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2013). AmB, a metabolite of Streptomyces nodosus, causes 
disintegration of the fungal lipid membranes. These mem-
branes contain ergosterol, which, similar to cholesterol, 
changes dynamic properties and stabilizes lipid bilayer 
structure. AmB has better selectivity for membranes con-
taining ergosterol than for those containing cholesterol. 
This property enables use of the drug to treat deep fungal 
infections that occur in the aftermath of AIDS or transplan-
tation. Despite its antifungal activity, AmB has many sides 
effects which are most probably related to AmB–choles-
terol interactions (Wilcock et al. 2013). In addition, AmB 
has several side effects because of formation of aqueous 
pores (Cohen 1998); among these, nephrotoxicity (Fanos 
and Cataldi 2001) and hematotoxicity (Wong-Beringer 
et al. 1998) are the most serious.

The AmB molecule comprises a macrolactone ring, 
which is β-glycosylated at position C19 with a mycosamine 
group (Ganis et al. 1971; Jarzembska et al. 2012). The 
ring is an almost flat chromophore with seven conjugated 
double bonds in the trans conformation. The ring also con-
tains a more flexible polyol subunit (Fig. 1). At positions 
C13 and C17, the macrolactone ring contains a hemiketal 
ring. The presence of a carboxyl group at C16 and an 
amino group in the mycosamine head group determines 
the amphoteric character of this molecule. In addition, the 
specific AmB three-dimensional structure which has well 
defined hydrophobic and hydrophilic regions is responsi-
ble for its amphipathic properties. Consequently, AmB is 
poorly soluble in highly polar and apolar solvents. For this 
reason, AmB tends to aggregate (Shervani et al. 1996) in 
highly polar solvents, for example water, which gives rise 
to a variety of models explaining its antifungal activity.

Several possible mechanisms of action of AmB can be 
found in the literature. The first, oldest, and most studied 
is the ion-channel model proposed by Finkelstein and Holz 
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Introduction

Amphotericin B (AmB) is a macrolide polyene antifungal 
antibiotic (Gallis et al. 1990; AbuSalah 1996; Hartsel and 
Bolard 1996; Carrillo-Munoz et al. 2006; Cereghetti and 
Carreira 2006). The number of research papers published 
in recent years on its pharmacological properties, clinical 
therapeutic effects, and toxicity is evidence of the impor-
tance of AmB in contemporary medicine (Brajtburg et al. 
1990; Tiphine et al. 1999; Fanos and Cataldi 2000; Lemke 
et al. 2005; Fanos et al. 2007; Moen et al. 2009; Hamill 
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(1973) (Fig. 2a). According to this model, AmB molecules 
aggregate in such a way that they form a barrel through 
a bilayer with their polyhydroxy chain groups pointing 
inward and the heptaene parts pointing outward. Pores can 
be created in both leaflets of the bilayer, or half-pores can 

be formed which bond two sides of the bilayer (Fig. 2a). 
The pore can be formed from different numbers of mon-
omers, ranging from 4 to 12 (Cass et al. 1970; Gruszecki 
et al. 2003), and this has been confirmed by channel-con-
ductivity experiments (Brutyan and McPhie 1996; Cotero 

Fig. 1  Schematic  
representation of sterols  
and amphotericin B
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Fig. 2  Models of amphotericin B function in phospholipid bilayers. 
a Classical-ion channel model in which AmB molecules aggregate 
in such a way that they form a barrel with their polyhydroxy chain 
groups pointing inward and their heptaene parts pointing outward.  

b Surface adsorption model in which AmB extracts ergosterol from 
the bilayer to the surface. c Sponge model in which large AmB aggre-
gates extract ergosterol from the phospholipid membrane
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et al. 1998). These pores are responsible for leaking of 
K+ ions and small organic particles vital for cell function. 
The second concept is based on the oxidative cell damage 
caused by amphotericin B (Brajtburg et al. 1985; Sokol-
Anderson et al. 1988), which affects fungi and causes lysis 
of red cells. This effect induces formation of reactive oxy-
gen species, for example superoxide, hydrogen peroxide, 
and hydroxyl radicals, which oxidize the lipid membrane 
(Lamy-Freund et al. 1985). AmB can bond to low-density 
lipoprotein receptors and probably modify their structure 
by oxidation (Barwicz et al. 1998, 2000). The oxidation 
damage induced by AmB can affect other cell functions not 
related to changes in cell permeability (Sokol-Anderson 
et al. 1986; 1988). AmB can also mediate killing of fungi 
cells by induction of a strong intracellular oxidative burst, 
as is observed for Cryptococus neoformans, which can be 
responsible for protein carbonylation (Sangalli-Leite et al. 
2011). The third model is based on AmB surface adsorp-
tion in which antibiotic molecules oriented parallel to the 
plane lipid surface destabilize the membrane by seques-
tering ergosterol to the bilayer surface (Fig. 2b) (de Krui-
jff and Demel 1974; Mouri et al. 2008). The last concept 
is the sterol sponge model in which AmB exists as a large 
aggregate in the proximity of the fungal membranes which 
extract ergosterol from it (Anderson et al. 2014). In this 
process, strong interaction between ergosterol and AmB is 
a crucial (Palacios et al. 2011; Gray et al. 2012).

