

Abstract

Autonomous planetary rovers operating in vast unknown
environments must operate efficiently because of size,
power and computing limitations. Recently, we have
developed a rover capable of efficient obstacle avoidance
and path planning. The rover uses binocular stereo vision
to sense potentially cluttered outdoor environments. Nav-
igation is performed by a combination of several modules
that each ÒvoteÓ for the next best action for the robot to
execute. The key distinction of our system is that it pro-
duces globally intelligent behavior with a small computa-
tional resourceÑ all processing and decision making is
done on a single processor. These algorithms have been
tested on our prototype rover, Bullwinkle, outdoors and
have recently driven the rover 100 m at speeds of 15 cm/
sec. In this paper we report on the extensions on the sys-
tems that we have previously developed that were neces-
sary to achieve autonomous navigation in this domain.

1 Introduction

Unstructured outdoor environments, such as the surface of
planets, pose special challenges for autonomous robots.
Not only must the robot navigating in such environments
avoid colliding with obstacles such as rocks, it must also
avoid falling into a pit or ravine and avoid travel on terrain
that would cause it to tip over.Vast areas often have open
spaces where a robot might travel freely and are sparsely
populated with obstacles. However, the range of obstacles
that can interfere with the robotÕs passage is largeÑ the
robot must still avoid rocks as well as go around hills.
Large areas are unlikely to be mapped at high resolution a
priori and hence the robot must explore as it goes, incorpo-
rating newly discovered information into its database.
Hence, the solution must be incremental by necessity.

Another challenge is dealing with a large amount of infor-
mation and complex vehicle dynamics. Taken as a single
problem, so much information must be processed to deter-
mine the next action that it is not possible for the robot to
perform at any reasonable rate. We deal with this issue by
using a layered approach to navigation. That is, we decom-
pose navigation into two levelsÑ local and global. The
job of local planning is to react to sensory data as quickly
as possible avoiding hazards of various kinds. A more
deliberative, global process, operating at a coarser resolu-

tion of information determines how to steer the vehicle
such that it can get to the goal, sometimes deciding to tem-
porarily move away from the goal to reach the final desti-
nation. Both local and global schemes evaluate
traversability. The local planner evaluates how certain it is
of the shape and the ÒgoodnessÓ (suitability for travel) of
the terrain just ahead of the vehicle, while the global plan-
ner evaluates the cost of traversal to the goal based on a
combination of metrics.

This approach has been used successfully in the past in
several systems at Carnegie Mellon. This paper reports on
recent work that uses the a similar philosophy to autono-
mously navigate a planetary rover. Operation is such envi-
ronments poses two additional challenges. First, since the
surface might be very cluttered, it is important for the sys-
tem to discriminate among obstacles that should be
avoided if there is a choice versus those obstacles that
must be avoided at all costs. A conservative planner that
regards all detectable objects as obstacles will not exploit
the ability of the rover to drive over some obstacles. Sec-
ond, planetary rovers carry very limited computing and
thus it is important that sensor processing and decision
making are as efficient as possible. We have developed a
system based on a small outdoor robot that navigates in
cluttered as well as open environments at ground speeds
surpassing the targets set for upcoming rover missions.
The rover uses a modest (relative to the state of the art)
single processor for all sensing and decision making. Here
we discuss the overall system architecture and report on
results from simulation as well as from experiments with
our rover, Bullwinkle. Currently, we are in the process of
porting our software system to run on the next generation
Mars Rover, being developed at JPL (Fig. 1).

2 Related Work

Nearly all the research in local obstacle avoidance for
indoor robots, and much of the work in outdoor vehicles,
has used the assumption that the world is composed of
obstacles and free space [1],[4],[10]. As described above,
this assumption has serious consequences for navigation
in rugged terrain, where sometimes the best (or only)
choice is to surmount low obstacles, or to travel a short
distance through somewhat rough terrain, rather than tak-

Recent Progress in Local and Global Traversability for Planetary Rovers

Sanjiv Singh, Reid Simmons, Trey Smith, Anthony Stentz, Vandi Verma, Alex Yahja & Kurt Schwehr

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

In Proceedings, IEEE Conference on Robotics and Automation, April
2000, San Francisco.

ing a long detour.

