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In recent years, the environmental problems accompanying the extensive

application of biomedical polymer materials produced from fossil fuels have

attracted more andmore attentions. As many biomedical polymer products are

disposable, their life cycle is relatively short. Most of the used or overdue

biomedical polymer products need to be burned after destruction, which

increases the emission of carbon dioxide (CO2). Developing biomedical

products based on CO2 fixation derived polymers with reproducible sources,

and gradually replacing their unsustainable fossil-based counterparts, will

promote the recycling of CO2 in this field and do good to control the

greenhouse effect. Unfortunately, most of the existing polymer materials

from renewable raw materials have some property shortages, which make

them unable to meet the gradually improved quality and property requirements

of biomedical products. In order to overcome these shortages, much time and

effort has been dedicated to applying nanotechnology in this field. The present

paper reviews recent advances in nanocomposites of CO2 fixation derived

reproducible polymers for biomedical applications, and several promising

strategies for further research directions in this field are highlighted.
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Introduction

With the increases in total population and social productivity, the world’s energy

consumption and associated greenhouse gas emissions have increased rapidly (Bauer and

Menrad, 2019; Maamoun, 2019; Miyamoto and Takeuchi, 2019; Iglina et al., 2022). Since

the industrial revolution in the 1700s, the amount of greenhouse gases emitted into the

atmosphere has increased year by year, which has intensified greenhouse effect and caused

a series of problems. As the main component of greenhouse gases, CO2 released by the
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combustion of fossil fuels (coal, oil, and natural gas) and products

derived from them, plays a leading role in greenhouse effect. In

order to avoid the disasters caused by the intensification of

greenhouse effect, researchers with different backgrounds have

made great efforts in curbing the CO2 emissions (Rahman et al.,

2017; Pan et al., 2018; Chowdhury and Loganathan, 2019; Xu

et al., 2019; Xu et al., 2021).

From the view of front-line medical workers, a lot of

biomedical polymer products used in our daily work should

share some responsibility for the world’s CO2 emissions. Due to

their excellent characteristics and ability to reduce the costs,

biomedical polymers have been widely used in the fields of tissue

engineering, artificial organs, drug synthesis, diagnostic

instruments, medical protective items, medical consumables,

and packaging materials (Liechty et al., 2010; Mora-Huertas

et al., 2010; Tian et al., 2012; Zhang L. et al., 2021; Feng et al.,

2021; Hao et al., 2021; Chen W. H. et al., 2022). As shown in

Figure 1, except for some large-scale medical equipment, long-

life tissue engineering devices and artificial organs, most of the

biomedical polymer products have a relatively short life cycle.

Most of those used or overdue medical products need to be

burned after destruction, which increases the emission of CO2.

According to the statistics, there are nearly 100 kinds of

biomedical polymer materials (Smith and Gambhir, 2017;

Shaghaleh et al., 2018; Lyu et al., 2019), and more than

1800 related medical products in the world. From 2011 to

2019, the global production and marketing scale of biomedical

polymer materials had increased from 4.391 to 6.771 million

tons, with a compound annual growth rate of 5.6%. It means that

annual CO2 emission by treatment of the biomedical polymer

waste will be over 20 million tons. Considering the strict process

conditions and high defect rate in the production of medical

products, the contribution of greenhouse gas emissions in this

field will be even greater. As it is urgent to control the greenhouse

effect, the recycling of CO2 in biomedical polymer deserves more

attention.

Since the outbreak of novel coronavirus disease 2019

(COVID-19), consumption of biomedical materials related

to epidemic prevention has soared. As shown in Figure 2A, the

production capacity of medical masks in China increased by

over 100% after the COVID-19 epidemic. The data released by

the Chinese general administration of customs shows that: a

large number of medical supplies, including over 220 billion

face masks, 2.31 billion protective suits, 289 million pairs of

goggles, 2.92 billion pairs of surgical gloves, as well as

1.08 billion COVID-19 virus detection kits were exported

abroad from China in 2020 (Figure 2B). Although these

epidemic prevention products have played important roles

in the global fight against the COVID-19, and have saved

countless lives, the environmental problems caused by

massive use of them, especially the increase in CO2

emissions deserve more attentions.

FIGURE 1
Representative biomedical polymer products applied in different fields.
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There are many different ways for classification of biomedical

polymer materials (Luckachan and Pillai, 2011; Carrion et al., 2021;

Wendels and Avérous, 2021; Chen W. H. et al., 2022; Joseph et al.,

2022). According to their degradation behavior, they could be

divided into biodegradable and nonbiodegradable biomedical

polymer materials (Tian et al., 2012; Pang et al., 2014a; Pang

et al., 2014b; Pang et al., 2014c; Sun et al., 2014; Sun et al.,

2015b). Based on the ways in which they respond to heat,

biomedical polymer materials could be classified as

thermoplastics, thermosets and elastomers. Considering their

origins, they could also be classified into bio-based and fossil fuel-

based biomedical polymer materials (as shown in Table 1) (Endres

and Siebert-Raths, 2011; Annabi et al., 2014; Sun et al., 2017; Hacker

et al., 2019). In general, the bio-based polymermaterials (also known

as naturally-derived polymers) produced from reproducible plants,

animals, and microorganisms, have less contribution to the

greenhouse effect than their fossil fuel-based counterparts (Cui

et al., 2011; Jayaramudu et al., 2013; Malwela and Ray, 2015;

Jammalamadaka and Tappa, 2018; Sun Y. et al., 2019). As these

naturally-derived biomedical polymer materials are fundamentally

derived from photosynthesis of plants or other natural CO2 fixation

reactions, their carbon footprints are much smaller than materials

from unsustainable petrochemical raw materials.

As shown by Figure 3, there are three kinds of CO2 fixation

derived reproducible polymers, including naturally-derived

polymers, synthetic renewable polymers and CO2-based

polymers. Synthetic renewable polymers are a group of

polymeric materials produced by polymerization of monomers

derived from raw materials of naturally-based molecules or

macromolecules (Hu C. Y. et al., 2018; Duan et al., 2018;

Duan et al., 2019; Yang et al., 2019; Zhou et al., 2019; Duan

et al., 2021b; Huang et al., 2021). CO2-based polymers are

produced by polymerization between CO2 gas and other bio-

based or fossil fuel-based chemicals (Hu C. et al., 2018; Li et al.,

2018; Duan et al., 2021a).

