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Recent progress in unconstrained nonlinear

optimization without derivatives

A. R. Conn K. Scheinberg Ph. L. Toint

16 February 1997

Abstract

We present an introduction to a new class of derivative free methods
for unconstrained optimization. We start by discussing the motivation for
such methods and why they are in high demand by practitioners. We then
review the past developments in this field, before introducing the features
that characterize the newer algorithms. In the context of a trust region
framework, we focus on techniques that ensure a suitable “geometrical
quality” of the considered models. We then outline the class of algorithms
based on these techniques, as well as the associated global convergence
theory. We finally conclude the paper with a discussion of open questions
and perspectives.

1 Motivation

In this paper, we consider the problem of minimizing a nonlinear smooth objec-
tive function of several variables when the derivatives of the objective function
are unavailable and when no constraints are specified on the problem’s variables.
More formally, we consider the problem

min
x∈Rn

f(x), (1.1)

where we assume that f is a smooth nonlinear function from Rn into R, and
that ∇f(x) (and, a fortiori, ∇2f(x)) cannot be computed for any x.

Our interest and motivation for examining possible algorithmic solutions
to this problem is the high demand from practitioners for such tools. In the
applications presented to the authors, computing the value f(x) given a vector
x is typically very expensive, and the values of the derivatives of f at x are not
available either because f(x) results from some physical, chemical or economet-
rical measure, or, more commonly, because it is the result of a possibly very
large and complex computer simulation, for which the source code is effectively
unavailable. The occurrence of problems of this nature appears to be surpris-
ingly frequent in the industrial world. In particular, the wider use of highly
specialized, powerful but proprietary simulation packages makes the second of
these situations increasingly common.

When users are faced with such problems, there are a few strategies that
can be considered. The first, and maybe simplest, is to apply existing “direct
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search” optimization methods, like the well-known and widely used simplex
reflection algorithm of Nelder and Mead (1965) or its modern variants, or the
Parallel Direct Search algorithm of Dennis and Torczon (1991) and Torczon
(1991). This first approach has the merit of requiring little additional effort
from the user, but may require substantial computing resources: the inherent
smoothness of the objective function is not very well exploited, and, as a result,
the number of function evaluations is sometimes very large, a major drawback
when these evaluations are expensive.

The second and more sophisticated approach is to turn to automatic dif-
ferentiation tools (see Griewank and Corliss (1991) or Griewank (1994), for
instance). However, such tools are unfortunately not applicable in the two typ-
ical cases mentioned above since they require f(x) to be the result of a callable
program that cannot be treated as a black box.

A third possibility is to resort to finite difference approximation of the
derivatives (gradients and possibly Hessian matrices). A good introduction
to these techniques can be found in the book of Dennis and Schnabel (1983),
for instance. In general, given the cost of evaluating the objective function,
evaluating its Hessian by finite difference is much too expensive; one can use
quasi-Newton Hessian approximation techniques instead. In conjunction with
the use of finite differences for computing gradients, this type of method has
proved to be useful and sometimes surprisingly efficient.

We will however focus here on a fourth possible approach, which is based
on the idea of modeling the objective function directly, instead of modeling
its derivatives. This idea seems particularly attractive in that one can replace
an expensive function evaluation by a much cheaper surrogate model and, es-
pecially for very complex problems, make considerable progress in obtaining
improved solutions at moderate cost. The following interesting argument in
favour of such techniques is for instance proposed by Powell (1974), where he
considers the relatively simple problem of solving a single nonlinear equation.
The idea is to compare, in this context, the secant method with the Newton-
Raphson method. The first requires one function evaluation per iteration and
has a convergence rate of approximately 1.618 per function value while the
second requires one function and one derivative value per iteration and has
quadratic convergence. Therefore, if an extra function value is used to estimate
the derivative in the Newton-Raphson iteration, the mean rate of convergence
per function value is only equal to

√
2. This simple example indicates that

it may not be optimal to use function values to compute explicit derivative
approximations.

We will group under the name derivative free optimization all methods which
do not attempt to directly compute approximations to the unavailable deriva-
tive information, but rather that calculate new and hopefully better iterates
by considering a model of the objective function itself1. Our purpose in this
paper is not to provide a detailed inverstigation of an algorithm, but rather
to introduce some basic concepts for derivative free methods, and to outline a

1This class of methods can be coupled with some of the “direct search” approaches, see
Dixon (1973), for instance.
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whole class of algorithms in which these concepts are embodied.
The rest of the paper is organized as follows. After a short survey of the

history of derivative free optimization techniques in Section 2, we investigate, in
Section 3, the basic algorithmic features that characterize the newer methods.
We then discuss at some length two possible approaches for the realization of
some of the concepts needed in the proposed class of algorithms. Section 4
presents an approach based on the Lagrange fundamental polynomials, while
Section 5 investigates the use of multivariate Newton interpolation techniques.
We conclude the presentation by discussing open questions and perspectives in
Section 6.

