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Abstract
Post-traumatic stress disorder (PTSD) is a common and chronic anxiety disorder that can result
after exposure to a traumatic event. Though our understanding of the aetiology of PTSD is
incomplete, several neurobiological systems have been implicated in the pathophysiology and
vulnerability towards developing PTSD after trauma exposure. We aimed to provide a concise
review of benchmark findings in important neurobiological systems related to the aetiology and
maintenance of PTSD symptomology. Specifically, we discuss functional aetiologies in the
noradrenergic, serotonergic, endogenous cannabinoid and opioid systems as well as the
hypothalamic-pituitary adrenal (HPA) axis. This article provides a succinct framework to
appreciate the current understanding of neurobiological mechanisms related to the
pathophysiology of PTSD and how these findings may impact the development of future, targeted
pharmacological treatments for this debilitating disorder.

1 Introduction
Post-traumatic stress disorder (PTSD) is a common and chronic anxiety disorder that can
develop following exposure to a traumatic life event such as military combat, a natural
disaster, and/or physical or sexual assault. PTSD occurs in approximately 8–14 % of the
population in the USA [1-3], and rates of PTSD among women in the USA (12—18 %) are
approximately twice than in men [3, 4].

PTSD presents a significant burden not only to individuals but society at-large. The majority
of people with PTSD meet the diagnostic criteria for other psychiatric disorders [4, 5],
including major depression [6, 7] and anxiety disorders [8]. Individuals with a PTSD
diagnosis are more likely than the general population to use drugs and experience
impairments in psychosocial functioning [9] and to engage in suicidal behaviours [1]. Not
only does this population have increased psychiatric treatment needs, but when compared
with the general population, people with PTSD also require greater healthcare utilization,
have more costs attributed to co-morbid medical conditions such as heart problems, diabetes
and peptic ulcers [10], and gastrointestinal problems [11], and have increased rates of
surgery and visits to the physician [12, 13].
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Despite the deleterious impact of PTSD, our current understanding about the human
pathophysiology governing the divergent paths associated with extreme stress response is
lacking [14, 15], and these models have failed to provide effective therapeutic targets. US-
based practice guidelines for PTSD have recommended cognitive behavioural therapy
(CBT) and selective serotonin reuptake inhibitors (SSRIs) or selective noradrenaline
(norepinephrine) reuptake inhibitors (SNRIs) as first-line treatments [16, 17]. However,
PTSD response rates to pharmacological treatments such as the two US FDA-approved
SSRIs paroxetine and sertraline rarely exceed 60 %, and even fewer patients (20–30 %)
achieve clinical remission [18]. Several placebo-controlled trials of other medications in
PTSD have failed, and even recent studies of approved medications (e.g. sertraline) have
failed to show efficacy in specific subgroups of PTSD patients such as combat veterans [19].
The recent review of treatments for PTSD by the United States Institute of Medicine, located
in Washington, DC, concluded there was not sufficient evidence for any drug or class of
drug for the treatment of PTSD [20]. To date, drug development in PTSD has been
opportunistic, building almost solely on empirical observations with drugs approved for
other indications, and not surprisingly, treatment options for the often chronically
symptomatic PTSD patients remain limited.

This paper reviews our current understanding of the pathophysiology underlying PTSD with
evidence suggesting functional aetiologies in the noradrenergic, serotonergic, endogenous
cannabinoid, and opioid systems as well as the hypothalamic-pituitary adrenal (HPA) axis.
Other systems, for example glutamate, are also relevant and important, but have been
reviewed extensively elsewhere [21] [22]. By revealing the neurobiological mechanisms that
play a role in the aetiology of PTSD, we aim to identify novel targets that offer potential
therapeutic value in developing future evidence-based PTSD pharmacological interventions.

2 Noradrenergic System
The adrenoreceptors (ARs) are a group of G protein-coupled receptors consisting of three
major classifications: α1, α2 and β with associated subtypes [23]. The AR system stimulates
CNS activity and sympathetic autonomic responses through cell bodies located in the locus
coeruleus and projects to the prefrontal cortex and limbic system structures (e.g., amygdala,
hypothalamus) [24], which implicate it in selective attention to rewarding and aversive
stimuli [25] and stress and fear-related responses [26] [27]. Through dysregulation of
physiological mechanisms, hyperadrenergic activity has been linked to psychiatric
conditions such as major depression [28] [29], traumatic brain injury [30] and anxiety
disorders [31-33] [23, 34].

