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Abstract

The recent availability of whole-genome sequencing data affords tremendous power for statistical inference. With this, there
has been great interest in the development of polymorphism-based approaches for the estimation of population genetic
parameters. These approaches seek to estimate, for example, recently fixed or sweeping beneficial mutations, the rate of
recurrent positive selection, the distribution of selection coefficients, and the demographic history of the population. Yet
despite estimating similar parameters using similar data sets, results between methodologies are far from consistent. We here
summarize the current state of the field, compare existing approaches, and attempt to reconcile emerging discrepancies. We
also discuss the biases in selection estimators introduced by ignoring the demographic history of the population, discuss the
biases in demographic estimators introduced by assuming neutrality, and highlight the important challenge to the field of
achieving a true joint estimation procedure to circumvent these confounding effects.
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One of the principle aims of population genetics is to

characterize the relative roles of adaptive and nonadaptive

processes in shaping patterns of genomic variation. With the

advent of next-generation sequencing, data are becoming

increasingly sufficient to afford power to large-scale

statistical inference. Researchers have become increasingly

focused on quantifying the distribution of selection

coefficients of newly arising, segregating, and fixed

mutations and describing the neutral demographic history

of the population under consideration.
The last decade has seen a tremendous increase in

computational approaches for the estimation of population

genetic parameters. These methodologies are both likelihood

based and approximate Bayesian computation (ABC) based

and rely on summary statistics, which are based on expected

patterns in the site frequency spectrum (SFS), linkage

disequilibrium (LD), or divergence. Although intimately

related, these estimators have largely been addressed as 3

separate fields: demographic estimation, genomic scans for

adaptive fixations, and recurrent hitchhiking (RHH) estimation.
The first challenge in comparing between existing

estimators is achieving an understanding of the parameters

of interest. This is not always straightforward—with different

nomenclature (e.g., the population selection coefficient is

designated as either c and a) and different population scaling

between publications (e.g., 2N or 4N). A summary of the

parameters being estimated, and the variety of nomenclature

used to name those parameters, is given in Table 1. Even after

rescaling and renaming to make estimators comparable,

a number of obvious inconsistencies between statistics begin

to arise. As a motivating example, among RHH estima-

tors—statistics designed to estimate the distribution of

selection coefficients and the rate of recurrent selection—

results differ wildly, even when considering identical data sets.

Sella et al.. (2009) found that among 5 commonly used

estimators applied to data from Drosophila melanogaster,

estimates of the mean selection coefficient differ by 3 orders

of magnitude, and estimates of the mean rate of adaptation

differ by 2 orders of magnitude. Reasons for these

discrepancies are unclear, though could be attributable to

the different approach each estimator takes for dealing with

the underlying demographic history of the population.

Additionally, there appears to be a correlation with the type

of data used for estimation—with divergence-based ap-

proaches consistently estimating smaller selection coefficients

than polymorphism-based approaches (Figure 1).
Thus, our aim here is 2-fold. First, we will review the

current state of population genetic inference, discussing the

similarities and differences of existing approaches and

presenting what is known about their relative performance.

This is intended to serve as a useful reference for

empiricists attempting to determine which methodology
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is appropriate for their specific data set and question.
Second, we will make a case for the importance of merging
demographic and selection inference, highlighting their
strong interdependence and emphasizing the need to develop
true joint estimators of selection and demography. This is
intended as a call to theoreticians, as this need will become
increasingly pronounced as whole-genome data sets continue
to accumulate.

Inferring the Parameters of Selection

A beneficial mutation that rises in frequency within a pop-
ulation due to positive selection will impact local variation by 1)
increasing the frequency of linked neutral alleles—a process
known as the hitchhiking effect (Maynard Smith and Haigh
1974; Kaplan et al. 1989), 2) increasing LD on either side of
the target (Kim and Nielsen 2004), and 3) reducing local
variation—with the extent of this reduction determined by the
ratio of the selection coefficient and the local recombination
rate (s/r). This distinct genomic pattern is known as a selective
sweep and different statistical methods, which will be discussed
below, have been developed to detect these characteristic
patterns.

Frequency Spectrum–Based Estimators

The most common way to detect a pattern that departs from
the standard neutral model is to use summary statistics
based on the SFS, which represents all of the poly-
morphisms in a sample and their frequencies. The simplest
of these is Watterson’s estimate of h 5 4Nl (hW, Watterson
1975), which represents the number of segregating sites in
a population sample. Combining other measures of h, 2
common tests of the equilibrium neutral model are often
used to identify sweep-like patterns: Tajima’s D (Tajima
1989), sensitive to the number of rare variants and high
frequency variants; and Fay and Wu’s H (Fay and Wu 2000),
sensitive to high frequency–derived variants. As has been
well reviewed in the literature, a selective sweep is expected
to reduce variation, resulting in a skew toward rare
mutations around the target of selection, and an excess of
high-frequency mutations in flanking regions in the presence
of recombination (see review of Nielsen 2005).