2 A brief review of derivative free optimization meth-

ods

It is difficult to firmly state where the idea of derivative free methods for mini-
mization was first introduced, but it is clear that Powell was one of the first to
systematically explore the potential of this approach. In Powell (1964), he de-
scribed a method for solving the nonlinear unconstrained minimization problem
based on the use of conjugate directions. The main idea of this proposal is that
the minimum of a positive-definite quadratic form can be found by performing
at most n successive line searches along mutually conjugate directions, where
n is the number of variables. The same procedure may of course be applied to
non-quadratic functions, adding a new composite direction at the end of each
cycle of n line searches. Of course, finite termination is no longer expected in
this case. This algorithm has enjoyed a lot of interest amongst both numer-
ical analysts and practitioners. The properties of the method were analyzed
by Brent (1973), Callier and Toint (1977), Toint and Callier (1977) and Toint
(1978). The various computer programs based on this method have been widely
used by a large number of practitioners2.

Aside from this line of thoughts, Winfield developped a different idea in his
thesis at Harvard during the late 1960’s. His main idea, expressed in Winfield
(1969) and Winfield (1973), is to use the available objective function values
f(xi) for building a quadratic model by interpolation. This model is assumed
to be valid in a neighbourhood of the current iterate, which described as a trust
region (an hypersphere centered at xi), whose radius is iteratively adjusted. The
model is then minimized within the trust region, hopefully yielding a point with
a low function value. As the algorithm proceeds and more objective function
values become available, the set of points defining the interpolation model are
updated in such a way that its always contains the points closest to the current

2Powell made his method available in the Harwell Subroutine Library under the name
of VA04, but this original routine has been replaced by VA24, also written by Powell (see
Harwell Subroutine Library, 1995). Brent (1973) gave an ALGOL W code named PRAXIS
for a variant of the method. This latter code was subsequently translated to Fortran by R.
Taylor, S. Pinski and J. Chandler. The Fortran version of PRAXIS is distributed in the
public domain by J. Chandler, Computer Science Department, Oklahoma State University,
Stillwater, Oklahoma 70078, USA (jpc@a.cs.okstate.edu). There is also an interface with the
CUTE testing environment of Bongartz et al. (1995).
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iterate. This contribution is remarkable, not only because this idea (admittedly
with some crucial modifications) forms the basis of the methods we wish to
study here, but also because it appears to be a very early statement of a trust-
region method, even before the seminal paper of Powell (1970). It is somewhat
surprising that it went mostly unnoticed.

Both the method of Winfield and that of conjugate directions have proved
to be reasonably reliable, but suffer from a main disadvantage: the need to
maintain good linear independence of the successive steps. In the case of con-
jugate directions, this is compounded with the relative difficulty of determining
near-conjugate directions when the Hessian of the function is ill-conditioned.
Recognizing these difficulties for this latter case, Powell (1974) suggested using
orthogonal transformations of sets of conjugate directions. Pursuing this idea,
Powell (1975) proposed to approximate the matrix of second derivatives itself,
by modifying an initial estimate to ensure that it satisfies properties which
would be satisfied if the objective function were quadratic. He also suggested
the use of variational criteria, such as those used to derive quasi-Newton up-
dates, in order that good information from an approximation can be inherited
by its successors at subsequent iterations.

A few years later, Powell (1994a) proposed a method for constrained opti-
mization, whose idea is close to that of Winfield. In his proposal, the objective
function and constraints are approximated by linear multivariate interpolation3.
Exploring the idea further, Powell (1994b) then described an algorithm for un-
constrained optimization using a multivariate quadratic interpolation model of
the objective function in a trust-region framework, an approach extremely sim-
ilar to that of Winfield although seemingly independent. The crucial difference
between Powell’s and Winfield’s proposals is that the set of interpolation points
is updated in a way that preserves its geometrical properties, in the sense that
the differences between points of this set are guaranteed to remain sufficiently
linearly independent, therefore avoiding the difficulties associated with earlier
proposals. A variant of this quadratic interpolation scheme was then discussed
in Conn and Toint (1996), where encouraging numerical results were presented.
Powell (1996) subsequently revisited this approach and showed similar com-
putational results. The first convergence theorems for methods of this type
were finally presented by Conn et al. (1997), together with a description of
alternative techniques to enforce the desired geometrical properties of the set
of interpolation points.

It is the purpose of the next section to investigate these crucial “geometry
preserving” techniques, in the frameworks suggested by Powell and by Conn,
Scheinberg and Toint.