The AR system has held a preeminent role in PTSD research, as it influences amygdala
functioning and associated fear signalling [27, 35, 36]. Table 1 lists evidence of altered
peripheral and central AR functioning in PTSD populations suggesting state and trait
alterations in AR functions.

Early studies using the α2 selective antagonist yohimbine, which acts on both pre- and post-
synaptic receptors and increases noradrenaline activity, helped form a model suggesting that
increased noradrenaline activity leads to impaired medial prefrontal cortex functioning [27,
37] and fear extinction [38, 39], explaining increases on behavioural measures of anxiety
and PTSD symptom severity [40, 41]. β-AR antagonists (i.e., propranolol) have produced
mixed results in animal models, with some evidence for inhibiting fear memory
reconsolidation and responding [35]. However, post-trauma administration of propranolol
has not yielded significant effects on preventing fear conditioning [42] or inhibitory
avoidance reconsolidation [43]. Clinical evidence has shown a similar trend regarding
propranolol as a PTSD prophylactic [44, 45] with several contrary findings [46, 47].
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However, clinical trials to date have not yet provided conclusive results given small sample
sizes, difficulties recruiting for these trials and heterogeneous patient cohorts.

The noradrenaline transporter (NET) is a potential noradrenaline target for studying the
pathophysiology of PTSD and may emerge as a target for treatment development in the
future. The NET is a part of the Na+/Cl− neurotransmitter transporters [48] that has high
concentrations in the locus coeruleus and moderate levels within cortical regions including
the frontal cortex, hippocampus, amygdala, thalamus and cerebellar cortex [49]. Besides
acting as a noradrenaline plasma membrane monoamine transporter and maintaining
presynaptic noradrenaline storage [50], the NET has been connected to the regulation of
dopamine reuptake, and its dysregulation may be involved in mood and stress disorders [37,
51-53].

There is ongoing work suggesting NET involvement in PTSD. Preclinical evidence has
demonstrated that chronic stress exposure may lead to AR system dysregulation and can
decrease NET availability in the locus coeruleus and increase noradrenaline synaptic
availability in cortical areas [54], while the selective noradrenaline reuptake inhibitor (NRI)
reboxetine can antagonize noradrenaline synaptic availability and decrease foot shock stress
reactivity [55]. These preclincial findings have been recently substantiated in a human
positron emission tomography (PET) study in humans showing decreased NET availability
in patients with PTSD [194]. This alteration in homeostatic stress responding could trigger
anxious and depressive phenotypes [56], which characterize PTSD [23, 29, 31-34, 57].
Recent clinical research [58] used a combination of naltrexone and either the SSRI,
paroxetine, or the NRI, desipramine, in treating veterans with PTSD and alcohol
dependence. The desipramine group performed equivalently in PTSD symptom reduction
compared with the standard SSRI treatment and was more effective in reducing alcohol
consumption and study attrition and therefore improving overall clinical presentation.

The NET may inform the development of future PTSD treatments. Trauma exposure can
cause impaired impulse control and emotional dysregulation [59-61]. Early clinical evidence
suggests that atomoxetine, which has a high affinity for the NET, increases inhibitory
response control [62] and reduces attention-deficit hyperactivity disorder (ADHD)
symptoms with co-morbid anxiety [63] and PTSD [64] diagnoses. This drug may be
effective in treating phenotypes exhibiting pronounced hyperarousal and impulsive
behaviours. Venlafaxine, an SNRI, has shown clinical utility in reducing re-experiencing
and avoidance/numbing symptoms [65, 66] and can improve fear extinction in rats, thus
suggesting its utility for supplement PTSD exposure therapy [67]. As the NET interacts with
other stress systems such as dopaminergic [37, 51-53] and serotonergic [65, 66] systems,
combination drugs (i.e., SNRIs) and combination treatments that affect NET functioning
[58] may lead to improved PTSD treatment modalities.

