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Abstract

The review covers the period 1997–2007 of development of the boundary

control method, which is an approach to inverse problems based on their

relations to control theory (Belishev 1986). The method solves the problems

on unknown manifolds: given inverse data of a dynamical system associated

with a manifold it recovers the manifold, the operator governing the system

and the states of the system defined on the manifold. The main subject of the

review is the extension of the boundary control method to the inverse problems

of electrodynamics, elasticity theory, impedance tomography, problems on

graphs as well as some new relations of the method to functional analysis and

topology.
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1. Introduction

1.1. About the review

The boundary control method (BCm) (Belishev 1986) is an approach to inverse problems

based on their relations to control theory. This review covers the period 1997–2007 of

development of the method. As the previous review [15], this one deals mainly (but not

only) with problems on Riemannian manifolds, the manifolds being not given but subject

to reconstruction. However, the list of problems is extended: besides the scalar (acoustic)

ones, it includes inverse problems of electrodynamics, elasticity theory, electric impedance

tomography and problems on graphs. Such an extension of the method, as well as its new

relations to functional analysis and topology, is the main subject of the paper.

1.2. Philosophy

The boundary control method follows the general principles of system theory (see [71,

p 256]), which we expose in a slight abuse of notation and terms.

P1. If a dynamical system α is tested via causal experiments and its (causal) input/output

map R is determined from the equations of motion, then R depends only on a subsystem α0 of

α which is completely controllable (reachable). The other part of α has no effects on R and

may be chosen completely arbitrarily without altering R.

P2. If any two systems, α′ and α′′, are completely controllable, and have the same input/output

map R then they differ only in the representation of their state space.

P3. If a realization α of R is completely controllable, then it is essentially uniquely determined

by R, since the representation of states can never be inferred from input/output experiments.

Turn to the problem of determination of a Riemannian manifold from its boundary

inverse data. If two manifolds are isometric then, identifying properly their boundaries, we

get two manifolds with a common boundary, which possess identical boundary data. Such

manifolds are called equivalent: they are indistinguishable for the external observer extracting

information about the manifold from the boundary measurements (see P2). Therefore, these

data do not determine the manifold uniquely and the formulation of the problem has to be

clarified. The relevant setup is given in the form of two questions.
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(1) Does the coincidence of the inverse data imply the equivalence of the manifolds?

(2) Given the data of an unknown manifold, how to construct a manifold possessing these

data?

For certain classes of data, the BCm gives an affirmative answer to the first question and

provides a procedure constructing a representative of the class of equivalent manifolds. The

procedure consists of three steps. Let α be a system associated with a manifold �,F a space

of inputs (controls), H a space of states, W : F ∋ f �→ uf ∈ H an input/state map, U = WF

a set of reachable states, R : F → F an input/output map playing the role of the inverse data.

Step 1 (coordinatization). To each point x0 ∈ � we attach an object x̃0 (a ‘coordinate’ of x0)

properly constructed from the states uf = Wf ∈ H. A set �̃ = {x̃0 | x0 ∈ �} is endowed

with a metric d̃ in such a way that (i) d̃ is defined in intrinsic terms of the reachable set U

and is determined by the map W and (ii) d̃ turns �̃ into an isometric copy of the original �.

Loosely speaking, the copy �̃ is the manifold � coded (coordinatized) via W .

Step 2 (constructing a model). The data R determine the inner product (uf ′ , uf ′′)H for any

f ′, f ′′ ∈ F , which is one of the key points of the BCm. By this, R determines an (auxiliary)

space H̃ and a map W̃ : F → H̃ such that the correspondence Wf �→ W̃f is an isometry.

The pair {H̃, W̃ } plays the role of a copy (model) of {H,W }. The external observer with

knowledge of R can construct the model without leaving the space F . Also note that the

model corresponds not to the system α as a whole but its controllable part (reachable set) U

(see P1).

Step 3 (reproducing �̃). Repeating the construction of x̃0 from the states uf = Wf ∈ H but

replacing the original states by the model ones ũf = W̃f ∈ H̃, we reproduce a sample of

the copy �̃ and endow it with the relevant metric. Since the correspondence model/system is

an isometry, the sample is isometric to the copy �̃ and we can identify the sample with the

copy (see P2). By construction, the recovered �̃ is isometric to the original � and, identifying

properly ∂�̃ to ∂�, we get two manifolds with a common boundary. By construction, the data

R̃ of �̃ coincide with the given R. Hence, the required representative is provided.

Dealing with problems on manifolds, the BCm supplements the principles P1–P3 with

canonical realizations of systems associated with manifolds.

In operator theory, ‘to solve an inverse problem’ is usually understood as ‘given certain

data (spectrum, characteristic function, etc) to construct a canonical realization (model)

belonging to a certain class of operators and possessing these data’. The BCm can be

positioned as an approach representing this viewpoint in inverse problems of mathematical

physics: the method constructs canonical models relevant to problems on manifolds.

1.3. Coordinatization

The key point of the program outlined above (steps 1–3) is a proper choice of the ‘coordinates’

x̃0 on �. There are a few known recipes for systems governed by hyperbolic and elliptic

equations.

(i) x̃0 is a Dirac measure δx0
. If the system α is controllable from the boundary1 then,

for each x0 ∈ �, one can represent δx0
= limj→∞ ufj , where ufj = Wfj are the states

1 This property is of crucial character: it names the BC-method.
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(waves) produced by the boundary controls fj ∈ F , the sequence {fj } being universal, i.e.,

available for any �. Informally, δx0
is interpreted as a wave produced by a boundary control

and focused on the point x0. Solving inverse problems, we determine a model {H̃, W̃ }
from R and then construct the copy �̃ =

{

δ̃x0

∣

∣x0 ∈ �
}

, δ̃x0
= limj→∞ ũfj , ũfj = W̃fj .

Coordinatization by the focused waves was originated in the first paper on the BCm

[8]; a procedure solving the problems on graphs is in fact a version of this trick (see

section 5).

(ii) x̃0 is a pair of semigeodesic coordinates (γ0, τ0) of the point x0. The set of these

coordinates � (a pattern of the manifold �) can be recovered from R through the geometric

optics formulae (see sections 2 and 3) and endowed with a metric, which turns the pattern

into an isometric copy of �. Such a coordinatization was introduced in [12] and applied

to reconstruction of manifolds in [47, 50] (see also [15]).

(iii) x̃0 is a boundary distance function τx0
: ∂� → R+, τx0

(·) := dist(·, x0). For a certain

class of metrics and manifolds, the set �̃ =
{

τx0

∣

∣x0 ∈ �
}

endowed with C(∂�)-metric

is an isometric copy of � (Kurylev [70]). The determination R ⇒ τx0
is derived from a

procedure proposed in [49] for solving the dynamical inverse problem.

(iv) x̃0 is a family of increasing subspaces (a nest), which consists of waves produced by the

infinitesimal source supported at x0. Such a source (‘wave cap’) is built up of waves

uf = Wf . The set of nests �̃ is endowed with a travel time metric, which is also

determined by the operator W . By this, �̃ can be reproduced through any model {H̃, W̃ }.
Emphasizing its nature, we call �̃ a wave copy of the manifold �. Coordinatization by

nests is the most promoted and promising variant of the BCm for hyperbolic problems:

it has an operator background, is relevant to a wide class of dynamical systems with

finite speed of wave propagation, and provides time-optimal results in dynamical inverse

problems. The wave copy was proposed in [10]2 (see also [30]); in this review, we present

its acoustic and electromagnetic versions.

(v) In the 2-dim problem of determining � from the elliptic Dirichlet-to-Neumann map, x̃0 is

a Dirac measure δx0
interpreted as a multiplicative functional of a proper algebra of states,

whereas the set �̃ of such functionals (a spectrum of the algebra) is homeomorphic to �

through the Gelfand transform. The DN-map determines the algebra (up to isometry), its

spectrum �̃ and, hence, determines � up to homeomorphism [24].

We relate further progress in the BCm to the application of known and search for new

variants of coordinatization.

1.4. Content

Section 2: acoustics. In this section, we deal mainly with hyperbolic dynamical systems

whose states are scalar functions. The notion of the wave copy is introduced and applied to

the problem of determining a Riemannian manifold from its dynamical or spectral inverse

boundary data3. Some allied problems (in particular, the linkage between the spectral and

dynamical data, and the data continuation) are considered. We reveal the operator background

of the wave copy, discuss the relations of the BCm to general system theory, and touch on some

open problems. The results on numerical testing of the BCm-algorithms are demonstrated.

2 In fact, [10] is the first paper where the reconstruction of a manifold by the BCm is realized. The procedure recovers

� ⊂ Rn but needs no change to recover a Riemannian manifold.
3 So, we solve a solved problem (see [15]) but apply a new version of the BCm available for further extension to

more complicated systems.
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Section 3: electrodynamics. The Maxwell system on a Riemannian manifold is considered.

It is shown that electromagnetic waves are also well suited for constructing the wave copy.

The construction provides time-optimal determination of the manifold from the dynamical

electromagnetic boundary data. The results on recovery of the velocity c = (ǫµ)−
1
2 in

� ⊂ R3 are presented. In addition, a sampling algorithm recovering c provided µ = 1 is

described.

Section 4: elasticity. A feature of dynamical systems of elasticity theory is the presence of

wave modes propagating with different velocities. The interaction between such modes

complicates the structure of reachable sets and the character of controllability. As a

result, the application of the BCm encounters serious difficulties. Complete results are

obtained for the 1-dim two-velocity system (a beam): we present a procedure recovering the

parameters of the beam at its controllable part and provide the characterization of the dynamical

inverse data. The results on the 3-dim Lamé system are very far from being complete: the

time-optimal determination of the Lamé parameters is one of the most required problems in

applications (geophysics, engineering, etc) but also one of the most difficult inverse problems.

We deal with a simplified version of the Lamé system and recover the velocities of the shear

and pressure waves in the subdomains controllable from the boundary. Inverse problems of

elasticity theory is one of most important directions for further development of the BCm.

Section 5: impedance tomography of manifolds. Elliptic problems are a new area of

application of the BCm. We present a new approach to the determination of a 2-dim

manifold from its Dirichlet-to-Neumann map4. The procedure is based on the coordinatization

described above in section 1.3(v). Our approach provides explicit formulae expressing the Betti

numbers of 2-dim and 3-dim manifolds through their DN-maps. Extending the DN-operator

to differential forms and introducing a relevant analog of the classical Hilbert transform, we

generalize the formulae to the n-dim case and reveal some relations of the DN-operator and

the Hilbert transform to algebraic topology (V A Sharafutdinov). The formulae are based on

the Hodge–Morrey–Friedrichs decompositions of the harmonic field spaces.

Section 6: problems on graphs. These problems are also new for the BCm. We show that

the spectral data of a tree composed of a finite number of strings of variable density, determine

the tree up to a spatial isometry on the plane. A procedure recovering the tree exploits the

coordinatization x̃0 = δx0
. However, here we do not construct the Dirac measures as focused

waves, but identify them through the inverse data, in the spirit of duality ‘controllability–

observability’ well known in system theory.

Reducing the volume of the review, we demonstrate the proofs of a few key propositions

only, referring the reader to the original papers. By the same reasoning, we deal with the

C∞-smooth case and with data given on the whole boundary5.

In the text, the following abbreviations are in use: BCm—the boundary control method;

IP—inverse problem; RM—Riemannian manifold; sgc—semigeodesic coordinates, AF—

amplitude formula. Everywhere ‘smooth’ means C∞-smooth. With the exception of sections

2.3.7 and 5.1, we deal with real-valued functions and spaces. The reader is appealed to not

ignore the Comments: certain of our results (in particular, concerning the partial and finitely

smooth data) and open problems are placed there.

4 Uniqueness of determination was shown by Lassas and Uhlmann in [80].
5 Actually, determination from data given on a part of the boundary is a folklore of the BCm: all its variants, including

the first one [8], are available for this case (see [15]).
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Figure 1. Cut locus.

2. Acoustics

2.1. Geometry

2.1.1. Eikonal, cut locus, sgc. Let � be a smooth compact Riemannian manifold (RM),

Ŵ := ∂� ∈ C∞, dim � = n � 2; d and g the distance and metric tensor in � (we write also

(�, d) and/or (�, g)). For a subset A ⊂ �, we denote its metric neighborhoods by

�r [A] := {x ∈ � | d(x,A) < r} r > 0, �0[A] := A.

For A = Ŵ, we set �r := �r [Ŵ].

A function τ(·) := d(·, Ŵ) on � is called an eikonal. By the definitions, we have

�r = {x ∈ � | τ(x) < r}, r > 0; the level sets of the eikonal

Ŵs := {x ∈ � | τ(x) = s}, s � 0

are the hypersurfaces equidistant to Ŵ. Later, in dynamics, the value

T∗ := max
�

τ(·) = inf{r > 0 | �r = �}
is interpreted as the time needed for waves moving from Ŵ with unit speed to fill �.

Recall the definition of a separation set (cut locus) of � w.r.t. Ŵ (see, e.g., [64]). Let

lγ [0, s] be a segment of length s of a geodesic lγ emanating from γ ∈ Ŵ orthogonally to

Ŵ; let x(γ, s) be its second endpoint. The value τ∗(γ ) is said to be a critical length if

τ(x(γ, s)) = s for 0 � s � τ∗(γ ) (i.e., lγ [0, s] minimizes the distance between x(γ, s)

and Ŵ) and τ(x(γ, s)) < s for s > τ∗(γ ) (i.e., lγ [0, s] does not minimize the distance; see

figure 1, where s < τ∗(γ ) < s ′). The function τ∗(·) is continuous on Ŵ.

The point x(γ, τ∗(γ )) is a separation point on lγ . A set of separation points c :=
⋃

γ∈Ŵ x(γ, τ∗(γ )) is called a cut locus (of � w.r.t. Ŵ). The cut locus is a closed set of zero

volume. We denote Tc := d(c, Ŵ).

For x ∈ �\c, there is a unique point γ (x) ∈ Ŵ nearest to x and a pair (γ (x), τ (x))

constitutes the semigeodesic coordinates (sgc) of x. A set

� := {(γ (x), τ (x)) | x ∈ �\c} = {(γ, s) | γ ∈ Ŵ, 0 � s � τ∗(γ )} ⊂ Ŵ × [0, T∗]

is called a pattern of �; its subset �T := � ∩ {Ŵ × [0, T ]} is regarded as the pattern of

the submanifold �T (see figure 2). The patterns are the subgraphs of the functions τ∗(·)
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Figure 2. Manifold and its pattern.

and τ T
∗ (·) := min{τ∗(·), T }. Note in addition that ŴT \c is a smooth (maybe disconnected)

(n − 1)-dimensional submanifold in �. In the following, dealing with a fixed T > 0, we

assume ŴT to be a piecewise smooth hypersurface. This condition provides the integration by

parts in �T .

2.1.2. Caps. For γ ∈ Ŵ, s > 0 and a (small) ε > 0, let σε(γ ) := {γ ′ ∈ Ŵ | d(γ ′, γ ) < ε} be

a patch of the boundary. Introduce a family of closed subdomains (caps)

ωs,ε
γ := �

s
[σε(γ )] ∩ {�s\�s−ε} = {x ∈ � | d(x, σε(γ )) � s, s − ε � τ(x) � s},

(2.1)
γ ∈ Ŵ, s > 0, 0 < ε < s

and set ωs
γ = limε→0 ωs,ε

γ :=⋂0<ε<s ωs,ε
γ .

Lemma 1. The relation

ωs
γ =
{

x(γ, s), 0 < s � τ∗(γ )

{∅}, s > τ∗(γ )
(2.2)

holds.

Proof. See the appendix. So, the cap ωs,ε
γ shrinks to the point x(γ, s) if (γ, s) ∈ �, and

terminates (disappears for small enough ε) if (γ, s) �∈ � (in figure 3 the cap ωs,ε
γ is shadowed,

τ∗(γ ) > s > τ∗(γ ′)).6 By this, the metric neighborhoods of the cup behave as follows:

lim
ε→0

�r
[

ωs,ε
γ

]

= �r [x(γ, s)], (γ, s) ∈ �, r � 0. (2.3)

If a point x ∈ c is represented as x = x(γ ′′, s) = x(γ ′′′, s) (see figure 3), then the passage to

the limit (2.3) produces one and the same family of neighborhoods

lim
ε→0

�r
[

ω
s,ε
γ ′′
]

= lim
ε→0

�r
[

ω
s,ε
γ ′′′
]

= �r [x], r � 0 (2.4)

and, hence, the limit does not depend on the representation of x. �

2.1.3. Manifold (�T , dT ): metric copy. Fix T > 0, let (�T , dT ) be the submanifold of �

endowed with the intrinsic distance

dT (x ′, x ′′) := inf
l⊂�T

(l)

∫ x ′′

x ′
|dx|.

In the following, the metric neighborhoods �r [A], A ⊂ �T are understood in the sense of the

metric dT . The caps ωs,ε
γ , 0 < s < T lie in �T . For T � T∗, we have ∂�T = Ŵ ∪ ŴT ; if

T > T∗ then ŴT = {∅} and (�T , dT ) = (�, d).

6 This illustration is taken from [30].
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Figure 3. Cap.

Figure 4. Centering.

For a point x ∈ �T , a family of the neighborhoods x̌ := {�r [x]}r�0 is said to be a metric

nest centered at x. The passage to the limit (2.3), which we call a centering, produces the nest

x̌(γ, s) from the cap ωs,ε
γ (see figure 4). One more passage to the limit (in the evident sense)

extends (2.3) to the nests centered at the boundary points:

γ̌ = lim
s→0

x̌(γ, s). (2.5)

Introduce a set of metric nests �̌T := {x̌ | x ∈ �T } and endow it with a function

ďT : �̌T × �̌T → R+,

ďT (x̌ ′, x̌ ′′) := 2 inf{r > 0 | �r [x ′] ∩�r [x ′′] �= {∅}}, (2.6)

where x ′ and x ′′ are the centers of x̌ ′ and x̌ ′′. In view of the evident equality ďT (x̌ ′, x̌ ′′) =
dT (x ′, x ′′), function ďT is a metric, whereas a metric space (�̌T , ďT ) is isometric to (�T , dT ).

Identifying γ̌ ≡ γ , we get two isometric manifolds (�̌T , ďT ) and (�T , dT ) with the common

boundary Ŵ. We call (�̌T , ďT ) a metric copy of the original manifold (�T , dT ) (see

figure 5).

2.2. Dynamics

2.2.1. System αT. Propagation of acoustic (scalar) waves in the manifold �T , initiated by

boundary sources acting on Ŵ, is described by a dynamical system αT of the form

ut t −u = 0 in (int �T )× (0, T ) (2.7)
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Figure 5. Metric copy.

u = 0 in {(x, t) | x ∈ �T , 0 � t � τ(x)} (2.8)

u = f on Ŵ × [0, T ] (2.9)

where  is the Beltrami–Laplace operator, int �T := �T \Ŵ, f is a source (Dirichlet boundary

control), u = uf (x, t) is a solution (wave). By hyperbolicity of the wave equation (2.7),

problem (2.7)–(2.9) is well posed, the solution satisfying supp uf (·, t) ⊂ �
t
, 0 � t � T .

An outer space of the system (space of controls) is FT := L2 ([0, T ];L2(Ŵ)). An inner

space (space of states) is HT := L2(�
T ); the waves uf (·, t) are time-dependent elements of

HT . The input/state map is realized by a control operator W T : FT → HT

W T f := uf (·, T ),

which is a continuous operator7.

The input/output map is a response operator RT : FT → FT , Dom RT = {f ∈
H 1([0, T ];H 1(Ŵ)) | f |t=0 = 0} (H α(· · ·)—the Sobolev classes),

RT f := ∂uf

∂ν

∣

∣

∣

∣

Ŵ×[0,T ]

,

where ν = ν(γ ) is an outward normal at γ ∈ Ŵ.

One more intrinsic operator of the system αT is a so-called continued response operator

associated with the problem

ut t −u = 0 in {(x, t) | x ∈ int �T , 0 < t < 2T − τ(x)} (2.10)

u = 0 in {(x, t) | x ∈ �T , 0 � t � τ(x)} (2.11)

u = f on Ŵ × [0, 2T ] (2.12)

which is a natural extension of problem (2.7)–(2.9) by hyperbolicity. The operator is

R2T : F2T → F2T , Dom R2T = {f ∈ H 1([0, 2T ];H 1(Ŵ)) | f |t=0 = 0}, R2T f :=
∂uf

∂ν

∣

∣

Ŵ×[0,2T ]
; the term ‘continued’ is motivated by the evident relation

(R2T f )|Ŵ×[0,T ] = RT (f |Ŵ×[0,T ]), f ∈ Dom R2T . (2.13)

The operator R2T is determined by the submanifold �T ; later it plays the role of data in the

dynamical IP. More about this operator in section 2.3.11.

7 The continuity of W T is proven in [78]. The referee of this review has informed us that there is a flaw in the proof.

At the moment we are not ready to comment on this remark. However, the continuity just simplifies the considerations

but plays no crucial role: for instance, the analog of W T in electrodynamics is not continuous (see section 3).
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The central object of the BCm is a connecting operator CT : FT → FT , CT :=
(W T )∗W T . By definition, we have

(CT f ′, f ′′)FT = (W T f ′,W T f ′′)HT = (uf ′(·, T ), uf ′′(·, T ))HT , (2.14)

i.e., CT connects the Hilbert metrics of the outer and inner spaces. The significant fact is that

the connecting operator is determined by the continued response operator through an explicit

formula

CT = 1
2
(ST )∗R2T J 2T ST , (2.15)

where the map ST : FT → F2T extends the controls from Ŵ × [0, T ] to Ŵ × [0, 2T ] as odd

functions of t w.r.t. t = T ; J 2T : F2T → F2T , (J 2T f )(·, t) :=
∫ t

0
f (·, s) ds (see [15, 22]).

2.2.2. System βT,r. The sources distributed in � initiate the waves described by the system

βT ,r of the form

wt t −w = h in (int �T )× (0, r) (2.16)

w|t=0 = wt |t=0 = 0 in �
T

(2.17)

w = 0 on (Ŵ ∪ ŴT )× [0, r] (2.18)

where h = h(x, t) is a volume control, w = wh(x, t) is a wave.

An outer space of the system is Gr := L2([0, r];HT ); an inner space is HT . Since ŴT can

be non-smooth, the meaning of the condition (2.18) on ŴT as well as the definition of wf have

to be clarified. By doing so, introduce the operator −T
0 : HT → HT , Dom

(

−T
0

)

= {y ∈
C∞(�T )|y|Ŵ = 0, supp y ⊂ �T } (so that y vanishes near ŴT ), −T

0 y = −y. The operator

−T
0 is positive definite, let −T be its extension by Friedrichs (see, e.g., [57]). Then we

define by Duhamel

wh(·, t) :=
∫ t

0

(−T )−
1
2 sin[(t − s)(−T )

1
2 ]h(·, s) ds, t > 0. (2.19)

The control operator of the system βT ,r is W r
vol : Gr → HT ,W r

volh := wh(·, r). By (2.19),

W r
vol is continuous.

2.2.3. Controllability. Here we consider a property of the systems αT and βT ,r playing a key

role in the BCm. For open subsets σ ⊂ Ŵ,ω ⊂ �T and parameters s ∈ [0, T ], r � 0, let

FT ,s[σ ] := clos{f ∈ FT | supp f ⊂ [T − s, T ], supp f (·, t) ⊂ σ,∀ t},
FT [σ ] := FT ,T [σ ], Gr [ω] := clos{h ∈ Gr | supp h(·, t) ⊂ ω,∀ t}

be the subspaces of controls acting from σ and ω respectively; also, simplifying the notation,

we omit ‘σ ’ in the case of σ = Ŵ. Note that the controls f ∈ FT ,s[σ ] act with delay T − s,

the action time being equal to s. By hyperbolicity of problems (2.7)–(2.9) and (2.16)–(2.18),

for f ∈ FT ,s[σ ] and h ∈ Gr [ω] the relations

supp uf (·, t) ⊂ �
t
[σ ], supp wh(·, t) ⊂ �

t
[ω] (2.20)

hold and show that the waves propagate with a speed � 1.8

The sets of waves

U s[σ ] := W T FT ,s[σ ], U r [ω] := W r
volG

r [ω]

8 Recall that the neighborhoods are understood in the sense of the intrinsic metric dT .
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are said to be reachable from σ and ω (at times t = s and t = r). Once again, simplifying the

notation, we omit σ in the case of σ = Ŵ: U s := U s[Ŵ].