As the production of CO2 fixation derived reproducible

polymers consumes CO2, their carbon footprints would be

relatively small. Therefore, developing biomedical products

based on these CO2 fixation derived polymers with

reproducible sources, and gradually replacing their

unsustainable petrochemical products-based counterparts, will

promote the recycling of CO2 in this field and reduce the carbon

footprints of them. However, compared with the fossil fuel-based

biomedical polymers, most of the existing CO2 fixation derived

polymers from renewable raw materials or CO2-based polymer

materials, have some shortages in their application properties,

FIGURE 2
(A) Changes in China’s face mask production from 2017 to 2021. (B) Epidemic prevention supplies exported from China to other countries in
2020.

TABLE 1 Classification of biomedical polymer materials with different origins.

Origins Representative varieties[**]

Biomedical polymer
materials

Bio-
based

Plants Cellulose, lignin, starch, alginate, lipids, plant protein (wheat, corn, pea, potato, soy, potato), gums, carrageenan,
PLA (typically from starch or sugar cane), etc.)

Animals Chitin, chitosan, silk, casein, collagen, whey, hyaluronan, albumin, keratin, leather, etc.

Microorganisms PHAs (P3HB, P4HB, PHBHV, P3HBHHx, etc.), PHF, bacterial cellulose, hyaluronan, xanthan, curdlan,
pullulan, etc.

Fossil fuel-based PE (LDPE, HDPE), PP, PVC, PET, PPT, PU, PGA (mainly from coal), polyamides (PA6, PA66, PA12, PA1212),
unsaturated polyesters, PC, PPC, etc.

[**] PLA, poly ([**] PLA, polylactide; PHA, polyhydroxyalkanoate; P3HB, poly (3-hydroxybutyrate); P4HB, poly (4-hydroxybutyrate); PHBHV, poly (3-hydroxybutyrate-co-3-

hydroxyvalerate); P3HBHHX, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate); PHF, polyhydroxy fatty acid; PE, polyethylene; LDPE, low density polyethylene; HDPE, high density

polyethylene; PP, polypropylene; PVC, poly (vinyl chloride); PET, poly (ethylene terephthalate); PU, polyurethane; PGA, poly (glycolic acid), polyglycolide; PC, polycarbonate; PPC, poly

(propylene carbonate).
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which make them unable to meet the gradually improved quality

and property requirements of biomedical products.

In the past few decades, nanotechnology has been proved to

be effective in improving the properties of traditional materials

(Bosco et al., 2015; Li et al., 2016; Sun et al., 2017; Zheng et al.,

2017; Iravani, 2020; Allahyari et al., 2021; Fang et al., 2021; Sajjadi

et al., 2021; Tamburaci and Tihminlioglu, 2021; Wang et al.,

2021; Iravani, 2022). And many scientists have been engaged in

developing new kinds of eco-friendly biomedical polymers by

adding various nanomaterials into CO2 fixation derived

polymers. As shown by Figure 4, natural and synthetic CO2

fixation derived polymers could be produced from CO2 fixation

process. In order to improve their application performance, more

and more nanocomposites of these CO2 fixation derived

reproducible polymers have been prepared by nano-

modification. These nanocomposites have wide prospects for

production of eco-friendly biomedical polymer products. After

being used or overdue, most of the biomedical products

produced by nanocomposites of these CO2 fixation derived

reproducible biomedical polymers would be burnt. The CO2

gas released by burning of them could be used to produce new

reproducible polymers, so as to realize cyclic utilization of CO2.

FIGURE 3
Classification of CO2 fixation derived reproducible polymers.

FIGURE 4
CO2 circulation in production and application of CO2 fixation derived reproducible biomedical polymers.
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Focusing on the reduction of greenhouse gas emissions in

biomedical polymer materials, this short review mainly

presented recent advances in the research on nanocomposites

of CO2 fixation derived biomedical polymers, including

naturally-derived polymers (Section 2), synthetic renewable

polymers (Section 3) and CO2-based polymers (Section 4).

Moreover, potential trends, challenges and promising

strategies for further research directions in this field are also

highlighted.

Naturally-derived polymers

Naturally-derived polymers generated from living organisms

have a long history of being used as biomedical materials. As

early as about 3500 BC, the ancient Egyptians began to use cotton

fibers or horsehair to suture wounds. Mexican Indians of the

same period could use wood chips to repair the injured skull.

Since the 1950s, the rapid developed synthetic polymer materials

have replaced natural polymer materials in a variety of

application fields. However, based on their excellent

biocompatibility and biodegradability, naturally-derived

polymers still have irreplaceable applications in the field of

biomedical materials. Up to now, research on applying

naturally-derived polymers in biomedical products preparation

is still attractive all over the world (Kokubo and Takadama, 2006;

MacDonald et al., 2008; Henkel et al., 2013; Kang et al., 2014;

Nguyen et al., 2017; Nurwito and Maulida, 2018; Barroso et al.,

2020; Ramanathan et al., 2020; Weller et al., 2020; Neacsu et al.,

2021a; Neacsu et al., 2021b; Carrion et al., 2021). As shown by

Figure 5, naturally-derived polymer materials could be divided

into two groups including protein-based biomaterials (e.g.,

collagen, gelatin, silk fibrin, etc.) and polysaccharide-based

biomaterials (e.g., cellulose, chitin/chitosan, starch, alginate,

hyaluronic acid derivatives, etc.). In this section, recent

progress in research on nanocomposites of typical naturally-

derived polymers and their applications in biomedical products

will be presented.

Collagen

Collagen, the general name of a series of proteins withmolecular

weight (Mw) ~300,000, is themost abundant protein in animal body

and the major component of skin and skeletal muscle tissues (Chen

et al., 2008; Arias et al., 2018; Le Corre-Bordes et al., 2018; Bi et al.,

2019; Dippold et al., 2019; Ibrahim et al., 2020; García-Hernández

et al., 2021; Hernández-Rangel and Martin-Martinez, 2021). To

date, over 20 different types of collagen have been detected in human

body, the most common being collagen types I-IV. As most of the

collagenmolecules have a chain length of sub-micrometer scale, they

are a group of natural biomedical nanomaterials. Collagen

undergoes enzymatic degradation in the body, resulting in the

production of the corresponding amino acids. Due to its unique

physicochemical, mechanical, and biological properties, as well as

enzymatic degradation, biocompatibility, osteoconductivity,

collagen has been extensively researched for biomedical

applications (Szentivanyi et al., 2009; Di Maggio et al., 2011;

Metwally et al., 2020). Additionally, it has been demonstrated

that the rate of collagen deterioration could be controlled by

enzymatic pretreatment or by adding cross-links to the polymer

chains.