3 Serotonergic Receptors: 5-HT1A, 5-HT1B

The serotonergic (5-HT) receptors are a group of G protein-coupled receptors and one
identified ligand-gated ion channel (5-HT3) that encompass seven classifications, ranging
from 5-HT1 through 5-HT7 with associated subtypes [68]. The 5-HT system is involved in
cognition, emotional processing and behavioural regulation [69]. Animal and human models
have demonstrated that 5-HT receptor systems are implicated in the pathophysiology of
several psychiatric disorders, including depression [70] [71], alcoholism [72, 73] and PTSD
[74, 75].

Fear regulation and threat responsiveness have been linked to 5-HT signalling in the
amygdala [76], a brain region integral to understanding the fear response and PTSD
aetiology [77-80]. 5-HT agonists can selectively induce anxiety attacks and trauma-related
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flashbacks in PTSD populations [41, 81, 82]. The 5-HT1A and 5-HT1B receptors have been
identified in the study of stress disorders [74, 83, 84] and could provide new clinical
understanding of PTSD phenotypes. The 5-HT1A receptors are located presynaptically on 5-
HT cell bodies in the raphe and postsynaptically in other brain regions [85]. The density of
5-HT1A receptors in humans and monkeys appears highest in the raphe, hippocampal
formation, hypothalamus, and insula, temporal, cingulate and ventral prefrontal cortices
[86], [87, 88]. Postsynaptic 5-HT1A receptors are expressed mainly in the astroglia of the
frontal and limbic cortices [85], [89] and stimulate the release of trophic-factor S-100β,
which promotes serotonergic system development [85], [90] and cytoskeletal maintenance
[91]. Therefore, the neuropathological abnormalities exhibited in limbic and paralimbic
cortical areas in mood disorders (i.e., reduced cortex volume, reduced synaptic proteins,
increased neuronal density, reduced glial counts) may be attributed to impaired 5-HT1A
receptor functioning [92, 93]. Preclinical evidence has shown 5-HT1A receptor knockout
mice display increased anxiety and fear responses [94]. Relevant to stress regulation and
PTSD, mice administered the 5-HT1A agonist 8-OH-DPAT demonstrated anxiogenic
responses to the elevated plus maze (EPM) test, which could modulate glutamatergic and
GABAergic systems located in the medial prefrontal cortex [95].

The 5-HT1B receptors have the highest expression in the striatum, pallidum, nucleus
acumbens, substantia nigra and the ventral tegmental area and to a lesser extent in the dorsal
raphe nucleus, the amygdala, hippocampus and cortical areas [96]. These receptors operate
presynaptically as autoreceptors on the axon terminals of 5-HT-containing neurons and as
heteroreceptors on non-5-HT-containing neurons [71, 96]. As a heteroreceptor, the 5-HT1B
receptor is involved in regulating the activity of multiple neurobiological systems in the
brain including gamma-aminobutyric acid (GABA) [96, 97], noradrenaline [98], dopamine
[99], acetylcholine [100] and glutamate [97, 101] in areas of a cortico-striato-pallido-
thalamic-limbic circuit that have been implicated in the pathogenesis of PTSD. Animal
studies have yielded behavioural pharmacological results indicating 5-HT1B receptor
involvement in locomotor activity, reinforcement learning, appetitive behaviours (i.e.,
sexual, feeding), sleep and aggression [96, 102]. PTSD patients and healthy trauma-exposed
individuals have demonstrated reduced 5-HT1B binding potentials in the caudate, amygdala
and anterior cingulate cortex with positive correlations observed according to trauma history
and symptom severity [74]. Recently, alterations in 5-HT1B receptor density have been
shown to be linked to specific PTSD symptomology suggesting that these changes may be
responsible for certain features of the clinical phenotype of PTSD [193] (Fig. 1). This
evidence suggests that trauma exposure can have long-term effects on 5-HT1B receptor
functioning and could explain some of the enduring behavioural, neurological and
psychological changes observed in PTSD phenotypes.