Recently, however, some researchers have investigated
use of continuous measures of traversability in order to
enable vehicles to make such decisions. The Ranger algo-
rithm [5], on which our original navigation system was
based [14], performed a simulation of the vehicle through
the terrain, and analyzed the roll, pitch and high-centering
of the vehicle as it moved along predetermined arcs. We
have moved to a more statistical analysis of traversability,
in part to deal better with sensor noise and in part to facili-
tate the merging of data over timeÑ by merging travers-
ability maps rather than terrain maps we reduce the effects
of dead-reckoning error.

The work of Seraji uses linguistic terms (e.g., ÒpassableÓ,
Òhighly-impassableÓ) to represent traversability measures
[13]. Fuzzy logic, in the form of expert-system-like rules,
are used to decide how to move and turn to avoid obsta-
cles. Several methods for producing the traversability
measures from actual data are suggested, but it is not clear
how the system (which was tested in simulation) actually
calculated these terms. Gennery has proposed a method of
traversability analysis for a planetary rover very similar to

ours [6]. His method, like ours, fits planes to small terrain
patches and uses the plane parameters and plane-fit resid-
ual to estimate slope and roughness, respectively. The
major difference is that GenneryÕs algorithm is iterative,
and thus more computationally complex than ours, and our
algorithm computes residual at two levels, and can thus
differentiate roughness at different scales. Also, GenneryÕs
system does path planning at one level of granularity,
while our navigation system divides the work into a local
and global planners.

Global navigation is the task of moving the rover from
some start location to a goal location. For the application
considered, the environment is presumed to be unknown
or partially-known. Given the limitation on prior informa-
tion, the rover cannot pre-plan a path that is optimal and
guaranteed to reach the goal. Instead, the rover acquires
sensor information about the environment as it navigates
and modifies its plan accordingly. One approach is to com-
bine directed navigation with undirected exploration to
learn a good route to the goal [7],[12],[20]. This approach
is most appropriate for environments that are traversed
multiple times, since the rover discovers better routes over
time through trial and error. A second approach is to
attempt to drive directly to the goal, circumnavigating
obstacles along the way [8],[9].This approach requires lit-
tle state information and is easy to implement. However,
the approach does not make use of prior information, and
it assumes a binary world (i.e., obstacles and free space).
A third approach is to plan an initial path using all known
information, making assumptions about parts of the envi-
ronment that are unknown. As the rover acquires new
information about the environment, the assumptions are
updated with correct information, and the path is
replanned. Generally, this approach works quite well for
rover navigation, since 1) it is able to make use of continu-
ous cost information and prior map data; 2) it works well
in environments that are traversed a single time; and 3)
replanning is needed only when the initial assumptions are
proved invalid. This approach was adopted for the global
navigation of our rover.

3 System Architecture

Our navigation system architecture is depicted in Fig. 2.
The ovals are hardware, and the rectangles are modules.
Each module runs as a separate process (on a separate
machine if necessary), and the links shown between mod-
ules represent network messages. We use the RTC messag-
ing system, developed at CMU, for inter-process
communication. We can also run the system in simulation
mode, where the only system change is that the inputs and
outputs to the ovals in Fig. 2 are replaced by RTC mes-
sages to/from a graphical simulator (Section 8).

The arbiter module is responsible for combining recom-
mendations from the local and global planners and choos-
ing the best control action based on those

Fig. 1

Rovers. (top) CMU prototype rover based on RWI’s
ATRV2, Bullwinkle. (bottom) Next generation planetary rover
developed by NASA JPL. Bullwinkle is equipped with stereo
cameras, gyro and tilt sensors. All computing is performed on a
single, low-power processor intended to emulate the processing
that will be available on the planetary rover.

recommendations. Recommendations are in the form of a
set of ÒvotesÓ for a fixed set of steering angles. Each vot-
ing module assigns either a veto or a vote between 0 and 1
to each command. This vote is multiplied by the module's
weight in the arbiter. The command not vetoed with the
highest weighted sum is sent to the controller module for
execution. For this navigation system, we use a set of for-
ward moves with different curvatures to the left and right,
plus the options of turning in place, either left or right.
While the arbiter can also deal with choosing vehicle
speed in a similar manner, we have not yet experimented
with this capability.