For a subset A ⊂ �T , denote

Hr [A] := clos{y ∈ HT | supp y ⊂ �r [A]}, r � 0

and Hr := Hr [Ŵ] = L2(�
r). By virtue of (1.20), the embeddings U s[σ ] ⊂ Hs[σ ] and

U r [ω] ⊂ Hr [ω] hold. A significant fact is that these embeddings are dense: for any σ, ω and

s > 0, r > 0 one has

clos U s[σ ] = Hs[σ ], clos U r [ω] = Hr [ω]. (2.21)

In control theory, relations (2.21) are interpreted as local approximate controllability of the

systems αT and βT ,r in the subdomains filled with waves; the name ‘BC method’ is derived

from the first relation (boundary controllability). The proof of (2.21) relies on the fundamental

Holmgren–John–Tataru unique continuation theorem for the wave equation [95] (see [15] for

detail).

2.2.4. Laplacian on waves. For a fixed T > 0, a trajectory {uf (·, t) | 0 � t � T } of the

system αT does not leave the reachable set UT ⊂ HT . Because of this, the system possesses

one more intrinsic operator LT
0 , which acts in the subspace clos UT and is introduced through

its graph

graph LT
0 :=

{

{W T f,−W T ft t }
∣

∣f ∈ C∞
0 ((0, T ), C∞(Ŵ))

}

(2.22)

(see [22]). Since

LT
0 W T f = −W T ft t = −uft t (·, T ) = −u

f
tt (·, T )

= 〈see (2.7)〉 = −uf (·, T ) = −W T f

and Dom LT
0 ⊂ Dom

(

−T
0

)

, we have LT
0 ⊂ −T

0 , so that LT
0 can be interpreted as Laplacian

on waves filling �T from the boundary. Since the class of smooth controls defining the graph

of LT
0 is dense in FT , the set Dom LT

0 is dense in clos UT and, hence, dense in HT by (2.21)

(for σ = Ŵ). Therefore, LT
0 is a densely defined positive definite operator in HT . As such,

LT
0 can be extended by Friedrichs; we denote the extension by LT .

Theorem 1. For any T > 0, the equality LT = −T holds.

Proof. See in the appendix. �

Thus, a certain canonical procedure (Friedrichs extension) turns the Laplacian on waves

into the ‘standard’ Laplacian in �T with zero Dirichlet conditions on Ŵ ∪ŴT . As a result, we

can replace −T in (2.19) by LT and represent

W r
volh :=

∫ r

0

(LT )−
1
2 sin[(r − s)(LT )

1
2 ]h(·, s) ds. (2.23)

Introduce an operation which we call a dynamical extension of subspaces: for a subspace

A ⊂ HT define

E rA := clos W r
volL2([0, r];A), r > 0; E0 := id. (2.24)

By the volume controllability, we have

E rH0[ω] = clos U r [ω] = 〈see (2.21)〉 = Hr [ω]. (2.25)

The Laplacian on waves are determined by the operator W T (see (2.22)). Hence, by

(2.23), the operator W T
vol and the operation E r are also determined by the boundary control

operator W T , which is very important for the IPs.
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2.2.5. Wave copy. Here we construct what we call a wave copy of the manifold (�T , dT ).

This object is built up of waves produced by boundary controls and, as such, is determined by

the operator W T . The construction is realized in a few steps.

(i) (wave cap) Fix γ ∈ Ŵ, s ∈ (0, T ) and ε ∈ (0, s); a subspace of the reachable space

clos UT of the form

U s,ε
γ := clos U s[σε(γ )] ∩ {clos U s ⊖ clos U s−ε}

= clos W T FT ,s[σε(γ )] ∩ {clos W T FT ,s ⊖ clos W T F s−ε} (2.26)

is called a wave cap (compare with (2.1)).

We assign the given pair (γ, s) to a set �̃T if U s,ε
γ �= {0} for all ε ∈ (0, s); otherwise, if

U s,ε
γ terminates as ε → 0,9 this pair is ignored in the following (compare with (2.2)). We

call �̃T a wave pattern of the submanifold �T .

(ii) (nests) For (γ, s) ∈ �̃T , construct a nest of subspaces

x̃(γ, s) := {U r [x̃(γ, s)]}r�0, U r [x̃(γ, s)] := lim
ε→0

E rU s,ε
γ , (2.27)

where the limit is understood in the sense of the strong operator convergence of the

orthogonal projections on the corresponding subspaces (compare with (2.3) and the

definition of x̌ in section 2.1.3).

Supplement �̃T with the pairs (γ, 0) and construct the set of ‘boundary’ nests

Ŵ̃ := {γ̃ | γ ∈ Ŵ}, γ̃ := lims→0 x̃(γ, s) (compare with (2.5)).

(iii) (the copy) Collect the set of all nests �̃T := {x̃(γ, s) | (γ, s) ∈ �̃T } and endow it with a

function d̃
T

: �̃T × �̃T → R+,

d̃
T
(x̃ ′, x̃ ′′) := 2 inf{r > 0 | U r [x̃ ′] ∩ U r [x̃ ′′] �= {0}} (2.28)

(compare with (2.6)). Identify Ŵ̃ to Ŵ by γ̃ ≡ γ .

We name the pair (�̃T , d̃
T
) a wave copy of the submanifold (�T , dT ) and stress once

again that the wave copy is determined by the boundary control operator W T . From the

standpoint of physics, the wave copy represents the submanifold in the form of collection

of infinitesimal sources, which interact with each other through the waves they produce, the

collection being endowed with the travel time metric.

The wave copy is an intrinsic object of a wide class of dynamical systems governed

by hyperbolic equations in �. The external observer investigating �, probes it with waves

initiated at the boundary. The observer measures the result of interaction of these waves with

the internal structure of � at the same boundary. In perfect accordance with Thesis P1 (see

section 1), such measurements contain information about the reachable set UT only, and the

wave copy (�̃T , d̃
T
) built up of elements of this set (waves), is a relevant realization of this

information. As such, the wave copy can be reproduced through the boundary inverse data,

which is the cornerstone of our program for solving the IPs by the BCm.

Controllability (2.21) links the sets of waves to the subdomains supporting the waves in

a straightforward way: roughly speaking, we can identify U r [ω] with Hr [ω] and, hence, with

a subdomain �r [ω]. Correspondingly, a wave cap U s,ε
γ = L2

(

ωs,ε
γ

)

can be identified with a

cap ωs,ε
γ . By this, searching the construction (i)–(iii), we see that a wave pattern �̃T coincides

with a pattern �T , each nest x̃(γ, s) is identical to x̌(γ, s), a function d̃
T

is a metric and,

eventually, a wave copy (�̃T , d̃
T
) turns out to be identical to a metric copy (�̌T , ďT ). As a

result, (�̃T , d̃
T
) is isometric to the original (�T , dT ) and has the same boundary Ŵ.

9 That is, U s,ε
γ = {0} for small enough positive ε.
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The coincidence of wave and metric copies is a specific feature of dynamical systems, in

which the different wave modes (if many) propagate with one and the same velocity. As we

shall see, in multi-velocity systems relation (2.21) does not hold and the structure of reachable

sets U s[σ ] is more complicated (if known). It is a fact that poses major difficulties for solving

the corresponding IPs.

2.2.6. Visualization of waves. Here the wave copy is supplemented with an additional option:

given a control f , for any x ∈ �, we represent the value of the wave uf (x, T ) in terms of the

wave copy. It is what we call visualization.

For a linear subset A of a Hilbert space, we denote by PA the (orthogonal) projection on

closA. By controllability (2.21), the projection PU s [σ ] cuts off functions on �s[σ ], whereas

PU
s,ε
γ
= PU s [σε(γ )] [PU s − PU s−ε ] cuts off on the cap ωs,ε

γ (see (2.26)).

Let 1T ∈ HT , 1T (·) = 1 be a constant function on �T , y ∈ C(�T ). With a given

x = x(γ, s) ∈ �T we associate the Dirac measure δx and represent

y(x) = 〈δx, y〉 = lim
ε→0

(

y, PU
s,ε
γ

1T
)

HT

(

1T , PU
s,ε
γ

1T
)

HT

. (2.29)

If a control f ∈ FT produces the wave uf (·, T ) ∈ C(�T ), then (2.21), (2.26) and (2.29)

imply

uf (x, T ) = lim
ε→0

(W T f, PU s [σε(γ )][PU s − PU s−ε ]1T )HT

(1T , PU s [σε(γ )][PU s − PU s−ε ]1T )HT

. (2.30)

As we shall see later, for a given f , the rhs of this representation is determined by inverse data.

Owing to this, the external observer can use (2.30) to make visible the wave uf supported in

the domain unreachable by direct measurements.

One more tool of visualization is the so-called amplitude formula (AF) based on geometric

optics. Let β = β(γ, τ ) be the density of the volume in sgc: dx = β dŴ dτ . For y ∈ HT , a

function ỹ on Ŵ × [0, T ) defined by

ỹ(γ, s) :=
{

β
1
2 (γ, s)y(x(γ, s)), (γ, s) ∈ �T

0, otherwise
(2.31)

is said to be a picture of y. As is easy to check, the map I T : y �→ ỹ is an isometry from HT

to L2(Ŵ × [0, T ]). Let f ∈ FT be smooth and vanishing near t = 0, so that the wave uf is

smooth. The AF represents the picture of the wave as follows:

˜uf (·, T )(γ, s) = lim
t→T−s−0

((W T )∗[I− PW T FT ,s ]W T f )(γ, t), (γ, s) ∈ Ŵ × [0, T )

(2.32)

where I is the unity operator (see [15]). As will be shown, the rhs of (2.32) is determined by

the inverse data. Because of this, the external observer can use the AF for visualization of the

wave pictures.

2.2.7. Comments.

• Reconstruction of RM via its spectral and dynamical data was fulfilled in [47, 50],

respectively. Both of these papers use one and the same BCm-scheme of reconstruction

proposed in [12]. The wave copy was in fact introduced in [10]: this paper deals with the

recovery of � ⊂ Rn, but the procedure needs no change to recover an RM. The caps are

taken from [11].
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• Fixing an open σ ⊂ Ŵ and using the operator W T
σ = W T |FT [σ ] : FT [σ ] → HT [σ ], one

can construct the wave copy of the submanifold
(

�T [σ ], dT
σ

)

endowed with the intrinsic

distance. The AF (2.32) can also be localized on σ (see [23]). Such a locality w.r.t. T and

σ makes the wave copy and the AF available for problems on noncompact manifolds.

• Simple analysis shows that C2-smoothness of (�, g) is enough to justify the wave copy

construction. Indeed, such smoothness is enough for the uniqueness theorem [95]

providing (2.21) and for preserving the geometry of the caps, whereas nothing more

is necessary for constructing the wave copy. The AF requires CN -smoothness with a

finite N determined by dim � (see [48]).

• The wave copy can be constructed for dynamical systems governed by equations of more

general type: for instance, by ut t −u + qu = 0 with q ∈ L∞(�). The only correction

required is to write properly the rhs of the Duhamel formula (2.19) for a semi-bounded

operator −T + q instead of −T . If q is smooth enough, the AF (2.32) is also valid.

• As is mentioned in section 1, one more isometric copy of � can be constructed from the

distant functions τx0
: ∂� → R+, τx0

(·) := d(·, x0). For a certain class of manifolds and

metrics, the set �̃ =
{

τx0
| x0 ∈ �

}

endowed with C(∂�)-metric is an isometric copy

of � (Kurylev [70]). The use of τx0
goes back to the procedure of solving the dynamical

inverse problem ‘in the large’ proposed by one of the authors in [49]10. The disadvantage

of this version of the BCm is that it is workable for T > T∗ only and, therefore, does not

provide time-optimal results.

2.3. Inverse problems

2.3.1. Setup. Recall that −T is the Laplacian in �T with homogeneous (zero) Dirichlet

boundary conditions on Ŵ ∪ ŴT (see section 2.2.2). −T is a positive definite operator in

HT possessing the discrete spectrum
{

λT
k

}∞
k=0
; 0 < λT

1 < λT
2 � λT

3 � . . . ; let
{

ϕT
k

}∞
k=0

be

the corresponding eigenfunctions constituting an orthonormal basis in HT . A set of pairs

�T
Ŵ :=

{

λT
k ;

∂ϕT
k

∂ν

∣

∣

Ŵ

}∞
k=0

is called spectral data of the operator −T (on Ŵ). If T > T∗ then

ŴT = {∅},�T = � and we omit the superscript T in the notation: λT
k =: λk, ϕ

T
k =: ϕk , etc.

Let T > 0 be fixed;

• the spectral inverse problem is to determine (�T , dT ) from �T
Ŵ ;

• the dynamical inverse problem is to determine (�T , dT ) from the (continued) response

operator R2T .

Both of the problems are understood in the sense of the setups (1) and (2) given in

section 1.2. Both of them will be solved by a procedure that constructs a representative of

the class of equivalent manifolds (the representative will be just the wave copy!) and, thus,

determines the manifold up to isometry. The procedure is based on the concept of model.

2.3.2. Model. A pair {H̃T , W̃
T } consisting of a Hilbert space H̃T and an operator

W̃
T

: FT → H̃T is said to be a model of the system αT if W̃
T

and H̃T are determined by the

inverse data and the map UT : W T f �→ W̃
T
f is an isometry from UT = Ran W T ⊂ HT onto

ŨT := Ran W̃
T ⊂ H̃T .

The model is an intermediate object in solving IPs. It plays the role of an auxiliary

copy of the original system which the external observer can construct from measurements

at the boundary. While the genuine wave uf (·, T ) = W T f is invisible to the observer, its

10 The contributions of the authors of this paper are separated: one of them elaborates a procedure solving the problem,

the second one proves a geometric lemma justifying the procedure.
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Figure 6. Model.

UT -representation ũf (·, T ) = W̃
T
f can be visualized by means of the model control operator

W̃
T

(see the diagram in figure 6, where the upper part is invisible, whereas the lower part can

be extracted from inverse data).

The following fact plays a key role: given any model of the system αT , one can reproduce

the wave copy (�̃T , d̃
T
). Indeed,

(a) W̃
T

determines the sets Ũ s[σ ] := UT U s[σ ] = W̃
T
FT ,s[σ ];

(b) W̃
T

determines the UT -representation of the Laplacian on waves L̃T
0 := UT LT

0 (UT )∗

through the graph

graph L̃T
0 =
{

{W̃ T
f,−W̃

T
ft t }
∣

∣f ∈ C∞
0 ((0, T );C∞(Ŵ))

}

(2.33)

(see (2.22)) and its extension (in H̃T ) by Friedrichs L̃T = UT LT (UT )∗;
(c) the operator L̃T determines the image of the volume control operator

W̃
r

volh :=
∫ r

0

(L̃T )−
1
2 sin[(r − s)(L̃T )

1
2 ]h(·, s) ds

for h ∈ L2([0, r]; H̃T ) (see (2.23)) and the operation

Ẽ rÃ := closW̃
r

volL2

(

[0, r]; Ã
)

extending the subspaces Ã ⊂ H̃T (see (2.24)).

Therefore, repeating the procedure (i)–(iii) of section 2.2.5 and just replacing the subspaces

and operators without tildes by those with tildes, we get a UT -representation (a sample) of the

wave copy (�̃T , d̃
T
). The sample constructed in terms of the model is evidently isometric to

the wave copy itself, and in the following we identify them.

So, to construct a model via given inverse data is to determine the wave copy of the

original (�T , dT ) and, hence, to solve the corresponding IP.

2.3.3. Solving the IPs. Solving the forward problem (2.7)–(2.9) by the Fourier method, we

seek for the solution in the form of expansion

uf (·, t) =
∞
∑

k=1

c
f

k (t)ϕT
k (·)

over the eigenbasis of the operator −T . Standard calculations imply

c
f

k (t) =
∫

Ŵ×[0,t]

dŴ ds





sin
[(

λT
k

)
1
2 (t − s)

]

(

λT
k

)
1
2

∂ϕT
k

∂ν
(γ )



 f (γ, s).
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Hence, we get

uf (·, T ) = W T f =
∞
∑

k=1

(

f, sT
k

)

FT ϕT
k (·),

where sT
k = sT

k (γ, t) :=
(

λT
k

)− 1
2 sin
[(

λT
k

)
1
2 (T − t)

] ∂ϕT
k

∂ν
(γ ).

The spectral model is the pair

H̃T := l2, W̃
T

:=
{(

·, sT
k

)

FT

}∞
k=1

, (2.34)

the role of isometry UT is played by the Fourier transform F T : HT → H̃T , F T y :=
{(

y, ϕT
k

)

HT

}∞
k=1

. So, the spectral data �T
Ŵ determine a model and, hence, the wave copy

(�̃T , d̃
T
). Therefore, �T

Ŵ determines (�T , dT ) up to isometry, which solves the spectral IP.

Note a peculiarity of the model (2.34): the operator L̃T = UT LT (UT )∗ = F T (−T )(F T )∗ =
diag
{

λT
k

}∞
k=1

is given in explicit form, i.e., we do not need to determine it through the graph

(2.33) and invoke the Friedrichs extension.

By (2.15), the operator R2T determines the modulus of the control operator

| W T |:= [(W T )∗W T ]
1
2 = (CT )

1
2 ,

which enters in the polar decomposition W T = �T | W T | with an isometry �T : FT → HT .

Along with the modulus, the continued response operator determines the dynamical model

H̃T := clos Ran(CT )
1
2 , W̃

T
:= (CT )

1
2 .11 (2.35)

Therefore, R2T determines the wave copy (�̃T , d̃
T
), which is isometric to the original

(�T , dT ). The dynamical IP is solved.

Given any model, one can visualize the wave pictures. Indeed, since UT is an isometry,

the relation W̃
T = UT W T implies

(W T )∗[I− PW T FT ,s ]W T = (W̃
T
)∗[Ĩ− P

W̃
T
FT ,s ]W̃

T

and the AF (2.32) can be rewritten in the form

˜uf (·, T )(γ, s) = lim
t→T−s−0

((W̃
T
)∗[Ĩ− P

W̃
T
FT ,s ]W̃

T
f )(γ, t), (γ, s) ∈ Ŵ × [0, T )

(2.36)

with the rhs determined by any model. The set of wave pictures is rich enough for recovering

the pattern �T and the metric tensor on it. The pattern endowed with the tensor is isometric

to (�T , dT ): see [15, 47, 50].

The waves themselves can be visualized through the spectral or dynamical model by

means of the representation (2.30) written in the invariant form

uf (x(γ, s), T ) = lim
ε→0

(W̃
T
f, P

W̃
T
FT ,s [σε(γ )]

[P
W̃

T
F s − P

W̃
T
F s−ε ]1̃

T )H̃T

(1̃T , P
W̃

T
FT ,s [σε(γ )]

[P
W̃

T
F s − P

W̃
T
F s−ε ]1̃T )H̃T

(2.37)

available for any model. Here 1̃T := UT 1T , and the only question is to determine the element

1̃T ∈ H̃T .

Lemma 2. The relation

(W T )∗1T = (RT )∗̹T (2.38)

holds with ̹T = ̹T (γ, t) := T − t .

11 Since H̃T ⊂ FT , the external observer can construct this model, not leaving the outer space FT .
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Proof. See in [20, 32]. �

In the dynamical model we have (W T )∗1T = (W̃
T
)∗1̃T = (CT )

1
2 1̃T . Hence, by (2.38), the

required element 1̃T can be characterized as a unique solution of an equation

(CT )
1
2 f = (RT )∗̹T in FT (2.39)

belonging to clos Ran(CT )
1
2 . Solving this equation, we get an opportunity to determine the

rhs of (2.37) from dynamical inverse data.

If T > T∗, we have ŴT = {∅}, 1T (·) = 1 in � and easily find

1̃ = {(1, ϕk)H}∞k=1 =
{

− 1

λk

∫

Ŵ

∂ϕk

∂ν
dŴ

}∞

k=1

(the data �T
Ŵ do not depend on T), which enables one to determine the rhs of (2.37) through

the spectral model.

• There is one more variant of the dynamical model. Let F̃T be the completion of the

outer space FT w.r.t. the norm ‖f ‖F̃T := (CT f, f )
1
2

FT (a space of generalized controls

introduced in [12]), W̃
T

the embedding FT to F̃T . As is easy to see, the pair {F̃T , W̃
T }

constitutes a model. Such a model possesses some interesting properties [20]; however,

F̃T is not a distributional space.

• Let T > 0 and an open σ ⊂ Ŵ be fixed, the operator R2T
σ : F2T [σ ] → F2T [σ ] defined on

F2T [σ ] ∩ Dom R2T by R2T
σ := [R2T ·]|σ×[0,2T ] given. Repeating the construction of the

wave copy and applying the technique [10], one can show that this operator determines

the submanifold (�T [σ ], g) up to isometry. Such a locality w.r.t. T and σ , corresponding

to the general principles P1–P3, is one of main advantages of the BCm.

Returning to the spectral IP, assume that the derivatives
∂ϕT

k

∂ν
are given on σ only. A simple

consequence of our approach is that the data
{

λT
k ;

∂ϕT
k

∂ν

∣

∣

σ

}∞
k=0

determine (�T , dT ) up to

isometry.

• Equation (2.39) is one of the BCm-versions of the classical Gelfand–Levitan–Krein–

Marchenko equations (see [9, 20]). Apropos of this, there is the conjecture that the

Faddeev–Newton equations of the inverse scattering problem can also be interpreted in

BCm-terms. We plan to extend the BCm on this problem. A curious fact is that the

character of controllability of the corresponding dynamical system differs from that of

the system on a compact manifold: a natural analog of (2.21) does not hold [55, 56].

The possible lack of controllability leads to interesting physical effects (the existence of

so-called reversing waves): see [56].

2.3.4. A look at wave copy. Here we interpret the wave copy construction in terms of

functional analysis.

A set L = {Aα} of subspaces Lα of a Hilbert space H is said to be a (closed) lattice if

Aα, Aα′ , Aj ∈ L and Aj → A 12 implies H ⊖ Aα, Aα ∩ Aα′ , A ∈ L. For a set of subspaces

b = {Bα}, we denote by L〈b〉 the minimal lattice containing b.

A set of subspaces x = {Xα} is called a nest if it is totally subordinated w.r.t. embedding:

for any Xα, Xα′ , either Xα ⊂ Xα′ or Xα′ ⊃ Xα holds [59, 63]. We write x ⊂ L if all Xα

belong to the lattice L and denote by X [L] := {x | x ⊂ L} a set of the nests belonging to L.

12 In the sense of the strong operator convergence of the projections on Aj .
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A positive definite operator L in H determines an operation E r that extends subspaces by

the rule

E rA := clos

{∫ r

0

L−
1
2 sin[(r − s)L

1
2 ]h(·, s) ds

∣

∣

∣

∣

h ∈ L2 ([0, r];A)

}

, r > 0,

(2.40)
E0 := id.

We call E r a dynamical extension. A lattice L is said to be dynamical if A ∈ L implies

E rA ∈ L, r � 0.

A nest x ⊂ L is said to be dynamical if it can be parametrized as

x = {Xr}r�0, X0 =
⋂

r>0

Xr , Xr+s = E rXs, s > 0, r � 0.

The set of dynamical nests is partially subordinated: we write x ≺ x ′ if Xr ⊂ X′r , r � 0. A

dynamical nest x is said to be elementary if x ≺ x ′ for any x ′ comparable with x. We denote

by Xe[L] the set of elementary nests of a dynamical lattice L, and endow it with a function

δ : Xe[L]× Xe[L] → R+,

δ(x, x ′) := inf{r � 0 | Xr �⊥ X′r} � ∞. (2.41)

Return to the dynamical system αT and its wave copy. The boundary control operator

W T determines the space H := U
T = clos W T FT , the set of its subspaces aT

Ŵ := {U s
[σ ] =

clos W T FT ,s[σ ] | 0 � s � T , σ ⊂ Ŵ}, and the operator L := LT (Laplacian on waves).