To better understand the interactions between AmB and 
living cells, it is important to understand how AmB inter-
acts with lipids, including the arrangement of AmB in 
lipid–sterol environments (Matsumori et al. 2006; Gagoś 
and Arczewska 2010), the function of fungal cell walls, and 
the effects of AmB aggregation in biological systems (Bar-
wicz et al. 1992; Barwicz and Tancrede 1997). Only a full 
understanding of these phenomena can lead to the design 
of forms of AmB with lower toxicity and greater efficacy 
(Bolard et al. 1980b; Bolard and Cheron 1982; Paquet et al. 
2002; Matsuoka and Murata 2003; Sternal et al. 2004; 
Gabrielska et al. 2006; Hac-Wydro and Dynarowicz-Łątka 
2006; Foglia et al. 2011), not only by appropriate formula-
tion (Brogden et al. 1998; Andres et al. 2001; Hac-Wydro 
et al. 2005c; Menez et al. 2006; Moen et al. 2009; Hamill 
2013; Pham et al. 2013) but also by molecular modifica-
tion (Hac-Wydro et al. 2005c; Paquet and Carreira 2006; 
Czub et al. 2009; Croatt and Carreira 2011; Tevyashova 
et al. 2013; Wilcock et al. 2012, 2013). For instance, tox-
icity can be reduced by using appropriate cationic deriva-
tives of AmB (Slisz et al. 2004). Other AmB modifications 
reveal that –OH groups in positions C8 and C9 or positions 
C7 and C10 give the most active forms of AmB, whereas 
forms with –OH groups at the C7 and C9 positions (Fig. 1) 
had less antifungal activity (Tevyashova et al. 2013). 
Applying modifications to one of the many –OH groups in 

AmB can affect ion transport through ion channels (Wil-
cock et al. 2012). Fluorescein–AmB conjugates can be a 
powerful tool for observing biological processes in living 
cells (Zumbuehl et al. 2004a), and tryptophan–AmB conju-
gates can increase channel activity in the absence of sterols 
(Zumbuehl et al. 2009). Recently synthesized AmB deriva-
tives, and their antifungal properties and toxicity are widely 
described elsewhere (Baginski et al. 2006; Slisz et al. 2007; 
Baginski and Czub 2009).

Because of the substantial number of publications on 
medical formulations and clinical applications of AmB, 
this review concentrates on the most important discoveries 
related to the above mentioned questions reported in the lit-
erature of the last decade.

AmB sterol binding

The generally accepted mechanism of action of AmB is 
based on the effects of both ergosterol binding and pore 
formation. According to Yilma et al. (2007), Palacios et al. 
(2011), and Gray et al. (2012), sterol binding is neces-
sary for antifungal activity and AmB channel formation 
is only one of several sterol-binding-dependent mecha-
nisms of action. For example, the antifungal compound 
natamycin (Fig. 3), which is shorter in length than AmB, 
was recently reported to bind ergosterol in yeast cell mem-
branes without pore formation (te Welscher et al. 2008). 
This effect, inter alia, led the Burke group to the conclu-
sion that the main factors responsible for AmB antifungal 
activity must be related not to pore formation but rather 
to binding of ergosterol (Gray et al. 2012). This concept 
was extended in the next work of this group (Anderson 
et al. 2014). According to authors, extramembranous AmB 
aggregates work as sponges extracting ergosterol from 
the fungal membranes (Fig. 2c). This is, overall, a coher-
ent mechanism which agrees with biological observations 
of large AmB aggregates or AmB-rich structures (Stra-
checka et al. 2012). However, in both sets of experiments 
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Fig. 3  Structure of natamicin, another antifungal polyene antibiotic 
which is unable to create pores through cell membranes (is too short) 
but binds ergosterol in a similar manner to AmB
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the ergosterol-to-lipid ratios, i.e. 1:10 (Gray et al. 2012) 
and 1:40 (Anderson et al. 2014), are significantly lower 
than those observed in natural systems; in S. cerevisiae, for 
example, this ratio is 30:70 (Schneiter et al. 1999). Altera-
tion of the sterol-to-phospholipid ratio in fungal cell mem-
branes is an established mechanism in the development of 
AmB resistance (O’Shaughnessy et al. 2009). As a result, 
it is vital to use a sterol-to-phospholipid ratio that models 
that found in AmB-sensitive fungal membranes rather than 
a ratio that suits the experimental technique used. In mam-
mals, moreover, cholesterol is available in large amounts; 
such sponges can therefore be saturated with cholesterol 
much earlier than those in contact with fungal cell walls. 
It can easily be calculated thermodynamically that the 
AmB–cholesterol/AmB–ergosterol balance in situations in 
which cholesterol is in excess will be shifted to the advan-
tage of AmB–cholesterol; thus, ergosterol extraction will 
be greatly limited. Moreover, living fungi have cell walls 
constructed of chitin, which is hydrophilic. This is a serious 
kinetic barrier to transport of ergosterol through fungal cell 
walls to the AmB super aggregates. The pore model is free 
from such effects and thus seems an attractive proposition.