4 Traversability Analysis

The Stereomap module computes a traversability measure
for the terrain, based on individual frames of stereo range
data. The stereo vision algorithm that we use was devel-
oped at JPL and is being used on NASA's next generation
Mars Rover. The output of Stereomap is a configuration-
space ÒgoodnessÓ map that, for each grid cell, indicates
how easy it would be for the rover to drive if the center of
the rover passes through that cell. Stereomap essentially
performs a statistical analysis of the terrain in order to
handle noise in the stereo data and to facilitate the problem
of fusing data from a sequence of images. It sends its out-
put to both path planning and obstacle avoidance modules
which in term combine the traversability maps over time.

The Stereomap algorithm estimates the roll, pitch and
roughness of terrain patches centered at each grid cell. The
terrain patches are 1.25m square, which is a conservative
estimate of the rover's dimensions. The roll and pitch of a
patch is estimated by using a least squares method to fit a
plane to the stereo range data points that cover each rover-
sized patch. The roughness is estimated as the chi-squared
residual of the fit. Actually, roughness is estimated at two
levels of abstractionÑ the residual is calculated for the
complete 1.25m square patch, and also for 25cm sub-

patches. The maximum residual over both levels is taken
as the roughness measure. The roll, pitch and roughness
measures are all normalized in the range [0,1], and the
overall goodness of a cell is determined to be the mini-
mum of the three measures. For efficiency in computing
the plane fit and various residuals, statistics (sums and
moments) are computed incrementally for each 25cm map
cell, and then are combined to form larger patches.

The certainty of a terrain patch, which is a value in the
range [0,1], is computed as a function of the number of
points in the patch and the distribution of points. The dis-
tribution is estimated by looking at the 25cm sub-patches
and determining if a significant number of these have
valid data points. This prevents the algorithm from giving
significant weight to patches where the data is spotty, such
as appearing in only one corner of the patch. In the next
section, we describe how the certainty measure is actually
used.

The goodness map produced by Stereomap is always cen-
tered on the rover and, for ease of integration with the
other modules, is always oriented along the axes of some
arbitrary, but shared, global frame of reference. The Stere-
omap module publishes its map together with robot pose
associated with the stereo data. These individual maps are
the basic input to the local and global traversability plan-
ners, described in the following two sections.

5 Local Traversability

A crucial aspect for autonomous planetary rovers is the
ability to traverse rugged terrain safely and reliably. The
rover should, of course, avoid hazards such as large obsta-
cles and depressions. However, it also should exhibit a
preference for traveling on relatively flat and relatively
clear terrain, all else being equal. Our navigation system
accomplishes this by using a continuous traversability
measure that allows the planner to reason about degrees of
traversability.

Our local traversability planner (Morphin) combines

Fig. 2

Robot Architecture

Stereo

Stereo Map

Controller

Path Planning
Obstacle

Avoidance

Arbiter

Base Motors

Rate Gyro

Tilt Sensor

Cameras

range points

low-level commands

abstract commands

votes

traversability

yaw

odometry

roll, pitch

stereo pair

pose

Fig. 3

Stereomap: the traversability mapper calculates the
expected roll and pitch of the vehicle at each map grid cell in the
sensor footprint using local least-squares plane-fitting on range
data. The residual error of the plane fit is used as an estimate of
the small-scale roughness of the terrain.

inputs from the Stereomap module (previous section) and
performs a traversability analysis tuned to the capabilities
of the rover. The Morphin algorithm, which is based on the
Ranger algorithm of [5], has been used on a number of dif-
ferent robot platforms [11],[14]. Morphin combines
sequences of goodness maps from the Stereomap module
to form a local area map. Each time it receives a new
goodness map, Morphin ÒagesÓ the existing cells in the
local area map and merges the new map with the aged
map. ÒAgingÓ involves multiplying the certainty of exist-
ing cells by a value (less than one) that is proportional to
the distance the rover has traveled since the last map
update. Cells whose certainty fall below a certain thresh-
old are assigned zero goodness. Goodness maps are com-
bined using a weighted average of their goodness values,
with the weights proportional to the certainty values. Thus,
new data is preferred, but old data still has some impact.