FIGURE 5
Typical classification of naturally-derived polymer materials.
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Since collagen and substituted hydroxyapatite are the major

solid components of human bone, nanocomposites of collagen

and calcium phosphate have been intensively studied as bionic

materials for bone replacement and regeneration (Szentivanyi

et al., 2009; Henkel et al., 2013). Collagen-hydroxyapatite

nanocomposites have gained much recognition as bone grafts,

not only due to their composition and structural similarity with

natural bone, but also because of their unique functional

properties and superior mechanical strength. Incorporating

collagen into nanocomposites could provide more cell-

recognition sites and result in fast replacement by new bone

(Di Maggio et al., 2011; Metwally et al., 2020). Even without

osteogenic supplement in culture medium, collagen-

hydroxyapatite nanocomposites are very efficient in inducing

rapid mineralization by cells.

In addition, collagen-hydroxyapatite based nanocomposites

are currently on the market for a wide range of applications.

Collagraft®, a composite made of fibrous collagen, hydroxyapatite

and tricalcium phosphate, has been approved by FDA for using

as biodegradable synthetic bone grafts. Floseal®, exploiting the

high thrombogenic properties of collagen, is a high-viscosity gel

hemostatic agent consisting of collagen particles and tropical

bovine-derived thrombin. Duragen® suture-free sutures were

developed for dural repair and regeneration. Collagen-based

wound dressings, like Biobrane® and Promogran®, Sulmycin®-
Implan gentamicin delivery vehicle, as well as three-dimensional

collagen matrix grafts, all show the high research value of

collagen in clinical medicine.

Fibrin

When thrombin transforms fibrinogen, fibrin, a natural

polymer involved in the coagulation process would be created.

Fibrin is primarily protein with molecular weight ~360 kDa

composed of pairs of polypeptide chains. Its structure consists

of a central structural domain composed of fibrin peptide E, two

pairs of fibrin peptide A&B molecules, and two terminal

structural domains of fibrin peptide D. Based on its good

biocompatibility, biodegradability, injectability, and properties

to promote cell adhesion and proliferation, fibrin is one of the

earliest biopolymers being used as biomedical materials. In recent

years, studies on fibrin related to wound healing have been

prompted by the fibrous network qualities that naturally

generate blood coagulants (Zanetti et al., 2013; Whelan et al.,

2014). Currently marketed product Bioseed® is a fibrin-based

product for the treatment of chronic wounds made by mixing

keratin-forming cells with fibrin. By using autologous plasma,

Cryoseal® (Thermogenesis, United States) allows the preparation

of hemostatic tissue sealants for the treatment of burn wound

care. In addition to the coagulation effect, fibrin networks are

used as a sealer on the scaffold surface to improve cell adhesion,

proliferation, and encapsulation of multiple cell types in fibrin

scaffolds or gels (Yücel et al., 2003). Mittermayr et al. added

angiogenesis-stimulating substances to fibrin scaffolds to

improve regeneration of ischemic tissue (Mittermayr et al.,

2016). Although fibrin with weak mechanical characteristics is

susceptible to hydrolysis by hydrolases, its mechanical qualities

can be strengthened by combining it with other polymers to

create complexes.

Gelatin

Gelatin is a kind of denatured collagen obtained by hydrolysis

of collagen extracted from animal tissues. Therefore, the

mechanical properties, swelling behavior and other

physicochemical properties of gelatin are determined by the

kind of collagen recovered and the technique of

transformation. Similar to other naturally-derived polymers,

gelatin exhibits excellent biocompatibility, biodegradability

and limited immunogenicity. Gelatin has been widely used as

a low-cost naturally-derived polymers in medical and

pharmaceutical applications (Foox and Zilberman, 2015; Yue

et al., 2015; Li et al., 2020; Rajabi et al., 2021). Moreover, many

oral capsules and vaccine stabilizers are based on gelatin. Being

used as drug delivery vehicles, gelatin could be designed into

various carrier systems, including hydrogels, microspheres,

nanoparticles, and nanofibers, making it suitable for drug

delivery to different organs. Gelatin nanoparticles, for

instance, are more suitable for drug delivery applications

within the brain (Xavier Mendes et al., 2021).

Nanocomposites of gelatin blended with other complexes are

currently under numerous investigations for improving the

potential applications in tissue engineering. For example,

Elsayed et al. used the fabricated bionic electrospun gelatin

fiber scaffold for the mid-membrane equivalent of tissue

engineered vascular grafts, and the scaffold exhibited good

smooth muscle cell proliferation capabilities (Elsayed et al.,

2016).

Chitin/chitosan

Composed of renewable, biodegradable carbohydrates, chitin

and chitosan are the second abundant biopolymers in nature

(Niaounakis, 2014; Fernandes et al., 2022). Based on their

excellent cell attachment and growth abilities, chitin and

chitosan made up of N-acetyl glucosamine and

N-aminoglucose monomers, have been widely applied in

biomedicine (scaffolds, gels, particles, films, etc.) (Qin et al.,

2018; Wu et al., 2018; Xu et al., 2018; Yu et al., 2018). The positive

charges of chitosan enhanced its capacity to adsorb negatively

charged cells. Being used as wound dressing material, chitosan

exhibits outstanding hemostatic and antimicrobial properties.

Cui et al. (2011) found that chitosan-collagen hydrogels
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containing staphylococcin not only could promote the burn

wound healing, but also showed antimicrobial efficacy against

methicillin-resistant Staphylococcus aureus . Based on the

hemostatic function of chitosan, products such as HemCon®

bandages (HemConMedical Technologies, Inc.) and Celox

gauze (MedTrade) have been created and commercialized for

the treatment of localized wound bleeding (Bennett, 2017).

Chitosan has also been widely used in the field of tissue

engineering scaffolds. Its regenerative capacity as a scaffold

can be further enhanced by loading the structure with some

bioactive compounds. It has been found that filamentous

protein/chitosan-based scaffolds, used for repairing myofascial

defects in the abdominal wall, showed sustained integration and

similar mechanical strength with adjacent natural tissues (Gobin

et al., 2006). Colloidal particles formed by chitosan could

encapsulate a variety of biomedical molecules, which give

them excellent potential in applications as drug delivery

systems. Khangtragool’s experiments had successfully used

chitosan as drug delivery vehicle for vancomycin application

in the rabbit body eye. However, chitosan has mechanical

weaknesses and needs to be used in combination with other

materials for bone tissue engineering applications (Sharifianjazi

et al., 2022). Isikli et al. demonstrated that: compared to pure

chitosan scaffolds, nanocomposite scaffolds of hydroxyapatite/

chitosan had improved Young’s modulus and compressive

strength, while promoted cell attachment and value-added

capacity of the scaffold (Isikli et al., 2012). Tamburaci et al.

created composite scaffolds for the regeneration of bone tissue by

adding diatomaceous earth into chitosan membranes (Iravani,

2020). This kind of diatomaceous earth-doped chitosan

composite membranes were proved to have increased swelling

behavior, protein adsorption capacity and surface crudity.