Along with L, the extension E r is well defined by (2.40). Hence, we can constitute the

dynamical lattice L
〈

aT
Ŵ

〉

, the set of elementary nests Xe

[

L
〈

aT
Ŵ

〉]

and endow this set with

the function δ by (2.41) (compare with (2.28)). A simple analysis shows that the pair
(

Xe

[

L
〈

aT
Ŵ

〉]

, δ
)

is identical to the wave copy (�̃T , d̃
T
). The copy is isometric to the original

(we write (�̃T , d̃
T
) ≈ (�T , dT )) and, hence, we arrive at

(�T , dT ) ≈
(

Xe[L
〈

aT
Ŵ

〉

], δ
)

. (2.42)

There are two reasons motivating such an interpretation of the wave copy. First, owing

to its invariant operator nature, the rhs of (2.42) is well defined for a wide class of dynamical

systems: roughly speaking, it always exists. Second, the rhs is determined by the control

operator W T and, hence, can be reproduced through any model. Thus, the pair
(

Xe

[

L
〈

aT
Ŵ

〉]

, δ
)

is a relevant (to IPs) canonical realization of the original manifold (�T , dT ).

• In this connection, actually, an original and its realization are different things, which do

not need to be identical. Indeed, ‘equality’ (2.42) is derived from controllability (2.21)

and, hence, is a specificity of a class of 1-velocity systems. What does (Xe

[

L
〈

aT
Ŵ

〉]

, δ)

look like in the case of more complicated (in particular, multi-velocity) systems, for which

(2.21) does not hold and, as a result, (2.42) is not valid? How is such an object related to

the geometry of � and parameters of the associated dynamical system? These questions

constitute one of most interesting directions of further development for the BCm.

In addition, let us provide an abstract analog of representation (2.29). Assume that G ⊂ H

is a subspace generating the dynamical lattice L, i.e., clos {PAψ | ψ ∈ G,A ⊂ L} = H and

let {ψk}Nk=1, N � ∞ be an orthonormal basis in G. For y ∈ H , define an lN2 -valued function

y(·) : Xe[L] → lN2 ,

y(x) :=
{

lim
r→0

(y, PXr ψk)H

(ψk, PXr ψk)H

}N

k=1

, (2.43)

where Xr ∈ x. The map U : y �→ y(·) realizes elements of H as functions on Xe[L], whereas

operator ULU−1 turns out to be a functional model of L.



Topical Review R19

2.3.5. Visualization as triangular factorization. Returning to the definition of the pictures

(2.31), let us identify the space of pictures L2(Ŵ× [0, T ]) to the outer space FT and consider

the picture operator I T as a map from HT to FT . Let Y T : FT → FT be the time inversion:

(Y T f )(·, t) := f (·, T − t), 0 � t � T . An operator Y T I T : HT → FT is isometric; the

relation

Y T I T Hs ⊂ FT ,s, 0 � s � T (2.44)

easily follows from (2.31).

A map V T : FT → FT , V T := Y T I T W T is called a visualizing operator [15]. The first

of relations (2.20), along with (2.44), easily imply

V T FT ,s ⊂ FT ,s, 0 � s � T

i.e., V T is triangular w.r.t. the family {FT ,s}0�s�T (see [59, 63]).

Since I T and Y T are isometries, one has

|V T | := [(V T )∗V T ]
1
2 = [(W T )∗W T ]

1
2 = [CT ]

1
2 = |W̃ T |

so that |V T | is determined by any model of the system αT . Writing (2.32) and (2.36) in the

form

(V T f )(γ, s) = lim
t→T−s−0

(|V T |[I− P|V T |FT ,s ]|V T |f )(γ, t), (γ, s) ∈ Ŵ × [0, T )

we conclude that the AF recovers a triangular operator V T from its modulus |V T |13.

In other words, the AF provides the triangular factorization of the connecting operator:

CT = (V T )∗V T . Such a factorization is not unique and the factor V T can be characterized in

terms of the operator diagonal (see [18, 52]).

2.3.6. Relations between data: variational principle. Given R2T , we can recover the wave

copy of (�T , dT ) and, solving the forward spectral problem on the copy, determine �T
Ŵ .

Conversely, �T
Ŵ determines the wave copy and, solving the forward dynamical problem on it,

we can find R2T . So, both side determinations R2T ⇔ (�T , dT ) ⇔ �T
Ŵ hold but the question

arises whether one can relate the dynamical and spectral data in a straightforward way, i.e.,

avoiding the reconstruction of the manifold. The model provides such an option.

A dynamical system αT
∗ of the form

vt t −v = 0 in {(x, t) | x ∈ �T , τ (x) < t < T } (2.45)

v|t=T = 0, vt |t=T = y in �
T

(2.46)

v = 0 on Ŵ × [0, T ] (2.47)

is called dual to the system αT (2.7)–(2.9); let v = vy(x, t) be its solution for y ∈ HT . With

the system αT
∗ one associates an observation operator OT : HT → FT ,OT y := ∂vy

∂ν

∣

∣

Ŵ×[0,T ]
.

The term ‘dual’ is motivated by the relation OT = (W T )∗ (e.g., see [15]). Taking y = ϕT
k

(see section 2.3.1), one has vϕT
k (·, t) =

(

λT
k

)− 1
2 sin
[(

λT
k

)
1
2 (t − T )

]

ϕT
k (·); this implies

∂ϕT
k

∂ν

∣

∣

∣

∣

Ŵ

=
[

d

dt

∂vϕT
k

∂ν

∣

∣

∣

∣

∣

Ŵ

]∣

∣

∣

∣

∣

t=T

=
[

d

dt
(W T )∗ϕT

k

]∣

∣

∣

∣

t=T

. (2.48)

Given R2T , one can recover �T
Ŵ by the following procedure:

13 This relates the AF to optical holography.
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(i) Using the dynamical model (2.35), determine the operator L̃T
0 (see (2.33)) and its

extension by Friedrichs L̃T in H̃T . Find its spectrum and choose an orthonormal basis
{

ϕ̃T
k

}∞
k=0

: L̃T
k ϕ̃T

k = λT
k ϕ̃T

k .

(ii) For ϕT
k := (UT )∗ϕ̃T

k , by isometry, we have (W T )∗ϕT
k = (W̃

T
)∗ϕ̃T

k and (2.48) implies

∂ϕT
k

∂ν

∣

∣

∣

∣

Ŵ

=
[

d

dt
(W̃

T
)∗ϕ̃T

k

] ∣

∣

∣

∣

t=T

. (2.49)

Collecting
{

λT
k ;

∂ϕT
k

∂ν

∣

∣

Ŵ

}∞
k=0

= �T
Ŵ , we get the spectral data.

One more way is to extract �T
Ŵ from CT by means of the variational principle, which is

equivalent to the spectral analysis (i). In accordance with the principle, we have

λT
1 = min

‖y‖2

HT =1
(−T y, y)HT , −T ϕT

1 = λT
1 ϕT

1 ,

λT
2 = min

‖y‖2

HT =1

(y,ϕT
1 )

HT =0

(−T y, y)HT , −T ϕT
2 = λT

2 ϕT
2 ,

· · ·

where y ∈ Dom(−)T and ϕT
k are the minimizers. Boundary controllability (2.21)

enables one to reduce the search for minima to the reachable set
{

uf (·, T ) | f ∈ FT
∞ :=

C∞
0

(

(0, T );C∞(Ŵ)
)}

= W T FT
∞ dense in HT , whereas for y = uf (·, T ) we can represent

(−T y, y)HT = (−T uf (·, T ), uf (·, T ))HT =
(

−u
f
tt (·, T ), uf (·, T )

)

HT

= −(uft t (·, T ), uf (·, T ))HT = 〈see (2.14)〉 = −(CT ft t , f )FT ,

‖y‖2
HT =

(

uf (·, T ), uf (·, T )
)

HT =
(

CT f, f
)

FT ,

(y, ϕT
k )HT = (W T f, ϕT

k )HT =
(

f, (W T )∗ϕT
k

)

FT =
(

f, (W̃
T
)∗ϕ̃T

k

)

FT ,

where ϕ̃T
k = UT ϕT

k . Thereafter, we can realize the variational principle through the dynamical

model, not leaving the outer space FT .

Step 1. Find

λT
1 = − min

f∈FT∞,(CT f,f )
FT =1

(CT ft t , f )FT .

Choose a sequence f (1)
p satisfying the minimization conditions and providing

− limp→∞
(

CT f (1)
p tt

, f (1)
p

)

FT = λT
1 . Since uf

(1)
p (·, T ) = W T f (1)

p → ϕT
1 in HT , by isometry

‘system ↔ model’, the sequence W̃
T
f (1)

p converges to ϕ̃T
1 = UT ϕT

1 in H̃T = FT and we can

find ϕ̃T
1 = limp→∞(CT )

1
2 f (1)

p . Then, by (2.49) we determine

∂ϕT
1

∂ν

∣

∣

∣

∣

Ŵ

=
[

d

dt
(CT )

1
2 ϕ̃T

1

] ∣

∣

∣

∣

t=T

=
[

d

dt
lim

p→∞
CT f (1)

p

] ∣

∣

∣

∣

t=T

.

So, the pair
{

λT
1 ;

∂ϕT
1

∂ν

∣

∣

Ŵ

}

is obtained.

Step 2. Find

λT
2 = − min

f∈FT
∞,(CT f,f )

FT =1

((CT )
1
2 f,ϕ̃T

1 )
FT =0

(CT ft t , f )FT
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and choose f (2)
p such that− limp→∞

(

CT f (2)
p tt

, f (2)
p

)

FT = λT
2 . Find ϕ̃T

2 = limp→∞(CT )
1
2 f (2)

p ,

determine

∂ϕT
2

∂ν

∣

∣

∣

∣

Ŵ

=
[

d

dt
lim

p→∞
CT f (2)

p

] ∣

∣

∣

∣

t=T

and get
{

λT
2 ;

∂ϕT
2

∂ν

∣

∣

Ŵ

}

.

Continuing in the evident way, we get
{

λT
k ;

∂ϕT
k

∂ν

∣

∣

Ŵ

}∞
k=0

= �T
Ŵ .

• Determination R2T ⇒ �T
Ŵ through model and variational principle was proposed in [14]

for solving the dynamical IP of the heat conductivity; in [25] the same trick is applied to

the wave equation. This trick is also workable in the case of local data: as is easy to see,

the same procedure (steps 1 and 2, . . .) enables one to determine �T
σ from R2T

σ .

2.3.7. Data continuation. Consider the question: given R2T for a fixed T > 0, can one

determine RT ′
for T ′ > 2T in a straightforward way, not recovering (�T , dT )? In other

words, one needs to continue the dynamical inverse data from [0, 2T ] to a bigger interval

[0, T ′], not solving the inverse (and, thereafter, the corresponding forward) problem.

One of possible continuation procedures is the following:

(i) given R2T , recover the spectral data �T
Ŵ (see the previous section);

(ii) represent the solution uf of the system αT ′
by Fourier (see the beginning of section 2.3.3).

For a control f ∈ C∞
0 ((0, T ′);C∞(Ŵ)) provided supp f ⊂ [0, 2T ], the Fourier

representation easily implies

(RT ′
f )(·, t)

=















(R2T f )(·, t), 0 � t < 2T

∞
∑

k=1





∫

Ŵ×[0,t]

dŴ ds
sin
[(

λT
k

)
1
2 (t − s)

]

(

λT
k

)
1
2

∂ϕT
k

∂ν
(γ )f (γ, s)





∂ϕT
k

∂ν
(·), t � 2T

(2.50)

(the integral is in fact taken over Ŵ × [0, 2T ]; the series converges since the integral

rapidly decreases as k →∞ by the choice of f )

(iii) using a shift w.r.t. time and choosing a suitable partition of unity on [0, T ′], one

can take off the restriction to supp f and extend the representation to controls f ∈
C∞((0, T ′];C∞(Ŵ)) (see [22] for details). Such an extension determines RT ′

.

In the case T < T∗, the continuation R2T ⇒ RT ′
constructed above corresponds to the

zero Dirichlet condition on ŴT . Surely, there are infinitely many other continuations but our

one is singled out and realizable through any model owing to invariancy of the Friedrichs

extension. If T > T∗, then the continuation is unique.

• Invoking the spectral data �T
Ŵ for the continuation, we use compactness of �. A more

general construction based on the model [22] is available for noncompact manifolds. The

same construction provides the continuation of the response operator R2T
σ for any T > 0

and open σ ⊂ Ŵ.

• For the versions of the continuation procedure [22] for the Maxwell and Lamé dynamical

systems, see in [45, 51]. Moreover, the procedure is realizable on a general operator level

[20]; it is related to the classical problem of continuation of positive Hermitian operator

functions, the role of the positivity by Bochner–Krein being played by the condition

CT � O.



R22 Topical Review

• One more BCm-procedure extending the response operator is proposed in [75]. It admits

the presence of the dissipative term βut in the wave equation. However, this version is

workable for T > T∗ only and under additional global conditions on controllability of the

manifold.

2.3.8. Other types of equations. As was mentioned above, for the first time the determination

R2T ⇒ �Ŵ through the model and variational principle has been applied to the heat

conductivity IP [14]. Here we describe briefly the application of the same trick to a system

governed by the Schrödinger equation [2, 4, 5].

On a compact RM � with the boundary Ŵ consider the system

iut −u = 0 in (int �)× (0, T )

u|t=0 = 0 in �

∂u

∂ν
= f in Ŵ × [0, T ]

with a (complex valued) Neumann boundary control. Its control operator W T : FT → H =
L2(�),W T f = uf (·, T ) and response operator RT : FT → FT , RT f = uf |Ŵ×[0,T ] are well

defined on a class MT of smooth controls vanishing near Ŵ × {t = 0}. The following two

facts are basic for the BCm:

(i) for any T > 0, the system is approximately controllable: the reachable set W T MT is

dense in H;

(ii) the connecting form cT [f ′, f ′′] = (W T f ′,W T f ′′)H is represented via the response

operator: cT [f ′, f ′′] = i([RT − (RT )∗]f ′, f ′′)FT (S A Avdonin).

These facts enable one to construct the appropriate dynamical model (2.35) of the system

and determine the spectral data �Ŵ from RT , for instance, by the use of the variational

principle. As a result, for any fixed T > 0 the operator RT determines (�, d) up to isometry.

• The results of Triggiani and Yao [96] on the exact H 1-controllability of the Schrödinger

system provide stronger convergence of the minimizing sequences in the variational

principle (see [2]).

• A peculiarity of the heat and Schrödinger systems is the global character of their dynamical

data: owing to infiniteness of the domain of influence, for any T > 0 the response

operators RT contain the information about � as a whole. By the same reasoning, (�, g)

is determined up to isometry by the operator RT
σ given for an open σ ⊂ Ŵ.

• Perhaps, the area of application of the variational principle is not exhausted yet. For

instance, if the system governed by the plate equation ut t + 2u = 0 is approximately

controllable, then the relevant dynamical and spectral data determine (�, g) up to

isometry.

2.3.9. Not self-adjoint case. A version of the BCm for the wave equation ut t − u +

b · ∇u + qu = 0 (b is a vector field and q is a function in � ⊂ Rn) is based on the following

observation. Denote L := − + b · ∇ + q, let L♯ := −− b · ∇ + [div b] + q be the conjugate

operator. Let

ut t + Lu = 0 in �× (0, T ) ut t + L♯u = 0 in �× (0, T )

u|t=0 = ut |t=0 = 0 in �̄ u|t=0 = ut |t=0 = 0 in �̄

u = f on Ŵ × [0, T ] u = f on Ŵ × [0, T ]
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be the conjugate systems, u = uf (x, t) and u = u
f

♯ (x, t) the solutions, W T : f �→ uf (·, T )

and W T
♯ : f �→ u

f

♯ (·, T ) the control operators, RT : f �→ ∂uf

∂ν

∣

∣

Ŵ×[0,T ]
and RT

♯ : f �→
∂u

f

♯

∂ν

∣

∣

Ŵ×[0,T ]
the response operators.14 The cross-connecting operator CT =

(

W T
♯

)∗
W T can

be represented in the form (2.15) and, hence, the wave products (uf ′(·, T ), u
f ′′

♯ (·, T ))HT =
(CT f ′, f ′′)FT are determined by the response operator R2T (S A Avdonin [1, 16]).

As each version of the BCm, the variant available for the not self-adjoint case invokes the

results on controllability. Fix x ∈ �, let lθx be a geodesic (straight ray) emanating from x in

the direction θ ∈ Sn−1. Let tθx be the time needed for the point starting from x and moving

along lθx with unit speed, to reach the boundary Ŵ. Denote Tx := maxθ∈Sn−1 min
{

tθx , t−θ
x

}

and

introduce a subdomain BT := {x ∈ � | Tx < T } that we call Bardos’s zone. The relation

{uf (·, T )|BT | f ∈ FT } = L2(B
T ) is derived from the well-known result of Bardos, Lebeau

and Roach [7] (see [6]) and may be interpreted as exact controllability of the wave tails [16].

Our contribution to the dynamical IP is the following [17, 16].

Theorem 2. Assume that L = − + b · ∇; let T and T ′ > T be such that �T ⊂ BT ′
. Then

the response operator R2T ′
determines b|�T uniquely.

This result is supplemented with a procedure recovering the field b by means of the amplitude

integral, which is a promoted version of the AF. If L is of general form − + b · ∇ + q, the

procedure recovers L up to a natural nonuniqueness and constructs a representative of the class

of equivalent operators possessing the given R2T ′
, the representative being singled out by the

condition b⊥∇τ . Theorem 2 remains valid for RMs.

However, with the exception of the case b = ∇ ln ρ, which can be reduced to the self-

adjoint case (see [69]), time-optimal determination R2T ⇒ b|�T is not established so far. The

problem can be interpreted as a question on uniqueness of a special triangular factorization for

the cross-connecting operator CT (see [18]) and we hope for development of this approach.

• One of the best uniqueness results on determination of the low-order terms belongs to V

Isakov: see [66], theorem 8.3.1.

• In [74] the complex not self-adjoint operator of more general form is determined from the

frequency-domain data, provided the BLR-condition of controllability.

• In [61], a modification of the BCm is proposed for determination of the complex self-

adjoint operator L = −+A+q containing the first-order (‘magnetic’) terms A in � ⊂ Rn.

This approach provides the uniqueness of determination (up to a natural equivalence) from

R2T
σ given on a part of the boundary, provided T is large enough. However, in our opinion,

the same results in a stronger form (on a RM, for a fixed arbitrary T > 0) can be

obtained by the use of standard BCm tools. Moreover, visualization by the AF could

give a canonical representative of the class of equivalent operators L. This is done for

A = 0 [15] and we see no obstructions to extending this technique to the case under

consideration. Perhaps the author of [61] does not fully recognize the opportunities of

the ‘classical’ BCm.

2.3.10. On recovery of dissipation. Here we discuss an important problem, required in a lot

of applications, which is so far open: all attempts to solve it by the BCm have given no result

during more than 10 years. The problem is the time-optimal determination of the dissipative

term in the wave equation.

14 RT and RT
♯ are connected through a simple explicit formula: see [1, 16].
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In a bounded � ⊂ Rn, consider the system αT
β of the form

ut t + βut −u = 0 in �T × (0, T )

u = 0 in {(x, t) | x ∈ �T , 0 � t � τ(x)}
u = f on Ŵ × [0, T ]

(τ is the Euclidean eikonal) with a smooth enough function β � 0; let u = uf (x, t) be

its solution, W T
β : f �→ uf (·, T ) the control operator. The continued response operator

R2T
β : f �→ ∂uf

∂ν

∣

∣

Ŵ×[0,2T ]
associated with the appropriate extended problem (see (2.10)–(2.12))

is determined by β|�T . The dynamical IP is to determine β|�T from R2T
β given for a fixed

T > 0. For T < T∗, the problem is open.

Probably, the primary source of difficulties is the fact that to recover the term β ∂
∂t

is to recover a nonlocal operator. As can be shown, for T < T∗ the operator W T
β

is injective. In this case, this term can be written in the form β ∂
∂t
= βQT , where

QT := W T
β

∂
∂t

(

W T
β

)−1
: uf (·, T ) �→ u

f
t (·, T ) is a velocity operator well defined on the

reachable set. As is easy to show, this operator is nonlocal: it does not preserve support of the

wave.

The relation
(

1

2
(ST )∗R2T

β J 2T ST f ′, f ′′
)

FT

=
∫

�

uf ′(x, T )uf ′′(x, T ) dx

+

∫

�

dx β(x)

∫ T

0

uf ′(x, t)uf ′′(x, t) dt (2.51)

(see [13]) is a straightforward analog of (2.15). The rhs determines a Hilbert metric on waves,

the metric being stronger than the standard L2-metric. Hence, completing the reachable set

UT
β = W T

β FT w.r.t. the corresponding norm, we obtain a new Hilbert space HT
β ⊂ HT .

Considering HT
β as an inner space of system αT

β and understanding properly the operators

W T
β ,
(

W T
β

)∗
, PUT

β
, we can compose the rhs of the AF (2.32).15 The intriguing question is:

what does such an AF show and whose pictures will be seen? The reason of interest is that

it is the pictures, which the external observer can visualize through the dynamical model by

(2.36). One more question: if one repeats step by step the procedure (i)–(iii) of section 2.2.5

constructing the wave copy, what end product will be obtained as a result? Is it an RM? In

other words, possessing R2T
β and applying the standard BCm-devices, what will the external

observer see?

In the 1-dim case the answer is known: applying the BCm-procedure to R2T
β , we get a

system αT
q governed by the equation ut t − uxx + qu = 0 with a potential q = q(x) such that

its response operator R2T
q coincides with R2T

β [13]. Systems αT
q and αT

β are indistinguishable

for the external observer. Perhaps, in the multidimensional case the observer will get an RM

with a new metric, which simulates the dissipation effects16.

Thus, an edifying fact is that the canonical realization of a system obtained by the BCm

tools (wave copy, AF, etc) does not need to be identical to the original system. Therefore, we

have to take care of the transform ‘realization �→ original’, which is not a trivial task. For

instance, even in the 1-dim case we do not know whether there exists a formula or an efficient

procedure determining β from q.

15 However, we have no efficient description of P
UT

β
: it is not known how to project in the metric (2.51).

16 Such a simulation occurs in the case of the transport equation (V A Sharafutdinov).
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• The best-known result on uniqueness of determination of β belongs to V Isakov (see [66],

theorem 8.3.1). In [75] the dissipation is recovered by a version of the BCm provided

the BLR condition on �, so that the time of determination is far from the optimal one.

The same condition is used in the paper [62], where an approach incorporating some

ideas of the BCm is proposed. A promising peculiarity of the approach is that it recovers

time-dependent coefficients, what is mostly ‘terra incognita’ in hyperbolic IPs. However,

the approach is rather complicated and needs to be carefully checked.

2.3.11. BCm and linear system theory. The paper [20] is an attempt to appreciate the operator

background of the BCm and inscribe the method in general system theory [71].

