especially
for blind single image deblurring. The recent progresses in this area include the MAPh scheme, homography-
based modeling, efficient filter flow modeling (please refer to Sections 3, 6, 7 respectively). However, the
performance of these methods are far from optimal, and potential techniques should be exploited.

10.1 Learning-based Deblurring

Learning-based deblurring methods explore machine learning techniques to learn how to restore a target
image from additional images which can be easily obtained from other resources, e.g. the Internet. Since
different images share similar local patterns, the images used for learning can provide both sharp information
and high frequency details that can be used to deduce the target image, even though they have different
contents. This strategy has also been incorporated in various image processing tasks, such as image denoising
and image super-resolution.

The first type of learning-based method is to learn a subspace where the sharp image may be located. By
extracting the local patterns from multiple sharp images, a subspace can be constructed, in which the target
image and the sharp images share similar details and thus details in the target image can be accurately
represented. For example, Joshi et al (2010b) proposed to construct one person’s eigenfaces (which form
the subspace) by using this person’s multiple sharp facial images. To restore the same person’s blurry facial
image, these eigenfaces are employed to constrain the corresponding sharp image. Similarly, Dong et al
(2011b) and Ni et al (2011) introduced to build the patch space or the patch manifold by first clustering
the patches extracted from a sharp image database, and then applying PCA on each cluster to form its
corresponding subspace. The whole patch space is composed of the resultant subspaces, each of which
provides specific local structural information, and can therefore constrain the local patterns of the target
image. An alternative scheme to specify the subspace is to estimate the patch distribution from sharp image
databases, by assuming that the local patterns of different natural images should follow the common patch
distribution. A typical example was developed by Zoran and Weiss (2011), in which the GMM was learned to
model the prior distribution of sharp patches. Straightforwardly using this prior under the MAP framework,
however, could produce a deblurred image in which the restored patches might not follow the distribution
of the patches sampled from the original sharp image. Thus, to reduce this problem, the authors proposed a
regularization technique that minimizes the difference between the patch distribution of the target image and
that of the learned GMM. Sun et al (2013) developed a nonparametric method to model the distribution of the
edge patches extracted from the BSDS500 dataset (Arbelaez et al 2011). In this method, the nonparametric
distribution is learned by clustering the extracted patches and then counting the percentage of the patches
falling into each cluster.

The second type of learning-based method is to learn a restoring function which recovers the sharp target
image from its blurry version. In this case, multiple sharp images together with their blurry correspondences
are generally utilized to train the parameters of the restoring function. For example, Schmidt et al (2013)
employed the regression tree field (RTF) to model a non-linear regressor that specifies the local deblurring
parameters. Before deblurring an image, RTFs are learned by maximizing a peak signal-to-noise ratio-
based loss function. Rather than directly learning a deblurring function, Schuler et al (2013) estimated
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the deblurred image by using direct deconvolution (Hirsch et al 2011) in the Fourier domain, and then
incorporated the multilayer perceptron (MLP) to remove the artifacts of that deblurred image. Note that
in both methods, RTF and MLP are trained based on a collection of sharp images and their corresponding
synthesized blurry counterparts.

Finally, the learning scheme has been employed to facilitate the blur-related tasks by exploiting additional
sharp information. For example, Hu and Yang (2012b) developed a novel strategy to determine which region
of the blurry image is good to deblur, or in other words, is good to estimate the blur kernel. To detect the
good regions, conditional random field is employed as the learning scheme from which the local structural
information can be well exploited. The regions are considered to be good if they could provide as many
informative structures as possible. In addition, Couzinié-Devy et al (2013) presented a novel scheme to
handle the non-uniform blur such as defocus blur and linear motion blur. In this scheme, the kernel size
is regarded as the class label indicating how large the blur kernel is for each blurry pixel. A multi-label
segmentation method is introduced to estimate each pixel’s kernel size. Once the kernel sizes for all pixels
are obtained, the blurry image is restored within a variational framework.

The sharp information of additional images are beneficial not only for recovering the details of a barget
blurry image, such as in the cases of learning a subspace and learning a restoring function, but also for
providing assistant information for deblurring tasks, such as in the cases of specifying the good regions and
determining the kernel sizes. As demonstrated by the attractive experimental results in these methods,
learning-based delburring is a promising direction in this domain.