Moreover, the composite membranes showed excellent

biocompatibility by boosting the proliferation of Saos-2 cells

and alkaline phosphatase activity.

Starch

Starch is one of the major carbohydrates commonly present

in plant tubers and seed endosperm, such as potato, maize and

wheat, etc., (Duan et al., 2011; Ismail et al., 2013). Taking

advantage of the low price, easy availability, biocompatibility

and biodegradability, starch nanocrystals have been widely used

in biomedical field. In tissue engineering applications, adding

starch to hydroxyapatite could not only enhance the material’s

capacity for osteointegration, but also improve its thermal-

mechanical properties and cell adhesion behaviors. Mahdieh

et al. (2016) created a kind of novel nanocomposite by

combining thermoplastic starch and poly (vinyl alcohol)

(PVA) with nanoscale magnesium olivine and vitamin E,

respectively. Compared with standard starch-PVA matrix, the

novel nanocomposite showed better biological and mechanical

properties, lower rate of degradation and increased secondary

osteoblast proliferation. Moreover, chemically modified starch

could be used for drug delivery. The nonionic nature of starch

makes it easy to co-blend with other polymers, thereby increasing

the pore size and water absorption capacity of the co-blended

polymer (Ngoenkam et al., 2010). de Oliveira Cardoso et al.

(2017) prepared hydrogels of gellan gum and starch retrograded

blends with or without ketoprofen. By changing the

concentrations of polymer and cross-linkers, properties of the

starch hydrogels could be controlled. The hydrogels with

adjustable mechanical and structural properties were

promising materials for drug delivery of different therapeutic

needs (Ghavimi et al., 2015). In order to overcome the limited

shear and heat resistance of starch, SPCL has been prepared by

blending starch with the biodegradable polycaprolactone (PCL).

Addition of PCL could reduce the stiffness and high water-

sensitivity of starch, and made improvement of SPCL in

processability, degradability, mechanical properties and cell

proliferation (Labet et al., 2007). Additionally, addition of

starch could enhance the biodegradability of PCL, and

significantly reduce the production cost of the final product

(Morgan et al., 2013).

Cellulose

As the most abundant natural polymer on earth, cellulose is

considered as the most important renewable biological resource,

with great economic value in the world (Neo and Yang, 2015;

Basu et al., 2018). Cellulose is a linear polymer composed of β-D-
glucopyranose units (disaccharides) linked by glycosidic β-(1,4)
bonds. Nanofibrillar networks formed by plant cellulose have a

thickness of about 20–100 nm. Whereas bacterial cellulose

nanofibrils are 20–50 nm thick. Bacterial cellulose usually

shows lower crystallinity, and is better at storing water than

plant cellulose (Lavoine et al., 2012; Olson et al., 2012).

Additionally, the plant cellulose’s glycan polymers are

resistant to biotransformation, which restricts its application

fields (Loh et al., 2018; Mishra et al., 2018). Therefore,

bacterial cellulose is the subject of extensive investigation

currently. Since the 1980s, bacterial cellulose has been used as

a natural polymer for wound dressing. Fu et al. (2013) applied a

mixture of bacterial cellulose hydrogel and acrylic acid solution

in a mouse allograft wound model, and the bacterial cellulose

hydrogel exhibited good cell carrier properties and accomplished

allograft wound healing in the model. Nanofibrillar products

such as Biofill® (Fibrocel, Brazil) or Nanocell® (Thai Nano

Cellulose Co. Ltd., Thailand) based on bacterial cellulose are

widely used in clinical settings for various types of wounds, such

as chronic ulcers, donor partial adjuvants, and wounds following

skin cancer (Muangman et al., 2011; Islam et al., 2021). In

addition, bacterial cellulose also could be used in medicine

delivery systems. Silver nanoparticle-based bacterial cellulose
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(Ag-BC) has antibacterial effect against both Gram-positive and

Gram-negative microorganisms (Yadav et al., 2015). In the

domains of orthopedics, otology, ophthalmology, urology, and

neurosurgery (Meyer and Palmer, 1934; Bodin et al., 2010; Wang

et al., 2010; Kowalska-Ludwicka et al., 2013; Martínez Ávila et al.,

2014). Bacterial cellulose is widely applied as a scaffold for guided

tissue regeneration. In the realm of tissue engineering, it has an

indispensable status.

Hyaluronic acid

Hyaluronic acid (HA) was first isolated from the vitreous

fluid of the eye by Meyer and Palmer in 1934 (Monteiro et al.,

2014). As an anionic linear polymer composed of D-glucuronic

acid and N-acetyl-D-glucosamine, HA could be found in all

living organisms. Similar to other natural polymers, HA’s

biocompatibility and biodegradability make it one of the most

widely used carbohydrate-based natural polymers in the field of

tissue engineering. In the past two decades, HA has been involved

in a wide range of biological activities, including the control of

cell motility and adhesion, promotion of wound healing, and

drug delivery in tissue engineering scaffolds. HA binded to

CD44 and HA-mediated motor receptor (RHAMM) could be

used as cell surface receptors. Internalization triggered by CD44-

HA binding can prevent CD44 overexpression in cancer cells,

making it possible to distribute anticancer drugs (Simman et al.,

2018). Numerous biomedical materials based on HA derivatives

have been commercialized, including esterified derivatives like

ethyl/benzyl esters (HYAFF®) and cross-linked HA gels that have

been extensively investigated for use as wound dressings.

Mucoadhesive HA solutions (SYNVISC® and ORTHOVISC®)
are also used in clinical settings as synovial fluid substitutes for

the purpose of reducing pain and improving joint mobility in

patients with osteoarthritis. The AMVISC® vitreous fluid

replacement for ophthalmic applications is based on HA,

which protects sensitive eye tissue during eye surgery. In the

field of tissue regeneration, the HA-based scaffold Hyalomatrix®

(Anika therapy) can be employed as a dermal substitute for

severe surgical wounds, which can promote capillary growth and

attract fibroblasts to grow inward after delivery to the wound bed

(Faga et al., 2013; Dwivedi et al., 2020).