Frequently, methods for detecting signatures of positive
selection in natural populations make use of the fact that the
spatial distribution of mutations is expected to be different
under neutrality than after a selective sweep. The composite
likelihood ratio (CLR) test of Kim and Stephan (2002)
considers the probability of observing a derived allele at
a given frequency when drawn from a null or sweep
distribution. The sweep model is taken from Fay and Wu
(2000) and gives the expected frequency spectrum of
a derived variant immediately after a hitchhiking event as:

/ðpÞ5f h
p
� h

C
for 0,p,C ;

h
C

for 1� C,p,1;
ð1Þ

where p is the frequency of the derived variant and C is
approximated by 1 � er/s (e is the frequency of the beneficial

Table 1 Summary of common parameter nomenclature

Symbol(s) Estimated selection parameters

Ne Effective population size
h Population mutation rate 5 4Nel
hW Watterson’s estimate of h
q Population recombination rate 5 4Ner
D Tajima’s test of the equilibrium neutral model
H Fay and Wu’s test of the equilibrium neutral

model
p Average pairwise difference between

nucleotides
s Selection coefficient
a, c Population selection coefficient; (2Nes)
FST Measure the amount of heterozygosity within

a subpopulation compared with the entire
population

KA/KS Ratio of the rate of nonsynonymous
substitutions to the rate of synonymous
substitutions, also referred to as dN/dS

xMAx Finds a window that maximizes sweep-like LD
patterns for a given region

x Modified xMAx statistic; using a variable sliding
window approach

X Location of selected site
2Nk Rate of beneficial fixation (per base pair, per 2N

generations)
a Fraction of advantageous amino acid divergence
m(DNe) Ancestral population size/current population

size
k(DNe) Population size during polymorphic phase/

population size during divergence phase
M Population migration rate 5 4Nem
T Time of historical population split
t Time of historical population size change
f Severity of historical population size change
d Duration of historical population size change

Figure 1. Relationship between the strength and rate of

selection in Drosophila. The estimated values for the strength

and rate of selection for various Drosophila data sets (see text).

As shown, inferred values differ by orders of magnitude for

both the rate and strength of RHH. There is perfect overlap

between the estimates of Li and Stephan (2006) and Jensen

et al., and they appear as one point on the graph.
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mutation before in began increasing deterministically, s is the
selection coefficient, and r is the recombination fraction
between the selected and neutral locus).

In this case, the null model is the standard equilibrium
neutral model and assumes a constant population size and
no underlying population structure. As such, Jensen et al.
(2005) point out that rejections of this statistic may similarly
owe to nonequilibrium demographic histories—showing
through demographic simulations that the false-positive rate
can be as high as 80% if the population has experienced
a recent and severe bottleneck. To this effect, they devise
a goodness-of-fit (GOF) test to further distinguish
between these 2 models. This test considers the probability
of the data given a null model (sweep) versus the
probability of an alternative model. Thus, conditional on
rejecting equilibrium neutrality with CLR test of Kim and
Stephan (2002), the GOF statistic explicitly examines fit to
a hitchhiking model, thereby greatly reducing the false-
positive rate. An important and inherent assumption of
these test statistics is that the selective pressure began
acting immediately on a newly arising beneficial mutation
and that this mutation reached fixation in the population
immediately prior to sampling.

Nielsen et al. (2005) took a different approach to add
robustness to CLR test of Kim and Stephan (2002). They
modified this likelihood ratio test by drawing the null
distribution from the background SFS of the region under
consideration, instead of using a standard neutral model.
This method proposes that the probability of observing
a mutant allele at a given frequency, B, is equal to the
probability that all lineages (k) escaped the sweep plus the
probability that a certain number of lineages escaped
the sweep out of n individuals (summed over all k , n,
see Equation 6 in Nielsen et al. 2005). Because the neutral
expectation is taken from the background SFS, multiple
large genomic regions are necessary in order to afford
sufficient power. Thus, this method may be used on whole-
genome data sets, although CLR test of Kim and Stephan
(2002) is intended for subgenomic regions of interest.
Alternatively, SweepFinder can draw its null distribution
from a user supplied SFS created by simulations, and in this
way, it can be used on subgenomic regions. These methods
have the most power when there has been a recent fixation
within a population.