Morphin evaluates the traversability along a set of prede-
termined arcs. Each arc represents the path the rover
would take when commanded with a particular steering
angle. Morphin's vote for an arc is either the traversability
value over the arc, or, a veto if the value is below a thresh-
old. The traversability value is defined as the product of
goodness and certainty. The goodness value of a cell is
weighted by a function of the certainty value of the cell
and the distance of the cell along the arc, while the cer-

tainty value is weighted just by the distance along the arc.
Formally, the goodness of an arc,

G

, is given by:

where is a piece-wise linear function that is constant
for length

l

u

 and then decreases to zero by the end of the
arc at

l

t

. (

l

t

-

l

u

) is known as the Òdiscounted lengthÓ,
is the certainty measure, and is the goodness mea-
sure. Similarly, the certainty of an arc,

C

, is given by:

Without discounting, obstacles at the far end of long arcs
tend to affect the traversability measure along that arc,
even though the rover rarely travels to the end of a given
arc before turning again. Reducing the length of the arcs
produces smoother trajectories, but ignores potentially
useful data. Discounting parts of the arc enables driving in
cluttered environments where the robot is required to get
close to obstacles without running into them.

Apart from the addition of discounting, we have modified
the scheme to deal with the case when all the arcs are
vetoed. In other Morphin-based systems, we have used a
relatively complex algorithm for backing up and turning in
that case. Since Bullwinkle can turn in place, a simpler
strategy was usedÑ the local and global planners vote for
two extra arcs that represent left and right point turns.
Morphin always votes for these arcs with a very low value.
Thus, the arcs are chosen by the arbiter only if Morphin
vetoes all the forward-pointing arcs.

Since Bullwinkle has much less ground clearance than
either Nomad or Ratler, it needs to detect smaller obstacles
to avoid high centering. Unfortunately, these small obsta-
cles are on the scale of stereo noise (10 cm). We are still
working to address this problem, partly through parameter
tweaking in the Stereomap module, and partly through
investigation of an alternate method of measuring travers-
ability using a multiresolution technique based on the
Laplacian pyramid[3].

6 Global Planning

Our approach is to use D* (Dynamic A*), which allows
replanning to occur incrementally and optimally in real-
time [15][16]. Like A*, D* plans an initial path from the
robot's start state to the goal state using all available infor-
mation, known or assumed. As the rover follows the path,
its sensors can discover discrepancies between the map
and world. The map is updated, possibly invalidating the
optimality or feasibility of the current path. D* uses incre-
mental graph theory techniques to compute a new, optimal
path to the goal, or to re-validate the old one. D* accom-
plishes this by computing, saving, and re-using partial

Fig. 4

(Top) A sample Morphin map with candidate rover
trajectories. The darker areas indicate the areas that the rover is
less certain off because they have “aged”. Black areas indicate
areas that have not been seen by the rover or have been
completely forgotten. Obstacles are indicated by textured areas.
(Bottom) The votes along each of the arcs are indicated in
histograms for “goodness” and “certainty”. Traversability is a
weighted combination of goodness and certainty. Votes below a
threshold are vetoed.

obstacles

goodness certainty traversability

rover

aged
data

G
w s()c s()g s() sd∫

w s()c s() sd∫
---=

w s()

c s()
g s()

C
w s()c s() sd∫

w s() sd∫
------------------------------=

solutions to the planning problem. In most cases, D* can
recompute the optimal path quickly, by calculating a Òlocal
patchÓ to the existing path that moves the rover around a
small obstacle. In other cases, more extensive re-planning
is required to compute entirely new solutions. Either way,
the D* algorithm performs close to the minimum computa-
tion necessary to re-plan the path to the goal. For large
environments, D* has been shown to be hundreds of times
faster than re-planning from scratch using A*.

D* is optimal in the following sense. For every point P
along its traverse, the rover follows an optimal path to the
goal assuming the correctness of all map information
acquired in aggregate to point P. In general, traverses pro-
duced by D* have been shown empirically to be low in
cost. If the unknown parts of the world are assumed to be
obstacle-free, then D* is complete in the sense that it will
reach the goal if a path exists.