Alginate

Alginate, also known as sodium alginate, is an anionic

polysaccharide found in the cell wall and intercellular space of

algae. It is a block copolymer composed of two different ratios

and arrangements of glycuronates ((1,4)-linked β-d-mannuronic

acid and α-l-guluronic acid), which allows aqueous solutions of

alginate to exhibit a non-Newtonian behavior similar to

glycosaminoglycans. Due to its excellent properties including

non-toxicity, biocompatibility, non-immunogenicity,

straightforward gelation, controlled degradability and cheap in

price, alginate has been used in a wide range of biomedical

applications. Alginate gels could encapsulate molecules or cells

because of their gentle characteristics (Lim and Sun, 1980;

Gasperini et al., 2014). In the 1980s, alginate containing

encapsulated pancreatic cells was first implanted into humans

(O’Meara et al., 2015). Commercial products based on alginate

derivatives, such as Kaltostat® and AlgiSite®, are frequently used
in wound care, mainly for the treatment of venous leg ulcers,

donor wound dressings, pressure ulcers, and so on (Lee and

Mooney, 2012; Dumville et al., 2014; Brenner et al., 2015;

Khoshzaban et al., 2018; Langa et al., 2018). Alginate

hydrogels can also be used as scaffolds and matrices for the

capture and delivery of bioactive molecules or cells, and are

widely used for tissue regeneration. Alginate can also be used as a

drug delivery system, and encapsulation of particular proteins

and bioactive substances in alginate gels can enhance their

targeting.

Synthetic renewable polymers

Synthetic renewable polymers are a group of polymeric

materials produced by biologically or chemically

polymerization process (Modjarrad and Ebnesajjad, 2013;

Takeuchi et al., 2013; Sun et al., 2015a; Duan et al., 2015; Sun

et al., 2016; Duan et al., 2017a; Duan et al., 2017b; Ricklefs et al.,

2017; Yang et al., 2022). The production of monomers for this

kind of polymer consumes naturally-based molecules or

macromolecules (e.g., sugar, starch, cellulose, proteins, etc.) as

raw materials. Originated from photosynthesis CO2 fixation

process of plant or microorganisms, their carbon footprints

are lower than traditional fossil fuel-based polymers. The

premise of discussing the impact of a material on greenhouse

effect is that its production and application should reach a certain

scale. So far, the most intensively studied synthetic renewable

polymers, which are expected to make significant contributions

to decarbonization, namely polyhydroxyalkanoates (PHAs) and

polylactic acid (PLA) related polymer materials.

Poly (hydroxyalkanoates)

In the past few decades, as a group of intracellular polyesters

synthesized by different microorganisms, PHAs have been

developed rapidly as a kind of new biosynthetic renewable

polymers. PHAs are the largest group of biopolymers, and

new types of them can be manufactured by biosynthesis with

genetically modified bacteria. As shown by Figure 6, based on the

feed stocks such as cane/sugar beet sucrose, corn starch-based

glucose, plant oils (soybean oil, palm oil, corn oil, etc.) and

animal lipids, PHAs with different monomeric building blocks
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could be produced by biosynthesis process catalyzed by enzymes

in living cells. The easy availability, biocompatibility and

biodegradability of PHAs make them suitable for biomedical

applications, such as absorbable sutures, drug delivery systems,

scaffolds and implants to support stem cell proliferation

materials (Pourmollaabbassi et al., 2016). Lim et al. compared

the properties of different PHA scaffolds in the field of bone

tissue engineering, showing well bioactivity and the ability to

induce bone regeneration (Lim and Sun, 1980). Bagdadi’s

experiments proved the excellent performance of poly-3-

hydroxyoctanoate in cardiac tissue engineering (Bagdadi et al.,

2018). In addition, PHAs can be applied as wound dressings for

skin defect repair. Shishatskaya et al. (2016) employed poly (3-

hydroxybutyrate- co-4-hydroxybutyrate) solutions as

experimental wound dressings and discovered that they

promoted wound tissues healing and vascularization. It has

also been found that PHA alone can stimulate cell cycle

progression, reduce mitochondrial reactive oxygen species

(ROS) production, decrease neuronal mortality, and inhibit

neuronal membrane potential changes for the treatment of

neurodegenerative illness and seizures control (Yum et al.,

2012). Due to its high degradation rate, PHAs could be

utilized as a substitute for disposable plastics such as medical

appliances, medical packaging and medical trash-bags (Lee and

Mooney, 2012; Lim et al., 2017). Although the market prices of

these products are not high, the total consumption of them is

huge, which are of great significance for decarbonation and

environmental protection.

Polylactic acid

PLA is one of the most widely utilized synthetic renewable

polymers in the biomedical field. As a hydrolyzable aliphatic

semi-crystalline polyester, PLA can be prepared both by direct

polymerization of lactic acid and by ring opening polymerization

(ROP) of lactide (Figure 7) (Langa et al., 2018). The monomers of

PLA could be generated by fermentation of carbohydrates

(maltose, sucrose, lactose, etc.), which makes it renewable and

sustainable. PLA with different stereoisomeric structures show

distinct properties (Abd Razak et al., 2012; Khemani and Scholz,

2012; Pang et al., 2014b; Pang et al., 2014c; Sun et al., 2014; Sun

et al., 2015b; Rokutanda et al., 2015; Hadasha and Bezuidenhout,

2017; Zhang et al., 2017). For example, poly (D-lactic acid)

(PDLA) and poly (L-lactic acid) (PLLA) are semi-crystalline

materials, and poly (D, L-lactic acid) (PDLLA) and meso-PLA

are amorphous materials (Giménez et al., 2018).

Despite its complicated molecular stereo structure, PLA

shows many advantages in terms of chemical and mechanical

properties, biocompatibility and biodegradability. A variety of

PLA-based biomedical products have been developed, including

surgical clips for surgical instruments, sutures, adhesives for

wound closure, bone staples and plates, regenerative scaffolds

and drug delivery systems, even medical devices and packaging,

etc. Among them, PDLLA is widely used as biomedical coating

for orthopedic materials because of its excellent mechanical

stability and biocompatibility. Low molecular weight PDLLA

can be bonded to antibiotics and other drugs for local drug

delivery. Because of its nontoxicity, biocompatibility, and

biodegradability, PLLA has been widely explored for cardiac

tissues.