Molecular dynamics simulations confirm that in the 
membrane environment AmB interacts with ergosterol 
3–4 times more strongly than in solution, and this could 
be responsible for the more effective AmB assembly lead-
ing to functional transmembrane channels (Neumann et al. 
2009, 2010, 2013a). In the first of these references the 
system consists of AmB–sterol complexes embedded in 
a sterol–DMPC system with a sterol content of 25 %. In 
the second reference the system is a DMPC bilayer with a 
sterol content of 30 % and in the last reference DPMC con-
taining 0 and 30 % sterol is studied. The last study shows 
that AmB–cholesterol bonding is weaker not only because 
of weaker van der Waals (vdW) interactions compared with 
ergosterol, but also because of entropy reduction associ-
ated with a decrease in the conformational flexibility of 

the sterol side-chain. The significant effect of vdW interac-
tions was confirmed by introducing a fluorine atom at the 
C6 position in ergosterol (Kasai et al. 2011). The fluorine 
weakens the sterol interaction with AmB, which is not 
observed for another antifungal antibiotic, amphodinol-3 
(Fig. 4). The weaker interaction between AmB and cho-
lesterol compared with that between AmB and ergosterol 
leads to the different behavior of this antibiotic in monolay-
ers containing these sterols (Saint-Pierre-Chazalet et al. 
1988; Seoane et al. 1998, 1999a, b; Miñones et al. 2005; 
Chang et al. 2010). These differences are also observed for 
modified AmB molecules (Hac-Wydro et al. 2005a, b, c; 
Baginski et al. 2006).

Effect of the mycosamine group

It is known that the mycosamine group in AmB is impor-
tant in the sterol-binding process, as is confirmed by iso-
thermal titration calorimetry (Wilcock et al. 2013). If the 
group is removed, AmB binds neither ergosterol nor cho-
lesterol and loses its antifungal properties. On the basis of 
the studies mentioned above and the fact that mycosamine 
has only been found in polyene macrolide natural products, 
this polyene–glycoside linkage serves as a sterol-binding 
group. Interestingly, the glycoside subunit is very simi-
lar to the main component of the cell walls of fungal chi-
tin (Ramanandraibe et al. 1998), which is not observed in 
mammals. The C2′-OH from the mycosamine subunit is of 
major importance in the binding of AmB to the 3β hydroxyl 
group of cholesterol and ergosterol (Matsumori et al. 2005) 
(Fig. 1). However, when the OH group bonded to C2′ from 
mycosamine (Fig. 1) is removed, cholesterol binding is 
substantially weaker whereas the ergosterol-AmB bond is 
still strong (Wilcock et al. 2013). These different bonding 
strengths are explained by authors on the basis of the dif-
ferent conformer types for deOAmB–ergosterol and deO-
AmB–cholesterol which results in weaker vdW interactions 

Fig. 4  Structures of amphidi-
nol-3 and 6-F-ergosterol. This 
modification inhibits interac-
tions with AmB but not with 
another polyene antibiotic, 
amphodinol-3
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for deOAmB–cholesterol. The stronger AmB–ergosterol 
interaction compared with that with cholesterol is attrib-
uted to the double bond and the additional methyl group 
in this sterol (Vertutcroquin et al. 1983; Charbonneau et al. 
2001; Baginski et al. 2002). This specific atomic pattern 
is responsible for the better matching of ergosterol to the 
AmB heptaene chain (Baran et al. 2009).

Effect of ergosterol concentration

A recent study has shown that the antifungal mechanism is 
based mostly on AmB binding to ergosterol which affects 
vital cellular functions in yeast-like endocytosis, vacuole 
fusion, pheromone signaling, and control of the activity of 
membrane proteins, among others (Gray et al. 2012; Pala-
cios et al. 2011). However, no correlation has been observed 
between the level of ergosterol in different clinical yeast 
isolates and the antifungal activity of AmB (Gomez-Lopez 
et al. 2011) which is in contrast with results obtained for 
artificial membranes, for which maximum AmB activity 
was observed for 10 mol% ergosterol (Teerlink et al. 1980) 
and for which an increase in the amount of ergosterol in the 
monolayer promoted AmB incorporation (Barwicz and Tan-
crede 1997). The lack of correlation between the level of 
ergosterol in cell membranes and AmB antifungal activity 
can be related to different mechanisms of resistance of liv-
ing yeasts (Sanglard and Odds 2002), different sterol com-
positions (Seitz et al. 1979; Brun et al. 2004; Vandeputte 
et al. 2008, 2011), greater membrane fluidity (Younsi et al. 
2000; Venegas et al. 2003), and, most probably, the effect 
of cell walls (Ramanandraibe et al. 1998). This shows that 
artificial membranes are only an approximation of natural 
ones and results from such systems should be compared 
with those from natural ones with care.