In a recent study by Williamson et al. (2007), they
apply SweepFinder to 1 of every 10 genomic windows
of 200 SNPs in 3 human populations (African American,
European American, and Chinese). From this analysis, they
conclude that as much as 10% of the human genome is
affected by selective sweeps through genomic linkage.
Because of the reliance on the background SFS, these tests
inherently make an assumption about the prevalence of
positive selection in the genome—it must be frequent
enough that outlier loci indeed represent true positives (i.e.,
any model will have outliers) and yet must be infrequent
enough that the background frequency spectrum may be
differentiated from the ‘‘true’’ outliers. As a counterexample
to the above results, Hernandez et al. (2011) find that the

reduction in variation near human substitutions is not
substantial enough to be described by selective sweeps. They
suggest that some other form of adaptation must be
responsible for the majority of phenotypic differences in
humans.

Haplotype-Based Estimators

Another genomic pattern indicative of a selective sweep is
LD. Kim and Nielsen (2004) show that LD corresponds
with high frequency–derived alleles and that there is
increased LD on either side of a beneficial mutation as
well as decreased LD across the sweep region. All of these
patterns owe to independent recombination events in
regions flanking the beneficial mutation. They developed
a statistic, xMAx, which finds a window that maximizes LD
for a given region, and demonstrate that this statistic may
indeed increase the power to detect selective sweeps.
However, like the CLR test of Kim and Stephan (2002),
this statistic is meant for subgenomic regions of interest due
to computational costs and only has power in a very short
time frame following fixation.

The extended haplotype heterozygosity test (EHH) of
Sabeti et al. (2002) also utilizes LD to detect sweep
signatures, but it is designed for detecting sweeps
prefixation. Although this relaxes the assumption of fixation
immediately prior to sampling, it has power over a very
narrow time scale, owing to the rapid transit time of strongly
beneficial mutations. This approach infers the age of high-
frequency SNPs and then identifies those that are too young
to be consistent with neutrality. There are several methods
based on this EHH statistic. In their 2007 publication,
Sabeti et al. expand on this method to look for SNPs that
have been brought to high frequency in one population but
not others (XP-EHH, for cross population EHH). This
method operates under the assumption that populations
may experience different selective pressures, but it is not
robust to neutral demographic histories. Thus, it is useful to
combine multiple signals for different tests to achieve
a manageable false-positive rate (see below). Chen et al.
(2010) develop a similar method to the EHH but use a CLR
to compare the allele distributions between populations
(XP-CLR), and thus, it is not applicable to a single
population.

Voight et al. (2006) observe that the area under the curve
of EHH versus distance is much larger under positive
selection compared with neutrality. They develop a new test
where they plot EHH for the derived and ancestral state of
alleles separately and then integrate each of these EHH
curves (iHSD and iHSA, respectively). They term this new
statistic iHS, for integrating haplotype score:

unstandardized iHS5 ln
�iHSA

iHSD

�
: ð2Þ

This expression is standardized to have a mean of 0 and
a variance of 1. A comparison of the 2 states will produce
a negative value when there are long haplotypes carrying the
derived state, thus suggesting positive selection. Unlike
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EHH, the iHS test can be used to scan the genome for
clusters of SNPs showing evidence of a recent adaptive
event.

A common factor of all haplotype-based tests discussed
above is that they are suitable for detecting nearly or very
recently fixed sweeps because the pattern of LD decays
quickly after fixation of the target due to subsequent drift,
mutation, and recombination. Human genomic scans using
these methods largely identify genes involved in immunity,
hair and skin pigmentation, and metabolism in human
populations, all of which are argued to be affected by recent
adaptations (Sabeti et al. 2002, 2007; Voight et al. 2006;
Grossman et al. 2010).

SFS-LD Hybrid Methods

Particular patterns in LD have been shown to increase the
robustness in identifying adaptive regions in a nonequilib-
rium population (e.g., Stephan et al. 2006; McVean 2007).
Thus, several new approaches have been developed that
combine both frequency- and LD-based statistics in order to
improve power to detect selective sweeps. Grossman et al.
(2010) develop a Bayesian estimator that combines several
statistics in an approach they term CMS or composite
multiple signals. This includes iHS and XP-EHH as well as 2
new tests, DDAF and DiHH. These are sensitive to alleles at
high and low frequencies, respectively, and they also
incorporate FST (see Table 1). By utilizing multiple signals,
they show increased power to localize causal variants of
positive selection.