The object defining an abstract dynamical system with boundary control (DSBC) is a

space of boundary values (SBV) that is a collection {H,B, L,D,N} of the Hilbert spaces

H,B and the operators L : H → H,D : H → B, N : H → B connected through the Green

formula

(Lu, v)H − (u, Lv)H = (Du,Nv)B − (Nu,Dv)B

for u, v ∈ Dom L. DSBC is a dynamical system αT of the form

ut t + Lu = 0 in H, 0 < t < T

u|t=0 = ut |t=0 = 0 in H

D[u(t)] = f (t) in B, 0 � t � T ,

where f ∈ FT := L2([0, T ];B) is a boundary control, u = uf (t) is a solution. The

control operator W T : FT → H acts by the rule W T f = uf (T ); the response operator is

RT : FT → FT , RT f = N [uf (·)]; the connecting operator is CT = (W T )∗W T . Recall that

the continued response operator R2T of the system on RM is defined via the extended system

(2.10)–(2.13), which has no natural abstract analog. Nevertheless, R2T can be introduced for

an abstract DSBC: it is defined by

R2T := −2Y 2T ST
0 CT d

dt

(

ST
0

)∗ − Y 2T ST
0 (RT )∗(ST

−) + ST
+ RT
(

ST
0

)∗
,

where ST
0 : FT → F2T extends the controls from [0, T ] to [0, 2T ] by zero, ST

± : FT → F2T

are the extensions by evenness/oddness w.r.t. t = T , Y 2T changes t for 2T − t . Thus, R2T is

an intrinsic object of the DSBC αT determined by W T and RT , whereas the relation (2.15)

turns out to be an operator identity.

The IP is to recover the system αT from the given R2T . ‘To recover’ means to

construct a system α̃T (a realization) associated with an SBV {H̃T ,B, L̃T , D̃
T
, Ñ

T } provided

clos Ran W̃
T = H̃T ,17 such that R̃

2T = R2T .

The main result of [20] is the characterization of the inverse data: after rigorously

specifying the class of systems, we prove that an operator R2T is the continued response

operator of a DSBC αT iff the operator 1
2
(ST
−)∗R2T J 2T ST

− is positive definite in FT .

A realization α̃T that possesses the given R2T is not unique: it is determined up to an

isometry UT : H̃T → H̃′T , W̃
′T = UT W̃

T
. We introduce some special realizations related to

the triangular factorization of the connecting operator.

17 This is a natural minimality condition.
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As an application, we obtain a conditional existence theorem for the problem of

reconstruction of (�T , g) (for T < Tc) via R2T . The assumptions of the theorem ensure

the realizability of the procedure recovering the visualizing operator V T from R2T . This

operator is constructed in the form of an operator (amplitude) integral [15]. Actually, the

theorem is not too rich in content, because to check its assumptions is in fact to recover V T by

the BCm. However, it contains a sharp and checkable necessary condition: a certain operator

integral determined by the data must converge to a unitary operator.

The BCm provides the multidimensional analogs of the classical Gelfand–Levitan–Krein–

Marchenko equations introduced in [9]. The paper [20] presents an abstract version of these

analogs.

2.3.12. Numerical testing and convergence of algorithms. Numerical algorithms for solving

2-dim spectral and dynamical IPs for the wave equation ρut t − u = 0, which recover

a variable density ρ > 0, were elaborated and tested by V Yu Gotlib and S A Ivanov

in 1997–1999 (see [39, 40]). Most successful results (Gotlib [39]) are obtained by the

algorithm realizing the amplitude formula (2.36). They are shown in figure 7: the left

pictures are the tests, the right ones are the reconstructions. The first line demonstrates

the recovery of ρ(x1, x2) depending linearly on x1. The second line corresponds to the

density of the background value 1 perturbed by four smooth positive Gaussian-type inclusions:

ρ = 1 +
∑4

i=1 δρi, δρi ≈ 0.2. The third line corresponds to the most complicated profile:

there are four inclusions δρ1,2 � 0, δρ3,4 � 0, | δρi |≈ 0.2. The algorithm works well

near the boundary, whereas the zone near the cut locus turns out to be unreachable that

should be expected by physical reasons: the focusing and crossing rays effects complicate

the reconstruction. Unfortunately, this work has been terminated by the early death of Vadim

Gotlib who was an excellent mathematician and specialist in numerical analysis.

Recent promising results on numerical testing of the BCm-algorithm elaborated by S I

Kabanikhin and M A Shishlenin are presented in [69]. The algorithm recovers a density ρ in

the 2-dim acoustic equation of the form ut t −u + ∇ ln ρ · ∇u = 0 from R2T .

In the case of the wave equation with density, analysis of the algorithm based on the AF

shows the following type of convergence. Let x0 ∈ � be a point lying out of the cut locus

(w.r.t. the metric ρ|dx|2). Then, for arbitrarily given ε > 0, the algorithm produces a sequence

of numbers
{

ρε
j (x0)

}∞
j=1

such that
∣

∣ρ(x0)− limj→∞ ρε
j (x0)

∣

∣ < ε. However, the estimates of j

ensuring the last inequality are not obtained yet (if they exist). The same type of convergence

occurs in recovering (�T , dT ) by the algorithm, which determines the components of the

metric tensor in sgc through the AF [15].

Another open problem is the stability of the time-optimal reconstruction, the stability

being understood as a continuity of the map R2T → (�T , dT ). The known results [94]

concern the simple metrics and are not time-optimal. Our hopes for time-optimal results are

connected with an approach based on the Carleman estimates [90, 91]. One more possible

way is to investigate, at a general operator level, the stability of the triangular factorization

CT = (V T )∗V T (see section 2.3.5). The principal difficulty is that in multidimensional

problems CT is not an isomorphism.

2.3.13. Kinematic IP. A new approach to the 2-dim kinematic IP exploiting some ideas of

the BCm is proposed by L N Pestov [87]. Using a relevant variant of the Gelfand–Levitan–

Krein–Marchenko equations and a microlocal version of the classical Hilbert transform, the

approach determines the (elliptic) Dirichlet-to-Neumann operator from a hodograph d|Ŵ×Ŵ of

the manifold provided simplicity of its metric. Thereafter, the known results on determination

of the metric from the Dirichlet-to-Neumann operator are applied.
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Figure 7. Numerical testing.
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3. Electrodynamics

3.1. Maxwell system on RM

3.1.1. Vector analysis. Let � be a smooth compact orientable RM, g a metric tensor on �,

dim � = 3, Ŵ := ∂� ∈ C∞. We assume � oriented and denote by µ the volume 3-form in

�. Recall certain of the definitions of the vector analysis (e.g., see [93], chapter 3.5).

With a vector field a given in � one associates an 1-form a♯ by a♯(b) := g(a, b),∀ b.

A field η♯ associated with a form η is defined by g(η♯, b) = η(b),∀ b.

A scalar product of fields is defined pointwise by a · b := g(a, b). A vector product a× b

is defined by g(a × b, c) = µ(a, b, c),∀ c.

We identify 0-forms and functions. A gradient of a function is a field ∇φ := (dφ)♯.

A divergence of a field is a function div a := δa♯, where δ = − ⋆ d⋆ is the codifferential, ⋆ is

the Hodge operator. A curl of a field is a field curl a := (⋆ da♯)
♯. Recall the basic identities

div curl = 0, curl∇ = 0.

The Laplacian on function is defined by  := div∇. The Laplacian on vector field is

 := ∇ div− curl curl.

Let µŴ be the surface 2-form on Ŵ : µŴ(a, b) = µ(a, b, ν) for vector fields a, b on Ŵ18

and the outward normal ν = ν(γ ). Recall the Green formulae
∫

�

div au =
∫

Ŵ

a · νu−
∫

�

a · ∇u;
∫

�

curl a · b =
∫

Ŵ

ν × a · b +

∫

�

a · curl b (3.1)

(we omit µ and µŴ in integrals) and the relation

ν · curl a = −divŴ ν × a,

where divŴ is the (intrinsic) divergence on Ŵ.

We use a pointwise decomposition of vectors a ∈ Tγ � on Ŵ:

a = aθ + aνν, (3.2)

where aθ is a tangent component of a, aν = a · ν and identify aθ as the corresponding element

of Tγ (Ŵ).

3.1.2. System αT . The Maxwell system on � is

ut = curl v, vt = −curl u in (int �)× (0, T ) (3.3)

u|t=0 = 0, v|t=0 = 0 in � (3.4)

uθ = f on Ŵ × [0, T ], (3.5)

where f is a boundary control (a time-dependent tangent field on Ŵ), u = uf (x, t), v =
vf (x, t) is a solution. The relations div uf (·, t) = div vf (·, t) = 0,∀ t follow from (3.3)

and (3.4).

Eliminating a magnetic component v and taking into account the finiteness of the domains

of influence, one arrives at the system αT of the form

ut t −u = 0 in (int �T )× (0, T ) (3.6)

u = 0 in {(x, t) | x ∈ �T , 0 � t � τ(x)} (3.7)

uθ = f on Ŵ × [0, T ] (3.8)

18 Here and in the following, we identify a(γ ) ∈ Tγ Ŵ and (i∗a)(γ ) ∈ Tγ �, where i : Ŵ → � is the embedding.
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(we use  = −curl curl on solenoidal fields), which is interpreted as an electric subsystem

of system (3.3)–(3.5). Problem (3.6)–(3.7) is well posed; for f ∈ MT := {f ∈
C∞([0, T ]; �C∞(Ŵ)) | supp f ⊂ (0, T ]} it has a unique classical (smooth) solution u =
uf (x, t).

An outer space of the system αT is FT := L2([0, T ]; �L2(Ŵ)); it contains the class

FT
+ := L2([0, T ]; �H 1(Ŵ)) ( �H s(· · ·) are the Sobolev classes).

Let J := {y ∈ �L2(�) | div y = 0} be a space of solenoidal vector fields on �. Its

subspace J T := clos {y ∈ J | supp y ⊂ �T } plays the role of an inner space of αT .

A control operator of the system is W T : FT → J T , Dom W T =MT ,W T := uf (·, T ).

By the results of [79], it acts continuously from FT
+ to J T and we assume W T extended

on FT
+ .19

A response operator is RT : FT → FT , Dom RT = MT , RT f := ν × curl uf |Ŵ×[0,T ].

A continued response operator R2T : F2T → F2T is introduced through the relevant analog

of system (2.10)–(2.12) (with u = f replaced by uθ = f ). By hyperbolicity, the operator

R2T is determined by the submanifold (�T , g).

With the system αT we associate a connecting form cT : FT × FT → R+, Dom cT =
FT

+ × FT
+ , cT [f ′, f ′′] := (W T f ′,W T f ′′)J T . The relation

cT [f ′, f ′′] =
(

1
2
(ST )∗R2T J 2T ST f ′, f ′′)

J T (3.9)

holds and shows that cT is determined by the operator R2T (see [36]).

3.1.3. System βT ,r . Here we introduce an ‘electric’ analog of system (2.16)–(2.18). Begin

with the operator governing its evolution.

Define an operator −T
0 : J T → J T , Dom

(

−T
0

)

= {y ∈ �C∞(�) ∩ J T | uθ |Ŵ = 0,

supp y ⊂ �T },−T
0 y = −y. This operator is densely defined and positive; let −T be its

extension by Friedrichs. As can be shown, for T � T∗ the elements of Dom(−T ) vanish

at ŴT , whereas on smooth elements it acts by the rule −T y = PJ T curl curl y, where PJ T

projects square summable in �T solenoidal fields on the subspace J T . By the presence of

the projection, −T is not a local operator, in contrast to its acoustic analog of the same

name. Nevertheless, as is easy to see, the additional assumption dT (supp y, ŴT ) > 0 ensures

supp (−T y) ⊂ supp y.

The (electric) system βT ,r is of the form

wt t −T w = h in J T , t ∈ (0, r) (3.10)

w|t=0 = wt |t=0 = 0 in J T (3.11)

where h ∈ Gr := L2([0, r];J T ) is a volume control, w = wh(·, t) is a solution defined by

Duhamel20:

wh(·, t) :=
∫ t

0

(−T )−
1
2 sin[(t − s)(−T )

1
2 ]h(·, s) ds, t > 0. (3.12)

The control operator of the system W r
vol : h �→ wh(·, r) acts continuously from Gr to J T . The

following peculiarity must be taken into account: in contrast to the acoustic case, the evolution

by (3.12) in general does not satisfy the finiteness of the speed of wave propagation. The

reason is that, as was mentioned above, the Friedrichs extension −T is not a local operator.

However, for controls h supported in �T and small enough times, equation (3.10) takes the

form wt t −w = h and such a finiteness does hold.

19 W T is not continuous as a map from FT to J T (D Tataru, private communication).
20 Here and in the following, for the sake of simplicity, we assume Ker(−T ) = {0}; the extension to the general

case is evident.
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3.1.4. Controllability. For open subsets σ ⊂ Ŵ,ω ⊂ �T and parameters s ∈ [0, T ], r � 0,

let

FT ,s[σ ] := clos{f ∈ FT | supp f ⊂ [T − s, T ], supp f (·, t) ⊂ σ,∀ t},
FT ,T [σ ] := FT [σ ]; Gr [ω] := clos{h ∈ Gr | supp h(·, t) ⊂ ω ∀ t}

be the subspaces of controls acting from σ and ω respectively; also, simplifying the notation,

we omit ‘σ ’ in the case of σ = Ŵ. Introduce the corresponding reachable sets of the systems

αT and βT ,r

U s[σ ] := W T
[

FT ,s[σ ] ∩ FT
+

]

; U r [ω] := W r
volG

r [ω].

For A ⊂ �T , we define the subspaces J s[A] := clos{y ∈ J | supp y ⊂ �s[A]} and

recall that the neighborhoods �s[A] are understood in the sense of the intrinsic distance dT

in �T . Assume that ω is separated from ŴT ; as one can show, the finiteness of the speed of

propagation implies

U s[σ ] ⊂ J s[σ ], U r [ω] ⊂ J r [ω]

for 0 � s � T and 0 � r < dT (ω, ŴT ).

A field y ∈ J is called harmonic in ω if curl y = 0 in ω. For two subspaces A ⊂ B ⊂ J T ,

we write A ≈ B if the elements of B ⊖A are harmonic into their supports.

Theorem 3. Let σ ⊂ Ŵ and ω ⊂ �T be open subsets such that ω∩ŴT = {∅}. For parameters

0 � s � T , r � 0 provided r < dT (ω, ŴT ), the relations

clos U s[σ ] ≈ J s[σ ], clos U r [ω] ≈ J r [ω] (3.13)

are valid.

Proof. See in the appendix. �

Note that the subspace U
T

:= clos UT [Ŵ] ⊆ J T can be referred to as a relevant (minimal)

inner space of the system αT : its trajectories do not leave this subspace. About ‘unreachable’

states J T ⊖ U
T

see [35, 36].

3.1.5. Laplacian on waves. System β
T ,r
rch . Fix T > 0. By analogy with (2.22), introduce the

operator LT
0 : U

T → U
T

through its graph

graph LT
0 := {{W T f,−W T ft t } | f ∈ C∞

0 ((0, T ); �C∞(Ŵ))}. (3.14)

This operator coincides with the Laplacian − = curl curl restricted on

W T C∞
0 ((0, T ); �C∞(Ŵ)). Hence, LT

0 is a densely defined positive operator; let LT be its

extension by Friedrichs. As can be shown, on smooth elements of its domain of definition,

this extension acts as P
U

T curl curl.

The operator LT determines the system β
T ,r
rch of the form

wt t − LT w = h in U
T
, t ∈ (0, r)

w|t=0 = wt |t=0 = 0 in U
T

with controls h ∈ L2([0, r];UT
). This system evolves in the reachable subspace U

T
, the

evolution being governed by the operator

W r
vol rch :=

∫ r

0

(LT )−
1
2 sin[(r − s)(LT )

1
2 ](·)(s) ds. (3.15)
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System β
T ,r
rch is evidently determined by the operator W T and, as such, may be interpreted as

the part of system βT ,r reachable from the boundary Ŵ. In the acoustic case, these systems are

identical, whereas in electrodynamics, in the case of J T ⊖ U
T �= {0}, they differ. However,

the following result shows that away from ŴT these systems evolve identically.

Lemma 3. Let ω ⊂ �T be an open set such that dT (ω, ŴT ) � r > 0; assume

h ∈ L2([0, r];UT
) to be such that supp h(·, t) ⊂ ω, 0 � t � r . Then, for times t ∈ [0, r]

the trajectories (solutions wh(·, t)) of systems β
T ,r
rch and βT ,r coincide and satisfy the equation

wt t − curl curl w = h.

We omit the proof, based on the following simple fact: if a smooth solenoidal y satisfies

ν × y|Ŵ = 0 and supp y ∩ ŴT = {∅}, then y ∈ Dom LT and LT y = −T y = curl curl y.

Introduce an operation extending the subspaces A ⊂ U
T

by the rule

E rA := clos W r
vol rchL2([0, r];A), r > 0, E0 := id. (3.16)

Note that, along with the operators LT and W r
volrch, the operation E r is also determined by the

boundary control operator W T : see (3.14)–(3.16).

In addition to the assumptions of lemma 3, let us suppose that ω is homeomorphic to

an R3-ball. In this case, the set
{

curl ψ | ψ ∈ �C∞
0 (ω)

}

is dense in J 0[ω] = clos {y ∈ J |
supp y ⊂ ω} (see [82, 93]), whereas each curl ψ is orthogonal to the fields harmonic in �T . By

the boundary controllability (3.13), the latter implies J 0[ω] ⊂ U
T

and, hence, the operation

(3.16) is well defined on J 0[ω]. In the meantime, the volume controllability and lemma 3

lead to

E rJ 0[ω] = clos U r [ω] = 〈see (3.13)〉 ≈ J r [ω], 0 < r � dT (ω, ŴT ). (3.17)

3.1.6. Wave copy. Let us repeat the procedure constructing the wave copy (section 2.2.5),

just replacing the ‘acoustic’ objects by their ‘electric’ analogs denoted by the same symbols.

(i) For fixed γ ∈ Ŵ, s ∈ (0, T ) and ε ∈ (0, s), introduce a wave cap U s,ε
γ by (2.26).

Lemma 4. For a small enough ε, the equality U s,ε
γ = J 0

[

ωs,ε
γ

]

holds.

Proof. See in the appendix. �

Then, sending ε → 0 and controlling the behavior of the caps U s,ε
γ , we define the ‘electric’

pattern �̃T
e . By lemma 4, the behavior is the same as in the acoustic case. Therefore, �̃T

e turns

out to be identical to �̃T constructed in section 2.2.5 (and, hence, to the original �T ).

(ii) and (iii) Constructing the nests by (2.27), we get the set �̃T
e . A minor correction is

required, when this set is endowed with a distance: we have to take into account the restriction

0 < r � dT (ω, ŴT ) in (3.17). By doing so, we say two nests x̃ ′ = x̃(γ ′, s ′) and x̃ ′′ = x̃(γ ′′, s ′′)
are close (to each other) if 2 inf{r > 0 | U r [x̃ ′] ∩ U r [x̃ ′′] �= {0}} < min{T − s ′, T − s ′′}.21

Then, for the close nests, we define by (2.28)

d̃
T

e (x̃ ′, x̃ ′′) := 2 inf{r > 0 | U r [x̃ ′] ∩ U r [x̃ ′′] �= {0}}.
Such a local distance determines the global intrinsic metric on �̃T

e (we denote it by the same

symbol d̃
T

e ), whereas the electric wave copy
(

�̃T
e , d̃

T

e

)

turns out to be identical to the acoustic

one and, hence, isometric to the original submanifold (�T , dT ).

Summarizing, we can claim that electromagnetic waves are also well suited for

constructing the wave copy.

21 This condition means that the sources of waves supported near x(γ ′, s′) and x(γ ′′, s′′) begin to interact before the

waves reach the boundary ŴT .
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• Probably,
(

�̃T
e , d̃

T

e

)

is identical to the rhs of (2.42) but it is not established. One more

interesting question concerns the visualization by (2.43): what does it give? In other

words, what do Maxwell’s waves look like in an invariant representation?

3.2. Inverse problem

3.2.1. Dynamical model: solving the IP. Given the continued response operator R2T we can

recover the connecting form cT |MT×MT by (3.9). Closing this form in FT ,22 we determine

Dom W̄
T = Dom|W̄ T | (the bar denotes the operator closure) and, hence, the modulus |W̄ T |

of the control operator.

The operator |W̄ T | determines the dynamical model

H̃T := clos Ran|W̄ T |, W̃
T

:= |W̄ T | (3.18)

(see (2.35)).

Reproducing through this model the wave copy
(

�̃T
e , d̃

T

e

)

, we get an RM isometric to

(�T , dT ). The IP is solved and we arrive at the following theorem.

Theorem 4. For any T > 0, the continued response operator R2T of system (3.6)–(3.8)

determines the submanifold (�T , dT ) up to isometry.

• As ever in the BCm, C∞-smoothness is in fact not necessary: the only restriction is the

applicability of uniqueness theorems providing the controllability (3.13). Since for the

Maxwell system �,Ŵ, g ∈ C2 is enough [60], theorem 4 remains valid in this case.

• Let T > 0 and an open σ ⊂ Ŵ be fixed. By hyperbolicity of the system αT , the operator

R2T
σ : F2T [σ ] → F2T [σ ] defined on F2T [σ ] ∩ Dom R2T by R2T

σ := [R2T ·]|σ×[0,2T ] is

determined by the submanifold (�T [σ ], g). Analyzing the wave copy construction, it is

easy to show that R2T
σ determines (up to isometry) a neighborhood (�ε[σ ], g) for small

enough ε > 0. However, the time-optimal determination R2T
σ ⇒ (�T [σ ], g) is yet an

open problem. The difficulty (rather, of technical character) is that Maxwell’s LT is not

a local operator.

3.2.2. M-transform. An ‘electric’ version of the amplitude formula (2.36) will be presented

in the next section. Here we describe the main ingredient of this version that is the so-called

M-transform.

Lifting the field of the outward normals from Ŵ into �, we define a field ν := −∇τ(·) in

�\c23 and represent the fields in � pointwise as

a = aθ + aνν, (3.19)

where aν := a · ν, aνν and aθ = a − aνν are the longitudinal and transversal components of

a vector a ∈ Tx�. Such a representation induces the decomposition

�L2(�) = Lθ ⊕ Lν (3.20)

on the subspaces Lθ := {v ∈ �L2(�) | ν · v = 0} and Lν := {w ∈ �L2(�) | ν × w = 0}.
Postponing the rigorous definition of the transform, let us introduce it formally. Fix

s ∈ [0, T∗], let P s be an (orthogonal) projection in J onto J s = J 0[�s] = clos {y ∈ J |
supp y ⊂ �s}. For a smooth y ∈ J , a field P sy is supported in �

s
and, by div y = 0, satisfies

22 That is, completing MT w.r.t. the norm {‖f ‖2
FT + cT [f, f ]} 1

2 , which is the graph-norm of W T .
23 Since vol c = 0, the field ν is defined almost everywhere in �.
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ν · P sy = 0 on Ŵs\c. Therefore, P sy|Ŵs−0\c is a tangent field on Ŵs\c. This field is a jump

appearing on Ŵs as result of projecting y on J s . A transform M : J → Lθ ,

My := P sy|Ŵs−0\c on Ŵs\c, 0 � s � T∗
maps y to a collection of these jumps.

The rigorous definition requires some additional assumptions on behavior of the

equidistant surfaces Ŵs . It is convenient to impose them in the following implicit form.

For y ∈ J ∩ �C∞(�), consider the (scalar) problem

p = 0 in �s (3.21)

p = 0 on Ŵ (3.22)

ν · ∇p = ν · y on Ŵs\c (3.23)

let p = ps(x) be its solution depending on s as a parameter. We assume that for all s ∈ (0, T∗],
except for a finite set {sk} : 0 < s1 < s2 < · · · < sN = T∗,

(α) the problem has a unique H
3
2 (�s)-solution and ‖ps |Ŵs\c‖H 1(Ŵs\c) � const uniformly

w.r.t. s, with the constant determined by y;

(β) the integrals
∫

Ŵτ |∇ps |2 dŴ are uniformly bounded as τ → s − 0 and limτ→s−0

∫

Ŵτ |ν ·
∇ps − ν · y|2dŴ = 0;

(γ ) the solution ps is differentiable w.r.t. s in {(x, s) | τ(x) < s} and the integrals
∫

Ŵτ

∣

∣

∂ps

∂s

∣

∣

2
dŴ are uniformly bounded as τ → s − 0.

Note that (α) and (β) hold if Ŵs is a Lipshitz surface24, whereas all conditions are fulfilled

for s ∈ (0, Tc).