3The associated Fortran code, named COBYLA, is distributed by Powell to interested
parties. An interface with the CUTE environment of Bongartz et al. (1995) is also provided
for COBYLA.
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3 A class of derivative free algorithms

The class of algorithms discussed in this paper belongs to the class of trust-
region methods. Such algorithms are iterative and build, around the current
iterate, a model of the true objective function which is cheaper to evaluate and
easier to minimize than the objective function itself. This model is assumed to
represent the objective function well in a so-called trust region, typically a ball
centered at the current iterate, xk say, of the form

Bk = {x ∈ Rn | ‖x− xk‖ ≤ ∆k} (3.1)

The radius of this ball, ∆k, is called the trust region radius and indicates how far
the model is thought to represent the objective function well. A new trial point
is then computed, which minimizes or sufficiently reduces the model within the
trust region and the true objective function is evaluated at this point. If the
achieved objective function reduction is sufficient compared to the reduction
predicted by the model, the trial point is accepted as the new iterate and the
trust region possibly enlarged. On the other hand, if the achieved reduction is
poor compared to the predicted one, the current iterate is typically unchanged4

and the trust region is reduced. This process is then repeated until convergence
(hopefully) occurs.

The first main ingredient of a trust region algorithm is thus the choice of
an adequate objective function model. We will here follow a well established
tradition in choosing, at iteration k, a quadratic model of the form

mk(xk + s) = f(xk) + 〈gk, s〉+
1

2
〈s,Hks〉, (3.2)

where 〈x, y〉 denotes the usual Euclidean inner product between x and y, where
gk is a vector of Rn and where Hk is a square symmetric matrix of dimension n.
However, we will depart from many trust-region algorithms in that gk and Hk

will not be determined by the (possibly approximate) first and second deriva-
tives of f(·), but rather by imposing that the model (3.2) interpolates function
values at past points, that is we will impose that

mk(y) = f(y) (3.3)

for each vector y in a set Y such that f(y) is known for all y ∈ Y . Note that
the cardinality of Y must be equal to

p =
1

2
(n+ 1)(n+ 2) (3.4)

to ensure that the quadratic model is entirely determined by the equations
(3.3). However, if n > 1, this last condition is not sufficient to guarantee the
existence of an interpolant. For instance, six points on a line do not determine a
two dimensional quadratic. Similarly, six interpolation points on a circle in the
plane do not either, because any quadratic which is a multiple of the equation of

4This, of course, does not prevent the algorithm recording the best point found so far, and
returning to this point at the end of the calculation.
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the circle can be added to the interpolant without affecting (3.3). One therefore
sees that some geometric conditions on Y must be added to the conditions (3.3)
to ensure existence and uniqueness of the quadratic interpolant (see De Boor
and Ron (1992) or Sauer and Yuan (1995), for more detail). In the case of
our second example, we must have that the interpolation points do not lie on
any quadratic surface in Rn or that the model chosen includes terms of degree
higher than two. More formally, we need the condition referred to as poisedness,
which relates directly to the interpolation points and the approximation space.
If we choose a basis {φi(·)}pi=1 of the linear space of n-dimensional quadratics,
we follow Sauer and Yuan (1995) and say that Y = {y1, . . . , yp} is poised when
the “interpolation determinant”

δ(Y ) = det







φ1(y1) · · · φ1(yp)
...

...
φp(y1) · · · φp(yp)






(3.5)

is non-zero. Of course, the quality of the model (3.2) as an approximation of
the objective function around xk will be dependent on the geometry of the con-
sidered interpolation points and, from a practical point of view, it is important
that we are able to measure this quality. It turns out that other measures than
δ(.) are possible, and we will examine two possible choices in the next section.
For now, we only need to assume that we know what we mean when we say
that the geometry of Y is adequate (that is δ(Y ) is “sufficiently” different from
zero), or when we say that we improve this geometry.

A second ingredient in trust-region algorithms is that one accepts a new
point x+k produced by the algorithm as soon as f(x+k ) is sufficiently smaller than
f(xk), the current objective value. This is standard for trust-region methods,
but the situation is more complex here because this means that we have to
include x+k in the set of interpolation points Y . In general5, this means we
need to remove another point y ∈ Y . Ideally, this point should be chosen to
make the geometry of Y as adequate as possible. There are various ways to
attempt to achieve this goal. We will again discuss some possibilities in the next
section. It is important to note that, since xk + sk is given irrespective of the
geometry of the points already in Y , there is no guarantee that the quality of the
geometry of Y will remain acceptable, or even that Y will remain poised, which
opens the possibility that the quality of the geometry of Y might deteriorate
as new iterates are accepted by the algorithm. This can happen, for instance,
if successive iterates lie at the bottom of a steep valley whose shape may be
described by a quadratic curve6. In such cases, |δ(Y )| may become very small,
in which case we may question the relevance of our model.