Pavlidis et al. (2010) modify the xMAx statistic to be used
on whole-genome data sets by implementing a sliding
variable-sized window. Additionally, they modify Sweep-
Finder (Nielsen et al. 2005) by including a small fraction of
monomorphic sites, arguing that although these sites are left
out of the SFS-based test because of their increased
computational load, they provide valuable information
about the SFS surrounding a putative sweep region. Pavlidis
et al. (2010) show that both of these modified statistics
perform better than their original counterparts and that
using them in tandem has increased power to distinguish
single hitchhiking (SHH) events from equilibrium and
nonequilibrium neutral models and also reduces false-
positive rate.

Also of note, Lin et al. (2011) combine several different
summary statistics in a machine-learning approach and find
that their power to detect selective sweeps versus bottle-
necks is improved when the target of selection is known.
A summary of all the methods discussed above can be
found in Table 1.

Quantifying RHH

The methods discussed above are intended to detect SHH
events, that is, they assume sweeps are strong enough to
impact a large genomic region and rare enough to represent
outliers in variation. Kaplan et al. (1989) described an RHH
model, where the expected number of sweeps (per base pair,
per 2N generations) is 2Nk, with sweeps occurring at

random locations in the genome. The RHH model is most
commonly considered for the case of genic selection on new
mutations entering the population (e.g., Kaplan et al. 1989;
Wiehe and Stephan 1993; Braverman et al. 1995). Under this
model, several patterns expected under the single-sweep
model no longer apply. For example, the single-sweep
model predicts that at some distance from the selected site,
coalescent histories are dominated by long internal
branches, as some lineages may escape the recent coalescent
event via recombination. This results in the widely employed
prediction of an excess of high frequency–derived alleles
flanking the fixed site (Fay and Wu 2000)—a pattern also
utilized in the EHH and iHS class of statistics discussed
above. Under RHH models, however, the probability of
such a history is small, as sweeps are on average old and
high frequency–derived mutations have thus likely drifted to
fixation (Przeworski 2002).

Wiehe and Stephan (1993) showed that under an RHH
model, for a given recombination rate, the expected level of
heterozygosity at linked sites relative to neutral expectations
is dependent on the compound parameter (s)(2Nk), where
2Nk is the rate of fixation of beneficial mutations and s is
the average strength of selection. This result implies that the
2 parameters are confounded (much like the effective
population size, Ne, and mutation rate, l, in h 5 4Nel) as
their effect on expected levels of diversity depends on their
product. In D. melanogaster and D. simulans, lower than
expected levels of nucleotide diversity are observed in
regions of reduced recombination (Begun and Aquadro
1992) and in the coding sequences of rapidly evolving
proteins (Andolfatto 2007; Macpherson et al. 2007). These
findings are compatible with either strong but infrequent
positive selection (i.e., large s and small 2Nk) or weak but
common positive selection (i.e., small s and large 2Nk)
(Wiehe and Stephan 1993; Kim 2006).

A number of methods have been proposed for
quantifying s and 2Nk separately using divergence and
polymorphism data. These approaches typically make strong
assumptions regarding the possible distribution of selection
coefficients, the number of adaptive substitutions between
species, or the timing of selection. For example, Li and
Stephan (2006) examined 250 noncoding regions from an
East African population of D. melanogaster. Using a likelihood
approach, they estimate that approximately 160 beneficial
mutations have fixed in this population over the last
;60 000 years (corresponding to 2Nk 5 1.9E�04), with
mean selection coefficient ŝ;0:002. This inference is
achieved by effectively assuming that the timing of all
sweeps is known (and the time since the sweep, s 5 0).
Under a recurrent sweep model, this assumption may bias
the estimation of s and 2Nk. Additionally, as this method
relies on first fitting a demographic model to noncoding
DNA polymorphisms, it is possible that the effects of
purifying selection on the SFS of noncoding DNA
(Andolfatto 2005) may strongly affect the estimates.

Using synonymous polymorphism data in D. melanogaster,
and divergence to D. simulans, at 137 X-linked loci,
Andolfatto (2007) employed a maximum likelihood
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approach to estimate the joint parameter 2Nks, followed by
a McDonald–Kreitman-based method to separately estimate
2Nk and s (McDonald and Kreitman 1991). Based on these
calculations, Andolfatto (2007) estimated that most beneficial
amino acid substitutions are very weakly advantageous on
average (with average ŝ;1:2E� 5 and 2N k̂;2:6E� 03).
Macpherson et al. (2007), using polymorphism data from
D. simulans (and divergence to D. melanogaster), propose
a method to infer the rate and strength of selection from the
spatial scale of variation in polymorphism and divergence. In
contrast to Andolfatto’s (2007) estimates, Macpherson et al.
(2007) estimate a much stronger average selection coefficient
(ŝ;0:01) and less frequent selection (2N k̂;1E� 05).
However, they note that their method is more likely to
detect strong selection, so the effects of many weakly
beneficial mutations may be missed. Additionally, by
assuming fixed selection coefficients—as opposed to distri-
butions—their estimator is upwardly biased (Jensen et al.
2008).