AmB aggregation

Even if the pore formation by AmB through the bilayer is 
of secondary importance, it is still an important aspect of 
its antifungal activity. Because aggregation of AmB in the 
lipid matrix is a crucial step in the barrel–stave channel for-
mation, it is crucial to fully understand this process. A sub-
stantial number of experiments have been conducted with 
use of a wide range of techniques.

Hargreves et al. investigated the effect of aggregation of 
AmB in phospholipid nanodiscs (ND). They found that at a 
concentration of 2.5 mg AmB per 10 mg phospholipid AmB 
occurs in self-associated forms, but below this concentra-
tion the AmB occurs as the monomeric form observed in 
solvents (Hargreaves et al. 2006). This is in accordance 
with a previous study in which aggregated forms of AmB 
were observed when the ratio of AmB to lipid molecules 
was higher than 1:1,000 (Fujii et al. 1997). Below this 

concentration, AmB exists in the lipid bilayer mostly in the 
monomeric form. Gruszecki et al. (2009) showed that AmB 
forms aggregated as dimers in pure lipid bilayers and lipid 
bilayers containing cholesterol, whereas in bilayers con-
taining ergosterol both monomeric and aggregated forms 
are present. This dynamic molecular study also confirmed 
that AmB forms dimers in lipid bilayers with and without 
sterols, but in the presence of ergosterol AmB–AmB inter-
action is less favorable (Neumann et al. 2013a). This was 
also confirmed by fluorescence lifetime imaging micros-
copy of monomolecular layers formed at the argon–water 
interface deposited on to a glass support by the Langmuir–
Blodgett technique. In this situation only monomeric forms 
of AmB were observed for monolayers containing ergos-
terol (Gruszecki et al. 2009). Comparison between FTIR 
and Raman spectra obtained for crystalline and amorphous 
AmB reveals that in lipid environments AmB aggregates 
and/or dimers have a similar arrangement to that observed 
in mono crystals, which is characterized by a ~1,010 cm−1 
band (Gagoś et al. 2012). For amorphous AmB obtained by 
DMSO evaporation, in which AmB molecules are randomly 
oriented, this band is not observed. The presence of the 
aggregated forms in DMPC bilayers containing ergosterol 
is also confirmed by solid-state NMR (Matsumori et al. 
2006). The greater number of AmB monomers is related to 
the stronger interaction of AmB with ergosterol, which is 
responsible for AmB monomerization. Circular dichroism 
(CD) experiments reveal that AmB can already associate in 
water solutions in the range 5 × 10−7–10−4 M (Mazerski 
et al. 1982). The AmB aggregation process also occurs in 
monocomponent monolayers formed at the argon–water 
interface. Under these conditions spontaneously formed 
dimers with homogeneous distribution are observed in the 
monolayer. These dimers can assemble as higher oligom-
ers which are most probably responsible for channel forma-
tion (Gagoś and Gruszecki 2008). Brewster angle micros-
copy has shown that at low surface pressure the surface 
area of AmB in the expanded state (0.4 mN/m) is ~180 Å2, 
which corresponds to horizontal AmB molecules. In the 
condensed state, the surface area is 55 Å2, which corre-
sponds to vertically oriented AmB molecules. Transition 
from one orientation to the other is continuous at plateau 
surface pressure (Minones et al. 2001). AmB molecules on 
a water surface are most probably in the aggregated form. 
Diezi and Kwon (2012) measured the process of aggrega-
tion of AmB in 1,2-distearoyl-sn-glycero-3-phosphoethan-
olamine-N-(methoxy(poly(ethylene glycol))-5000 (ammo-
nium salt) (PEG–DSPE) micelles. They found that AmB 
in the presence of ergosterol is aggregated whereas in the 
presence of cholesterol or pure PEG-DSPE it is mostly in 
the monomeric form. This seems contrary to results pre-
sented earlier. However, this system differs substantially 
from that described above and AmB aggregation can occur 
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differently. In this case, the amphiphilic character of AmB 
could be of crucial importance in interactions with these 
specific environments (PEG polymer), which can, in turn, 
change the aggregation behavior of AmB.

In work by Gruszecki et al. (2012) fluorescence tech-
niques were used to detect dimers and aggregates of AmB 
in different environments. However, according to studies 
by Bolard et al. (2009, 2011) those bands should not be 
related to dimers and/or aggregates of AmB. A recent study 
has shown that characteristic changes of electronic absorp-
tion spectra previously related to formation of AmB dimer 
and/or oligomer aggregates exactly overlap bands related 
to the oxidized forms of AmB (Gagoś and Czernel 2014). 
The appearance of oxidized AmB forms in systems meas-
ured in air is not surprising, because Ganis et al. (1971) had 
already noted that AmB is sensitive to oxidation. There-
fore, atmospheric oxygen may be sufficient to oxidize dou-
ble bonds in AmB molecules in the presence of light. This 
simply suggests that several spectroscopic experiments in 
which the AmB was not appropriately protected against 
oxidation should be repeated or at least reinterpreted.