As in all trust-region algorithms, we are also faced with the possibility that
no further progress can be made from the current iterate xk. In algorithms
using exact derivative information, Taylor’s theorem ensures that this problem
must occur because the trust-region radius ∆k is too large, and thus guarantees
that it disappears if ∆k is made sufficiently small. In our framework, on the

5Not necessarily so in the early stages of the algorithm.
6The bottom of the valley in Rosenbrock’s function is described by the equation x2 = x2

1.
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other hand, we must also consider the possibility that the model’s quality is not
adequate. This inadequacy could indeed result from the phenomenon described
in the previous paragraph. If the algorithm is not able to progress, we thus
have to check first if the geometry of Y is adequate, and, if it is not the case,
we have to improve it. The desired improvement is achieved by introducing a
new interpolation point y+ such that ‖y+ − xk‖ ≤ ∆k in the set Y and using
our measure of improvement to evaluate the replacement of some past point
y− ∈ Y \ {xk} by y+, possibly comparing several choices for y−. This is the
third main ingredient of our class of algorithms.

After this introduction to the main concepts, we may now outline this class
as follows. We assume that the constants

0 < η0 ≤ η1 < 1, and 0 < γ0 ≤ γ1 < 1 ≤ γ2,

are given.

Outline of a derivative free trust-region algorithm

Step 0: Initializations.

Let xs and f(xs) be given. Choose an initial interpolation set Y containing
xs. Then determine x0 ∈ Y such that f(x0) = minyi∈Y f(yi). Choose an
initial trust region radius ∆0 > 0. Set k = 0.

Step 1: Build the model.

Using the interpolation set Y , build a model mk(xk+s), possibly restrict-
ing Y to a poised subset containing xk, such that conditions (3.3) hold
for the resulting Y .

Step 2: Minimize the model within the trust region.

Compute the point x+k such that

mk(x
+
k ) = min

x∈Bk

mk(x). (3.6)

Compute f(x+k ) and the ratio

ρk
def
=

f(xk)− f(x+k )

mk(xk)−mk(x
+
k )

. (3.7)

Step 3: Update the interpolation set.

• If ρk ≥ η1, include x
+
k in Y , dropping one of the existing interpolation

points.

• If ρk < η1 and Y is inadequate in Bk, improve the geometry of Y in
Bk.

Step 4: Update the trust-region radius.

• If ρk ≥ η1, then set
∆k+1 ∈ [∆k, γ2∆k]. (3.8)

• If ρk < η1 and Y was adequate in Bk when sk was computed, then
set

∆k+1 ∈ [γ0∆k, γ1∆k] (3.9)
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• Otherwise, set ∆k+1 = ∆k.

Step 5: Update the current iterate.

Determine x̂k such that

f(x̂k) = min
yi∈Y

yi 6=xk

f(yi). (3.10)

Then, if

ρ̂k
def
=

f(xk)− f(x̂k)

mk(xk)−mk(xk + sk)
≥ η0, (3.11)

set xk+1 = x̂k. Otherwise, set xk+1 = xk. Increment k by one and go to
Step 1.

End of algorithm

Our outline is admittedly broad and simplistic. It is enough to consider the
methods proposed by Powell (1994b), Conn and Toint (1996) or Powell (1996) to
be convinced that practical algorithms involve a number of additional features
that enhance efficiency. In particular, we haven’t mentioned a stopping test. A
possible choice is to stop the calculation if either the trust-region radius falls
below a certain threshold, or the model’s gradient becomes sufficiently small
and the geometry of the interpolation set is adequate. However, our current
description is sufficient to provide the framework of the discussion of the next
section.

We also note that any further improvement in the model, compared to what
the algorithm explicitly includes, is also possible. For instance, one might wish
to include x+k in Y , even if ρk < η1, provided it does not deteriorate the quality
of the model. Indeed, we have computed f(x+k ) and any such evaluation should
be exploited if at all possible. One could also decide to perform a geometry
improvement step if ρk is very small, indicating a bad fit of the model to the
objective function. Any further decrease in function values obtained within
these steps is then taken into account by Step 5.

We finally mention that models other than full quadratics of the form (3.2)
are also acceptable. This is necessary for the case where Y has to be restricted
in Step 2 because it is not poised, in which case a model is built that does not
include a contribution of functions chosen as basis of the space of quadratic
polynomials. But other cases are also of interest. For instance, Conn and
Toint (1996) suggest the use of models of degree exceeding two. Models that
are less than fully quadratic or even less than fully linear are also beneficial
when function evaluations are expensive since one is then able to use them as
soon as they are available. This is typically the case at the first iterations of
the algorithm, where simple models based on very few function values may be
calculated and already exploited for decreasing the objective as soon as possible.