Jensen et al. (2008) took an approximate Bayesian
approach (and see Thornton 2009) to estimate the rate and
strength of recurrent positive selection. They utilized the
relationship of these parameters with the means and
standard deviations of common polymorphism summary
statistics, including the mean average pairwise diversity (p),
the number of segregating sites (S ), hH, and ZnS (a measure
of LD, see Kelly 1997). Calculating these summary statistics
from the observed data and from simulated data with
parameters drawn from uniform priors, they implement the
regression approach of Beaumont et al. (2002), which fits
a local-linear regression of simulated parameter values to
simulated summary statistics and substitutes the observed
statistics into a regression equation. For inferences on
selection parameters, they assume exponential distributions
of 2Nk and s, such that each draw from the prior represents
the mean of the distribution. As shown in Figure 1, these 4
approaches achieve very different estimates for the strength
and rate of recurrent selection.

As a separate but related approach aimed at identifying
the fraction of positively selected amino acid mutations,
Eyre-Walker and Keightley (2009) use information from
both the SFS and divergence. This approach estimates both
this proportion as well as a simple demographic model (by
assuming that the population begins at equilibrium and
experiences a step change in size t generation ago). The
fraction of advantageous amino acid divergence (a) is
estimated as:

a5
dN � dS

RN
0

2NuðN ; sÞf ðsja; bÞds
dN

; ð3Þ

where f(s|a, b)—the distribution of effects of deleterious
mutations—is a gamma distribution with scale parameter
a and shape parameter b. N is the effective population size,
u is the mutation rate per site, and thus, 2Nu(N, s) gives the
rate of fixation from recurrent mutation. They use
synonymous sites to define a neutral class (i.e., s 5 0),
and dN and dS are the numbers of selected (i.e., non-

synonymous) and neutral (i.e., synonymous) substitutions
per site, respectively. The difference between the observed
and expected, as determined from the neutral class, rate of
selected substitution corresponds to the estimate of the
proportion of adaptive substitutions.

Quantifying Levels of Constraint

To estimate the extent of purifying selection, Loewe et al.
(2006) developed a method to characterize the fitness effects
of deleterious nonsynonymous mutations, using polymor-
phism data from 2 species with different effective population
sizes. Briefly, the underlying premise is that variants subject to
sufficiently strong purifying selection will not increase
significantly as effective population size increases, whereas
neutral diversity is expected to increase proportionally with
population size. Thus, the extent to which nonsynonymous
diversity differs between species with different levels of
synonymous site diversity should provide information re-
garding the strength of purifying selection. Thus, for species i,
they define pSi54Nei u; pAi

54cNNei u þ ð1� cNÞHPi ;
KSi5u; and KAi

5cNu þ ð1� cNÞKPi þ cau. Here, HPi is the
mean equilibrium diversity at sites subject to purifying
selection, KPi is the mean substitution rate at these sites,
cN is the fraction of neutral nonsynonymous mutations, u is
the mutation rate per site, and ca measures the substitution as
a fraction of all mutations. Assuming a model of strong
purifying selection (Nes . 1), the equilibrium diversity
contributed by sites subject to purifying selection is well
approximated by the deterministic expression 2u/s (McVean
and Charlesworth 2000). Thus, one can simplify as
pAi

5cnhi þ 2ð1� cnÞ ush; where hi54Nei u, and sh is the
harmonic mean of selection coefficients (assumed to be the
same in both species), and KPi becomes negligibly small.
Thus, KAi

5cnu þ cau and cn5
pA2�pA1
pS2�pS1

. Substituting, selection
may be estimated as:

2Ne1 sh 5
pS1ðpA1

þ pS2 � pA2
� pS1Þ

fpA1
ðpS2 � pS1Þ � pS1ðpA2

� pA1
Þg and

ca 5
KA

KS

� c
N
:

ð4Þ

In order to account for the confounding effects of
population history on the inference of purifying selection,
Williamson et al. (2005) proposed a likelihood model-based
approach in which data from a putatively neutral class
(e.g., synonymous sites) are estimated and fixed in order
to perform the estimation of selection on the puta-
tively selected class (nonsynonymous sites). As such, this
approach also provides a demographic estimate—a stepwise
size change at some time in the past, which may be
compared with the above-described approaches. Briefly,
given that the expected number of polymorphic sites with
i derived alleles segregating in a sample of n is E[xi] 5
h1F1(i, n; s, t), the probability that a particular SNP is at
frequency i out of n is:
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P1ði; n; s; tÞ5
F1ði; n; s; tÞPn� 1
i5 1 F1ðj ; n; s; tÞ