5-HT1A and 5-HT1B receptor modulators may help in future treatment development. Animal
[95] and human [103, 104] models suggest that further inquiry into the influence of 5-HT1A
agonists on anxiety regulation could inform new forms of PTSD treatments. Drugs targeting
5-HT1B receptors may have clinical utility in treating PTSD, which are possible efficacious
treatments for co-morbid mood disorders [70, 84]. A recent clinical trial utilizing
coadministration of the now discontinued 5-HT1B antagonist, elazsonan (CP-448187), with
sertraline yielded 14.9 % and 15.7 % treatment response rates for reducing depressive
symptoms by at least half during weeks 2 and 3, respectively, compared with 3.3 % and 7 %
for sertraline alone [105]. These symptom reductions were sustained throughout the 8-week
trial, which suggests that 5-HT1B antagonists may have expediting therapeutic properties in
PTSD.
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4 Endocannabinoids and the Cannabinoid CB1 Receptor
Various lines of evidence suggest that the endogenous cannabinoids (eCB), anandamide
(AEA) and 2-arachidonolyflycerol (2-AG) [Fig. 2], which exert much of their actions
through the two known cannabinoid (CB) receptors (CB1, CB2), play an important role in
the development [106] and function of the PTSD circuit, specifically in stress responses
[107-112].

First, animal studies [113] show that chronic stress is associated with significantly decreased
AEA levels in all brain areas studied. Furthermore, inhibiting the metabolism of AEA leads
to a reduction of anxiety in rodents [114]. In our own work in PTSD we found decreased
plasma AEA levels in PTSD patients relative to healthy control subjects (0.72 ± 0.12 vs.
2.74 ± 0.85 pmol/mL, t = 2.47, degrees of freedom [df] = 17, p = 0.024; Fig. 3, personal
unpublished observations), providing additional evidence for an important role of altered
eCB signalling in PTSD. Notably, these findings agree with results of human studies in
depression [112] reporting that female outpatients with major depressive disorder (MDD)
have lower serum 2-AG levels than controls, and the magnitude of the decrease was
associated with the length and severity of the depressive episode. While AEA was not
associated with major depression per se, an inverse relationship was found between serum
AEA content and Hamilton Anxiety Rating Scale scores, suggesting that AEA content may
relate to the anxiety dimension of the depression phenotype. In addition, earlier age at first
trauma was correlated with lower AEA levels in PTSD and the magnitude of the decrease
was associated with the length of illness, providing additional evidence for an important role
of dysfunctional eCB signalling in PTSD.

The CB1 receptors are of particular interest as recent studies demonstrate a specific and
primary [115] role for the CB1 receptor in mediating the neurobiological underpinnings and
behavioural consequences of stress exposure. The first CB1 receptor was discovered
relatively recently by Allyn Howlett’s laboratory in 1988 [116, 117], and since then there
has been substantial attention devoted to this neuromodulatory system.

CB1 receptors are found in moderate to high levels throughout forebrain limbic structures
and have been shown to modulate a variety of behaviours, including mood, stress, anxiety,
learning, memory [118-120] and notably the extinction of fear [121-123]. They are the most
abundant G protein-coupled receptors in the CNS, [124, 125] and are found in high
concentrations in a fear circuit of cortical and subcortical brain regions that are consistently
implicated in PTSD. Moreover, genetic or pharmacological disruption of CB1 receptor
signalling, which is required for normal fear extinction [121-123], results in an anxious
PTSD phenotype [126, 127], and brain CB1 receptor signalling controls extinction of
aversive memories [121-123]. Mice lacking CB1 receptors exhibit heightened indices of
anxiety and depression, reinforcing the concept that eCBs are required to maintain emotional
homeostasis [117, 119, 126]. While the eCB system is highly reactive in response to acute
stress, there is evidence to suggest that chronic stress causes a breakdown in eCB signalling,
thus compromising an endogenous buffer system to stress in the brain [113, 117]. Therefore,
CB1 receptor function is a mechanism that seems to play an important role in the
neurobiology of emotional behaviour with specific implications in PTSD.