AmB pore formation

Yang et al. (2013) measured the effect of AmB on pore 
formation in membranes containing ergosterol by use of 

fluorescent dyes of known average diameter. They showed 
that increasing AmB concentration tends to increase the 
preferential accumulation of AmB ion channels in mem-
branes. It has also been found that membrane pores can be 
formed not only in the presence of sterols but also without 
them (Cotero et al. 1998). It is important to mention that 
channel formation depends on AmB concentration, and the 
presence of sterols is not necessary for this process (Fujii 
et al. 1997). Addition of sterols also affects the dwell time 
of artificial AmB channels in the patch-clamp technique, 
which is longer for cholesterol-containing membranes (ions 
occupy channels for a longer time, thus blocking them) than 
for ergosterol-containing membranes (Matsuoka and Murata 
2002). For that reason, ion transport through channels cre-
ated in the presence of ergosterol is more efficient than that 
in the presence of cholesterol (Ostroumova et al. 2012). 
The authors suggested that the process of association and/
or dissociation of channel-forming molecules depends on 
membrane fluidity. This is in agreement with previous stud-
ies in which sterols did not directly affect pore formation 
but rather affect the membrane structure which produces 
a different threshold for the formation of AmB channels 
(Cotero et al. 1998). Results similar to those of Matsuoka 
and Murata (2002) have been obtained for sterols linked 
covalently to AmB (Fig. 5). In this case, the probability of 
the channel being open was greater for ergosterol-linked 
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AmB than for cholesterol-linked AmB (Matsumori et al. 
2004). This can be explained on the basis of results from 
a study of neutron diffraction of multibilayers (Foglia et al. 
2012) (sterol–lipid ratio 30:70), which revealed formation 
of full AmB pores in the lipid bilayer. Detailed modeling 
shows that cholesterol and AmB in AmB–POPC–choles-
terol bilayers are wholly contained within the separate 
leaflets of the bilayers. For AmB–POPC–ergosterol, both 
AmB and ergosterol intrude from one leaflet to the opposite 
one. Such connectivity between half-pores can stabilize the 
transmembrane ion-channel structure and thus increase its 
permeability. Interestingly, insertion of AmB in the POPC–
cholesterol bilayer causes a 3-Å shift in the position of cho-
lesterol, whereas for POPC–ergosterol the shift is only 0.5 
Å. Because this is only the scattered length density profile 
of all the atoms in the system, this might indicate reorien-
tation of the mycosamine group in the bilayer, as has been 
suggested by the authors and additionally by work of Mat-
sumori et al. (2005). Similar to the neutron data, surface 
X-ray scattering data also indicate vertical insertion of AmB 
into the lipid monolayer (Kamiński et al. 2014). It should be 
noted that the article by Gagoś et al. (cited in Foglia et al. 
2012) relates to the DPPC not POPC lipid system. In gen-
eral, the effect of AmB and nystatin on ion permeability is 
much stronger when lipid membranes contain ergosterol. 
Permeable ion-channels are also formed in the presence of 
cholesterol, as was investigated by Yilma et al. (2007) for 
a cholesterol monolayer. Similar to Sykora et al. (2004) 
and, they found that AmB and cholesterol form a complex 
with of stoichiometry 2:1, but Yilma et al. also showed that 
AmB in the presence of cholesterol assembles in three, four, 
etc., subunit aggregates which form ion channels. Accord-
ing to the above-mentioned studies, it is most probable that 
the AmB–cholesterol interaction is the main factor respon-
sible for toxicity to mammalian cells whereas the interac-
tion between AmB derivatives and lipids is less important 
for toxicity.

Formation of cation-selective ion channels by AmB in 
a model lipid membrane and in membranes of eukaryotic 
cells is reviewed in detail by Cohen (2010). This review 
also concentrates on the effect of membrane thickness, the 
types of sterol used, and the sterol-rich lipid rafts on the 
pore-formation process, and led the author to develop a cell 
model that serves as a framework for understanding the 
intracellular K+ and Na+ concentration changes induced by 
the cation-selective AmB channels. Ion-channel selectivity 
has also been observed for new conjugates bearing a calix-
arene structure covalently linked to four AmB molecules 
(Paquet et al. 2006). These macro molecules adopt a cone 
conformation that mimics the structure of membrane pores. 
These artificial pores have similar properties to those cre-
ated naturally by AmB in membranes, which strongly sup-
ports the generally accepted classical AmB pore model.