Gimenez’s experiments used PLLA scaffolds with

overexpression of connexin43 (CX43) to line diaphragm

myoblasts (DM) in a model of acute coronary artery occlusion

in sheep. The results showed that PLLA plate inoculated with

DM overexpressing CX43 could reduce the infarct size, decrease

the fibrosis degree of infarct boundary, and induce cardiovascular

regeneration, so as to improve cardiac function (Arya et al.,

2018). PLLA has relatively high tensile strength, low elongation,

and superior modulus (~4.8 GPa). And it takes time from

months to years to for PLLA derided products to lose

mechanical integrity. These properties make PLA more

FIGURE 6
Schematic illustration for synthetic route of PHAs with different monomeric building blocks.
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suitable for load-bearing roles (e.g. orthopedic fixation).

Numerous PLA-based orthopedic products are available on

the market, such as Bio-Anchor® (Conmed), Maniscal Stinger
® (Linvatec) and Phantom Suture Anchor® (DePuy). The ability
of PLLA to form high-strength fibers can also be used to develop

absorbable row sutures and scaffold materials to replace non-

degradable fibers. Meanwhile, PLLA has applications in tissue

engineering, for example, Sculptra®, an injectable product of

PLLA, helps HIV patients who are losing face fat.

PLA related polymers

In the field of biomedical applications, poly (lactic-co-glycolic

acid) (PLGA), copolymer of PLA and poly (glycolic acid) (PGA), is

considered to be the most representative PLA related polymer

materials (Mulinti et al., 2018). The degradation and mechanical

properties of PLGA can be adjusted by varying the ratio of lactic acid

(or lactide) and glycolic acid (or glycolide).With excellent properties

of biocompatibility, non-cytotoxicity and processability, PLGA has

been widely used for biomedical and tissue engineering applications

(Lanao et al., 2013). For example, PLGA can be utilized as various

drug delivery vehicles (microspheres, nanospheres or nanofibers) for

the controlled release of drugs, such as for the treatment of cancer

and the release of hormone-based drugs. Zamani et al. (2015)

developed a novel SDF-1α delivery system by using coaxial

electrospraying. The SDF-1α incorporated PLGA particles they

achieved had distinct core-shell structure, with the shell thickness

of ~300 nm. Their experiment results showed that the as-prepared

core-shell particles could realize controlled release of the SDF-1α for
40 days Moreover, as one of the potential candidates for application

in tissue engineering, a large number of researchers have applied

PLGA in scaffold development studies. Liu et al. (2012) showed that

nanocomposite material of silver nanoparticle/PLGA stainless steel

alloy had strong antibacterial and osteoinductive properties,

indicating its potential for bone regeneration applications. Lin

et al. (2019) applied a tyramine-modified bilayer PLGA scaffold

in a porcine model and found that chondrocytes in the scaffold with

small and large pores in the upper and lower parts, respectively, had

the ability to promote cartilage regeneration and articular cartilage

repair. So far, there are many marketable products based on PLGA.

For example, Vicryl®, the most popular clinically used absorbable

suture, is prepared by PLGA copolymer with 90% glycolic acid and

10% L-lactic acid. Vicryl Rapid®, the irradiated version of Vicryl®,
shows to be quick in degradation. By increasing the L-lactic acid/

glycolic acid ratio in PLGA, ANACRYL® provides absorbable

sutures with slow degradation rate. In all, depending on the

application site, sutures with varying degradation rates can be

selected to achieve the best healing effect. Tissue-engineered skin

grafts (Dermagraft®) are the products marketed based on PLGA

polymers for use as skin replacement materials.

Due to its biodegradability, the use of PLA related polymer

materials in packaging materials and other disposable products

has already received significant attentions (Sinclair, 1996;

Haugaard et al., 2002; Frederiksen et al., 2003). Recently,

more and more research works related to development of

PLA-based nanocomposites for applications in biomedical

devices, packages, and consumable products have been

reported. Nonato et al. reported the preparation of PLA

nanocomposites containing ZnO nanofibers by solvent-cast

3D printing method. This kind of PLA/ZnO nanocomposites

were expected to be applicable in medical packaging applications

(Nonato et al., 2019). Using hydroxyapatite with micro- and

nano-particles as filler, Zaharescu et al. studied the effect of

FIGURE 7
Schematic illstration for preparation process of PLA based biomedical products from renewable raw materials.
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particle size on stability of PLA-based composites. It had been

demonstrated that composites with nanosized filler showed

better stability under gamma-irradiation. The results of this

work would do good to developing long shelf-life PLA-based

products for medical wears, face masks and other disposible

devices (Zaharescu et al., 2020). Focusing on developing new

materials for food and drug containers, packaging items, medical

devices, Aversa et al. studied the wear resistance property of

injection moulded PLA-talc composites detailedly. By

constructing PLA super-networks of oriented and pyknotic

crystals with the assistance of ductile poly (butylene adipate-

co-terephthalate) (PBAT) nano-fibrils, Zhou et al. prepared PLA

composite film with excellent gas barrier performance, high

strength, and toughness, which showed promising prospect to

be applied in the field of pharmaceutical packaging (Zhou et al.,

2016). Antimicrobial and photodegradation properties of PLA/

CaO nanocomposites were studied by Loyo et al. (2022). Results

of their experiments showed that incorporating CaO

nanoparticles into the PLA could be an applicable strategy for

development of eco-friendly new medical packaging and devices.

Zhao et al. (2019) studied effect of sterilization methods on

commercially available biodegradable polyesters, focusing on

their potential applications for single-used medical products.

Their experiments demonstrates that, by choosing a suitable

sterilization process, PLA could have potential to be used for

production of transparent medical devices (the barrel of syringes

or microfluidic chips), while PLA/PBAT blends might be applied

in preparing non-transparent medical packaging.

CO2-based polymers

Among the various strategies for CO2 fixation, to produce

CO2-based polymers offers significant potential (Hu C. et al.,

2018; Li et al., 2018; Duan et al., 2021a). The CO2-based polymers

usually are prepared by ring-opening copolymerization (ROCP)

of CO2 and epoxides (Figure 8), under the assistance of certain

catalysts (Li et al., 2018). Most of the CO2-based polymers

produced by this way are aliphatic polycarbonates, which

could be used for replacing the petroleum plastics in some

applications such food and medical packaging, agricultural

films, trash bags, etc. Moreover, low molecular weights CO2-

based polymers could be used to synthesis poly (ether carbonate)

polyols. Replacing petrochemical polyether polyols with these

CO2-based polymers derived poly (ether carbonate) polyols in

polyurethane manufacturing would lead to significant reduction

in greenhouse gas emissions (~20%). Currently, the annual

requirement for polyols in field of for polyurethanes

production is ~3–4 Mt (Hemamalini and Dev, 2018; Jafari

et al., 2018; Bauer and Menrad, 2019; Gibb, 2019; Shokraei

et al., 2019; Heath et al., 2020). Therefore, the replacement of

polyether polyols by poly (ether carbonate) polyols of CO2-based

polymers could add value to waste CO2 emissions, and do good

to decarbonization.