; ð5Þ

where t 5 ancestral population size/current population size
and s5 the time of the size change. With selection, we have
the function:

F2ði; n; c; s; tÞ5
Z 1

0

� n

i

�
qið1 � qÞn� i

f2ðq; c; s; tÞdq; ð6Þ

where there is the additional parameter c 5 2Ns, and the
expected number of polymorphic sites segregating at
a frequency i in a sample of size n becomes E[xi] 5

h2F2(i, n, c, s, t). The probability that a particular
polymorphic site is at frequency i out of n is:

P2ði; n; c; s; tÞ5
F2ði; n; c; s; tÞPn� 1
i5 1 F2ðj ; n; c; s; tÞ

: ð7Þ

Thus, to estimate the demographic parameters s and t,
the likelihood function is maximized using class 1 data
(synonymous sites). Then, for class 2 data (nonsynonymous
sites), these parameters (s and t) are fixed in order to
maximize the expression and estimate the selection
parameter, c. Inherently, this approach does not account
for the effects of linkage on synonymous sites.

Finally, the Eyre-Walker and Keightley (2009) approach
described above also allows for estimation of parameters of
deleterious mutations while additionally accounting for
demography and the presence of beneficial mutations in
a stepwise fashion. A summary of the described methods
may be found in Table 2.

Inferring the Parameters of Population
History

A major complication when attempting to infer the recent
action of selection is the demographic history of the
population under consideration. Many different demo-
graphic scenarios are capable of mimicking hitchhiking
patterns (e.g., Tajima 1989; Przeworski 2002; Jensen et al.
2005). Thus, accurate estimation of the underlying de-
mographic model is essential to correctly identifying
genomic regions affected by positive (and purifying)
selection.

Demographic scenarios involving population subdivi-
sion have been a major focus in population genetics and
molecular ecology. One of the most common models—
‘‘isolation–migration’’—considers a population giving rise to
2 populations in the continued presence of gene flow. This
model has at least 6 major parameters: the population sizes
of the ancestral and 2 extant populations, migration rates
between the 2 populations, and the separation time since the
ancestral population split (Figure 2). Nielsen and Wakeley
(2001) first developed a likelihood/Bayesian framework for
estimating the demographic parameters based on a single
nonrecombining locus drawn from the 2 populations. Under
this model, the ancestral state was inferred by tracingT
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genealogies backward in time under the following coalescent
process: Assume that at a given point in time, there are n1
ancestral gene copies in population 1 and n2 ancestral copies
in population 2. Coalescence events occur in population 1
and population 2 at rate n1(n1 � 1)/2 and n2/(n2 � 1)/2r,
respectively, where n2/n1 / r. At the same time, migration
events are occurring at rates n1M1 and n2M2, and mutations
arise independently on each lineage according to a Poisson
process with rate q/2. Coalescence events occur until the
most recent common ancestor. According to this process,
probabilities can be assigned to different genealogies.
Nielsen and Wakeley (2001) subsequently implemented
a Markov chain Monte Carlo approach (Metropolis et al.
1953; Hastings 1970) to jointly approximate the demo-
graphic parameters of the integrated likelihood function.

The application of this model is extended by considering
multiple independent unlinked loci simultaneously (Hey
and Nielsen 2004), and intralocus recombination has been
subsequently introduced into the model (Becquet and
Przeworski 2007). Given the clear phylogenetic relationship
among populations, this model has also been extended to fit
demographic scenarios with more than 2 populations (Hey
2010). However, because this method relies on coalescence
simulation, the method quickly becomes computationally
intractable as population size increases due to its de-
pendence on population scaled parameters.

Based on a population survey of variation, summary
statistics like FST and Tajima’s D may be used to infer

changes in historical population size, but these measures
only provide a rough picture of the demographic model.
Thornton and Andolfatto (2006) implemented an ABC
method based on several summary statistics to infer
bottleneck parameters in non-African populations of
D. melanogaster. Although these summary statistics may
produce good-fitting models, within this computationally
efficient ABC framework, it may indeed be possible to
utilize the full frequency spectrum in future work. And
although previous work estimated these parameters by
maximizing the likelihood function (Wooding and Rogers
2002; Polanski and Kimmel 2003), this approach assumes
that no recombination has occurred and becomes compu-
tationally infeasible when the data are incompletely linked
between variable sites—providing another advantage to an
approximate Bayesian framework.