We now return to the important question of providing a computable measure
for the quality of the geometry of Y , which is necessary for substantiating
the procedures of Step 3 for inclusion of x+k and geometry improvement. We
examine two approaches.
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4 An approach using the Lagrange fundamental poly-

nomials

The first approach is that of Powell (1994b) and Powell (1996). The idea is to
measure the geometrical quality of the model by the value of the interpolation
determinant δ(Y ) relative to its theoretical maximum. More precisely, we follow
Powell (1994b) and say that the geometry of Y is adequate7 (with respect to a
current iterate xk and a trust-region radius ∆) when all the points in Y are no
further away from xk than 2∆ and when the value of |δ(Y )| cannot be doubled
by adjusting one of the points of Y to an alternative value within distance ∆
from xk.

We first consider improving the geometry of Y by introducing a new inter-
polation point y+ such that ‖y+ − xk‖ ≤ ∆ in Y (together with its associated
function value f(y+)). This usually8 means that we have to drop an existing
interpolation point y− from Y . We consider two cases. First, if ‖y−−xk‖ ≤ ∆,
a suitable measure is |δ(Y )|, and we therefore wish to compute the factor by
which |δ(Y )| is multiplied when y− is replaced by y+. Remarkably, this factor
is independent of the basis {φi} and is equal to |L(y+, y−)|, where L(·, y−) is
the Lagrange interpolation function whose value is one at y− and at all other
points of Y is zero9. This very nice result was pointed out by Powell (1994b).
Hence, if ‖y− − xk‖ ≤ ∆, it makes sense to replace y− by

y+ = arg max
‖y−xk‖≤∆

|L(y, y−)|. (4.1)

On the other hand, if ‖y−−xk‖ > ∆, it is important to take this inequality into
account when choosing a suitable replacement y+. One possible method is to
compare y+ not with y− directly, but rather with the best point on the segment
joining xk to y− limited to the ball of radius ∆ around xk. This “scaled down”
version of y− is the vector that maximizes |L(yc + td−, yi)| for t ∈ [0,∆], where
d− = (y− − xk)/‖y− − xk‖. Hence, y+ may be chosen in this case as

y+ = arg max
‖y−xk‖≤∆

S(y, y−), (4.2)

where

S(y, y−) =
|L(y, y−)|

min[1,maxt∈[0,∆] |L(xk + td−, y−)|]
. (4.3)

The minimum in the denominator of (4.3) guarantees that the scaled down
version of y−, namely argmaxt∈[0,∆] |L(xk + td−, y−)|, is treated exactly as any
other point within distance ∆ from xk (that is according to (4.1)). We may
therefore define our improvement procedure as the replacement of y− by y+,
where we have chosen y− to maximize S(y+, y−) for all choices of y− ∈ Y \{xk},
and where y+ is defined by (4.2), given y−.

Note also that the Lagrange interpolation function L(·, ·) is a quadratic
determined by function value interpolation, and is therefore only well-defined,

7Powell uses the term “good”.
8It may not be the case at early stages of the algorithm.
9Note that L(·, ·) thus depends on all points in Y , and not just on its two explicit arguments.
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together with S(·, ·), if Y is poised. Furthermore, problem 4.1 or (4.2) is thus
of the same form as the trust-region subproblem (3.6).

The geometry of Y is then said adequate (with respect to xk and ∆) when

‖y − xk‖ ≤ ∆ for all y ∈ Y (4.4)

and no point y+ can be found such that

‖y+ − xk‖ ≤ 2∆ and S(y+, y−) > 2 for at least one y− ∈ Y \ {yc}. (4.5)

If this is not the case, then a new point y+ within distance ∆ of xk can be found
if (4.4) is violated, or the point (4.2) can be used to replace the corresponding
y− if (4.5) is violated. In this latter case the value of the replacement of y− by
y+ is then given by S(y+, y−).

Note that verfying the adequacy of the geometry of Y not only involves
checking (4.4), a relatively simple task, but also the solution of 2(p − 1) con-
strained quadratic maximization problems. Indeed, we may write

max
‖y−xk‖≤∆

S(y, y−) =
max

[

max‖y−xk‖≤∆ L(y, y−),−min‖y−xk‖≤∆ L(y, y−)
]

min[1,maxt∈[0,∆] |L(xk + td−, y−)|]
(4.6)

and the two optimization problems of the numerator must be solved for each
y− ∈ Y \ {xk}. This is not unreasonable since we have assumed that the cost
of evaluating the objective function dominates all other costs, but neverthe-
less constitutes a significant computational task when the number of problem
variables grows.