The projection on J s acts by the rule

P sy =
{

y −∇ps in �s

0 in �\�s (3.24)

(e.g., see [37]); therefore P sy|Ŵs−0\c = yθ − (∇ps)θ on Ŵs\c. Hence provided (α), the

transform M is well defined on J ∩ �C∞(�).

Denote by Xs the projection in Lθ onto a subspace Ls
θ := {w ∈ Lθ | supp w ⊂ �

s}. This

projection cuts off transversal fields on �s .

Lemma 5. Under the conditions (α)–(γ ), the transform M can be extended by continuity to a

(partial) isometry from J onto Lθ . For the extended transform, the relation MP s = XsM, s ∈
[0, T∗] holds.

We omit the proof, which generalizes the proof of theorem 1 from [21], the conditions (α)–(γ )

being used to justify such a generalization. A family of projections {P s}0�s�T∗ is a spectral

measure in J and lemma 5 shows that M diagonalizes this measure.

A remarkable property of M is the locality w.r.t. s: the embedding supp y ⊂ �
s ′\�s

implies supp My ⊂ �
s ′\�s . Note in addition that M is in general a partial isometry: the case

Ker M �= {0} is possible if the surfaces Ŵs contain the folds.

Fix T > 0 and introduce a reduced transform MT : J T → LT
θ ,MT := j ∗

LT
θ

MjJ T , where

jJ T : J T → J and jLT
θ

: LT
θ → Lθ are the embedding. If T < Tc then MT is a unitary

operator, whereas the fact that MT is an isometry turns out to be equivalent to the well-

known operator Riccati equation of the layer-stripping method for the family of Neumann-

to-Dirichlet operators Ks : ∂ps

∂ν

∣

∣

Ŵs �→ ps |Ŵs associated with problems (3.21)–(3.23) (see

[19, 38, 46]).

24 M Mitrea, private communication.
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• In [19, 21], the transform M is supplemented with a transform N : {∇p | p ∈ H 1
0 (�)} →

Lν mapping potential vector fields to longitudinal fields. N is also defined through jumps

appearing as a result of projecting on the subspaces of potential fields supported in �s .

3.2.3. Visualization. The appearance of the M-transform has been motivated by the following

question. Given R2T , the external observer can construct the model (3.18) of the system αT

and then, by analogy with the acoustic case, compose the rhs of the amplitude formula (2.36).

What will the observer see: what kind of wave pictures? Here we show that the answer is

‘M-transform of the waves’.

In this section, we assume � and T > 0 to be such that Ds := {y ∈ J s | curl y = 0,

ν × y|Ŵ = 0} = {0} for all s ∈ [0, T ]. The motivation of this restriction25 is the following.

The proof of theorem 3 (see the appendix) enables one to clarify the first relation in (3.13): the

equality J s ⊖ clos U s = Ds holds. Therefore, the condition Ds = {0} ensures clos U s = J s

and implies the equality of the projections

PU s = P s, (3.25)

which is used below for visualization.

By analogy with (2.31), for a field v ∈ LT
θ define its �L2(Ŵ)-valued picture on Ŵ× [0, T ):

ṽ(γ, s) :=
{

β
1
2 (γ, s)[v(x(γ, s))]par, (γ, s) ∈ int �T

0, otherwise

where [v(x(γ, s))]par is the result of the parallel translation of the vector v(x(γ, s)) along the

geodesic lγ from the point x(γ, s) to the point γ ∈ Ŵ. Identifying a space of pictures

L2([0, T ] : �L2(Ŵ)) with the space of controls FT , we introduce the picture operator

I T : LT
θ → FT , I T v := ṽ (compare with section 2.3.5).

In its original form, the geometric optics relation describing the propagation of wave

discontinuities in the Maxwell system is

β
1
2 (γ, s)[(P sy)(x(γ, s − 0))]par = lim

t→T−s−0
((W T )∗[I− P s]y)(γ, t),

for a smooth y ∈ J T , where (γ, s) ∈ �T (see [36]). Taking f ∈ MT , putting y = uf (·, T ),

and recalling the definition of M-transform, we get

˜Muf (·, T )(γ, s) = lim
t→T−s−0

((W T )∗[I− P s]W T f )(γ, t) = 〈see (3.25)〉

= lim
t→T−s−0

((W T )∗[1− PU s ]W T f )(γ, t) = 〈see (3.18)〉

= lim
t→T−s−0

((W̃
T
)∗[1− P

W̃
T
FT ,s ]W̃

T
f )(γ, t), (γ, s) ∈ Ŵ × [0, T ],

where the rhs of the last equality is determined by R2T (through the model (3.18)). Thus, the

external observer can construct the operator V T := Y T I T MT W T : FT → FT visualizing the

MT -pictures of waves26.

Given the pictures, the observer can determine the image of the Laplacian on waves

L̃T
0 := (I T MT )LT

0 (I T MT )∗ through the graph

graph L̃T
0 := {{V T f,−V T ft t } | f ∈ C∞

0 ((0, T ); �C∞(Ŵ))}.
25 In fact, it is a condition of topological character—see [35, 36, 88]. Note that Ds = {0} holds for all s < Tc .
26 Note that V T provides the relevant triangular factorization of the connecting operator associated with the connecting

form cT .
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In the case of T � Tc, the structure of L̃T
0 is known [36, 46]:

L̃T
0 = − d2

dt2
+ L̃T

Ŵ , (3.26)

where L̃T
Ŵ = ⊕

∫ T

0
L(t) dt is a fiberwise operator acting by the rule

(

L̃T
Ŵf
)

(·, t) = L(t)f (·, t) in �L2(Ŵ), t ∈ [0, T ],

each L(t) is a 2-order PDO; in the local coordinates γ 1, γ 2 on Ŵ the representation

L(t) =
2
∑

i,j=1

g̃ij (γ 1, γ 2, t)
D2

∂γ i∂γ j
+ low order terms (3.27)

holds, where g̃ij is the inverse of the matrix of the metric tensor g in sgc.

So, the external observer can use representations (3.26) and (3.27) for recovering the

metric tensor ǧ on the pattern �T , which turns �T into an isometric copy of (�T , g).

• For T < Tc, the reconstruction of (�T , g) through visualization by the AF is proposed

in [36, 46]. For T > Tc, this program is not yet realized: the main obstruction is the

possible presence of the defect subspaces Ds �= {0}, which violates the equality (3.25)

and, hence, distorts the M-transform and wave pictures.

3.3. Determination of velocity

3.3.1. Maxwell system in R3. Let � ⊂ R3 be a bounded domain, Ŵ := ∂� ∈ C∞, ǫ and

µ two smooth functions strictly positive in �. A function c := (ǫµ)
1
2 endows � with a

conformal (optic) metric dτ 2 := c−2|dx|2 turning � into an RM (�, g), g being called an

optic metric tensor. The Maxwell system

ǫut = curl v, µvt = −curl u in (int �)× (0, T )

u|t=0 = 0 v|t=0 = 0 in �

uθ = f on Ŵ × [0, T ]

describes the propagation of electromagnetic waves in an inhomogeneous isotropic body;

c := (ǫµ)
1
2 is a (variable) velocity of propagation.

Isolating the electric component, we get the system αT of the form

ut t +
1

ǫ
curl

1

µ
curl u = 0 in (int �T )× (0, T ) (3.28)

u = 0 in {(x, t) | x ∈ �T , 0 � t � τ(x)} (3.29)

uθ = f on Ŵ × [0, T ] (3.30)

where τ(·) is the optic eikonal. The outer space of the system is FT := L2([0, T ]; �L2(Ŵ));

the inner space is Jǫ := {y ∈ L2,ǫ(�;R3) | div ǫy = 0} with the inner product

(u, v)Jǫ
:=
∫

�
u · v ǫ dx. The continued response operator R2T associated with the relevant

extended system acts in F2T on M2T by the rule R2T f = ν × 1
µ

curl uf |Ŵ×[0,2T ]. By

hyperbolicity of problem (3.28)–(3.30), we have supp uf (·, t) ⊂ �
t
, whereas the operator

R2T is determined by ǫ, µ|�T and, hence, contains information about c|�T .

The dynamical IP for the system αT is to recover c|�T via given R2T .
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3.3.2. Uniqueness. Here we show that R2T determines c|�T uniquely. By the results

of section 2.2, the operator R2T determines the wave copy (�̃T , d̃
T
) of the submanifold

(�T , dT ) (dT is the intrinsic optic distance) and it remains to embed the copy in � ⊂ R3. The

subdomain �T is endowed with two metric tensors: the optic g and the Euclidean h = c2g.

Let i : (�T , dT ) → (�̃T , d̃
T
) be an isometry identifying the boundaries: i(γ ) ≡ γ, γ ∈ Ŵ.

The copy �̃T also carries two tensors: g̃ := i∗g (already recovered from R2T )27 and

h̃ := i∗h = c̃2g̃ (unknown), where c̃ := c ◦ i−1. Let Kg̃ and Kh̃ be the corresponding

scalar curvatures; since h̃ is Euclidean, we have Kh̃ = 0. To represent the metric g̃ in the form

c̃−2h̃ is to solve the Yamabe problem28: given g̃, to find a multiplier c̃2 such that a conformal

deformation h̃ = c̃2g̃ possesses a prescribed constant (in our case, zero) curvature (see [72]).

In the general case, the main tool for solving the Yamabe problem in dimension n � 3 is

an equation

4(n− 1)

n− 2
g̃η −Kg̃η + Kh̃η

n+2
n−1 = 0 in �̃T .

Solving the equation, we get c̃2 = η
4

n−2 . In our case, we have n = 3,Kh̃ = 0, η = c̃
1
2 and the

equation takes the form
(

g̃η − 1
8
Kg̃

)

c̃
1
2 = 0 in �̃T . (3.31)

The response operator R2T determines the traces c|Ŵ and ∂c
∂ν

∣

∣

Ŵ
= c ∂c

∂νe

∣

∣

Ŵ
(νe is an Euclidean

normal)29. Hence, by the equalities c̃
1
2

∣

∣

Ŵ
= c

1
2

∣

∣

Ŵ
and ∂c̃

1
2

∂ν

∣

∣

Ŵ
= 1

2
c

1
2

∂c
∂νe

∣

∣

Ŵ
, the Cauchy data

of a solution c̃
1
2 of an elliptic equation (3.31) are given. These data determine the solution

uniquely. Thus, the function c̃ and the tensor h̃ = c̃2g̃ are recovered in �̃T .

Knowledge of h̃ enables one to recover the embedding i−1 : (�̃T , d̃
T
) → (�T , dT ) ⊂ �.

Indeed, let x1, x2, x3 be the Cartesian coordinates on �. Since xk are harmonic in

h-metric, the functions x̃k := xk ◦ i−1 satisfy h̃x̃
k = 0 in �̃T , whereas x̃k|Ŵ and

∂x̃k

∂ν

∣

∣

Ŵ
= c ∂xk

∂νe

∣

∣

Ŵ
are known. These Cauchy data determine x̃k in �̃T uniquely; hence, the

map i−1 : �̃T ∋ m �→ {x̃k(m)}3k=1 ∈ �T is recovered. Subsequently, we recover c = c̃ ◦ i

and solve the IP.

As is shown in [36], for times T � Tc, R
2T determines c|�T uniquely. Here we see that

this result is valid for arbitrary T > 0. Once again, we emphasize the time-optimal character

of the determination by the BCm.

• A reasonable question is whether R2T determines ǫ|�T and µ|�T individually. In [45] it

is shown that such a determination holds for large enough times: namely, for T > T∗
the operator R2T determines ǫ and µ in � uniquely. To prove this, the authors invoke the

data continuation (see section 2.3.7) and then apply the Fourier transform reducing the

problem to the known frequency-domain results (P Ola, L Paivarinta and E Somersalo).

However, time-optimal determination R2T ⇒ ǫ, µ|�T is so far an open problem.

3.3.3. Sampling algorithm for µ = 1. The procedure of determination R2T ⇒ c|�T proposed

above is hardly available for numerical realization. The reason is basically not the use of the

wave copy but the necessity to solve the Cauchy problem for the elliptic equation (3.31). Here

we describe a more realistic version of the BCm belonging to a class of so-called sampling

27 More precisely, we have recovered a distance d̃
T

but this distance evidently determines the tensor.
28 G Ya Perelman, private communication.
29 V M Babich, private communication.
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algorithms (see, e.g., [89]). The version is a straightforward analog of the acoustic variant

proposed in [9] and developed in [15].

So, we return to system (3.28)–(3.30) and deal with the case µ = 1 corresponding to a

class of dielectrics in applications. We assume also that for all T > 0, except for a finite set

s1, s2, . . . , sN , the defect subspace DT = J T
ǫ ⊖ clos UT is of finite dimension.

Fix a point x0 ∈ � and a vector l ∈ R3, | l |= 1; denote rx0
(x) :=| x − x0 |. A field

mx0
(x) := ∇rx0

× l = curl
l

rx0

, x ∈ �\{x0}

is said to be a mark field of the point x0; the following of its properties can be checked by

straightforward calculations.

(1) The relation

curl curl mx0
= 0 in �\{x0} (3.32)

holds.

(2) The mark field is summable but not square summable in �. Therefore, if x0 �∈ �
T

and

x0 → �
T

(i.e., distR3(x0,�
T
) → 0) then

∥

∥mT
x0

∥

∥

2

Jǫ
→ ∞, where mT

x0
is the projection

of the restriction mx0
|�T in L2,ǫ(�

T ;R3) onto J T
ǫ . The boundary controllability (3.13)

along with the condition dimDT < ∞ imply
∥

∥PUT mT
x0

∥

∥

2

Jǫ
→∞ as x0 → �

T
, (3.33)

where PUT is the projection in J T
ǫ onto clos UT .

(3) The norm in (3.33) is determined by the operator R2T . Indeed, the operator determines

the connecting form by (3.9); hence, we can choose a complete system of controls

{fk}∞k=1 ⊂ MT , clos span{fk}∞k=1 = FT such that c[fj , fk] = δjk . By this choice, the

corresponding waves uk := W T fk satisfy (uj , uk)Jǫ
= δjk and constitute an orthonormal

basis in clos UT (that is called a wave basis in BCm). Representing

PUT mT
x0
=

∞
∑

k=1

aT
k uk

and taking into account that x0 �∈ �
T

and supp uk ⊂ �T , we derive

aT
k =
(

PUT mT
x0

, uk

)

Jǫ
=
∫

�

mx0
· ufk (·, T )ǫ dx = 〈see (3.29)〉

=
∫

�

ǫ dx mx0
·
∫ T

0

(T − t)u
fk

t t (·, t) dt = 〈see (3.28)〉

= −
∫ T

0

dt (T − t)

∫

�

mx0
· curl curl ufk (·, t) dx = 〈see (3.1), (3.33)〉

= −
∫

Ŵ×[0,T ]

dŴ dt (T − t)[mx0
· (ν × curl ufk (·, t))− ν × curl mx0

· ufk (·, t)]

= −
∫

Ŵ×[0,T ]

dŴ dt (T − t)
[

mx0
· (RT fk)(·, t)− ν × curl mx0

· fk(·, t)
]

.

(3.34)

Hence, the Fourier coefficients are determined by R2T and we can find

∥

∥PUT mT
x0

∥

∥

2

Jǫ
=

∞
∑

k=1

(

aT
k

)2
. (3.35)



R38 Topical Review

Assume, for the sake of simplicity, that along with R2T we are given a positive bound

ǫ0 � ǫ(·) (so that the velocity satisfies c(·) � ǫ
− 1

2

0 ). Now we can recover ǫ in �T by the

following procedure.

Step 1. Fix a point x0 ∈ � and choose a (small enough) s ∈ (0, T ) providing x0 �∈ �s .

Since R2T is given, R2s is also known. Determine the connecting form cs (see (3.9)) and

construct a cs-orthonormal system of controls {fk}∞k=1 ⊂Ms complete in F s .

Step 2. Find the Fourier coefficients as
k by (3.34). Determine the norm

∥

∥PU s ms
x0

∥

∥

2

Jǫ
by

(3.35).

Step 3. Moving x0 along a straight line connecting x0 with Ŵ and, simultaneously,

controlling the value of the norm, detect the position of x0 at which the norm blows up.

This corresponds to x0 ∈ Ŵs , and we have τ(x0) = s. Varying the initial position of x0

and the lines, recover the surface Ŵs ⊂ �.

Step 4. Varying s � T and repeating the previous steps, recover a family of the surfaces

{Ŵs}0<s�T . The family determines the optic eikonal τ in �T by τ |Ŵs = s.

Step 5. Determine ǫ by the Jacobi equation |∇τ |2 = c−2 = ǫ in �T outside the optic cut

locus. Since the function ǫ is smooth and the cut locus is of zero volume, ǫ is determined

everywhere in �T .

The IP is solved. In [31] the inequality

distR3(x0, Ŵ
T ) � const

(

N
∑

k=1

(

aT
k

)2

)−1

for the partial sums of the series (3.35) is obtained. This estimate can be used for approximately

determining the shape of ŴT .

• The sampling algorithm is also of local character. Fix an open σ ⊂ Ŵ and T > 0; assume

that for all s ∈ (0, T ] the subspaces J s
ǫ [σ ] ⊖ clos U s[σ ] are finite dimensional. Then,

the algorithm determines µ|�T [σ ] from the ‘partial’ response operator R2T
σ .

• C2-smoothness of ǫ, µ and Ŵ is enough to justify all the above-presented results on

recovering the velocity.

• Time-optimal determination of tensorial ǫ, µ (crystal optics) is one of most difficult and

challenging problems. The problem is stubborn, first of all, because of very complicated

structure of the reachable sets U s[σ ]. The known results [76, 77] concern an artificial

case: ǫ and µ are assumed to be such that the velocity of propagation is one and

the same for all wave modes (polarizations). This assumption provides the ‘isotropic’

controllability (3.13) and makes it possible to apply one of standard versions of the BCm

(coordinatization by distance functions). However, if such a controllability holds, one

could obtain stronger (time-optimal) results, for instance, by constructing the wave copy.

4. Elasticity

4.1. 1-dim two-velocity system (beam)

4.1.1. Forward and inverse problem. The initial boundary value problem under consideration

is

ρut t − uxx + Aux + Bu = 0, x > 0, t > 0 (4.1)

u|t=0 = ut |t=0 = 0, x � 0 (4.2)
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u|x=0 = f, t � 0 (4.3)

where ρ = {ρiδij }2i,j=1 is a diagonal 2×2-matrix, ρ1,2 = const, 0 < ρ1 < ρ2;A = A(x), B =
B(x) are smooth 2× 2-matrix-functions satisfying the self-adjointness conditions30

A# = −A,
dA

dx
= B# − B, x � 0; (4.4)

an R2-valued function f = col{f1(t), f2(t)} ∈ Lloc
2 ([0,∞);R2) is a boundary control,

uf = col
{

u
f

1 (x, t), u
f

2 (x, t)
}

is a solution (wave). The components u
f

1,2 are interpreted as the

wave modes propagating along the semi-axis (a beam) with different velocities c1 = ρ
− 1

2

1 and

c2 = ρ
− 1

2

2 < c1. If A �≡ 0 and/or B is not diagonal, the modes interact with each other. By

hyperbolicity of the problem, we have

supp uf (·, t) ⊂ �
t

1, t > 0 (4.5)

where �s
i := (0, cis), i = 1, 2.

The problem

ρut t − uxx + Aux + Bu = 0 in �T
1 × (0, T ) (4.6)

u = 0 in
{

(x, t) | x ∈ �
T

1 , 0 � t � x/c1

}

(4.7)

u|x=0 = f, 0 � t � T (4.8)

is well posed and we refer to it as a dynamical system αT . Its outer spaceFT := L2([0, T ];R2)

contains a family of subspaces FT ,s := {f ∈ FT | supp f ⊂ [T − s, T ]} formed by delayed

controls. Introduce a space H := L2,ρ([0,∞);R2) with the inner product (y,w)H :=
∫∞

0
[ρy(x)] · w(x) dx and a family of its subspaces Hξ := {y ∈ H | supp y ⊂ [0, ξ ]} , ξ � 0.

The inner space of the system αT is Hc1T ; by (4.5), the waves uf (·, t) are time-dependent

elements of Hc1T . The control operator W T : FT → Hc1T acts by the rule W T f := uf (·, T )

and maps FT onto Ran W T isomorphically [42].

The problem

ρut t − uxx + Aux + Bu = 0 in
{

(x, t) | x ∈ �T
1 , 0 < t < 2T − x/c1

}

u = 0 in
{

(x, t) | x ∈ �
T

1 , 0 � t � x/c1

}

u|x=0 = f, 0 � t � 2T ,

is well posed and can be regarded as a natural extension of problem (4.6)–(4.8) by hyperbolicity.

This extension defines a continued response operator R2T of the system αT acting in F2T on

Dom R2T = {f ∈ H 1([0, 2T ];R2) | f (0) = 0} by the rule R2T : f �→ − ∂uf

∂x

∣

∣

[0,2T ]
. The

representation

(R2T f )(t) = −ρ
1
2

df

dt
(t) +

∫ t

0

r(t − s)f (s) ds, 0 � t � 2T (4.9)

holds, where r = {rij (t)}2i,j=1, 0 � t � 2T is a smooth matrix-function satisfying r = r# and

called a reply function of the system αT (see [42]).

The connecting operator CT : F2T → F2T , CT := (W T )∗W T can be represented through

the response operator by the general formula

CT = 1
2
(ST )∗R2T J 2T ST

30 Below # is a matrix conjugation.
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(see [20, 42]), whereas (4.9) implies

(CT f )(t) = ρ
1
2 f (t) +

∫ ∞

0

[

1

2

∫ 2T−t−s

|t−s|
r(η) dη

]

f (s) ds, 0 � t � T . (4.10)

All operators of the system αT , as well as the reply function r |[0,2T ], are determined by

the behavior of the coefficients A,B in �c1T . Hence, the natural setup of the dynamical IP

taking into account such a locality is to recover A,B in �c1T via given R2T . However, we

shall see that R2T does not determine the coefficients in �c1T uniquely and this setup has to

be corrected: R2T must be supplemented with certain additional data.

4.1.2. Slow waves. Here we describe a nice physical effect, which plays a key role in a

procedure solving the IP.

If A = 0 and B is diagonal, then problem (4.1)–(4.3) is decoupled to a pair of separate

scalar problems. The modes do not interact and propagate independently with velocities c1

and c2, the second (slow) mode u2 satisfying supp u
f

2 (·, t) ⊂ �
t

2 = [0, c2t]. An interesting

and rather unexpected fact is that slow waves ever exist: in spite of the interaction, a certain

mixture of the modes can propagate along the beam with the slow velocity c2.

Lemma 6. There exists a unique (scalar) function l ∈ C∞[0,∞) such that the solution uf of

(3.1)–(3.3) satisfies supp uf (·, t) ⊂ �
t

2, t � 0 if and only if the components of the control f

are linked as

f1(t) =
∫ t

0

l(t − s)f2(s) ds, t � 0. (4.11)

The function l depends on the coefficients locally: for every T > 0, the restriction l|0�t�(1− c2
c1

)T

is determined by A,B|0�x�c2T .

Proof. See in [33]. �

We call l a delaying function.

In the system αT , the delaying function determines the subspaces of controls

F
T ,s
l :=

{

f ∈ FT ,s

∣

∣

∣

∣

f1(t) =
∫ t

T−s

l(t − s)f2(s) ds, t ∈
[

T − s, T − c1

c2

s

]}

(0 � s � T ) such that f ∈ F
T ,s
l implies

supp uf ⊂
{

(x, t) ∈ �
T

1 × [0, T ]

∣

∣

∣

∣

t � T − s +
x

c2

}

(4.12)

(in figure 8, supp uf is shadowed;
[

T − s, T − c1

c2
s
]

is the interval, where the components of

f are linked by (4.11)).