An improved method of maximum-likelihood estimation
of demographic parameters using the frequency spectrum of
unlinked sites was developed by Adams and Hudson (2004),
and the full-likelihood approach is applicable if the sites are
considered independently under the assumption of free
recombination. Supposing the full allele frequency spectrum
x 5 (x0, x1, x2 . . . xn � 1), where m0 is the number of sites
monomorphic in the sample, and mi is the number of
polymorphic sites in which the derived allele occurred i

times in the sample size of n, for L unlinked sites, m is
multinomially distributed,

ProbðxÞ5
� L

x0; x1; . . . ; xn� 1

�Yn� 1

i5 0

P
xi
i ; ð8Þ

where Pi is the probability that a site is polymorphic with i

derived alleles. Because Pi is a function of the demographic
model, we can obtain estimates of the demographic
parameters by maximizing the right-hand side of the
function. This method involves exploring a large parameter
space by using coalescent-based Monte Carlo approaches.
Due to computational limitations, these models remain very
simple. As an alternative to the full-likelihood approach, the
regression-based method of conditional density estimation
is introduced in Beaumont et al. (2002), and the likelihood-
free approach is implemented to infer population structure
and local adaptation in a Bayesian hierarchical model (Bazin
et al. 2010).

To efficiently simulate the SFS for model-based
comparison, a diffusion approach was adopted to approx-
imate the allele distribution in the population. The
distribution of allele frequency f at an arbitrary time t is
approximated by the general solution to the forward
Kolmogorov equation

d

dt
f ðq; tÞ5 1

2

d2

dq2
fV ðqÞf ðq; tÞg � d

dq
fMðqÞf ðq; tÞg; ð9Þ

where M(q) and V(q) are the mean and variance of the
change of allele frequency over 1 unit of time, respectively.
Kimura (1955) found a transient solution for a Wright–
Fisher population having undergone 2 epochs of population
size over recent evolutionary history. Since the diffusion

Figure 2. Schematic of the variety of inferred demographic

parameters. An ancestral population can experience multiple

changes that violate the equilibrium neutral population model.

Populations may subdivide. They can experience exponential

growth or bottlenecks. Migration can occur between 2

populations both symmetrically and asymmetrically. All of

these deviations from a constant-sized randomly mating

population can have dramatic impacts on inferences of

selection when polymorphism is sampled from present-day

populations.
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approximation is computationally efficient, this allows for
the usage of more flexible demographic models. Williamson
et al. (2005) utilize this property, considering increasingly
realistic demographic scenarios. Gutenkunst et al. (2009)
further develop and apply the diffusion-based approach to
approximate the joint multipopulation frequency spectrum
(implemented in dadi, Gutenkunst et al. 2009). Given the
infinite-sites model and Wright–Fisher populations in each
generation, the dynamics of distribution of allele frequency,
f, for P populations could be modeled by a linear diffusion
equation:

@

@s
f 5

1

2

X
i5 1;2;...;P

@2

@2xi

xið1 � xiÞ
vi

f

�
X

i5 1;2;...;P

@

@xi
½cixið1 � xiÞ

þ
X

j5 1;2;...;P

Mi ) jðxj � xiÞ�f ;

ð10Þ

where t 5 t/(2Nref), t is the time in generations and Nref is
a reference (ancestral) effective population size. Mi)j is the
scaled migration rate from population j to population i per
generation. gi 5 2Nrefsi, where si is the relative selective
fitness in population i. In order to estimate the demographic
parameters, Q, we would like to estimate from the observed
multipopulation joint frequency spectrum, S[d1, d2, . . . dP].
Assuming no linkage between polymorphisms, each entry in
the joint frequency spectrum is an independent Poisson
variable, with mean M[d1, d2, . . . dP]. The likelihood function
can be written as follows:

LðHjS Þ5
Y

i5 1;...;P

Y
di 5 0;...;ni

e�M ½d1 ;d2 ;...;dP �M ½d1; d2; . . . ; dP �S ½d1 ;d2;...;dP �

S ½d1; d2; . . . ; dP �!
:

ð11Þ

In general, dadi calculates the expected allele frequency
spectrum M under a specific demographic model by
a diffusion approach. Then the demographic parameters Q
can be estimated by maximizing the likelihood function. The
demographic models maintain great flexibility and can be
used to model complicated demographic scenarios among
multiple populations. A summary of discussed methodology
may be found in Table 3.