10.2 Hardware Modifications

Image deblurring has recently benefited from the development of imaging systems. A typical instance is that
most camera systems have been integrated with the image stabilization modular, reducing the blur caused
by slight shakes of the systems during exposure. However, this image stabilization technique has limited
performance in some extreme conditions, such as when the captured object is moving fast, or in the low light
environments. Fortunately, more advanced techniques have been proposed to facilitate the image deblurring
task.

Computational photography, which is an emerging field, inspires many researchers to develop new tech-
niques for deblurring. Coded exposure photography (Ding et al 2010; McCloskey et al 2012) is one kind of
technique in computational photography. In conventional exposure technique, the camera records the pho-
tons in a successive duration. In this technique, however, the camera’s shutter is fluttered open and closed
during the chosen exposure time, while the open-close period is determined by a binary pseudo-random shut-
ter sequence. Its superiority is that the coded exposure photography can produce a blurry image preserving
more high-frequency spatial details than the conventional technique, especially when the image contains
large motions, textured backgrounds, or partially occluded regions. Considering this, the preserved details
can make the deconvolution to be a well-posed problem. Additionally, the shutter sequence can be designed
as velocity-dependent when capturing very fast moving object, such that the details of the moving object can
be retained (McCloskey 2010). Another kind of technique is the coded aperture photography. The aperture
allows the light to go through it, and at the same time, can block the light with different wavelengths by
reshaping itself. The rationale behind this technique is that the light through different shapes of apertures
provides different information, because the light with different wavelengths has different optical character-
istics. Using this property, Zhou et al (2011) derived a criterion for selecting a pair of coded apertures, by
which the light through the two apertures can preserve the complementary information covering a broad
band of scene frequencies. The third kind of computational photography is the coded flash technique, which
is specifically designed for low light conditions (McCloskey 2011). In traditional lighting technique, the
flash is generally activated in a successive duration. In contrast, by coding the flash timing sequence, this
technique can control the illuminance and the exposure time in photographing, which has a similar effect
to the coded exposure. When capturing a moving object in low light environment, coded flash system can
produce a well-exposed image, and meanwhile can make the PSF estimation easier.

Besides the computational photography, constructing a multi-camera system can provide multiple images
of the same scene, each of which carries different information that benefits deblurring tasks. For example,
Cho et al (2010b) developed an orthogonal parabolic camera to capture two images of the scene by moving
the sensor with parabolic velocities and in two orthogonal directions. Tai et al (2010a) designed a hybrid
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camera system combined of a high-resolution, low-frame-rate camera and a low-resolution, high-frame-rate
camera. This system captures a high-resolution but blurry image, as well as multiple low-resolution but
sharp images. A beam splitter is used to ensure that the alignment of different images is well solved. By
exploiting the information in the sharp images, the blur in the high-resolution image can be removed. Li
et al (2011b) proposed a hybrid system to capture two well-aligned images with a specific relationship (for
example, one image is a 90◦-rotated version of the other). This relationship facilitates the mathematical
derivation of the sharp image from two blurry images, making the deblurring task more effective.

For deblurring tasks, researchers have also added additional components into the camera systems. For
instance, instead of using the conventional color image sensors which only have red (R), green (G), blue (B)
patterns, Wang et al (2012b) employed a new color image sensor which adds the panchromatic (pan) pixels
to the original RGB pixels. Due to the high light sensitivity, these pan pixels can help to restore the images
captured in low light conditions. Bando et al (2013) employed the focus sweep technique during exposure.
Since the scene has varying depths or in-plane motion, the captured image may exhibit a spatially variant
blur effect. By using Bando et al.’s method, the blur effect of the image can be turned to a near-spatially
invariant scenario. Joshi et al (2010a) integrated a gyroscope and an accelerometer to estimate the camera’s
acceleration and angular velocity, from which the translation and rotation of the camera can be calculated
and used for deblurring.