4.1.3. Controllability. The ‘standard’ reachable sets of the system αT are U s := W T FT ,s,

0 � s � T . Since W T is an isomorphism on its range, each U s is closed, whereas (4.5) implies

U s ⊂ Hc1s . A principal distinguishing feature of two-velocity systems is that this embedding

is not dense: dimHc1s ⊖ U s = ∞ [33, 42]. So, in contrast to the acoustic and Maxwell

systems (which are one-velocity systems!), in the case of the beam we encounter a lack of

local boundary controllability: the set of waves filling the subdomain �s
1 is not complete in

L2(�
s
1;R2). The structure of U s is studied in [42]: as is shown, the elements of Hc1s ⊖U s are

supported in �
s

1

∖

�s
2, whereas the relation

Xc2sU s = Hc2s, 0 � s � T (4.13)
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Figure 8. Slow waves.

holds, where Xξ is the projection in Hc1T onto Hξ (Xc2s cuts off functions on �s
2). In a certain

sense, this relation means that the forward parts of the waves uf do not possess completeness

but the tails do.

One more family of reachable sets specific for two-velocity systems is associated with

the controls producing slow waves:

U s
l := W T F

T ,s
l , 0 � s � T . (4.14)

By (4.12), we have U s
l ⊂ Hc2s and a remarkable fact is that the equality

U s
l = Hc2s, 0 � s � T (4.15)

holds [42]. So, loosely speaking, the slow waves restore the controllability in filled domains

but in the slow domains �s
2 only.

In accordance with (4.15), the projection PU s
l

onto U s
l cuts off functions on �s

2:

PU s
l
= Xc2s, 0 � s � T (4.16)

whereas the projection onto U s is of more complicated character.

4.1.4. Characterization of data and IP. Return to the IP. The object we are going to recover

is a pair of matrix-functions A,B satisfying (4.4). Such an object is determined by four

independent scalar functions (parameters)—the entries a12, b11, b12, b22. In the meantime, the

reply function r playing the role of inverse data, is a symmetric matrix-function determined

by three parameters r11, r12, r22. Therefore, to hope for uniqueness of determination is not

reasonable and we need to supplement r with 1-parameter data. A well-motivated choice is to

add the delaying function l, which leads to the following results.

Theorem 5

(i) A 2× 2-matrix function r ∈ C∞ ([0, 2T ];M2
)

, r# = r is a reply function of a system αT

iff the operator CT determined by the rhs of (4.10) is strictly positive definite in FT .31

(ii) Let r satisfy (i). Then, for any function l ∈ C∞[0, T − c2

c1
T
]

, there exists a (not unique)

system αT such that r and l coincide with its reply and delaying functions.

31 That is, (CT f, f )FT � κ‖f ‖2
FT for all f ∈ FT with a constant κ > 0.
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(iii) Let A′, B ′ and A′′, B ′′ be the coefficients of two systems α′T and α′′T , r ′, l′ and r ′′, l′′

their reply and delaying functions. The equalities r ′(t) = r ′′(t), 0 � t � 2T and l′(t) =
l′′(t), 0 � t � T − c2

c1
T imply A′(x) = A′′(x), B ′(x) = B ′′(x), x ∈ �

T

2 = [0, c2T ].

Proof. See in [42]. �

Thus, the determination in the slow subdomain �T
2 , in which the local boundary

controllability occurs, is unique. In the meantime, the data r|[0,2T ], l|[0,T− c2
c1

T ] do not determine

A and B in �T
1 \�T

2 uniquely. In [42], the character of this nonuniqueness is clarified and the

set of all pairs A,B corresponding to the given data is described. Note that such a description

invokes an extension of the reply function to a bigger interval [0, 2T ′], T > T ′, the extension

preserving the positiveness of the operator (4.10) (see sections 2.3.7 and 2.3.11).

4.1.5. Visualization and solving IP. The proof of theorem 5 is constructive: an efficient

procedure recovering A,B is proposed. The procedure exploits a relevant modification of the

amplitude formula (2.36) which looks (by components) as follows:

u
f

1 (c2s, T ) = −
(

(W T )∗
[

I− PW T F
T ,s
l

]

W T f
)∣

∣

t=T− c2
c1

s−0

(4.17)
u

f

2 (c2s, T ) = −
((

W T
)∗[

I− PW T F
T ,s
l

]

W T f
)∣

∣

t=T−ξ+0

t=T−ξ−0

(0 � s � T ). The derivation uses the geometric optics formulae, the relation (4.16) playing

the key role.

Given R2T and l|[0,T− c2
c1

T ], we can recover A,B|�T
2

by the following scheme.

Step 1. Determine the (constant) matrix ρ from (4.9) and the operator CT by (4.10).

Construct the dynamical model (2.35).

Step 2. Replacing W T by W̃
T

in (4.17), recover the waves uf (·, T ) on �T
c2
= [0, c2T ].32

Step 3. Determine the Laplacian on waves LT
0 = − d2

dx2 +A d
dx

+B restricted on �T
2 , through

its graph {{uf (·, T ),−uft t (·, T )}|�T
2
| f ∈ C∞

0 ((0, T );R2)} and find its coefficients

A,B|�T
2
. The IP is solved.

In conclusion, let us discuss the following question of independent interest. To construct

the dynamical model (2.35) one does not need the delaying function but the response operator

R2T only. Assume that the external observer ignores knowledge of the function l and applies

not the modified AF (4.17) but the straightforward analog of (2.36), i.e., defines

wf (s, T ) := lim
t→T−s−0

(

(W̃
T
)∗
[

Ĩ− P
W̃

T
FT ,s

]

W̃
T
f
)

(t), 0 � s � T .

What will the observer get as result of such a visualization? Does wf describe a wave process?

The answer is affirmative: the R2-valued function wf (x, t) turns out to be a solution of the

problem

wt t − wxx + Qw = 0, 0 < x < T, 0 < t < T

w = 0, {(x, t) | x ∈ [0, T ], 0 � t � x}
ρ−

1
2 w|x=0 = f, 0 � t � T

which describes an one-velocity dynamical system αT
Q with a matrix potential Q = Q#, the

system possessing the response operator R2T
Q = R2T (see [41]). Thus, we encounter the same

phenomenon as in section 2.3.10: the canonical BCm-realization αT
Q of the system αT is

32 More precisely, we are visualizing not the waves but their pictures, which are in this case identical to the waves

themselves.
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not identical to the system itself. Here we succeeded in recovering the original two-velocity

system αT owing to additional a priori information about its structure: namely, we invoked

the delaying function l.

• Two-velocity systems is the intensively studied object: see [43, 44, 84, 85]; the

interest is stimulated by the engineering applications. The paper [85] deals with the

case c1 = ∞, c2 < ∞ (a composite beam); the equation governing the evolution of

the corresponding system contains fourth-order derivatives w.r.t. the space variable.

The authors apply the gradient methods for the recovery of parameters. We hope for

future extension of the BCm to such systems.

4.2. Lamé system

4.2.1. Lamé parameters. Let � ⊂ R3 be a bounded domain, Ŵ := ∂� ∈ C∞; cijkl an

elasticity tensor in �. In the isotropic Lamé model, the tensor is

cijkl = λδijδkl + µ(δikδj l + δilδjk),

the Lamé parameters ρ, λ, µ are smooth functions satisfying the conditions ρ > 0, µ >

0, 3λ + 2µ > 0 in �. These conditions provide the ellipticity of the Lamé operator acting on

R3-valued functions by the rule

(Lu)i = −ρ−1
∑

i,j,k,l=1

∂

∂xj

(

cijkl

∂uk

∂xl

)

, i = 1, 2, 3.

The velocities cp :=
(

λ+2µ

ρ

)
1
2 , cs :=

(

µ

ρ

)
1
2 of the pressure and shear waves (cp > cs) endow �

with two conformal metrics dτ 2
α := |dx|2

c2
α

, α = p, s. The metrics determine the corresponding

distances distα , the eikonals τα := distα(·, Ŵ), and the subdomains

�ξ
α[σ ] := {x ∈ � | distα(x, σ ) < ξ} , ξ > 0, σ ⊂ Ŵ,

�ξ
α := �ξ

α[Ŵ]. The inequality cs < cp implies �
ξ
s [σ ] ⊂ �

ξ
p[σ ]. Also, we set T σ

α :=
inf
{

ξ > 0 | �ξ
α[σ ] = �

}

.

4.2.2. System αT . The dynamical Lamé system αT is

ut t + Lu = 0 in �T
p × (0, T ) (4.18)

u = 0 in
{

(x, t)
∣

∣ x ∈ �
T

p , 0 � t � τp(x)
}

(4.19)

u = f on Ŵ × [0, T ] (4.20)

where f = col{fi(γ, t)}3i=1 is a boundary control, u = uf (x, t) = col
{

u
f

i (x, t)
}3

i=1
is a

solution (wave).

The outer space of the system is FT := L2(Ŵ × [0, T ];R3); it contains the subspaces

FT ,ξ [σ ] := clos {f ∈ FT | supp f ⊂ σ × [T − ξ, T ]} of controls acting from an

open σ ∈ Ŵ. Let H := L2,ρ(�;R3) (with the measure ρ dx); for A ⊂ �, we set

HA := clos {y ∈ H | supp y ⊂ A}. The subspace HT := H�T
p plays the role of the inner

space of αT .

The control operator is W T : FT → HT ,W T f := uf (·, T ); by the results of [51], W T

is continuous. The response operator (the map ‘displacement �→ tension’) RT : FT → FT is

defined on smooth controls vanishing near Ŵ × {t = 0} by

(RT f )i =
3
∑

i,j,k,l=1

νjcijkl

∂u
f

k

∂xl

on Ŵ × [0, T ],
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where ν = col{νj (γ )}3j=1 is the outward Euclidean normal on Ŵ. The continued response

operator R2T : F2T → F2T is associated with the extended system

ut t + Lu = 0 in
{

(x, t)
∣

∣x ∈ �T
p , 0 � t � 2T − τp(x)

}

u = 0 in
{

(x, t)
∣

∣x ∈ �
T

p , 0 � t � τp(x)
}

u = f on Ŵ × [0, 2T ]

and acts on Ŵ × [0, 2T ] by the same rule as RT . The connecting operator of the system is

CT := (W T )∗W T : FT → FT ; the general relation (2.15) remains valid.

4.2.3. Boundary controllability and slow waves. By hyperbolicity of the problem (4.18)–

(4.20), the embedding

U ξ [σ ] := W T FT ,ξ [σ ] ⊂ H�ξ
p[σ ]

holds. Let X
ξ
s [σ ] be the projection in H onto H�

ξ
s [σ ] cutting off the vector-valued functions

on �
ξ
s [σ ].

Theorem 6. For any T > 0, ξ ∈ [0, T ] and σ ⊂ Ŵ, the equality

clos Xξ
s [σ ]U ξ [σ ] = H�ξ

s [σ ] (4.21)

is valid.

Proof. See in [51]. �

This result has the same meaning as (4.13): we have a lack of the boundary controllability

in the subdomain �
ξ
p[σ ] filled with waves, whereas the tails of such waves constitute a

complete system in the slow subdomain �
ξ
s [σ ] ⊂ �

ξ
p[σ ]. In the meantime, one can show the

examples of H�
ξ
p[σ ]⊖ clos U ξ [σ ] �= {0}.33

Let σ = Ŵ and T < T Ŵ
s , so that �T

s does not cover �. By (4.21), the elements of the

unreachable subspace DT := H�T
p ⊖ clos UT [Ŵ] are supported in �\�T

s . The presence of

DT �= {0} leads to the following curious effect. Consider the system

vt t + Lv = 0 in �× (0, T )

v|t=T = 0, vt |t=T = y in �

v = 0 on Ŵ × [0, T ].

Applying the Holmgren–John–Tataru uniqueness theorem for the Lamé system [60], one can

show that taking y ∈ DT , we get the solution v = vy(x, t), whose forward front propagates

(in the reversed time) in � from �T
p\�T

s toward Ŵ with the speed � cs . Such solutions can

be reasonably regarded as 3-dim slow waves. Some geophysicists claim that in the case of

variable density ρ such waves cannot exist in principle. At the moment, we have no proof but

the conjecture ‘for T < T Ŵ
s , the relation DT �= {0} always holds’ looks well motivated.

4.2.4. Data continuation. One more result of [51] concerns the possibility of extending

the response operator RT on times T ′ > T (see section 2.3.7). For an open σ ⊂ Ŵ,

denote FT [σ ] := FT ,T [σ ] and introduce a ‘partial’ response operator RT
σ : FT [σ ] →

FT [σ ], Dom RT
σ = Dom RT ∩ FT [σ ], RT

σ = [RT ·]|σ×[0,T ].

Lemma 7. The operator RT
σ given for a fixed T > 2T σ

s determines the operators RT ′
σ for all

T ′ ∈ [0,∞).

33 For instance, the system αT with constant ρ, λ, µ.



Topical Review R45

Proof. See in [51], where a constructive procedure extending RT
σ is proposed. The procedure

uses an appropriate variant of the dynamical model (2.35); in fact, it is just a version of the

trick [22]. The condition T > 2T σ
s provides the controllability closU

T
2 = H, which the trick

is based upon. �

4.2.5. Lamé-type system. For a fixed T > 0, the continued response operator R2T of system

(4.18)–(4.20) is determined by the Lamé parameters in the subdomain �T
p . Therefore, a natural

(time-optimal) setup of the dynamical IP is: given R2T to recover λ,µ, ρ (or cp, cs) in �T
p .

It is one of the most required problems in applications (acoustics, geophysics, nondestructive

testing, etc). However, this problem is far from being solved34. Here we present the results of

the paper [31] dealing with the IP for a simplified version of problem (4.18)–(4.20). We call

this version a Lamé-type system.

The system is

ut t −∇̹ div u + curl µ curl u = 0 in �T
p × (0, T ) (4.22)

u = 0 in
{

(x, t)
∣

∣x ∈ �
T

p , 0 � t � τp(x)
}

(4.23)

u = f on Ŵ × [0, T ] (4.24)

where ̹ := λ+2µ. Deriving (4.22) from (4.18), we put ρ = 1 and remove the low-order terms.

This system possesses the same two velocities cp and cs . The character of controllability is

also the same: theorem 6 remains in force.

Our choice of the response operator of system (4.22)–(4.24) is motivated by the Green

formula for the operator L = −∇̹ div + curl curl:

(Lu, v)H − (u, Lv)H = (Nu,Dv)G − (Du,Nv)G

=
∫

Ŵ

dŴ

[(−̹ div u

µν × curl u

)(

vν

vθ

)

−
(

uν

uθ

)(−̹ div v

µν × curl v

)]

where G := L2(Ŵ;R3), the matrix representation u|Ŵ =
(

uν

uθ

)

corresponds to decomposition

(3.2) at the boundary, Du := u|Ŵ =
(

uν

uθ

)

, Nu :=
( −̹ div u
µν× curl u

). The response operator maps Duf

to Nuf ; it is defined on smooth controls vanishing near Ŵ × {t = 0} by

RT f :=
( −̹ div uf

µν × curl uf

)

on Ŵ × [0, T ].

The continued response operator R2T associated with the corresponding extended system acts

by the same rule.

4.2.6. Dynamical IP. The main result of [31] is the following lemma.

Theorem 7. For any T > 0, the operator R2T determines cp|�T
p

and cs |�T
s

uniquely.

34 By speaking so, we mean a time-optimal reconstruction of parameters: the literature devoted to another setups and

approaches is hardly observable. In the case of layered media reducible to 1-dim problems, time-optimal results are

obtained by A S Blagoveschenskii [58].
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The proof is constructive. We associate with system (4.22)–(4.24) the acoustic (scalar)

subsystem αT
p of the form

ϕt t − c2
pϕ = 0 in �T

p × (0, T )

ϕ = 0 in
{

(x, t)
∣

∣x ∈ �
T

p , 0 � t � τp(x)
}

ϕ = g on Ŵ × [0, T ]

with the response operator RT
p : g �→ ∂ϕg

∂ν
|Ŵ×[0,T ] and the Maxwell (vector) subsystem αT

s

et t − c2
s curl curl e = 0 in �T

s × (0, T )

e = 0 in
{

(x, t)
∣

∣x ∈ �
T

s , 0 � t � τs(x)
}

e = h on Ŵ × [0, T ]

with the response operator RT
s : h �→ µν × curl eh|Ŵ×[0,T ].

As was noted above, (4.22)–(4.24) is a simplified version of the genuine Lamé system

(4.18)–(4.22). The principal simplification is that the Lamé-type system admits the wave

splitting: the representation

uf = ∇ϕg + curl eh (4.25)

holds with the proper g and h. As is shown in [31], this leads to a matrix splitting of the

response operator: the representation

(RT )−1 = (J T )2

(

RT
p −divŴ

∇Ŵ RT
s

)

(4.26)

is valid, where J T :=
∫ t

0
[·] ds. Its straightforward consequence is the relations

RT
p g =

{

∂2

∂t2
[RT ]−1

(

g

0

)}ν

, RT
s h =

{

∂2

∂t2
[RT ]−1

(

0

h

)}

θ

. (4.27)

Hence, given R2T we can determine R2T
p and R2T

s . These operators, in turn, determine

cp|�T
p

(see [9, 15]) and cs |�T
s

(see section 3.3.3, replacing the ‘magnetic’ µ by 1 and ǫ by

c−2
s ). So, we arrive at the assertion of theorem 7. This result gives promise that time-optimal

determination of the velocities cp|�T
p

and cs |�T
s

in the genuine Lamé system (4.18)–(4.22) is

possible.

4.2.7. Comments.

• The following fact is a simple consequence of representations (4.25)–(4.27): a control f

produces the wave uf = curl eh (i.e., a slow wave propagating with the speed cs) if and

only if f =
(−divŴ h

RT
s h

)

, i.e., if the components of the control are linked by

f ν = −divŴ

[

RT
s

]−1
fθ =: l̂T fθ .

This relation35 is a 3-dim analog of (4.11), which raises the following questions. In the

case of the beam, the delaying function l is independent of the response operator R2T ,

whereas in the Lamé type system the delaying operator l̂T is determined by R2T . In the

meantime, since the slow waves exist in the genuine Lamé system (4.18)–(4.20)36, the

operator l̂T should also exist. Is l̂T determined by R2T ? If yes, is it possible to extract it

from R2T ? Omitting the arguments, we could claim: the affirmative answer follows to

the main objective that is time-optimal determination of cp, cs . We expect that, as well as

in the case of the beam, the slow waves will play a key role in solving the 3-dim IP.

35 We call l̂T a delaying operator.
36 We believe they exist!
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• One more intriguing question is the following. Dealing with the Lamé system and

repeating step by step the procedure (i)–(iii) of section 2.2.5, what object will be obtained

as a result? In other words, what does the wave copy of the elastic body look like?

The same question concerns the amplitude formula (2.36): what kind of pictures does

it visualize? Can one extract information about λ,µ, ρ from the wave copy and these

pictures? Does there exist a multidimensional analog of the system αT
Q (see section 4.1.5)

such that R2T
Q = R2T

Lame? All these questions are as yet open.

• In the case of variable parameters, our knowledge of reachable sets U ξ [σ ] of the Lamé

system is very poor, which obstructs progress in the IP. For instance, the following

question is not answered. Let σ ′ and σ ′′ be two open separated subsets of Ŵ and let T > 0

be such that �T
p [σ ′] ∩ �T

p [σ ′′] �= {∅} but �T
s [σ ′] ∩ �T

s [σ ′′] = {∅}. Do the subspaces

clos UT [σ ′] and clos UT [σ ′′] intersect and, if yes, what does the intersection consist of?

The answer may be very helpful for the IP. One more very important direction is the

extension of the uniqueness and stability theorems providing the boundary controllability

to more complicated models of elasticity theory: see [83].

5. Impedance tomography of manifolds

5.1. 2-dim EIT problem

5.1.1. General setup. The case n = 2. Let � be a smooth compact RM, dim � = n � 2,

Ŵ := ∂� ∈ C∞; g a metric tensor on �. Consider an elliptic boundary value problem

gu = 0 in int � (5.1)

u = f on Ŵ (5.2)

let u = uf (x) be its solution. With problem (5.1)–(5.2) one associates the Dirichlet-to-

Neumann (DN) map � : L2(Ŵ) → L2(Ŵ), Dom� = C∞(Ŵ),�f := ∂uf

∂ν
|Ŵ playing the role

of the input/output correspondence.

An electric impedance tomography (EIT) problem is to determine (�, g) from the given

�. Recall that ‘to determine’ means to construct a manifold (�̃, g̃) such that ∂�̃ =: Ŵ̃ = Ŵ

and �̃ = �. One more side of the problem is to describe the class of manifolds possessing

the given �.

The well-known peculiarity of the 2-dim case is the following. If g′ and g′′ are two metrics

on � such that g′′ = ρg′ with a smooth positive function ρ, then g′′ = ρ−1g′ and, hence,

the reserve of g′-harmonic and g′′-harmonic functions on � is one and the same. By this,

provided ρ|Ŵ = 1 the DN maps of the manifolds (�, g′) and (�, g′′) coincide : �′ = �′′. This

fact motivates the definition: two manifolds (�′, g′) and (�′′, g′′) with the common boundary

Ŵ are said to be conformal equivalent if there exists a diffeomorphism β : �′ → �′′, β|Ŵ = id

and a positive function ρ ∈ C∞(�′), ρ|Ŵ = 1 such that β is an isometry of (�′, ρg′) onto

(�′′, g′′).
So, conformal equivalence of manifolds implies the coincidence of their DN maps. A

remarkable fact is that the converse is also true.

Theorem 8. Two 2-dim compact smooth orientable manifolds with a common boundary are

conformal equivalent if and only if their DN maps coincide.

This fact was established for the first time by Lassas and Uhlmann [80] by the use of analytic

continuation. In the capacity of the representative of the equivalence class, the set of germs (a

Riemannian surface) obtained as result of continuation from the boundary is proposed.
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Here we present an approach [24] to the 2-dim EIT problem based on connections of the

problem with commutative Banach algebras (CBA). The approach is an (elliptic) version of

the BCm: it exploits a relevant coordinatization of �. In more detail, to each x ∈ � we attach

a Dirac measure δx and then identify these measures via �. The set of identified measures

constitutes the required representative of the equivalence class of manifolds. The role of

an operator visualizing the solutions uf on the representative,37 is played by the Gelfand

transform.

5.1.2. Gelfand transform: algebra A(�). Recall the basic definitions (e.g., see [86]). Let A

be a (complex) CBA , A′ the dual space (of continuous functionals). A functional m ∈ A′ is

called multiplicative if m(ab) = m(a)m(b), a, b ∈ A; the setMA of multiplicative functionals

endowed with the ∗-weak topology is a compact set called a spectrum of the algebra A.38 The

Gelfand transform (GT) of an element a ∈ A is a function ã : MA → C, ã(m) := m(a). The

GT is a homeomorphism from A to a subalgebra Ã := {ã | a ∈ A} of the algebra C(MA) of

continuous functions on MA.

Return to a 2-dim RM (�, g) and assume � oriented. Such a manifold carries a complex

differentiable structure compatible with the metric g and supports the algebra of continuous

analytic functions A(�) := {u + v i | u, v ∈ C(�),gu = gv = 0 in int �, du = ⋆ dv}.
For each x0 ∈ �, the Dirac measure δx0

: a �→ a(x0) is a continuous multiplicative functional;

hence, D := {δx0
| x0 ∈ �} ⊂MA(�).

A peculiarity of the algebra A(�) is that the set D exhausts MA(�): for each m ∈MA(�)

there is a unique x0 ∈ � such that m = δx0
and, thus, the equality D =MA(�) holds (see [24,

86]). Any algebra possessing this property39 turns out to be isometric to its GT; in our case,

the isometry A(�) → Ã(�) is realized by a (spatial) isomorphism i∗ induced by the map

i : � → MA(�), i(x0) := δx0
, the isomorphism acting by the rule i∗ : a �→ a ◦ i−1 = ã. So,

each x0 ∈ � can be identified (through x0 ≡ δx0
) with a point of the spectrum MA(�) of the

algebra A(�), whereas � is homeomorphic to MA(�) (we write � ≍MA(�)).