Conclusion

Comparing between existing estimators, a number of
notable discrepancies arise. As discussed in the introduction,
estimates of the strength and rate of RHH differ by orders
of magnitude when applied to similar data sets. There are,
however, 2 notable correlations between the different
estimates: 1) small estimates of s seem to correspond to
analyzing small region sizes (i.e., Andolfatto (2007) estimates
s 5 10�5, when analyzing coding regions) and large
estimates of s when analyzing large regions (i.e., Macpherson
et al. (2007) estimates s 5 10�2, when analyzing 100-kb
sliding windows) and 2) divergence-based approaches tend
to estimate smaller s than polymorphism-based approaches.
However, given that divergence-based methods may be
counting the effect of the fixation of many weakly selected
mutations over longer evolutionary time, whereas poly-
morphism-based methods may be most impacted by the
recent fixation of strongly beneficial mutations (i.e.,
impacting large genomic regions), it is indeed possible that
these estimates are not incompatible—but rather simply
estimating different tails of the true underlying distribution
of selection coefficients.

Additionally, outlier-based genome scans utilizing either
SFS or LD approaches identify different genomic regions as
targets of positive selection with inconsistent overlap (see
Enard et al. 2010). For example, Williamson et al. (2005) and
Voight et al. (2006) find a similar number of genomic
regions experiencing selection (444 and 460, respectively)
but only 41 of the regions overlap. Conversely, Carlson et al.
(2005) use a Tajima’s D-based approach and find 986
positively selection genomic regions, of which 217 are
shared by Williamson et al. and 71 are shared with Voight
et al. (2006).

And yet one commonality between approaches is the
inability to adequately account for the demographic history
of the population in question (see Table 1). Nonequilibrium
models are well known to mimic patterns of positive
selection in polymorphism data (e.g., see reviews of Nielsen
2005; Thornton et al. 2007), and there is accumulating
evidence that they may also similarly impact divergence-
based approaches (e.g., Andolfatto 2008) as well as cause
them to be conservative (see Parsch et al. 2009). Although
attempts at joint estimation have been made (e.g.,

Table 3 Summary of commonly used methodology to infer demography

Method Inference procedure Estimated demographic parameters Nonneutral consideration?

Nielsen and Wakeley (2001) MCMC h, M, T, N No
Hey and Nielsen (2004) MCMC h, M, T No
Becquet and Przeworski (2007) MCMC h, M, T No
Hey (2010) MCMC h, M, T No
Thornton and Andolfatto (2006) Approximate Bayesian h, q, t, f, d No
Adams and Hudson (2004) Maximum likelihood T, t, f, d No
Bazin et al. (2010) Bayesian hierarchical Flexible Yes
Williamson et al. (2005) Maximum likelihood M, T, t, f, d Yes
Gutenkunst et al. (2009) Maximum likelihood M, T, t, f, d No
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Williamson et al. 2005; Li and Stephan 2006; Eyre-Walker
and Keightley 2009), they are accomplished in a stepwise
manner. Thus, the demographic model is likely to be overfit
to the data, accounting for much of the selection signature
in the genome. Similarly, in the absence of demographic
estimation, selection models are likely to be biased toward
higher rates and strengths of adaptation in an attempt to fit
the diversity-reducing and frequency spectrum–skewing
effects produced by the underlying population history.

Thus, the challenge to the field is clear—it is essential to
develop an estimator capable of jointly inferring the action of
both nonneutral and nonequilibrium models simultaneously.
Thiswill require at least 2 components: 1) the ability to identify
patterns that distinguish selective from demographic effects.
As discussed above, the most promising avenue in this regard
seems to be patterns in LD that appear to be largely robust to
demographic perturbation (e.g., Stephan et al. 2006; Jensen
et al. 2007; Pavlidis et al. 2010), though false positives may
arise in the presence of gene conversion (Jones and Wakeley
2008). Additionally, the combination of polymorphism- and
divergence-based inference may be effectively used to
estimate different tails of the true underlying distribution;
and 2) a computational framework capable of handling whole
genomes worth of data, a large number of summary statistics,
and the accurate inference of multiple parameters of interest.
Indeed, great progress has been made toward estimating
increasingly complex (but neutral) demographic models
within Kimura’s diffusion framework (Williamson et al.
2005; Gutenkunst et al. 2009).

A good deal of recent work (e.g., Wegmann et al. 2009;
Bazin et al. 2010) seems to suggest ABC-based approaches
to be the most likely way forward for combining de-
mographic and selective inference. This framework appears
capable of handling the large number of summary statistics
necessary for joint estimation of the parameters of interest
(i.e., parameters of RHH, parameters of population size
change, and parameters of subdivision with migration) while
simultaneously being computationally efficient enough to
handle the type of multiple whole-genome data sets that are
currently being generated. Despite the difficulty of this
problem, it is perhaps the central issue facing the field
today—as understanding the relative roles of adaptive and
nonadaptive processes in the evolution of natural popula-
tions is truly at the core of population genetics.
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