Hardware modification is always an effective manner to remove the blurry effects in captured images.
Benefitting from the advanced hardware techniques, more information of the scenes can be easily recorded,
and thus facilitate the deblurring task. Although some achievements have been obtained, various techniques
are waiting to be invented in the future.

11 Performance Evaluation

To complement the discussions of the previous sections, we provide experimental evaluations for represen-
tative techniques. The evaluation for image deblurring can be subjective quality assessment or objective
quality assessment. Subjective quality assessment predicts the observers’ perception without a well-defined
numerical quantification. Although the subjective image quality assessment is the most direct and most
accurate metric to reflect a person’s perception, it is too subject to cater for different persons. In contrast,
objective quality assessment metrics can operate in an automatic and numerical manner. The metrics used
in this section include peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) , which are widely
utilized to evaluate the performance of image deblurring algorithms. Assuming the restored image x and
the un-degraded image x̃ are in the range of [0, 255], PSNR and SSIM are defined as

PSNR = 10 · log10

(
N × 255× 255∑

i(xi − x̃i)2

)
, (11.1)

SSIM =
(2µxµx̃ + c1)(2σxx̃ + c2)

(µ2
x + µ2

x̃ + c1)(σ2
x + σ2

x̃ + c2)
, (11.2)

where N is the total number of pixels, µx and µx̃ are the means of x and x̃, σ2
x and σ2

x̃ are the variances of
x and x̃, c1 and c2 are two variables to stabilize the division with weak denominator.

According to different task settings, existing methods can be categorized as non-blind uniform deblurring,
blind uniform deblurring and non-uniform deblurring. Non-uniform deblurring is always blind since the kernel
is hard to obtain in real applications. For each kind of setting, we evaluate the representative methods where
the codes are publicly accessible.

11.1 Non-blind Uniform Deblurring

The test images used for non-blind uniform deblurring come from (Levin et al 2009, 2011b), including 4
images and 8 blur kernels (see Fig. 9). To generate blurry images, the 4 sharp images are corrupted by each
blur kernels and additive white Gaussian noise with standard deviation σ = 0.01, resulting in 32 degraded
images. The methods are evaluated on these synthetic blurry images, including Schuler et al (2013), Zoran
and Weiss (2011), Schmidt et al (2011), Danielyan et al (2012), Dong et al (2013), Cho et al (2011a), Afonso
et al (2010), Almeida and Figueiredo (2013a), and Gregson et al (2013).
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Figure 9: First row: 4 test images. Second row: 8 blur kernels.
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Figure 10: Mean PSNR (dB) results of non-blind uni-
form deblurring.
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Figure 11: Mean SSIM results of non-blind uniform
deblurring.

The objective assessment on the deblurred images obtained by these methods are shown in Fig. 10 and
Fig. 11, while the visual comparisons of the deblurring results on an exemplary image are shown in Fig.
12. In summary, Schuler et al (2013), Zoran and Weiss (2011) and Schmidt et al (2011) employ learning
schemes to constrain the restored images by exploring additional sharp information, and the resultant images
exhibit promising recoveries. Compared with these three methods, the best performance acquired by Dong
et al (2013) suggests that the nonlocal similar patterns discovered in the blurry image are more helpful for
restoration than the information from other irrelevant sharp images. This is mainly because the nonlocal
patterns in a blurry image are more stable and consistent than those in other images, and therefore have
good expressivity. The results of both Cho et al (2011a) and Schmidt et al (2011) recommend that an
appropriate processing of outliers and noises is important, otherwise like Almeida and Figueiredo (2013a),
the noise in the restored image (Fig. 12(i)) might be severe.

11.2 Blind Uniform Deblurring

We consider 10 evaluated methods for blind uniform deblurring, including Zhang et al (2013a), Sun et al
(2013), Xu and Jia (2010), Levin et al (2011a), Babacan et al (2012), Krishnan et al (2011), Cai et al (2012),
Cho et al (2011b), Goldstein and Fattal (2012), and Zhong et al (2013). The algorithms are applied on the
same set of test images as shown in Fig. 9.