To complete the description of the first approach, we only need to describe
how we choose a point y− to drop from Y when we include x+k . Using the same
idea as above, we see that a reasonable choice is to choose

y− = argmax
y∈Y

S(x+k , y−). (4.7)

One could also attempt to restrict the maximization, in this last definition, to
the subset of Y consisting of points which are at a distance exceeding 2∆k,
if such points exist. Or one might want to compromise between these two
techniques by accepting a y− from the restricted set only if S(x,ky−) > 1 and
resorting to (4.7) if no such point can be found.

Algorithms based on this first approach have been described in Powell
(1994b), Conn and Toint (1996) and Powell (1996). Preliminary numerical
results have been presented in the last two contributions, which indicate that
remarkably efficient algorithms can be designed along this line.

5 An approach using Newton fundamental polyno-

mials

We now consider a second approach to measuring the quality of the geometry
of Y , based on the properties of multivariate interpolation techniques. This

10



approach was introduced in Conn et al. (1997) with both a theoretical and a
practical motivation. From the theoretical point of view, this approach allows
global convergence to be proved for the associated version of our algorithmic
outline. On the more practical side, this second approach sometimes signifi-
cantly reduces the calculations performed by the algorithm on top of the objec-
tive function evaluations. This is very desirable when the number of variables is
not very small or when the cost of evaluating the objective function is not very
high. At variance with the techniques of the previous section, we will empha-
size here the use of Newton fundamental polynomials. It is important to realize
that, if the interpolation techniques are different, the interpolating model is
nevertheless unique whenever Y is poised. The reason for introducing a new
interpolation technique is therefore not to modify the model for a given Y , but
rather to derive from the new technique different procedures for improving the
geometry of Y and for including x+k in the interpolation set.

In order to continue the discussion, we need to explore multivariate interpo-
lation techniques a little further, which we do by considering the more general
problem of finding interpolating polynomials of degree d. As above, we first
choose a basis of the space of polynomials of degree d (for example the mono-
mials) to initiate the process. In this framework, the point y in the interpolation
set Y are organized into d+1 blocks Y [ℓ], (ℓ = 0, . . . , d), the ℓ-th block contain-

ing |Y [ℓ]| =
(

ℓ+n−1

ℓ

)

points. To each point y
[ℓ]
i ∈ Y [ℓ] corresponds a single

Newton fundamental polynomial of degree ℓ satisfying conditions

N
[ℓ]
i (y

[m]
j ) = δijδℓm for all y

[m]
j ∈ Y [m] with m ≤ ℓ. (5.1)

For instance, if we consider cubic interpolation on a regular grid in the plane,
we require ten interpolation points using four blocks

Y [0] = {(0, 0)}, Y [1] = {(1, 0), (0, 1)},

Y [2] = {(2, 0), (1, 1), (0, 2)} and Y [3] = {(3, 0), (2, 1), (1, 2), (0, 3)},
as shown in Figure 1.
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Figure 1: Interpolation set and the four blocks (connected with thick lines) for
cubic interpolation on a regular grid in the plane.
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The interpolating polynomial m(x) is then given as

m(x) =
∑

y
[ℓ]
i

∈Y

λ
[ℓ]
i (Y, f)N

[ℓ]
i (x),

where the coefficients λ
[ℓ]
i (Y, f) are generalized finite differences applied on f .

We refer the readers to Sauer and Yuan (1995) for more details on these and
multivariate interpolation in general.

We now return to the concept of poisedness and consider in more detail
the procedure of constructing the basis of fundamental Newton polynomials as
described in Sauer and Yuan (1995). Namely we consider the procedure below
for any given Y .

Procedure CNP for constructing fundamental Newton polynomials

Initialize the N
[ℓ]
i (i = 1, . . . , |Y [ℓ]|, ℓ = 0, . . . , d) to the chosen polynomial basis

(the monomials).
Set Ytemp = ∅.
For ℓ = 0, . . . , d,

for i = 1, . . . , |Y [ℓ]|
choose some y

[ℓ]
i ∈ Y \ Ytemp such that |N [ℓ]

i (y
[ℓ]
i )| 6= 0,

if no such y
[ℓ]
i exists in Y \ Ytemp, reset Y = Ytemp and stop

(the basis of Newton polynomials is incomplete),

Ytemp ← Ytemp ∪ {y[ℓ]i }
normalize the current polynomial by

N
[ℓ]
i (x)← N

[ℓ]
i (x)/|N [ℓ]

i (y
[ℓ]
i )|, (5.2)

update all Newton polynomials in block ℓ and above by

N
[ℓ]
j (x)← N

[ℓ]
j (x)−N

[ℓ]
j (y

[ℓ]
i )N

[ℓ]
i (x) (j 6= i, j = 1, . . . , |Y [ℓ]|), (5.3)

N
[k]
j (x)← N

[k]
j (x)−N

[k]
j (y

[ℓ]
i )N

[ℓ]
i (x) (j = 1, . . . , |Y [k]|, k = ℓ+ 1, . . . , d).

end
End (the basis of Newton polynomials is complete).