5.1.3. AlgebraA(Ŵ). A trace map tr : a �→ a|Ŵ induces the mapA(�) → trA(�) := A(Ŵ).

The algebra A(Ŵ) is a subalgebra of C(Ŵ), whereas, by the maximal principle for analytic

functions, tr maps A(�) onto A(Ŵ) isometrically. By isometry of the algebras, we have

MA(Ŵ) ≍ MA(�). Therefore, possessing A(Ŵ) and finding its spectrum, we get a compact

set homeomorphic to �.40 Moreover, constructing Ã(Ŵ) by GT, we get a function algebra on

MA(Ŵ) isometric to the original A(�).

The DN map determines the algebra A(Ŵ) as follows. Let d := d
dγ

be the differentiation

along Ŵ compatible with the orientation, J an integration: J df = f (mod const); denote

L̇2(Ŵ) := {f ∈ L2(Ŵ) |
∫

Ŵ
f = 0}. Since Ker � = {const}, the operators d�−1d : L2(Ŵ) →

L2(Ŵ), Dom d�−1d = C∞(Ŵ) and H : L̇2(Ŵ) → L̇2(Ŵ), Dom H = C∞(Ŵ),H := �J

are well defined; moreover, by elliptic theory, H is an isomorphism. In the case of

� = {z ∈ C || z |� 1} , H coincides with the classical Hilbert transform.

Lemma 8

(i) A real-valued function f ∈ C∞(Ŵ) is a trace of the real part of a function w = u + u∗i ∈
A(Ŵ) (i.e., f = Re tr w) if and only if it satisfies

[I + H 2] df = 0. (5.3)

37 We are speaking about an analog of (2.29) and (2.30).
38 Note that MA is canonically bijective to the set IA of maximal ideals of A [86].
39 Such algebras are called generic.
40 This is a key point for the future determination of � from �.
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Figure 9. Reconstruction via GT.

(ii) If (5.3) holds (so that f possesses the conjugate function f ∗ = Im tr w = u∗|Ŵ) then

df ∗ = H df. (5.4)

(iii) The equality

dim Ran[� + d�−1d] = β1(�) (5.5)

holds, where β1(�) is the first Betti number of �.

Proof. See in [24]. �

Since A(Ŵ)∩C∞(Ŵ) is dense in A(Ŵ), the lemma shows that the operator H (and, hence,

the DN map �) determines the trace algebra A(Ŵ).

5.1.4. Reconstruction. A representative of the equivalence class of manifolds possessing the

given DN map �, can be constructed by the following procedure.

Step 1. Find Ker[I + H 2] and determine the (sub)algebra A(Ŵ) ∩ C∞(Ŵ) = {f + f ∗i | df ∈
Ker[I + H 2], df ∗ = H df } by (5.3) and (5.4). Completing in C(Ŵ)-norm, recover the trace

algebra A(Ŵ).

Step 2. Find the (topologized) spectrum MA(Ŵ) =: �̃ 41 and construct Ã(Ŵ) by the GT.

Identifying Ŵ ∋ γ ≡ δγ ∈MA(Ŵ), attach �̃ to � along Ŵ.

Step 3. Using the functions ã ∈ Ã(Ŵ) as local complex coordinates on �̃, recover the

differentiable structure and, thereafter, the metric g̃.42

Figure 9 illustrates the procedure. The set �̃ is an analog of the wave copy in dynamical

IPs. We stress once again that the determination � ⇒ �̃ is realized through a relevant

coordinatization of the original manifold �.

5.1.5. Reconstruction by Henkin. There is one more approach, which recovers � as a

Riemann surface:

Step 1. Take a triple of real-valued functions {fk}3k=1 ⊂ C∞(Ŵ) provided dfk ∈ Ker[I + H 2]

and determine the conjugate functions {f ∗
k }3k=1 by (5.4). In the generic case, the functions

41 At this moment, we get a homeomorphic copy of �!
42 Up to a conformal deformation: see [24] for detail.
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{fk + f ∗
k i}3k=1 generate the algebra A(Ŵ), whereas the (unknown) functions {wk}3k=1, tr wk =

fk + f ∗
k i determine the (unknown) embedding j : � → C3, j (x) := col{wk(x)}3k=1.

Step 2. Since the image j (Ŵ) = {fk(γ ) + f ∗
k (γ ) i | γ ∈ Ŵ}3k=1 ⊂ C3 is known, one can

recover j (�) =: �̃ as a (unique) minimal surface in C3 spanned on j (Ŵ)43 and endow �̃ with

the metric g̃ induced by C3- metric.

Step 3. Identifying the boundaries by γ ≡ j (γ ), we get a representative (�̃, g̃) of the class of

conformally equivalent manifolds possessing the given DN map �.

This scheme (surely, in a refined form) is realized in [65], the reconstruction being

implemented by the use of Cauchy type integrals: roughly speaking, �̃ is recovered as a

graph of a meromorphic function. This makes the scheme available for numerical realization.

Moreover, the authors obtain a characterization of �, which settles the problem in the 2-dim

case.

5.2. 3-dim case: formulae for Betti numbers

5.2.1. Friedrichs decomposition. In section 5.2, we deal with a compact smooth oriented

RM (�, g), dim � = 3 and use the notation accepted in sections 3.1.1 and 3.1.2. For the sake

of simplicity, we assume Ŵ = ∂� connected.

The space of square integrable vector fields on � can be represented in the form

�L2(�) = C0 ⊕H⊕ G0 (5.6)

known as the Hodge–Morrey decomposition [82, 93]; here

C0 := {curl y | y ∈ �H 1(�), ν × y|Ŵ = 0},
H = {h ∈ �L2(�) | div h = 0, curl h = 0},
G0 := {∇p | p ∈ H 1

0 (�)};

the elements of H are called harmonic fields. The Friedrichs decomposition specifies the

structure of H:

H = D ⊕ Charm = N ⊕ Gharm,

where Gharm := {y ∈ H | y = ∇p} and Charm := {y ∈ H | y = curl h},

N := {h ∈ H | ν · h|Ŵ = 0}, D := {m ∈ H | ν ×m|Ŵ = 0}

are the subspaces of the Neumann and Dirichlet harmonic fields. These subspaces are of finite

dimension: dimN = β1(�), dimD = β2(�), where β1,2 are the Betti numbers of � [93].

We use also the Hodge–Morrey decomposition at the boundary

�L2(Ŵ) = CŴ ⊕HŴ ⊕ GŴ,

where

GŴ := {∇Ŵf | f ∈ H 1(Ŵ)}, CŴ := {ν × h | h ∈ GŴ},
HŴ := {η ∈ �L2(Ŵ) | divŴ η = divŴ ν × η = 0}.

By divŴ and ∇Ŵ we denote the intrinsic divergence and gradient on Ŵ.

43 So, �̃ solves a complex Plateu problem.
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5.2.2. DN maps and Hilbert transforms. An electrostatics problem is to find a function

u = uf (x) satisfying

u = 0 in int � (5.7)

u = f on Ŵ. (5.8)

An operator � : L2(Ŵ) → L2(Ŵ), Dom � = C∞(Ŵ),�f := ν · ∇uf
∣

∣

Ŵ
= ∂uf

∂ν

∣

∣

Ŵ
is called an

electric DN map. Integration by parts (3.1) easily leads to
∫

�

∇uf ′ · ∇uf ′′ =
∫

Ŵ

�f ′ · f ′′; (5.9)

hence, � is a positive operator. By the relations Ker� = {const}, Ran� = divŴ
�C∞

(Ŵ) =
Ċ∞(Ŵ) := {f ∈ C∞(Ŵ) |

∫

Ŵ
f = 0}, the composition ∇Ŵ�−1 divŴ is well defined on smooth

fields.

Denote L̇2(Ŵ) := {f ∈ L2(Ŵ) |
∫

Ŵ
f = 0} and define an operator J : GŴ → L̇2(Ŵ) by

∇ŴJ = id. The operator H := �J : GŴ → L̇2(Ŵ) is well defined on G∞Ŵ := GŴ ∩ �C∞(Ŵ);

by elliptic theory, H can be extended to GŴ up to isomorphism onto L̇2(Ŵ). We name H an

electric Hilbert transform.

A magnetostatics problem is to find a field h = hj (x) satisfying

h = 0, div h = 0 in int � (5.10)

ν × h = j on Ŵ (5.11)

with j ∈ �C∞(Ŵ). This problem is solvable but not uniquely: a field h satisfies (5.10),

(5.11) with j = 0 iff h ∈ D (see [93], lemma 3.3.6). In the following, hj is the

(unique) solution orthogonal to D. With the problem we associate a magnetic DN map
�� : �L2(Ŵ) → �L2(Ŵ), Dom �� = �C∞(Ŵ), ��j := (curl hj )θ |Ŵ . Integration by parts implies

∫

�

curl hj ′ · curl hj ′′ =
∫

Ŵ

��j ′ · j ′′; (5.12)

hence, �� is a positive operator. As is shown in [28], the embedding Ran �� ⊃ GŴ∩ �C∞(Ŵ) and

Ker �� ⊂ CŴ hold. By this, the composition divŴ
��−1∇Ŵ is well defined on smooth functions.

Introduce an operator �J : L̇2(Ŵ) → GŴ defined on Ċ∞(Ŵ) by the relation �J divŴ = id.

The operator �H := ���J : L̇2(Ŵ) → �L2(Ŵ) is well defined on Ċ∞(Ŵ) and can be extended to

L̇2(Ŵ) up to isomorphism onto its image. We name �H a magnetic Hilbert transform.

The transforms H and �H are the relevant analogs of the scalar Hilbert transform associated

with 2-dim problem (5.1), (5.2) (see section 5.1.3).

5.2.3. Formulae. The main result of the paper [28] is the 3-dim analogs of the formula

(5.5). For a harmonic field h, we denote by tr h := h|Ŵ its trace on Ŵ. Recall that the tangent

component hθ (γ ), γ ∈ Ŵ is identified with the corresponding vector of Tγ (Ŵ).

Theorem 9. The representations

trN = Ran[ �� + ∇Ŵ�−1 divŴ], trD = {Ran[� + divŴ
��−1∇Ŵ]}ν

hold and imply

β1(�) = dim Ran[ �� + ∇Ŵ�−1 divŴ], β2(�) = dim Ran[� + divŴ
��−1∇Ŵ].

Proof. See in [28]. �

In the 2-dim case, the Betti number β1(�) determines � up to homeomorphism. This

is not true for dim � � 3; however, our formulae for β1,2(�) provide a certain information

about the topology of �, which can be extracted from the DN maps.
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5.2.4. Existence of conjugate. We say a function u and a solenoidal field h are conjugated

(and write u∗ = h, u = h∗) if ∇u = curl h in �. This definition evidently implies u = 0

and h = 0, so that ∇u, curl h ∈ H.

If � is of nontrivial topology, neither u satisfying u = 0 nor h satisfying h = 0 has a

conjugate. A remarkable fact is that the existence of the conjugate can be checked in terms of

the traces on Ŵ by use of the Hilbert transforms.

Lemma 9

(i) For f ∈ Ċ∞(Ŵ), the function uf has the conjugate field hj = (uf )∗ iff [I+ �HH ]∇Ŵf = 0.

In this case, the equality divŴ j = −H∇Ŵf holds and determines j ∈ G∞Ŵ .

(ii) For j ∈ G∞Ŵ , the field hj has the conjugate function uf = (hj )∗ iff [I + H �H ]divŴ j = 0.

In this case, the equality ∇Ŵf = �H divŴ j holds and determines f ∈ Ċ∞(Ŵ).

Proof. See in [28]. �

5.2.5. Comments

• Let u and h be a function and a field in �; a pair q := {u, h} ∈ Q(�) := C(�)× �C(�)

can be considered as a quaternion field on �; we denote u := Re q, h := Im q.

The space Q(�) is an algebra w.r.t. the H-multiplication; it contains a subspace

Qharm(�) := {q | (Re q)∗ = Im q} of harmonic quaternion fields. However, Qharm(�)

is not a subalgebra: q, q ′ ∈ Qharm(�) does not necessarily imply (Re(q ′q ′′))∗ =
Im(q ′q ′′). Therefore, an attempt to repeat the 2-dim trick (that is the coordinatization by

multiplicative functionals or, the same, by maximal ideals) for reconstruction fails. So,

the important and challenging problem of recovering the 3-dim manifold from its DN

map remains unsolved. The only known result [81]44 concerns a real analytic case but

such analyticity is not natural in this kind of IP.

• Understanding δx0
as a focused wave or a visualizing functional (see (2.29)), we succeed

in solving the dynamical IPs. Interpreting δx0
as a multiplicative functional (maximal

ideal) of a proper algebra, we solve the 2-dim elliptic IP. Probably, what we need in the

3-dim case is to recognize the invariant meaning of Dirac measures in elliptic problems.

• One more reason to look for another (not algebraic) coordinatization in elliptic problems

is the following. Dealing with determination � ⇒ L = − + q (with nonanalytic

potential q) we have no chance of retaining the algebraic structures. In the meantime, by

ellipticity, the Dirac measures remain in the role of the generating kernels in the subspace

of L-harmonic solutions. Perhaps, the problem will be solved if a relevant invariant

description of these kernels is obtained.

5.3. DN operator on differential forms

5.3.1. Forms. Here � is assumed to be an n-dimensional smooth compact oriented

RM, ∂� =: Ŵ ∈ C∞. Let �k(�) be the space of smooth real differential forms of degree k

on �,�(�) = ⊕n
k=0�

k(�) the graded algebra of such forms. We use standard operations on

�(�): the differential d, the Hodge operator ⋆, the codifferential δ and the Hodge Laplacian

 := dδ + δd. The space �k(�) is endowed with L2-metric, (α, β) :=
∫

�
α ∧ ⋆β.45 The

embedding Ŵ → � is denoted by i; with a slight abuse of terms we call the form i∗α ∈ �(Ŵ)

the trace of α.

44 It is shown that, for dim � � 3, the operator � determines a real analytic (�, g) up to isometry.
45 We also set

∫

�
ϕ = 0 for ϕ ∈ �k(�) with k < n.



Topical Review R53

The Hodge–Morrey decomposition is an L2-orthogonal decomposition of the form

�k(�) = Ck(�)⊕Hk(�)⊕ Ek(�)

generalizing (5.6), where

Ek(�) := {dα | α ∈ �k−1(�), i∗α = 0},
Ck(�) := {δα | α ∈ �k+1(�), i∗(⋆α) = 0},
Hk(�) := {λ ∈ �k(�) | dα = 0, δα = 0},

the elements of Hk(�) are called harmonic fields. The Friedrichs decomposition details the

structure of the harmonic subspaces:

Hk(�) = Dk(�)⊕Hk
co(�) = N k ⊕Hk

ex(�), (5.13)

where Hk
co(�) := {λ ∈ Hk(�) | λ = δα} and Hk

ex(�) := {λ ∈ Hk(�) | λ = dα} are the

subspaces of coexact and exact fields,

Dk := {λ ∈ Hk(�) | i∗λ = 0}, N k := {λ ∈ Hk(�) | i∗(⋆λ) = 0},
are the Dirichlet and Neumann subspaces, dimN k = dimDn−k = βk(�). Note that ⋆ maps

N k onto Dn−k isometrically. A Neumann field λ ∈ N k is uniquely determined by its trace i∗λ
(e.g., see [93]).

5.3.2. DN operator. Given ϕ ∈ �k(Ŵ), the boundary value problem

ω = 0, δω = 0 in int �

i∗ω = ϕ on Ŵ

is solvable (see [93], lemma 3.4.7), its solution ω = ωϕ(x) is unique up to an element of Dk .

Therefore, the form

�f := i∗(⋆dωϕ) on Ŵ

is independent of the choice of solution and, hence, � is a well-defined operator acting from

�k(Ŵ) to �n−1−k(Ŵ). We call it a DN operator.

As is easy to check, redefining �̃ := ⋆Ŵ� on �(Ŵ), we get an operator reducible by the

graduation: �̃ maps �k(Ŵ) to �k(Ŵ). The relation (dωϕ′ , dωϕ′′)� = (�̃ϕ′, ϕ′′)Ŵ generalizing

(5.9) and (5.12) holds and shows that �̃ is a positive operator. In the case of dim � = 3, the

operators � and �� associated with problems (5.7), (5.8) and (5.10), (5.11) can be interpreted

as the parts of �̃. So, there is a freedom in defining the DN operator46 and the following result

shows that our choice is also well motivated. We denote H(�) := ⊕n
k=0H

k(�).

Theorem 10

(i) The relation Ker � = Ran � = i∗H(�) holds.

(ii) The operator equalities �d = d� = 0,�2 = 0 are valid.

(iii) For every k = 0, 1, . . . , n − 1, the operator � + (−1)kn+k+n d�−1d : �k(Ŵ) →
�n−1−k(Ŵ) is well defined; its range coincides with the subspace i∗N n−1−k and

dim[� + (−1)kn+k+n d�−1d]�k(Ŵ) = βn−1−k(�).

Proof. See in [53]. This result generalizes the formulae for Betti numbers obtained

above. �

46 For another definition, see in [68].
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5.3.3. Hilbert transform. An analog of the transforms H−1 and �H−1 (see section 5.2.2) on

forms is introduced as follows:

T := d�−1 : i∗H(�) → i∗H(�).

This is a well-defined operator since the equation �ϕ = ψ has a solution for any

ψ ∈ i∗H(�) (see theorem 10(i)), and dϕ is determined by ψ. Operator T maps k-forms

to n–k-forms. In particular, T is defined on exact boundary forms and preserves the exactness:

T : Ek(Ŵ) → En−k(Ŵ). One more property of this version of the Hilbert transform is that it

maps the traces of Neumann fields to the traces of Neumann fields: T : i∗N k → i∗N n−k [53].

Let ω ∈ �k(�) and ε ∈ �n−2−k(�) (0 � k � n − 2) be two coclosed forms:

δω = 0, δε = 0. The form ε is named a conjugate form of ω (we write ω∗ = ε) if dω = ⋆ dε.

This implies ω = 0,ε = 0 and ε∗ = (−1)kn+k+n+1ω = ⋆ ⋆ ω. As well as in the case of

n = 2, 3, the existence of ω∗ can be checked in terms of the trace i∗ω and the operator �.

Lemma 10. A form ω ∈ �k(�), δω = 0 satisfying ω = 0 has a conjugate form iff its trace

ϕ = i∗ω satisfies [� + (−1)nk+n+k d�−1d]ϕ = 0. In this case, if ε = ω∗ and ψ = i∗ε then

dψ = T dϕ.

Proof. See in [53]. �

One more result (V A Sharafutdinov [53]) is that the DN operator � determines the real

additive cohomology structure of �. This is proven by constructing an isomorphic copy of the

exact cohomology sequence of the pair (�, Ŵ). The elements of the copy are the cohomology

spaces on Ŵ constituting a complex; the operators � and T play the role of coboundary and

imbedding operators of this complex. Perhaps such a role inscribes these operators in the list

of objects of algebraic topology.

6. Problems on graphs

6.1. Forward and inverse problems

6.1.1. Graph. Let � = E∪V ∪Ŵ ⊂ R2 be a finite connected planar graph, E = {ej }pj=1 the

edges (nonintersecting open intervals of straight lines on the plane), V = {vk}qk=1 the interior

vertices (of multiplicity � 3), Ŵ = {γl}nl=1 the boundary vertices (of multiplicity = 1). A

function ρ on �\V is said to be a density if ρ(·) � ρ0 > 0 and for each ej ∈ E the function

ρ|ej
can be extended to ēj so that ρ|ēj

∈ C2(ēj ). A pair (�, ρ) is said to be an equipped

graph.

The density determines an optic metric dτ 2 = ρ|dx|2 and the corresponding (optic)

distance

τ(a, b) =











min

∫ b

a

ρ
1
2 |dx|, a �= b

0, a = b

where min is taken over the paths connecting a with b. If � is a tree (does not contain cycles),

such a path is unique.

A set of functions {τ(·, γl)}nl=1 determines a map i:� → Rn, i(x) :=
col{τ(x, γl)}nl=1;�opt := i(�) is a graph in Rn named an optic image of �. We equip
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�opt with the density ρopt := ρ ◦ i−1. If � is a tree, {τ(·, γl)}nl=1 constitutes a coordinate

system and the map i is an isometry from (a metric space) (�, τ) to
(

�opt,
1√
n

distRn

)

.

Let (�′, ρ ′), (�′′, ρ ′′) be equipped trees, (�′
opt, ρ

′
opt), (�

′′
opt, ρ

′′
opt) their optic images. As is

shown in [26], the equality (�′
opt, ρ

′
opt) = (�′′

opt, ρ
′′
opt) holds iff the trees are spatially isometric,

i.e., there is an R2-isometry I : �′ → �′′ such that ρ ′ = ρ ′′ ◦ I . In other words, a tree is

determined by its optical image up to a spatial isometry.

6.1.2. Spectral data. Introduce a Hilbert space H := L2,ρ(�) of functions on �,

(y,w)H :=
∫

�

yw ρ|dx| =
∑

e∈E

∫

e

yw ρ|dx|.

We assign a function y on � to a class H1
0 if y ∈ C(�), y|e ∈ H 1(e) for every e ∈ E, and

y|Ŵ = 0. We write y ∈ H2 if

(i) y ∈ C(�) and y|e ∈ H 2(e) for each e ∈ E

(ii) for every v ∈ V , the equality (Kirchhoff law)
∑

ē∋v

dy

de
(v) = 0

(summation over the edges incident to the given v) holds, where
dy

de
(v) := lim

x∈e,x→v

y(x)− y(v)

|x − v| , v ∈ V \Ŵ.

An operator L := H→ H, Dom L = H2 ∩H1
0,

(Ly) |e := − 1

ρ

d2y

de2
, e ∈ E (6.1)

is positive definite; its spectrum {λk}∞k=1, 0 < λ1 � λ2 � · · · is discrete. Let {ϕk}∞k=1 be

an orthonormal basis of eigenfunctions: Lϕk = λkϕk, (ϕk, ϕl)H = δkl . Recall also the

well-known fact: the eigenfunction ϕ1 does not change sign in int �.

Denote dϕk

de

∣

∣

Ŵ
:= col

{

dϕk

de
(γ1), . . .

dϕk

de
(γn)
}

; a set of pairs � :=
{

λk; dϕk

de

∣

∣

Ŵ

}∞
k=1

is

said to be the (Dirichlet) spectral data of the equipped graph(�, ρ). We also assume
dϕ1

de
(γl) > 0, l = 1, . . . , n.

6.1.3. Spectral IP: main result. The spectral IP is: given � to recover (�, ρ). Our

contribution to this problem is as follows.

Theorem 11. If (�, ρ) is an equipped tree, then � determines the optic image (�opt, ρopt)

and, hence, determines (�, ρ) up to a spatial isometry on the plane.

In the rest of section 6, we prove theorem 11. The proof follows our basic pattern: to recover an

unknown object (here, a graph) via a relevant coordinatization (here, by the Dirac measures).

Namely,

(1) we identify � with the set of Dirac measures {δx0
| x0 ∈ �};

(2) using the spectral model (2.34), we select the set of spectral images �̃ = {δ̃x0

∣

∣x0 ∈ �},
the selection mechanism exploiting the waves produced by boundary controls;

(3) the set �̃ is endowed with a metric which turns �̃ into an isometric copy of (�, ρ); the

optic image (�opt, ρopt) is also recovered.
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6.2. Waves on graphs

6.2.1. Dynamical system. Let L∗ ⊃ L be an operator in H defined on H2 and acting by the

rule (6.1). With the graph (�, ρ) one associates a dynamical system αT of the form

ut t + L∗u = 0 in (�\Ŵ)× (0, T )

u|
t=0
= ut |t=0

= 0 in �

u = f on Ŵ × [0, T ]

where f = col{fk(t)}nk=1 ∈ FT := L2([0, T ];Rn) is a boundary control, u = uf (x, t) is a

solution (wave). The outer space FT contains the subspaces

FT [γ ] := {f ∈ FT | supp f (·, t) ⊂ {γ },∀ t}

of controls acting from γ ∈ Ŵ, so that FT = ⊕γ∈ŴF
T [γ ]. We use also the classes

FT
1 [γ ] := FT [γ ] ∩ H 1

0 ([0, T ];Rn). The inner space is H. The control operator

W T : FT → H,W T f := uf (·, T ) acts continuously, the relation W T H 1
0 ([0, T ]);Rn) ⊂ H1

0

being valid.