AmB channel diameter

Interestingly, the channels created by AmB in erythro-
cyte membranes (with cholesterol) are in the range 0.36–
0.37 nm as measured in a conduction osmotic protected 
experiment (Katsu et al. 2008). The channel diameters 
measured by Katsu et al. (2007) for liposomes composed 
of egg phosphatidylcholine and cholesterol in a conduction 
osmotic protected experiment are also in a similar range, 
0.36–0.46 nm. For ergosterol-rich membranes the diam-
eter is in the range 0.4–1.0 nm (Reeves et al. 2004). This 
indicates that the sterols do not significantly affect channel 
diameter and thus the subtle effect of better conductance 
must be related to sterol distribution in the proximity of 
the AmB molecules (Neumann et al. 2013b), which affect 
the electric field inside the channel and consequently the 
dwell time, as already mentioned. The measured diameters 
are similar to that measured earlier by atomic force micros-
copy (AFM) (~0.6 nm) (Gruszecki et al. 2002, 2003). In 
this case, AFM should show the upper limit of pore diam-
eter, whereas osmotic techniques underestimate pore size 
because of intermolecular interactions. By use of different 
fluorescence dyes, Yang et al. (2013) demonstrated that in 
ergosterol-rich membranes (bilayers) the pore size (diam-
eter) depends on AmB concentration. At low AmB concen-
trations (50 pg/ml) this is approximately 0.16 nm whereas 
for AmB concentrations of 2 ng/ml the pore diameter is 
nearly 16 nm. From this experiment it is clear that the con-
centration of AmB in bilayers is of primary importance in 
determining pore size, whereas sterols have a minor effect 
only. The distance between AmB dimers in the barrel–stave 
ion channel corresponds to the distance between covalent 
dimers of AmB, which is 6.9 Å, measured for multilamel-
lar vesicles by use of solid-state NMR (Umegawa et al. 
2012a). This distance is significantly shorter than that pre-
viously measured by the same group, i.e. 11–12Å (Kasai 
et al. 2008). According to the authors, this difference 
results either from covalent linkage, as a result of which 
AME (two linked AmB molecules) units are closer in the 
membrane assembly, or from inappropriate assumptions 
when estimating the intermolecular 13C–19F distance.

Geometry of AmB–sterol associates

Molecular dynamics simulations in water environments 
suggest that AmB forms AmB–ergosterol–AmB (2:1 
stoichiometry) associates with head-to-head interaction 
between AmB and ergosterol (Baran et al. 2009). The cal-
culated stability of this complex was substantially higher 
than that of 1:1 stoichiometry. The energy of the complex 
is highly dependent on the surrounding environment, and 
for water the head-to-head conformation is preferable. As 
might be expected, AmB–ergosterol complexes can behave 
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differently in a lipid bilayer part of which is hydrophobic. 
A solid-state NMR study of multilamellar vesicles con-
ducted by Umegawa et al. (2008, 2012b) suggests that both 
head-to-tail and head-to-head conformations are possible 
(Fig. 6; POPC–sterol vesicles containing 10 % sterol). The 
head-to-tail conformation of AmB–ergosterol requires that 
the AmB dimer is also in the head-to-tail conformation and 
thus the orientation of ergosterol relative to both AmB mol-
ecules should be the opposite. In vivo, AmB is delivered 
from outside the cell only, and the most reasonable way 
of entering the membrane is by embedding the less polar 
part of AmB (i.e. the tail) into the lipid environment from 
water. The head-to-tail conformation is much less prefer-
able. Another explanation is to form an AmB–ergosterol–
AmB complex in the head-to-tail conformation compared 
with AmB–AmB molecules by diffusion of the binary com-
plex of AmB–ergosterol up and down in the membrane. 
If another single AmB molecule can move from one lipid 
leaflet to another (without flip-flop), then sterols from this 
second leaflet can interact with AmB in a head-to-tail man-
ner. A similar result can be achieved when a binary AmB–
ergosterol complex moves from one leaflet to another 
without flip-flop and meets a single AmB molecule in the 
right conformation. However, in this case also, floating 
from one lipid leaflet to another is very likely. The idea that 
AmB–AmB head-to-tail structures can be formed in mem-
branes—especially in vivo—should therefore be accepted 
with caution.

Interestingly, quantum chemical calculations predict that 
the head-to-tail AmB dimer conformation has the lowest 
energy, but this is solely for isolated systems without any 
effect of solvent (Jarzembska et al. 2012). A similar confor-
mation was also observed by Barwicz et al. (1993) in AmB 
aqueous solution. They recorded bathochromic and hyp-
sochromic shifts in spectra which are associated with “card 
pack” and “head-to-tail” AmB patterns. The latter was 
interpreted by authors as an effect of dimerization along 
the longest molecular axis of AmB, whereas the former is 
the effect of interactions between molecules responsible for 
hydrophobic pore formation. These results are apparently 
in contrast with the molecular dynamics study from the 
bilayer where head-to-head should be dominant (Neumann 
et al. 2013b) (DMPC bilayer with 30 % sterols). These dif-
ferences can be simply explained as the effect of different 
environments. AmB, as an amphiphilic molecule, can form, 
or even should form, totally reverse associates or structures 
in non-polar (lipids acyl chains) versus polar (water) envi-
ronments. The lack of any environment in quantum chemi-
cal calculations can substantially affect the total energy of 
dimers of this size and thus lead to mistaken conclusions. 
Other experimental studies suggest that both forms of 
AmB—head-to-tail and head-to-head (tail-to-tail)—occur 
naturally in a lipid environment when the concentration is 

high enough to enable this process (Volmer and Carreira 
2010; Hirano et al. 2011).