Large outdoor areas also likely contain sparsely or fractally
scattered obstacles, leaving large empty space among
obstacles. Methods that use uniform grid representations
must allocate large amounts of memory for regions that
may never be traversed, or contain any obstacles. Effi-
ciency in map representation can be obtained by the use of
quadtrees, but at a cost of optimality. Recently, a new data
structure called a

framed quadtree

 has been suggested as
means to overcome some of the issues related to the use of
quadtrees. We have used this data structure to extend the
D* search algorithm that has hitherto used uniform (regu-
lar) grid cells to represent terrain. In many cases, usage of
this representation can produce, shorter, straighter paths at
a lower computational cost. An example path found in a
cluttered environment and the spatial representation of the
terrain is shown in Fig. 6. A more detailed discussion of
these issues can be found in [18][19].

7 Combining local and global planning

The global planner assigns low cost to unknown areas

(which the robot is expected to see before actually driving
into), while local obstacle avoidance keeps the rover safe
by vetoing arcs which lead immediately into the unknown.
Optimizing the ratio of weights to be assigned to local vs.
global planning is a subject of ongoing research. To be
conservative, local planning is weighed higher than global
planning, at the cost of path optimality. An issue that we
have not answered decisively is how to define the seman-
tics of the different levels of voting.

Another question relates to the scale chosen for local
obstacle avoidance. In addition to keeping the rover safe
from immediate obstacles by vetoing, the local module can
coach the rover away from more distant obstacles by
adjusting the strength of its votes. However, at larger
scales, the global knowledge advantage of the global mod-
ule outweighs the better reaction time and finer map reso-
lution advantage of the local module. Our experiments
with a 1 m scale rover suggest that, for this reason, the
maximum useful length of steering arcs considered by the
local module is around 3-5 m. There are also many possi-
ble schemes for discounting the weight of obstacles' effect
on the goodness value of an arc in proportion to their dis-
tance along the arc. Current experiments will tell us how to
improve rover efficiency by tuning the arc lengths and dis-
counting scheme.

8 Results

Our system has driven Bullwinkle 100m in outdoor envi-
ronments as shown in Fig. 7 at an average speed of 15 cm/
sec. The environments we have tackled with Bullwinkle to
date consist mainly of free space (although the free space is
not necessarily level) and clear two dimensional obstacles.
In the near future we expect to navigate in environments
populated by small obstacles, some of which will be tra-
versable. However, we have conducted experiments with
cluttered environments in simulation. Our simulator mod-
els a rover navigating in a cluttered environment as shown
in Fig. 8. Apart from simulating the rover kinematics, the
simulator also models the stereo vision system, providing

Fig. 5

Traverse in a dense environment starting with no prior
knowledge of the word. The dark area shows the obstacles that
are discovered as the robot moves through the world.

Fig. 6

The use of

framed quadtrees

 to represent space
provides an efficiency in memory and computational resources
when used with D*. The tessellation of space illustrates the
structure developed by framed quadtrees.

synthetic range data in exactly the same way as produced
by our stereo vision algorithms. In fact, the simulator is
attached to the rest of the system seamlessly; the other
modules are not aware that they are driving the real robot
or the simulated one.

We have conducted a large set of experiments in simulation
aimed at understanding the effect of adjusting control
parameters. For example, Fig. 9 shows two simulated runs
in the same environment where the ratio of weights given
to D* and Morphin were changed.

TABLE I tabulates the results from 240 simulation experi-
ments. The simulated rover moves at a speed of 5 cm/sec
while our simulator runs at twice as fast as real time. All
modules (Stereomap, Morphin, D* and Arbiter) were run
on one SGI R10000 processor. Notes:

• The control parameter set weighs Morphin twice as
high as D*. The arcs are 3 m long and the last 2m’s
are discounted.

• Time taken to reach the goal is a function of the dis-
tance travelled as well as the number of point turns.

• Body collisions are those collisions where the body
of the rover collided with objects above 27 cm while

wheel collisions are those collisions in which the
wheels collided with objects that are at least 20 cm
high.