Clearly, poisedness relates to non-zero pivots in (5.2). Notice that after
applying procedure CNP, Y is always poised since we only include the points
that create non-zero pivots. This is true even if the procedure stops with an
incomplete basis of Newton polynomials, which then results in an interpolating
polynomial which is not of full degree d (meaning that it does not include contri-
butions of all the monomials of degree d, see Step 2 of the algorithm). In practice
we need sufficiently large pivots, which is equivalent to “well-poisedness”. Thus

checking if |N [ℓ]
i (y

[ℓ]
i )| 6= 0 is replaced by |N [ℓ]

i (y
[ℓ]
i )| ≥ θ, for some θ > 0. We

call θ the pivot threshold. In Conn et al. (1997), the authors have shown that
if throughout the algorithm the interpolation problem can be made sufficiently
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well-poised we are able to assure the existence of a bound on the distance
between the interpolating polynomial and interpolated function at a point x
(x 6∈ Y ). Otherwise we provide a mechanism that guarantees we can find a
suitable interpolation for which the bound holds. This bound depends upon
an important property proved by Sauer and Xu and uses the concept of a path
between the zero-th block and x, which uses a sequence of points of Y of the
form

π(x) = (y
[0]
0 , y

[1]
1 , . . . , y

[d]
d , y

[d+1]
d+1 = x)

where
y
[i]
i ∈ Y [i] (i = 0, . . . , d).

A path therefore contains, besides x itself, exactly one interpolation point in
each block. Let us denote by Π(x) = {π(x)}, the set of all possible paths from
Y [0] to x. Using this notion, Sauer and Yuan (1995) derive in their Theorem 3.11
a bound on |f(x) − m(x)|, where m(x) is the polynomial interpolating the
function f(x) at the points in Y . This bound was further simplified by Sauer
(1996), giving that

|f(x)−m(x)| ≤ nd+1‖f (d)‖∞
(d+ 1)!

∑

π(x)∈Π(x)

[

d
∏

i=0

‖y[i+1]
i+1 − y

[i]
i ‖∞ |N

[i]
i (y

[i+1]
i+1 )|

]

,

(5.4)
for all x, where f (d) is the d-th derivative of f . Interestingly, the quantities

N
[i]
i (y

[i+1]
i+1 ) are all computed in the course of the evaluation of the generalized

finite differences λ
[ℓ]
i (Y, f). We see that the error between m(x) and f(x) is

smaller if we can make the values N
[i]
i (y

[i+1]
i+1 )‖y[i+1]

i+1 − y
[i]
i ‖∞ small. If all the

interpolation points and the point x are chosen in a given hypersphere of ra-
dius δ, it is then possible to provide an upper bound on the maximal error.
More precisely, the following theorem can be proved (see Conn et al. (1997),
Theorem 2).

Theorem 1 Assume that an arbitrary xk ∈ Rn and a ∆k > 0 are given,
together with the interpolation degree d. Then it is possible to construct an
interpolation set Y yielding a complete basis of Newton polynomials such that
all y ∈ Y satisfy

y ∈ Bk (5.5)

and also that
|N [ℓ]

j (x)| ≤ κ0. (5.6)

for all ℓ = 0, . . . , d, all j = 1, . . . , |y[ℓ]| and all x ∈ Bk, and where the positive
constant κ0 is independent of xk and ∆k.

We now return to the case of quadratic models of the form (3.2) and define
what we mean by an adequate geometry of the interpolation set. In the spirit
of Theorem 1, we assume that we are at iteration k of the algorithm, where xk
is known (but arbitrary). We then say that Y is adequate in Bk whenever the
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cardinality of Y is at least n+1 (which means the model is at least fully linear)
and

y ∈ Bk for all y ∈ Y, (5.7)

|N [ℓ]
i (y

[ℓ+1]
j )| ≤ κ1 (i = 1, . . . , |Y [ℓ]|, j = 1, . . . , |Y [ℓ+1]|, ℓ = 0, . . . , d−1), (5.8)

and
|N [d]

i (x)| ≤ κ1 (i = 1, . . . , |Y [d]|, x ∈ Bk), (5.9)

where κ1 is any positive constant such that κ1 > κ0. (This choice of κ1 is
merely intended to make (5.8) and (5.9) possible in view of Theorem 1.)