Interaction of AmB with lipids

It is obvious that phospholipids are always associated with 
sterols in biological membranes; therefore, when analyz-
ing sterol–AmB interactions, the effect of the lipids must 
also be taken into account (Bolard 1986a, b; Rapp et al. 
1997; Dynarowicz-Łątka et al. 2003; Hac-Wydro and 
Dynarowicz-Łątka 2006). Usually, the interaction leads 
to the formation of AmB complexes, as for dipalmitoyl 
phosphatidylserine (DPPS), for which the stoichiometry 
between AmB and DPPS is 2:1 (Minones et al. 2003). The 
optimum stoichiometry for an the AmB–DPPC system is 
also 2:1, with two horizontally oriented AmB molecules 
and one DPPC molecule in a vertical position, as proposed 
by Minones et al. (2002). The interaction between AmB 
and phospholipids on formation of ion channels across a 
biomembrane was investigated by Matsuoka et al. (2003), 
by using their covalent conjugates. As might be expected, 
the membrane-permeabilizing activity was substantially 
affected by the chain lengths of the fatty acyl groups of 
the phospholipids. Acyl chain length has a direct effect on 
bilayer thickness; it can also affect the lipid–AmB interac-
tion and, as a consequence, ion channel assembly. The dif-
ferent interaction of AmB with lipid membranes in vesi-
cles was also observed for the (S) and (R) enantiomers of 
POPC (Jeon and Carreira 2010). The kind of lipid used 
and its fluidity have a substantial effect on pore formation 
(Ostroumova et al. 2012). It has also been found that AmB 
interacts differently with egg yolk phosphatidylcholine, 
dimyristoyl (DMPC), and dipalmitoyl phosphatidylcholine 
(DPPC) phospholipid bilayers (Bolard et al. 1980a, b). The 
double bond of egg yolk phosphatidylcholine affects lipid 
fluidity, which has a direct effect on AmB pore formation 
in bilayers. It was also found that AmB can occur in differ-
ent aggregation forms in lipid bilayers. Marty and Finkel-
stein (1975) suggested that AmB can form pores and half 
pores, that sterols play a minor role, and that pore forma-
tion is prevented by some lipids.

The different lengths of phosphatidylcholine saturated 
acyl chains (ranging from 14 to 22 carbon atoms) and the 
presence of cholesterol affect the conformation of AmB in 
bilayer vesicles (Bolard and Cheron 1982). For POPC vesi-
cles containing sterols, bilayer thickness was affected not 
only by the kind of lipid used but also by the concentra-
tion of AmB. Ions can also affect the AmB–lipid interac-
tion. Arczewska and Gagoś (2011) found that AmB has a 
greater affinity for DPPC in the presence of K+ than in the 
presence of Na+. The most stable monolayers in the pres-
ence of both ions were formed by AmB and DPPC with 
1:1 and 2:1 stoichiometry. The FTIR spectra revealed that 



461Eur Biophys J  (2014) 43:453–467 

1 3

the ionic state of AmB (which is a function of pH) and the 
presence of sterols led to changes in membrane fluidity and 
the molecular packing of the AmB molecules in the lipid 

membranes (Gagoś and Arczewska 2012). In this way, pH 
can affect not only AmB but also liposomes. According to 
these authors, both pH and the presence of sterols affect 

Fig. 6  a Card-pack, b head-to-head, and c head-to-tail orientation of 
AmB molecules in a dimer. d Iodoacetyl AmB (AmB-I) molecules 
packed into a crystal lattice [11]. e Side view of the same structure. 

It can be seen that AmB-I molecules have head-to-tail orientation and 
the polyol subunit is in contact with the heptaene chain
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pore formation. Thus, it is important to conduct such exper-
iments at physiological pH.

Orientation of AmB in membranes

Electron spin resonance spectroscopy revealed that AmB 
orientation in lipid model membranes is a two-step pro-
cess (Man and Olchawa 2013). At a concentration of 0.25–
0.5 % AmB molecules initially lie flat; at higher concen-
trations, ca. 2.5–3 %, in a monolayer re-orientation to the 
vertical position occurs. This vertical orientation of AmB 
is responsible for channel formation and bilayer perfora-
tion. In this orientation AmB interacts strongly with the 
lipid head groups and restricts the molecular motion of 
choline (Gabrielska et al. 2006). Fourier-transform infra-
red spectroscopic (FTIR) study of deposited lipid (free 
and with sterols) monolayers after binding AmB from the 
water subphase revealed that most of the AmB molecules 
bound to the membrane were located in the polar head 
groups or interacted with them. In pure DPPC and DPPC 
containing cholesterol, the distribution between vertically 
and horizontally oriented AmBs is similar. However, in 
the presence of ergosterol the dominant form of AmB is 
horizontal (Gagoś et al. 2005). The possibility cannot be 
excluded that the transition of the monolayer on the solid 
substrate had an effect on the position and orientation of 
AmB, but a strong interaction between AmB and ergos-
terol was still observed. It is also possible that the more 
rigid layers containing ergosterol were less accessible to 
AmB, which, therefore, accumulated under the monolayer 
parallel to the surface and after transfer to the solid sub-
strate was between the substrate and polar head groups of 
the lipid. Even more surprising results were obtained from 
a molecular dynamics study in which AmB preferentially 
took a vertical position, perpendicular to the membrane 
surface of dimyristoyl phosphatidylcholine (DMPC), with 
no propensity to enter the membrane (Sternal et al. 2004). 
The system on which the calculation was performed con-
sisted of 200 molecules of DMPC, one molecule of AmB 
and 8,065 water molecules. At initialization, AmB was 
placed on the bilayer surface. According to the modeling, 
it is very likely that a single molecule enters the mem-
brane, which suggests that AmB has to be at least in the 
dimeric form to enter the bilayer. The latest X-ray gas–
water interface diffraction studies performed for DPPC 
monolayers show that AmB is incorporated into a mon-
olayer, perpendicular to the surface, into both hydrophobic 
and hydrophilic parts of the lipid. This also occurs in the 
presence of cholesterol and ergosterol but, in contrast with 
the surface pressure study (Dynarowicz-Łątka et al. 2005) 
the amount of AmB incorporated when these two sterols 
are present is the same and depends on the surface pres-
sure (Kamiński et al. 2014). For cholesterol, this apparent 