TABLE I

 The effect of adjusting key control parameters on
performance metrics. Each cell contains the mean and standard
deviation for each run. Each control parameter set was used in 30
runs in which the distance between the start and goal was100 m.
The upper part of the table shows performance for varying weights
between D* and Morphin. The lower part of the table refers to
adjustments of arc lengths and the discounting scheme. For
example, the second row labeled “2/1” refers to arc lengths that are
2 m long and the last 1m is discounted. Note that of a total of 330
runs, the rover didn’t reach the goal in only one case. We suspect
that this was due to a simulator error.

Analysis of the results indicates that performance is not
very sensitive to change in parameter settings. A few

Fig. 7

Results from a field trial (above) Bullwinkle negotiates a
cul-de-sac with no prior knowledge of the environment. (below)
Final map created by D* after a 60 m traverse.

Fig. 8

Simulated rover navigating in a cluttered environment.

start
goal

Fig. 9

 Two simulated runs in the same environment showing
the difference performance when the relative weights between D*
and Morphin are changed. The distance between start and goal is
100m. The large grey areas represent regions that remain
unexplored. (Top) Morphin is weighted 5 times more than D*;
distance traveled = 123.8m; 1 point turn was required (Bottom) D*
is weighted 2 times more than Morphin; distance travelled =
114.9m; 4 point turns were required.

Ratio of D* to
Morphin
weights

 Time to
goal reach

goal (s)

 Distance
travelled

(m)

 Body
Collisions

Wheel
Collisions

of point
turns

0.2

2569/355 122.0/14.26 0.1/0.3 2.4/1.9 3.1/2.7

Control (0.5)

2401/276 114.8/10.23 0.1/0.3 3.0/2.0 3.1/2.6

1

2436/337 113.45/9.25 0.4/0.6 3.9/2.5 4.4/4.4

2

2420/344 111.82/8.63 0.4/0.8 4.0/2.1 4.9/3.8

10

2500/403 113.56/10.9 0.4/0.9 4.1/2.8 6.7/4.4

Arc length (l

t

)/
discounted

length (l

t

-l

u

)(m)

 Time to
goal reach

goal (s)

 Distance
travelled

(m)

 Body
Collisions

Wheel
Collisions

of point
turns

1/0

2884/428 126.03/12.8 0.7/0.8 6.7/3.2 10.4/4.8

2/0

 2496/400 115.63/11.29 0.3/0.5 3.2/2.3 6.2/5.5

3/0

2692/449 122.27/14.4 0.2/0.4 2.8/1.4 11.6/7.7

2/1

2534/377 117.0/12.15 0.4/0.6 3.6/2.1 4.8/3.5

3/1

2614/418 119.36/9.92 0.3/0.7 3.1/2.4 8.2/6.3

Control (3/2)

2401/276 114.8/10.23 0.1/0.3 3.0/2.0 3.1/2.6

trends are noticeable, however:

•

The greater the weight given to D*, the closer the
rover gets to the obstacles

. This often results in
shorter paths but the closer the robot gets to obsta-
cles, the larger the chance that the robot will collide
with obstacles and will need to point turn. Con-
versely, if D* is weighted much less than Morphin
(less than 5 times), the robot is sometimes not able
to reach the goal, especially in very cluttered envi-
ronments.

•

Discounting arcs is useful

. If the arcs are not dis-
counted, the robot is more conservative. While it
has fewer collisions, the rover shies away from
obstacles from a distance. For example, in cases
where a path between obstacles would require an S-
curve, the circular arcs used to represent future tra-
jectories can lead to the conclusion that no path
exists in between the obstacles resulting a large
number of point turns. Discounting lets the robot
approach obstacles and find paths in between them.

9 Future Work

In the near future, we expect to perform the same type of
parameter tests on our robot testbed as were performed in
simulation. We will also experiment with our rover in
more complex terrains. This system will also be ported to
a NASA rover in the near future.

Acknowledgments

The authors would like to thank Bruce Digney, Stewart
Moorehead and Greg Armstrong for their help with the
testbed vehicle. This research was sponsored in part by
NASA, by the Intelligent Robotics program under contract
99-614.

References

[1] Ronald C. Arkin, “Motor Schema Based Navigation for a
Mobile Robot: An Approach to Programming by Behavior”, in
Proc. Intnl Conf on Robotics and Automation, Raleigh, NC,
March, 1987.