6.2.2. Propagators. Fix γ ∈ Ŵ and choose f = fγ (t) := col{δγ γ ′θ(t)}γ ′∈Ŵ ∈ FT [γ ], where

θ(t) := 1
2
[1 + sign t] is the Heaviside function. The solution pγ := ufγ is called a propagator

corresponding to the boundary vertex γ . Simple analysis of propagation of singularities in �

leads to the relation

τ(γ ′, γ ′′) = 2 inf{t � 0 | (pγ ′(·, t), pγ ′′(·, t))H �= 0} (6.2)

expressing the optic hodograph τ |Ŵ×Ŵ of the graph � in wave terms.

Let H1
0 ⊂ H ⊂ H−1 :=

(

H1
0

)′
be a standard triple (a rigged Hilbert space). By the

properties of W T , for h ∈ H−1 and f ∈ H1
0([0, T ]);Rn), the product (h, uf (·, T ))H is well

defined. Along with it, we can define the time

tγ [h] := inf
{

t � 0
∣

∣(h, uf (·, t))H �= 0, f ∈ FT
1 [γ ]
}

(6.3)

and specify it as the moment at which the waves produced at γ begin to interact with the

functional h.

One more class of propagators is related to the system

vt t + Lv = 0 in H

v|
t=0
= 0, vt |t=0

= h in H

governed by the operator L (with zero Dirichlet boundary conditions on Ŵ). Its solution

vh(·, t) :=
∞
∑

k=1

sin
√

λkt√
λk

(h, ϕk)H ϕk(·) (6.4)

is well defined for h ∈ H−1, vh ∈ Cloc([0,∞);H). Fix ξ ∈ �\Ŵ; let δξ ∈ H−1 be a Dirac

measure supported in ξ , cξ := ‖δξ‖−1
H−1 . The solution pξ := vcξ δξ is said to be a propagator

corresponding to the point ξ . Analyzing propagation of singularities, we arrive at the relation

τ(ξ ′, ξ ′′) = 2 inf{t � 0 | (pξ ′(·, t), pξ ′′(·, t))H �= 0} (6.5)

for ξ ′, ξ ′′ ∈ �\Ŵ. This relation expresses the optic distance τ in wave terms.
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6.2.3. Key lemma. A function d : H−1 → R+,

d[h] := diam supp h

(diameter in the τ -metric) is called an optic diameter. A function dw : H−1 → R,

dw[h] := max
γ ′,γ ′′∈Ŵ

{

τ
(

γ ′, γ ′′
)

−
(

tγ ′[h] + tγ ′′[h]
)}

� −∞ (6.6)

is said to be a wave diameter; the term is motivated by the role of waves in (6.2) and (6.3). As

we shall see, the wave diameter is determined by the spectral data and, hence, can be used for

solving the IP.

Lemma 11. For any graph �, the relation dw � d holds. If � is a tree then dw = d.

Proof. See in [26]. �

The proof is based on analysis of the boundary controllability of trees: see [27] and [54].

6.3. Solving the IP

6.3.1. Spectral model. By perfect analogy with (2.34), we define the space H̃ := l2 and the

unitary transform U : H → H̃, ỹ = Uy := {(y, ϕk)}∞k=1. The following is the list of objects,

whose U-images are determined by the spectral data �.47

(i) The classes H1
0 and H−1 are mapped to H̃1

0 := UH1
0 =
{

{ck}∞k=1

∣

∣

∑∞
k=1 λkc

2
k < ∞

}

and

H̃−1 :=
{

{ck}∞k=1

∣

∣

∑∞
k=1 λ−1

k c2
k < ∞

}

.

(ii) For f ∈ FT , the spectral image of the wave uf is

ũf (t) := Uuf (·, t) =







∑

γ∈Ŵ

dϕk

de
(γ )

∫ t

0

sin
√

λk(t − s)√
λk

f (γ, s) ds







∞

k=1

, (6.7)

so that the model control operator W̃ T := UW T : f �→ ũf (T ) is also determined. By

(6.7), we find the spectral images of the propagators pγ :

p̃γ (t) := Upγ (·, t) =
{

dϕk

de
(γ )

1− cos
√

λkt

λk

}∞

k=1

.

As a consequence, � determines the hodograph of �: by isometry, we have

τ(γ ′, γ ′′) = 〈see (6.2)〉 = 2 inf{t � 0 | (p̃γ ′(t), p̃γ ′′(t))H̃ �= 0}. (6.8)

(iii) For any h̃ ∈ H̃−1, we have

tγ [U ∗h̃] = 〈see (6.3)〉 = inf
{

t � 0 |
(

h̃, ũf (t)
)

H̃
�= 0, f ∈ FT

1 [γ ]
}

. (6.9)

Hence, given a functional h̃, we can determine the wave diameter dw[h] of its preimage

h = U ∗h̃ by substituting (6.8), (6.9) into the rhs of (6.6). In other words, a function

dw[U ∗·] : H̃−1 → R is determined by �. As a result, if � is a tree then, by lemma 11, its

spectral data determine the optic diameter d[U ∗·] : H̃−1 → R+.

(iv) A set of normalized Dirac measures
{

cξδξ

∣

∣ξ ∈ �\Ŵ
}

can be characterized as
{

h ∈ H−1 | ‖h‖H−1 = 1, d[h] = 0, (h, ϕ1)H > 0
}

. Such a representation enables us to

characterize the spectral images: {h̃ ∈ H̃−1 | ‖h̃‖H̃−1 = 1, dw[U ∗h̃] = 0, (h̃, ϕ̃1)H̃ >

0} =: �̃. Thus, � determines the set �̃: it is just the set of zeros of the function dw[U ∗·].
47 The derivation of these results uses nothing besides integration by parts: see [26].
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(v) For every h̃ ∈ �̃, one can find the image of the propagator pξ (ξ = supp U ∗h̃) by

p̃ξ (t) = Upξ (·, t) = 〈see (6.4)〉 =
{

sin
√

λkt√
λk

(h̃, ϕ̃k)H̃

}∞

k=1

.

Then, for h̃′, h̃′′ ∈ �̃ and the corresponding points ξ̃ ′ = supp U ∗h̃′, ξ̃ ′′ = supp U ∗h̃′′, we

determine

τ(ξ ′, ξ ′′) = 〈see (6.5)〉 = 2 inf{t � 0 | (p̃ξ ′(t), p̃ξ ′′(t))H̃ �= 0} =: τ̃ (h̃′, h̃′′).

Therefore, endowing the set �̃ with a function τ̃ : �̃ × �̃ → R+, we turn �̃ into

an isometric copy of the space (�, τ) (through the isometry ĩ : �̃ → �\Ŵ, ĩ(h̃) =
supp U ∗h̃). As is easy to recognize, (�̃, τ̃ ) is just a version of the wave copy of the

original (�, τ) reproduced via the spectral model.

6.3.2. Recovering (�, ρ). Let (�, ρ) be an equipped tree, � its spectral data. For

determination � ⇒ (�, ρ) one needs just to summarize the results (i)–(v), i.e., to construct the

copy (�̃, τ̃ ). Thereafter, completing �̃ and finding its (topological) boundary Ŵ̃ = {γk}nk=1 ,

we can provide �̃ with the coordinates {τ̃ (·, γ̃k)}nk=1 . The image j̃ (�̃) ⊂ Rn under the map

j̃ : h̃ �→ col {τ̃ (·, γ̃k)}nk=1 coincides with �opt by construction. Some extra work is required

to provide �opt with the density ρopt but this can also be done: see [26].

Thus, the spectral data � determine the optic image (�opt, ρopt) and, hence, the tree (�, ρ)

up to a spatial isometry. Theorem 11 is proven.

So, the IP is once again solved by the coordinatization x0 ↔ δx0
and relevant interpretation

of the Dirac measures: on trees these measures are characterized as the functionals of zero

wave diameter.

6.3.3. Comments and hypotheses

• Let R2T be the continued response operator of the system αT associated with an equipped

tree (�, ρ). Given for T � 1
2

diam �, the operator R2T determines the tree up to a spatial

isometry on the plane. To prove this, one needs just to repeat our considerations, using

the dynamical model (2.35) instead of the spectral one. However, to justify the approach

the results on the boundary controllability of trees [26, 27] are required.

In [26] the list of problems on graphs reducible to the spectral or dynamical IPs is

presented. In the case of a tree, each of these problems can be solved by a certain version

of the BCm. For other approaches and results see [3, 73, 97].

• A challenging open problem is to recover graphs containing the cycles. Lemma 11 shows

that dw � 0 is a necessary condition for a graph to be a tree. In the meantime, it is easy

to present a graph with cycles and a point ξ in the graph such that dw[δξ ] < 0 (see [26]).

Does dw � 0 characterize the trees? An affirmative answer would enable one to detect

the presence of cycles via inverse data.

A property which could help us to select the set �̃ in H̃−1 is positivity of the Dirac

measures: ϕ � 0 implies (δξ , ϕ) � 0, whereas these measures can be characterized as

extreme points of the convex set of positive functionals normalized by (h, 1) = 1. In this

connection, there was an attempt to characterize the cone H+ := {y ∈ H | y � 0} ⊂ H in

terms of �. The idea was to invoke the maximal principle for the heat equation. Consider

the heat conductivity system
ut + L∗u = 0 in (�\Ŵ)× (0, T )

u|
t=0
= 0 in �

u = f on Ŵ × [0, T ]
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let u = uf (x, t) be its solution (heat wave). As is known, f � 0 implies uf � 0 and,

hence, the reachable set UT
+ :=

{

uf (·, T )
∣

∣f ∈ C∞
0 (Ŵ × [0, T ]), f � 0

}

is embedded

in H+. In the meantime, the image ŨT
+ := UUT

+ is determined by the spectral data and,

hence, the condition (h̃, ŨT
+ )H̃ � 0, necessary for the inclusion h̃ ∈ �̃, is checkable via

�. Thereafter, selecting in H̃−1 the set of spectral images of the (properly normalized)

positive functionals, we might determine the images of Dirac measures as the extreme

points of this set and, thus, might get �̃.

Unfortunately, the attempt fails: the set ∪T >0U
T
+ is not dense in H+ [29] and, hence,

(h̃, ŨT
+ )H̃ � 0 does not ensure h̃ � 0. However, perhaps, the idea is not exhausted yet

and we can hope for determination of H̃+ by ‘physically motivated’ properties of another

type of waves.

Presumably, the following class of graphs with cycles is available for the first attack

by the BCm. We say a graph � is transparent if the shortest paths linking the boundary

vertices pairwise exhaust �. The reason to single out this class is that transparency

implies dw[δξ ] = 0. However, if � contains cycles, not only the Dirac measures are of

zero wave diameter and the open problem is to identify δξ (surely, in terms of the inverse

data!) among other zeros of dw.

• The procedure (i)–(v) (section 6.3.1) is not available for elaborating the algorithms since

the function dw[U ∗·] is very irregular on H̃−1 (discontinuous at every point). In [54],

we propose another approach based on a certain version of the Gelfand–Levitan–Krein

equations. The results of numerical testing demonstrate the efficiency of the corresponding

algorithm. In the same paper (see also [27]), the time-optimal and local procedure of

controlling a tree from the boundary is described. Note that the possible lack of boundary

controllability is one of the principle obstructions to extending the BCm to graphs with

cycles.
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Appendix

A.1. Proof of lemma 1

The definition of ωs,ε
γ easily implies

ωs
γ = {x ∈ � | d(x, γ ) � s, τ (x) = s} = �̄s[γ ] ∩ Ŵs .

Let x ∈ ωs
γ ; connect x with γ with a shortest geodesic. Since x ∈ �̄s[γ ], the geodesic

is of length � s; since x ∈ ŴT , the length is � s. Therefore, the geodesic is of length s

and connects Ŵs with Ŵ. Thus, x is an endpoint of a normal geodesic of length s, i.e.,

x = x(γ, s). As a result, ωs
γ can contain (if nonempty) only one point x(γ, s), what occurs if

s � τ∗(γ ). �
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A.2. Proof of theorem 1

(i) The assertion of the theorem follows evidentially from the equality

clLT
0 = cl

(

−T
0

)

(A.1)

for the closures of the operators. Prove (A.1).

(ii) The Friedrichs extension −T of −T
0 is a positive definite and boundedly invertible

operator and, by −T ⊃ −T
0 ⊃ LT

0 , we have the equalities (−T )−1T
0 = I and

(−T )−1LT
0 = I. To close a boundedly invertible operator is to extend its inverse by

continuity. Therefore, the equality (A.1) will be proven if we verify the relation

clos RanLT
0 = clos Ran

(

−T
0

)

. (A.2)

Prove (A.2).

(iii) The embedding clos RanLT
0 ⊂ clos Ran

(

−T
0

)

is evident; to prove the opposite

embedding is to prove that
{

y ⊥ RanLT
0

}

implies
{

y ⊥ Ran
(

−T
0

)}

. Prove this

implication .

Take a nonzero
{

y ⊥ Ran LT
0

}

and consider the system

vt t −v = 0 in (int �T )× R (A.3)

v|t=T = 0, vt |t=T = y in �
T

(A.4)

v = 0 on (Ŵ ∪ ŴT )× R (A.5)

with the solution v = vy(x, t),

vf (·, t) =
∫ ∞

0

sin
√

λ(t − T )√
λ

dPλy,

where Pλ is the spectral measure of −T .

Choose an even function ϕ ∈ C∞
0 (R), ϕ � 0, supp ϕ ⊂ [−1, 1] such that

∫∞
−∞ ϕ(t) dt =

1. For ε > 0, denote ϕε(t) := ε−1ϕ(ε−1t), t ∈ R and v
y
ε := ϕε ∗ vy (the convolution w.r.t.

t). Straightforward calculation (see [22], pp 360–2) shows that v
y
ε is a solution of (A.3)–(A.5)

with y replaced by yε, where

yε :=
∫ ∞

0

ρε(λ) dPλy, ρε(λ) :=
∫ ε

−ε

ϕε(η) cos
√

λη dη,

so that v
y
ε = vyε . The function ρε possesses the properties:

(α) | ρε |� 1, limε→0 ρε = 1 uniformly on any compact set in [0,∞)

(β) limλ→∞ λk | ρε(λ) |= 0 for any k � 0.

They lead to the corresponding properties of yε:

(α′) ‖yε‖H � ‖y‖H, ‖y − yε‖H → 0 as ε → 0.

(β ′) yε ∈
⋂

k�0 Dom(−T )k (and, hence, yε|Ŵ = 0). By ellipticity of −T , the last

property implies yε ∈ C∞(�T ) and vyε (·, t) ∈ C∞(�T ), t ∈ R.

Keeping ε > 0 fixed, choose δ > ε and take in (2.7)–(2.10) a control f ∈ FT ,T−δ; define

fε(·, t) :=
∫ T

0

[ϕε(t − η)− ϕε(2T − t − η)]f (·, η) dη.

As is easy to check, fε ∈ C∞([0, T ];L2(Ŵ)) ⊂ FT and (fε)t t = (ft t )ε for f ∈
FT ,T−δ ∩ C∞([0, T ];L2(Ŵ)). A simple calculation leads to

(W T fε, y)H = (W T f, yε)H (A.6)

(see [22], pp 361–2).
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By the choice of y ∈ HT ⊖ Ran LT
0 , for f ∈ FT ,T−δ ∩ C∞([0, T ];L2(Ŵ)) we have

0 =
(

LT
0 W T fε, y

)

H
= (W T (fε)t t , y)H = (W T (ft t )ε, y)H

= 〈see (A.6)〉 = (W T ft t , yε)H = (W T f, yε)H

= 〈see (β ′)〉 = (W T f,yε)H. (A.7)

Since the set of f used is dense in f ∈ FT ,T−δ , the set of waves W T f is dense in clos UT−δ

and, hence, dense in HT−δ by controllability of (2.21). Therefore, (A.7) implies yε = 0 in

�T−δ and, by arbitrariness of δ, in �T . Tending ε → 0, with regard to (α′) we easily get

y = 0 in �T and y|Ŵ = 0.

For a ∈ Dom(−T )0, we have

(

−T
0 a, y

)

H
= −
∫

Ŵ

da

dν
y dŴ − (a,y)H = 0

(
∫

ŴT = 0 since a vanishes near ŴT ). So, y ⊥ RanLT
0 implies y ⊥ Ran

(

−T
0

)

. �

A.3. Proof of theorem 3 and lemma 4

Since T > 0 is arbitrary, we can consider the case s = T only.

(i) Prove the first relation in (3.13). Let n ∈ J T [σ ]⊖ closUT [σ ]; we shall show that n

is harmonic on its support, i.e., curl n = 0 in �T [σ ]. By hyperbolicity, the problem

et t −e = 0 in AT (A.8)

e|t=T = 0, et |t=T = y ∈ J T (A.9)

eθ = 0 on Ŵ × [0, T ] (A.10)

in the spacetime subdomain

AT := {(x, t) | x ∈ int �T , T − d(x, ŴT ) < t < T }
= [(int �T )× (0, T )]\{backward domain of influence of ŴT × {t = T }}

is well posed and said to be dual to (3.6)–(3.8). Let e = e(x, t) be the solution; note that

AT ⊃ supp uf , where uf is a trajectory of the system αT . Following [36], one can derive the

duality relation

(uf (·, T ), y)J = (f, ν × curl ey)FT (A.11)

for f ∈ MT , where the trace ν × curl ey |Ŵ×[0,T ] is defined as an element of

L2([0, T ]); �H−1(Ŵ)) and the rhs is understood in the relevant sense. If y = n in (A.9),

the lhs of (A.11) equals zero for all f ∈ FT ,T [σ ] ∩MT . Hence, by the density of smooth f ,

we have

ν × curl en = 0 on σ × [0, T ]. (A.12)

By the form of the Cauchy data (A.9), a vector-valued function

E(·, t) :=
{

en(·, t) 0 � t � T

−en(·, 2T − t) T � t � 2T

turns out to be a solution of the equation

Et t −E = 0 in B2T , (A.13)

where B2T := AT ∪ {(x, t) | (x, 2T − t) ∈ AT } ∪ {(x, T ) | x ∈ int �T }. This solution

satisfies

Eθ = 〈see (A.10)〉 = 0, ν × curl E = 〈see (A.12)〉 = 0 on σ × [0, 2T ]. (A.14)
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Assume E ∈ C4(supp E). Multiplying (A.13) by ν on σ, we get

ν · Et t = 〈see (A.13)〉 = −ν · curl curl E = 〈see section 2.1.1〉
= −divŴ ν × curl E = 〈see (A.14)〉 = 0;

hence,

Et t = (Eθ + E · νν)t t = 0 on σ × [0, 2T ]. (A.15)

Since

ν · curl E = divŴ ν × E = divŴ ν × Eθ = 〈see (A.14)〉 = 0,

it follows from (A.14) that

curl E = 0 on σ × [0, 2T ]. (A.16)

The function � := curl E satisfies

�t t −� = 0 in B2T (A.17)

and

� = 〈see (A.16)〉 = 0, curl � = curl curl E = −Et t

= 〈see (A.15)〉 = 0 on σ × [0, 2T ].

The relations �(·, t)|σ = curl �(·, t)|σ = 0 easily imply D�(·,t)
∂ν

|σ = 0. Hence,

� = 0,
D�

∂ν
= 0 on σ × [0, 2T ],

so that � is a solution of (A.17) possessing the zero Cauchy data at σ × [0, 2T ]. Applying

the vectorial version of the Holmgren–John–Tataru theorem [60] and the standard procedure

of data continuation from the time-like surface (see [67, 92]) we get

� = 0 in K2T
σ := {(x, t) | x ∈ �T , | T − t |� T − dT (x, σ )}. (A.18)

Returning to (A.13), we conclude that Et t = −rot � = 0 in K2T and, hence,

E(·, t) = (t − T )n by (A.9). The latter implies

curl n = curl Et (·, T ) = �t (·, T ) = 〈see (A.18)〉 = 0 in K2T
σ ∩ {t = T } = �T [σ ];

(A.19)

we have also

ν × n = ν × Et (·, T ) = ν × eθt (·, T ) = 〈see (A.10)〉 = 0 on Ŵ. (A.20)

Thus, n is harmonic in �T [σ ].

Not assuming the C4-smoothness of the solution E, we can reduce the problem to the

smooth case applying the regularization ϕε∗ by perfect analogy to the proof of theorem 1 above

(see also [36]). So, we arrive at J T [σ ] ≈ closUT [σ ] proving the first relation in (3.13)48.

(ii) Prove the second relation in (3.13). Let ey be the solution of the problem

et t −e = 0 in AT ,r (A.21)

e|
t=r
= 0, et |t=r

= y ∈ J T (A.22)

eθ = 0 on Ŵ × [0, r], (A.23)

48 Moreover, by (A.19) and (A.20), it is proven that J T [σ ] ⊖ closUT [σ ] = DT [σ ] := {y ∈ J T | curl y =
0 in �T [σ ], y × ν|Ŵ = 0}.
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where AT ,r := {(x, t) | x ∈ int �T × [0, r], r − d(x, ŴT ) < t < r}. Let wh be the solution

of problem (3.10)–(3.11) with h ∈ Gr
ω provided dT (ω, ŴT ) > 0.49 Integration by parts with

regard to the positional relationship of supp eh and supp wy leads to the duality relation
∫

�T

y · wh(·, t) = −
∫

ω×[0,r]

ey · h.

Take y = m ∈ J r [ω] ⊖ clos U r [ω]; by this choice, the rhs of the last equality equals

zero. Hence, by arbitrariness of h, we easily have em(·, t) ⊥ J 0[ω], t ∈ [0, r], that implies

curl em(·, t) = 0 in ω.

Extending by oddness

E(·, t) :=
{

em(·, t) 0 � t � r

−em(·, 2r − t) r � t � 2r,

we get a solution of the problem

Et t −E = 0 in �T × (0, 2r).

If E ∈ C3(supp E) then � = curl E satisfies

�t t −� = 0 in �T × (0, 2r)

� = 0 in ω × [0, 2r].

Applying the Holmgren–John–Tataru theorem [60] we conclude that

� = 0 in K2r
ω := {(x, t) | x ∈ �T , | r − t |� r − dT (x, ω)}.

This implies �(·, r) = curl m = 0 in �r [ω] and, hence, closU r [ω] ≈ J r [ω]. If E is not

smooth enough to justify this derivation, one can invoke the regularization by ϕε∗. �

(iii) Here we prove lemma 4.

The embedding U s,ε
γ ⊂ J 0

[

ωs,ε
γ

]

If h ∈ U s,ε
γ then h ⊥ closU s−ε and, by (3.13) (for σ = Ŵ),

h is harmonic in �s−ε. Since supp h ⊂ �
s
[σε(γ )], h vanishes in �s−ε\�s[σε(γ )]; hence,

by the uniqueness theorem for harmonic fields (see e.g. [93]), h = 0 in �s−ε. This implies

supp h ⊂ ωs,ε
γ and we get h ∈ J 0

[

ωs,ε
γ

]

.

The embedding U s,ε
γ ⊃ J 0[ωs,ε

γ ] By (3.13), any ψ ∈ J s[σε(γ )]⊖ closU s[σε(γ )] is harmonic

in �s[σε(γ )] and, in particular, in ωs,ε
γ . For small enough ε, the cap ωs,ε

γ is homeomorphic

to an R3-ball and, hence, ψ |ωs,ε
γ
= ∇p. By this, for h ∈ J 0

[

ωs,ε
γ

]

we have (h, ψ)J = 0.

Therefore, h ⊥ {J 0[σε(γ )] ⊖ closU s[σε(γ )]}, i.e., h ∈ closU s[σε(γ )]. In the meantime,

supp h ⊂ ωs,ε
γ implies h ⊥ closU s−ε[σε(γ )]. As result, h ∈ U s,ε

γ . �
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