The inclusion of x+k in Y is then simply defined as follows: we may simply
add x+k to Y if |Y | < p, and we need to remove a point y− of Y , if |Y | is already
maximal (|Y | = p). Ideally, this point should be chosen to make the geometry
of Y as good as possible. There are various ways to attempt to achieve this

goal. For instance, one might choose to remove y− = y
[ℓ]
i such that |N [ℓ]

i (x)|
is maximal, therefore trying to make the pivots as large as possible, but other
techniques are possible.

The last procedure that we have to describe is the model’s geometry im-
provement in Bk, which promotes making Y adequate in Bk. Again, many
different techniques are possible. For instance, a reasonable strategy consists

in first eliminating a point y
[ℓ]
i ∈ Y which is not in Bk (if such a point exists),

and replacing it in Y by

y+ = argmax
x∈Bk

|N [ℓ]
i (x)|. (5.10)

If no such exchange is possible, one may then consider replacing interpolation
points in Y \ {xk} by new ones, again using (5.10). The theory of Conn et
al. (1997) then ensures that (5.8) and (5.9) hold after a finite number of such
replacements. A computationally expensive version of the improvement proce-

dure would compute y+ for every possible choice of y− = y
[ℓ]
i , and then select

that for which |N [ℓ]
i (y+)| is maximal, but substantially cheaper versions can

be designed by choosing y− from the information which is already calculated
when the interpolation model is computed. For instance, one may consider

the vectors y
[ℓ]
i corresponding to polynomials for which |N [ℓ−1]

j (y
[ℓ]
i )| is large for

some j, or one may choose to replace fundamental polynomials corresponding
to small pivots in Algorithm CNP. A closer look at the mechanism of this latter
algorithm furthermore indicates that significant computational savings can be
achieved if the polynomial to be replaced is selected in Y [d], or at least in the
blocks of higher index, whenever possible.

The interested reader will find the global convergence theory associated with
algorithms using this approach in Conn et al. (1997).

6 Discussion and perspectives

We have shown so far that one can design derivative free trust-region algorithms
for unconstrained minimization in a variety of ways, but that it is important for
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all these algorithms to take the geometry of the set of interpolation points Y
into account. This is the main feature that distinguish modern methods from
the proposal of Winfield (1969) and Winfield (1973). The crucial point is that
this geometry should remain as adequate as possible, in the sense that the in-
terpolation problem remains as far as possible from being ill-defined. We have
examined two potential approaches that provide different manners to substan-
tiate this requirement in practical computational methods. The first is based
on the use of the Lagrange fundamental polynomials and is very elegant, if also
potentially expensive in computing time. The second uses the Newton funda-
mental polynomials and provides a framework for which global convergence can
be proved for the resulting algorithm. It also suggests possible simplifications
that reduce the computational complexity of the minimization method.

Significant work remains to be done for assessing the various possible algo-
rithms discussed in this paper. In particular, it is desirable to explore to a much
greater extent the computational tradeoffs between “best possible geometry”
and acceptable amount of calculations as the relative cost of objective function
evaluation and internal linear algebra varies. This work is currently ongoing
and will be reported upon in the near future.

Besides this assessment, other questions of interest still need exploring. We
have barely touched here the question of choosing initial models ate the early
iterations of the algorithm, when the cardinality of Y doesn’t allow yet to define
a full quadratic model. Many possible choices are possible, whose motivations
may be as diverse as statistical design of experiments to analogies with the
theory of “thin plate”spline functions. More questions related to the theoretical
significance of pivot values in the context of Newton fundamental polynomials
are also open and intersting.

An important direction for future work is the extension of the techniques
discussed here to handle problems with a larger number of variables. One im-
mediately thinks of exploiting any structure present in the problem as efficiently
as possible. For instance, if the Hessian of the objective function has a known
sparsity pattern, this fact can be exploited by suitably restricting the basis of
monomials spanning the desired interpolation space: the monomial xixj may
be removed from this basis if the (i, j)-th entry of the Hessian is known to be
zero. Another possibility is to exploit partial separability (see Griewank and
Toint (1982) or Conn et al. (1990)) in the objective function when possible.
The idea would then be to build independent interpolation models for the ele-
ments of the objective function, maybe coupled with a structured trust-region
scheme (see Conn et al. (1996)).

Another direction of research, both useful and challenging, is to consider
how the methods described here can be adapted to cases where some noise is
present in the evaluation of the objective function. In this case, one expects
that interpolation will be replaced by approximation in the model’s definition,
and the conditions on geometry will have then to be combined with that of
sufficient sampling.

Finally, the authors acknowledge that the potential of the methods outlined
in this paper will only be fully realized when associated high quality software
will become available to users. The development of such software is again the
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subject of ongoing work.
To conclude our presentation, we wish to stress that derivative free methods

for optimization remain a thriving and valuable area for research. It is indeed
very encouraging that it presents such a remarkable combination of interesting
theoretical concepts, useful algorithmic designs and high demand from potential
users.
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