[2] Johann Borenstein and Yoram Koren, “The Vector Field
Histogram -- Fast Obstacle Avoidance for Mobile Robots”, IEEE
Trans. on Robotics and Automation, 7:3, pp. 278-288, 1991.

[3] Peter Burt and Edward Adelson, “The Laplacian Pyramid
as a Compact Image Code,” IEEE Transactions on Communica-
tions, 31:4, pp. 532-540, 1983.

[4] Hebert, Martial H., “SMARTY: Point-Based Range Pro-
cessing for Autonomous Driving,”

Intelligent Unmanned Ground
Vehicle

, Martial H. Hebert, Charles Thorpe, and Anthony Stentz,
editors, Kluwer Academic Publishers, 1997.

[5] Kelly, A, “An Intelligent Predictive Control Approach to
the High Speed Cross Country Autonomous Navigation Prob-
lem,” Ph.D Thesis, 1995, Carnegie Mellon University, Pittsburgh,
PA 15213.

[6] Donald Gennery, “Traversability Analysis and Path Plan-

ning for a Planetary Rover”, Autonomous Robots, 1999.

[7] Korf, R.E., “Real-Time Heuristic Search: First Results,”
Proc of the Sixth National Conf on Artif. Intelligence, July 1987.

[8] Laubach, S., Burdick, J., Matthies, L., “Autonomous Path-
Planning for the Rocky 7 Prototype Microrover,” in Proc. IEEE
Intn’l Conf on Robotics and Automation, 1998.

[9] Lumelsky, V.J., Stepanov, A.A., “Dynamic Path Planning
for a Mobile Automaton with Limited Information on the Envi-
ronment”, IEEE Transactions on Automatic Control, Vol. AC-31,
No. 11, November 1986.

[10] Larry Matthies, Erann Gat, R. Harrison, Brian Wilcox,
Rich Volpe, Todd Litwin, “Mars Microrover Navigation: Perfor-
mance Evaluation and Enhancement”, Autonomous Robots,
2:291-311, 1995.

[11] S.J. Moorehead, R. Simmons, D. Apostolopoulos, W.
Whittaker, Autonomous Navigation Field Results of a Planetary
Analog Robot in Antarctica, Intn’l Symposium on Artificial Intel-
ligence, Robotics and Automation in Space, 1999.

[12] Pirzadeh, A., Snyder, W., “A Unified Solution to Coverage
and Search in Explored and Unexplored Terrains Using Indirect
Control”, in Proc. IEEE Intn’l Conf on Robotics and Automation,
1990.

[13] H. Seraji, “Traversability Index: A new concept for plane-
tary rovers,” in Proc. IEEE Intn’l Conf on Robotics and Automa-
tion.

[14] R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R.
Goodwin, M. Hebert, L. Katragadda, S. Koenig, G. Krish-
naswamy, Y. Shinoda, W. Whittaker, and P. Klarer. “Experience
with Rover Navigation for Lunar-Like Terrains,” in Proc. Conf on
Intelligent Robots and Systems (IROS), Pittsburgh PA, 1995.

[15] A. Stentz, Optimal and efficient path planning for partially-
known environments, in Proc. IEEE Intn’l Conf on Robotics and
Automation, May 1994.

[16] Stentz, A., “Best Information Planning for Unknown,
Uncertain, and Changing Domains,” AAAI-97 Workshop on On-
line-Search.

[17] Stentz A., Hebert, M., “A Complete Navigation System for
Goal Acquisition in Unknown Environments,” Autonomous
Robots, 2(2), 1995.

[18] A. Yahja, A. Stentz, S. Singh, and B. Brumitt, Framed-
quadtree path planning for mobile robots operating in sparse envi-
ronments, in: Proc. IEEE Intn’l Conf on Robotics and Automa-
tion, (ICRA), Leuven, Belgium, May 1998.

[19] A. Yahja, Sanjiv Singh and Anthony Stentz, An efficient
on-line path planner for outdoor mobile robots, To appear in

Robotics and Autonomous System

 s journal, Elsevier Science.

[20] Thrun, S., “An Approach to Learning Mobile Robot Navi-
gation”, Robotics and Autonomous Systems 15(1995): 301-19.