discrepancy is simply explained by monolayer corrugation 
and/or buckling or roughening which reduces the surface 
pressure. For the DPPC–ergosterol system, the monolayer 
is much less corrugated. The same orientation of AmB was 
observed in multibilayers investigated by neutron diffrac-
tion (Foglia et al. 2012).

Effect of lipid rafts

Biological membranes are not flat and homogenous as was 
imagined in the early 1970s (Singer and Nicolson 1972). 
The contemporary model is heterogeneous not only in 
structure but also in composition. The presence of sterol-
rich micro domains in the liquid ordered phase which 
freely float in a less sterol-rich liquid disordered phase, 
affect cellular transport and signal processes (Quest et al. 
2004; Simons and Ikonen 1997). Such sterol-rich domains 
are called rafts. Ordering of lipid chain conformations is 
induced in rafts with a large sterol content (Fournier et al. 
2008). This lipid ordering affects the affinity of AmB for 
liposomes, which in the solid phase is higher than in the 
liquid phase (indirect effect of sterol) (Bolard et al. 1981; 
Coutinho and Prieto 1995; Zumbuehl et al. 2004b). In 
these circumstances sterols contribute to ordering of ali-
phatic lipid chains, and ordering for ergosterol is greater 
than for cholesterol, because of its greater rigidity (Urbina 
et al. 1995; Hsueh et al. 2005; Czub and Baginski 2006). 
This is also true in the presence of AmB (Fournier et al. 
2008). In the gel phase, AmB does not change the confor-
mational order of lipid hydrocarbon chains; however, in 
the fluid phase the drug affects the structure of the lipid 
environment. According to the authors, AmB can initiate 
in-plane ergosterol redistribution, which is not observed 
for cholesterol. This is in accordance with an H1 NMR 
study which shows that AmB, in the presence of ergos-
terol, interacts more strongly with the aliphatic lipid 
chains, whereas this is not observed for lipids containing 
cholesterol (Gabrielska et al. 2006). This is supported by 
the study by Umegawa et al. (2008), in which a substan-
tial increase in the distance between AmB molecules was 
observed. For bilayers with cholesterol, no significant 
AmB–AmB distance changes were recorded, which must 
be related to its different location in the bilayer in compar-
ison with the ergosterol system. Solid-state NMR experi-
ments not only show that ergosterol interacts with AmB 
more strongly than with cholesterol in lipid environments 
but also the presence of ergosterol significantly affects 
AmB mobility in lipid bilayers (Matsumori et al. 2009). 
In summary, AmB may be accumulated more efficiently 
in lipid rafts which are more ordered than the disordered 
liquid phase. This different sterol distribution in the lipid 
bilayer in the presence of AmB can obviously affect chan-
nel formation.
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Conclusion

Despite very extensive investigations over the last 40 years, 
the mechanism of action of AmB is still not completely 
understood. Several studies suggest the antifungal activity of 
AmB is related to the presence of ergosterol, the main sterol 
of fungal cells. Toxicity toward mammal cells rich in cho-
lesterol is smaller, but still high enough to cause many side 
effects. The action of AmB seems more complex than was 
imagined in the early 70s. The new models of oxidation burst 
or sterol sponge seem to be equally important for the anti-
fungal properties as the well-known pore model. However, 
the old channel model is still attractive, especially because 
it explains in a simple way the whole range of effects, for 
example ion conductivity, AmB diffusion into membranes, 
and observed interactions with both lipids and sterols in 
artificial membranes. It is also clear that membranes of liv-
ing organisms are more complex than model membranes, 
and the toxic effect of AmB toward fungal cells can also 
be related to the presence of rafts and membrane proteins. 
Experiments such as those conducted by the Burke and 
Murata groups in which specially modified sterols, AmB, 
and lipids were used can shed more light on the mechanism 
of action of AmB. However, Raman or fluorescence confocal 
microscopy studies of living yeasts treated with unmodified 
AmB should verify the relevance of the different models, 
especially that of oxidation burst and ergosterol sponge.
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Kamiński DM, Czernel G, Murphy B, Runge B, Magnussen OM, 
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