Fig. 13 and Fig. 14 illustrate the performance of the evaluated methods, while the difference in visual
quality between the methods can be inspected in the examples shown in Fig. 15. Through the joint
restoration of multiple blurry images, Zhang et al (2013a)’s method acquires the best averaged results among
the methods. Sun et al (2013) obtained comparable performance by using a learning strategy to estimate
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(a) Blurry image (b) Schuler et al (2013)
(31.85dB)

(c) Zoran and Weiss (2011)
(31.90dB)

(d) Schmidt et al (2011)
(30.29dB)

(e) Danielyan et al (2012)
(31.68dB)

(f) Dong et al (2013)
(33.50dB)

(g) Cho et al (2011a)
(31.49dB)

(h) Afonso et al (2010)
(29.40dB)

(i) Almeida and Figueiredo
(2013a) (17.15dB)

(j) Gregson et al (2013)
(27.04dB)

Figure 12: An illustrative example of non-blind uniform deblurring results by different methods. The blurry
image is synthesized with the first image and the first kernel in Fig. 9.

the patch prior. These observations are consistent with the discussions in Section 10. The superiority of
(Xu and Jia 2010) reveals the importance of detecting useful edges in kernel estimation phase. Both Levin
et al (2011a) and Babacan et al (2012) incorporated the MAPh strategy to estimate the blur kernel and then
conducted a non-blind deconvolution, whose effectiveness can be justified as in the figures, even though the
averaged performance of (Levin et al 2011a) is limited. The difference between these two methods indicates
that a general image prior (i.e. Gaussian scale model) is crucial in the MAP framework. Krishnan et al
(2011)’s method, which uses a normalized sparsity measure, is expected to behave promisingly; but in the
experiments the performance is sensitive to parameter settings. As in the non-blind deblurring tasks, the
performance obtained by Zhong et al (2013)’s method also suggests that the noise handling is important in
blind deblurring task. In kernel estimation, neither the spectral analysis (Goldstein and Fattal 2012) nor
relatively simple methods such as the framelet (Cai et al 2012) and Radon transform (Cho et al 2011b)
appear to be competitive.
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11.3 Non-uniform Deblurring

Non-uniform blur simulates the effect in real captured images, but is hard to synthesize. As a result, Köhler
et al (2012) presented a benchmark dataset for simulating the camera shakes, which cause non-uniform blur.
However, existing methods cannot perform well on this dataset, and are generally sensitive to parameter
settings. To provide illustrative examples, we employ 3 real blurry images for evaluation, where the blur
is mainly caused by camera shake, as shown in Fig. 16. Non-uniform deblurring methods considered
for evaluation here include Xu et al (2013), Whyte et al (2010, 2012), and Hu and Yang (2012a). Since
the corresponding sharp images are inaccessible, we perform the visual comparison in Fig. 17. From the
resultant images, we can see that non-uniform deblurring is a difficult task because of the limited available
information. The models used in these methods can only simulate specific motion blur, and therefore have
strong restrictions. This property could help them perform well in some cases (e.g. the left-column images
and the middle-column images in Fig. 17 which become sharper than the original), whereas reduce their
effectiveness in other cases (e.g. the right-column images in Fig. 17 which are still blurry).

12 Conclusion

In this paper, we reviewed recent developments for image deblurring, including non-blind/blind, and spatially
invariant/variant techniques. We mainly classify these methods into five categories according to the manners
of handling ill-posedness: Bayesian inference framework, variational methods, sparse representation-based
methods, homography-based modeling, and region-based methods. Bayesian inference framework-based ap-
proaches can be grouped into three sub-categories: MAP methods, MMSE methods, and variational Bayesian
methods. Researches on variational framework are focused on the development of various regularization tech-
niques and optimization methods, as well as the interpretation of analysis operators, synthesis operators and
their combinations. Sparse representation-based methods assume that the sharp images share similar ge-
ometric structures which form a redundant dictionary possessing strong expressivity. How to induce the
dictionary as well as how to enhance the smoothness in the resultant images under the dictionary are two
critical issues of the sparse representation framework. Homography-based modeling and region-based model-
ing are two techniques designed for spatially variant deblurring, where the former accounts for the temporary
accumulation of photons, while the later concerns the spatial variation of the blur kernel. Other types of
technique include projection-based methods, kernel regression, stochastic deconvolution, spectral analysis.
Besides these mathematical considerations, hardware modification techniques are also attractive to improve
the performance of image deblurring.