Poly (propylene carbonate)

PPC is an amorphous aliphatic polycarbonate produced by

alternating copolymerization of carbon dioxide and propylene

oxide (Fu et al., 2000; Liu et al., 2015). The low price of propylene

oxide and CO2 has made PPC one of the most extensively

researched and promising eco-friendly synthetic polymers.

Since PPC is non-toxic, non-polluting, highly transparent,

renewable and degradable, barrier, malleable and superior

electrical conductivity, it can be used for preparation of

various biomedical products (Dånmark et al., 2011; Weems

et al., 2021). However, with side chains of -CH3 on its main

FIGURE 8
Synthetic routes for typical CO2-based polymers prepared by ROCP of CO2 and epoxides.
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molecular chain, PPC has drawbacks of poor dimensional

stability and a low glass transition temperature (Tg), which

restrict its usage in high-temperature resistance application

fields. On the other hand, the degradation products of PPC in

vivo are water and carbon dioxide, which can avoid the adverse

effects similar to that produced by PLA and PLGA and have less

inflammatory reactions. This facilitates the develop of PPC as a

scaffold for tissue engineering applications (Liu et al., 2015).

Manavitehrani et al. developed a gas foam porous scaffold

designed based on PPC, starch and bio-glass. Both in vitro

and in vivo experiments showed well biocompatibility and

tissue infiltration. And in a joint implantation model, bone

tissue integration was observed (Manavitehrani et al., 2019).

In another experiment, PLA, tricalcium phosphate (TCP)

nanoparticles and PPC were mixed to form a novel polymer

scaffold named for PPTE for short. By inoculating mouse

osteoblasts onto the PPTE composite, the researchers had

found that the PPTE composite could promote attachment,

proliferation, and mineralization of osteoblast. Meanwhile,

PPTE composites also could control the production of bone

bridge proteins, and promote the activity of phosphatase, making

them viable materials for applications in bone regeneration (Fang

et al., 2015). Compared to conventional degradable biopolymers,

PPC exhibits better flexibility and maneuverability, making it an

ideal carrier for drug delivery and a polymeric drug retardation

material (Li et al., 2004; Manavitehrani et al., 2019). Using

sirolimus-eluting PPC mesh in a rat jugular vein to abdominal

aorta autograft model, it showed that PPC mesh could decrease

arteriovenous graft stenosis and suppress MMP-2 and MMP-9

expression (Sun H. et al., 2019). In a recent study, single/double

epoxy-capped PPC and chitosan were combined to form

chitosan/PPC nanoparticles (CS/PPC NPs). The polymer was

then tested for chemical and antibacterial properties. Experiment

results revealed that the CS/PPC NPs had a high level of

antibacterial activity against Escherichia coli and

Staphylococcus aureus, providing a novel strategy for the

manufacture of novel nano-size antibiotics (Quan et al., 2021).

Because of its good water barrier and low gas permeability,

PPC shows strong and long-lasting antibacterial activity. These

features make PPC suitable for preparing medical packaging,

dressings and other devices (Quan et al., 2021). In addition, PPC

can be used as bone fixation materials, surgical sutures, and as

“additives” to improve the properties of other polymers (Yang

et al., 2014; Jing et al., 2015; Manavitehrani et al., 2017; Chen X.

et al., 2022). Yang et al. applied PPC to improve the performance

of PLA. The elastic composite of β-TCP/PPC/PLA showed non-

toxic to osteoblast-like cells. The tensile strength of the composite

material was close to 1MPa, and the elongation at break (%) was

~1100%. The modified PLA-derived composite showed

advanced mechanical and biological properties (Yang et al.,

2014). In the field of dentistry, sodium fluoride-PPC (NaF-

PPC) composite strips obtained by adding filler of NaF into

melting PPC, exhibited excellent remineralization and

antibacterial properties, and might be used for preventing

dental caries (Chen X. et al., 2022). As the most promising

CO2-based polymers that can be used in numerous

biomedical applications, PPC and its derive nanocomposites

merits further exploration.

Poly (cyclohexene carbonate)

Based on ROCP of CO2 and cyclohexane oxide, poly

(cyclohexene carbonate) (PCHC) is another kind of most

common and well-studied CO2-based polymers. PCHC

contains a six-member ring structure, which is more rigid

and has better thermal performance than PPC (Welle et al.,

2007; Liu et al., 2021). At room temperature, it is a brittle

material and has high Tg (>100°C). It is a unique epoxide/CO2

copolymer that can be used at high temperature. The

hydrophobic cyclohexane groups around the main chain of

PCHC molecular make it more hydrophobic and less

biodegradable. These factors make PCHC more difficult to

be applied directly. However, composites of PCHC combined

with other materials have been widely tested for application in

drug-loaded nanoparticles, hydrogels, pore-forming

substances, biodegradable surfactants, and regenerative

scaffolds, etc (Liu et al., 2021). Alexander et al. prepared

custom tissue stents of PCHC by electrostatic spinning

technology (Welle et al., 2007). Zhang et al. used cationic

PCHC as drug carriers to wrap therapeutic siRNAs. Serving as

a siRNA carrier, PCHC showed good biodegradability,

negligible cytotoxicity, and high transfection efficiency. It

had been demonstrated that PCHC/siRNA nanocomposites

had promising potential in pancreatic cancer treatment

(Zhang X. et al., 2021).

Poly (ethylene carbonate)

As a well-studied fatty acid polycarbonate, poly (ethylene

carbonate) (PEC) obtained by ROCP of ethylene oxide and CO2,

shows unique surface erosion caused degradation both in vitro

and in vivo. As a result, drug release behavior of PEC-based

delivery systems usually is directly correlated with polymer mass

loss, which would improve the predictability of the drug release

profile these drug delivery systems (Bohr et al., 2016). On the

other hand, PEC degradation could be triggered by some special

enzymes and cells. This feature would do good to realize the drug

release at particular locations in vivo. Priemel et al. (2018) had

found that adding PEC to PLA microparticles could increase

rifampicin release and enhance antibacterial activity.