In these conclusive comments, we would like to discuss some theoretical and practical aspects of these
developments which, we expect, will help readers regarding their future research:
1) In blind uniform deblurring, the MAPx,h schemes under a sparse gradient prior will result in a delta kernel
and a blurry image. However, the MAPh settings are able to approximate the true blur kernel, which can
be solved by variational Bayesian methods.
2) Even though the estimator (such as MAPh estimator) is important in deblurring task, the selection of

41



(a) Blurry image (b) Zhang et al (2013a)
(26.35dB)

(c) Sun et al (2013)
(28.40dB)

(d) Xu and Jia (2010)
(26.09dB)

(e) Levin et al (2011a)
(29.16dB)

(f) Babacan et al (2012)
(28.39dB)

(g) Krishnan et al (2011)
(22.71dB)

(h) Cai et al (2012)
(22.12dB)

(i) Cho et al (2011b)
(22.84dB)

(j) Goldstein and Fat-
tal (2012)(21.47dB)

(k) Zhong et al (2013)
(24.90dB)

Figure 15: An illustrative example of blind uniform deblurring results by different methods. The blurry
image is synthesized with the first image and the first kernel in Fig. 9.

prior is always critical. In blind uniform deblurring, MAPh is guaranteed to provide an accurate kernel when
the size of the blurry image is infinitely large. In real applications, however, the size of the obtained image
is generally limited, under which condition an accurate kernel would be estimated by incorporating a proper
prior (such as GSM). The same conclusion can also apply to the variational framework where the prior is
replaced by the regularizer.
3) Either the analysis operator or the synthesis operator has specific properties benefitting the deblurring
task. Combining these operators (such as BM3D) is appreciated for improving the deblurring performance.
4) Compared with human heuristics, data-driven techniques are promising for deriving priors in Bayesian
inference framework, regularizers in variational framework, and dictionaries in sparse representation-based
framework. The ”data-driven” includes two types of aspect: the first is to explore the information from the
target blurry image, while the second is to obtain the additional information from other sharp images (cf.
the learning scheme in Section 5.2 and 10.1). The difference between these two types of aspect concerns that
the first type can provide a better performance but in low efficiency, whereas the second type results in a
slight degradation in the results but in high efficiency, since the learning procedure can be deployed in an
offline manner.
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Figure 16: Real captured blurry images.

Figure 17: Restored images by Xu et al (2013) (the first row), Whyte et al (2010, 2012) [103, 104] (the
second row), and Hu and Yang (2012a) (the third row).
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5) For deblurring, since an images can be viewed as a composition of large amount of repetitive patterns,
exploiting the repetitive nature of images, which is often termed as a non-local strategy, is an effective way to
boost the deblurring performance. This has been already proven in various image processing tasks including
image deblurring, image denoising, image super-resolution, etc. Besides, the conventional local strategies
can overcome a common issue of the non-local strategies that is the loss of local smoothness. Therefore, the
combination of local and non-local strategies is recommended.
6) Spatially variant deblurring is a difficult task and the progress in this aspect is very limited. Incorporating
a certain physical model (such as the modeling of object motion and the modeling of camera motion) is an
option to improve the performance. However, this cannot satisfy the complex conditions in real applications.
7) Benefitting from the massive high-quality images available on the Internet and the advanced technologies
of hardware, extra information can be recorded and employed for the subsequent deblurring as well as
other restoration tasks. Learning-based deblurring and hardware modifications are therefore two promising
directions to improve the performance of image deblurring.
8) Image deblurring is a crucial step to produce high-quality images for high-level vision tasks. However,
when limited information is accessible, the deblurring performance could be restricted. In this case, a
recommended option is to combine image deblurring and high-level vision tasks into a unified problem, such
as classification of blurry images and detection of blurry objects. Then the deblurring task can benefit from
the high-level vision tasks because they are generally human supervised. Therefore, the cross information
among the images and among the tasks are worth to be exploited.
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