Macrophage induced surface degradation of PEC was

investigated in vitro. Degradation of PEC with molecular

weight of 41 kDa was slower than that of PEC with molecular

weight of 200 kDa, which was proved to be attributed to
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macrophage induced surface degradation. And this work

indicated that on-demand drug delivery induced by

macrophages can be achieved with PEC-based drug delivery

systems (Chu et al., 2014). As PEC has a short degradation

period, typically completed within 2–4 weeks, it is difficult for

PEC to be used in long-term drug delivery (Bohr et al., 2016). By

embedding anti-oxidants into the PEC polymer matrix to

scavenge the free radicals produced by phagocytes,

Selvakumar et al. (2016) had slowed down the degradation

rate of PEC. This work revealed the degradation mechanism

of PEC, and provided a theoretical basis for developing long-term

drug delivery systems with controlled release behaviors.

Poly (butyl carbonate)

Poly (butyl carbonate) (PBC), derived frommonomers of epoxy

butane and CO2, has good qualities of elasticity, tensile strength,

elongation at break over 400%, Tg of −32°C. Despite of PBC’s good

biocompatibility (Cai et al., 2017), its poor thermal stability and low

melting temperature (~55°C) have restrict its applications. Thus

method of blending PBC with other polymers, has been frequently

utilized to enhance the qualities of PBC-derived materials for a

variety of applications (Wang et al., 2012; Wu et al., 2015; Li et al.,

2019a). PBC has been transformed into biodegradable nanofiber

membranes by numerous researchers for biomedical applications.

For example, PBC/PLA/chitosan composite nanofiber membranes

prepared by electrostatic spinning technique, had exhibited

outstanding hydrophilicity, excellent antibacterial activity, and

mechanical properties (Gu et al., 2019). In another work, axial

electrostatic spinning was utilized to create core-shell PVA/PBC

composite nano-fibers, which were then used as drug carriers of

doxorubicin (DOX). The attachment and proliferate of

SKOV3 ovarian cells could be inhibited by this DOX-loaded

PVA/PBC core-shell nano-fibers, which indicated that as

prepared nanocomposites have the potential to be used in tissue

engineering and chemotherapy (Yan et al., 2016). Likewise, PBC can

potentially be used as drug delivery vehicles for targeted therapies

(Liu et al., 2007; Gu et al., 2018). Gu et al. (2018) prepared

biodegradable nanofibers made of PBC, PLA, and graphene

oxide (GO), and employed this PBC/PLA/GO composite

nanofiber as a carrier for anti-tumor drugs. The findings

indicated that the PBC/PLA/GO nanofiber matrix had the dual

function of supporting cell imaging and drug delivery, which was

promising for up-coming biomedical applications. PBC can also be

added to other biodegradable polymers to enhance their mechanical

and chemical characteristics. For instance, Wu et al. indicated that

melt-blending PBC and PPC in an intermittent mixer might

enhance PPC’s processing qualities and serve as a toughening

agent (Wu et al., 2015). With good overall performance and low-

cost, PBC is considered to be one of the most promising new

biodegradable polycarbonates and deserves further development

and utilization.

Other CO2-based polymers

In addition to the common polycarbonates mentioned

above, there are numerous o CO2-based polymers that have

applications in the biomedical field. Poly (trimethylene

carbonate) (PTMC) has excellent biocompatibility,

biodegradability and flexibility, and is very attractive for

applications as nanocarriers of pharmaceuticals. It had been

found to have greater kinetic stability and enhanced drug

transport, exhibiting excellent chemotherapeutic efficacy

against various cancers (Wang et al., 2013; Jiang et al.,

2014; Li et al., 2019b; Zhou et al., 2020; Zou et al., 2020).

In addition, PTMC can be used as hydrogels or 3D printed

scaffolds for tissue engineering, such as vascular grafts and

bone regeneration scaffolds (Song et al., 2011; Schüller-Ravoo

et al., 2013). In a recent study, fabricated custom scaffolds for

orbital floor repair by stereolithography using 40wt%

hydroxyapatite in PTMC resin, which promoted vascular

neovascularization and bone morphogenesis in the orbital

floor (Guillaume et al., 2020). Poly (limonene carbonate)

(PLC), generated from limonene oxide and carbon dioxide,

is then widely used in coatings and is a promising bio-based

alternative (Li et al., 2017; Li et al., 2021). Poly (propylene

carbonate maleate) (PPCMA) is a new kind of CO2-based

polymers produced by ternary polymerization of PO, CO2,

and maleic anhydride. PPCMA’s primary chain contains a

double bond that gives it versatility and practicality, enabling

its widespread application in numerous research domains. Liu

et al. (2011) encapsulated PPCMA by microencapsulation and

controlled drug methanesulfonic acid. The utility of PPCMA

for controlled release of drug pazufloxacin mesylate revealed

the potential of PPCMA as a long-term drug sustained release

carrier. Additionally, absorbable CO2-based polymers can be

developed as tracers to direct imaging agents to certain areas

in applications of medical imaging, anti-cancer immunity

therapy, antimicrobial materials, etc (Ding et al., 2012; Voo

et al., 2015; Zou et al., 2016; Zou et al., 2017; Lee et al., 2020;

Liang et al., 2021).

Conclusion

In this review, focusing on the reduction of greenhouse gas

emissions by biomedical polymer products, recent advances in

studies on nanocomposites of CO2 fixation derived reproducible

polymers have been reviewed. The CO2 fixation derived

renewable polymers have been divided into three groups,

namely naturally-derived polymers, synthetic renewable

polymers and CO2-based polymers. As most of the CO2

fixation derived renewable polymers are biocompatible, non-

cytotoxic, biodegradable and eco-friendly, there are more and

more scientists engaged in researches on developing new kinds of

biomedical materials by preparing nanocomposites of them. So
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far, great majority of research works in this field have been

focused on high value-added biomedical applications, including

tissue engineering, drug delivery, cancer treatment and organ

transplantation, etc. However, the overall consumption of

biomedical materials in these field is relatively small, which

has a less important impact on reduction of CO2 emissions.

In comparison, the researches on eco-friendly materials applied

for disposable biomedical products, including diagnostic

consumables, medical protective items (protective suits, face

masks, goggles, surgical gloves, etc.), other medical

consumables (sample tubes, drug packaging, medicine

containers, syringe, infusion devices, etc.) and medical

packaging materials, are obviously less than the former

direction. Unfortunately, the raw materials of these low-cost

disposable biomedical products, which have been ignored by

scientists, are mainly petroleum-based polymers. Most of these

consumable products have relatively short life cycle, and play a

leading role in environmental pollution caused by biomedical

polymer materials. Therefore, the authors suggest that more

attentions and efforts should be given to develop new

materials with small carbon footprint, based on CO2 fixation

derived reproducible polymers for these short-life biomedical

products in future.
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