Additionally, animal studies have shown gender disparities in the stress-induced regulation
of CB1 receptors in male and female animals [109, 113, 128, 129] with elevated CB1
receptor expression in female but not male animals. Additionally, impaired CB1 receptor-
mediated eCB signalling [130] was identified as a key mechanism explaining the increased
vulnerability of female animals to develop an anxious phenotype in chronic stress models
(for a review see Palanza [131]). This evidence may help explain why women are at higher
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risk for developing PTSD symptoms following exposure to various types of trauma
[132-140] (odds ratio approximately 5), even when sexual trauma, which predominates in
women, was excluded (odds ratio approximately 3) [141].

To further understand the neuromodulatory role of the eCBs and their corresponding
receptors, we look to PET imaging as it is the most direct, sensitive and straightforward
means of probing the functional neurochemistry of humans and assessing molecular targets
in the brain in vivo, provided the proper tracer and modelling approaches are available. Due
to the recent development of CB1 receptor-selective radiotracers, it is now possible for the
first time to conduct an in vivo assessment of CB1 receptor density using PET.

Given the overwhelming evidence that the eCBs and their attending receptors play a key
role in the aetiology of PTSD, pharmacological interventions specifically designed to target
eCB signalling could emerge as a novel, potentially breakthrough treatment for PTSD.
Conversely, the development of CB1 receptor antagonists, such as SR-141716 (rimonabant),
has been associated with the emergence of negative mood symptoms and an increased risk
of suicidality. Therefore, direct modulation of the CB1 receptor may not be the most
appropriate point of intervention for therapeutic drug development. Fatty-acid amide
hydrolase (FAAH) is an integral membrane enzyme primarily responsible for the
degradation of the eCBs in the brain[142] and may yield a safer alternative treatment. FAAH
activity has been linked with aversive memory processing [143] and arousability [142]. In
addition to these findings, a single nucleotide polymorphism of FAAH was significantly
associated with PTSD diagnosis in subjects without lesions in the ventromedial prefrontal
cortex [142]. Therefore, FAAH inhibition may point to a novel treatment mechanism with
unique therapeutic potential in the treatment of PTSD.

5 Hypothalamic-Pituitary-Adrenal Axis and Corticotropin-Releasing Factor
The eCB system is believed to be strongly tied to the HPA axis, another neurocircuit
implicated in stress responding [144]. The HPA axis is a stress-responsive neuroendocrine
system that ties the CNS to the endocrine system. The HPA axis assists with the adaptation
to stress and the maintenance of homeostasis after challenge, yet is also vital in supporting
baseline functioning [145]. A dysfunctional HPA axis is associated with numerous
psychosomatic and psychiatric disorders [146-154].

Corticotropin-releasing factor (CRF) is a neuronal signalling molecule produced by cells in
the hypothalamus in response to physical or psychological stress. Increased levels of CRF in
the hypothalamus in response to stress results in the activation of the HPA axis and
increased release of cortisol. CRF acts at the G protein-coupled receptors CRF-1 and CRF-2.
It is believed that high CRF levels at the time of trauma may facilitate encoding of traumatic
memory and enduring anxiety effects via direct action at CRF-1 receptors [155-158].

Animal models provide further evidence for the role of CRF in the development and
maintenance of stress-induced behaviours. Mice deficient in the G protein-coupled receptor
CRF-1 display an impaired stress response and decreased anxious behaviours [159, 160],
while mice deficient in the G protein-coupled CRF-2 receptor display increased anxious
phenotypes and hypersensitivity to stress [159, 161]. Regulation of the relative contributions
of the two CRF receptor subtypes may be essential to regulating physiological and
psychological responses to stress [160]. In a mouse-predator stress model of PTSD, CFR-1
receptor antagonism prevented the initiation of stress effects [157, 158], suggesting a
potential therapeutic target for the primary prevention of stress-induced symptoms.

PTSD patients exhibit increased cerebrospinal fluid levels of CRF [162, 163] and
abnormalities in other HPA axis systems [164], indicating the utility of compounds that
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dampen the CRF system or other HPA axis hormones in the treatment of PTSD [158, 165].
CRF-1 receptor antagonism is a treatment modality that has been explored for the treatment
of MDD [166], While an initial open-label study suggested promising efficacy data, these
results were not confirmed in follow-up placebo-controlled trials [167]. Testing of CRF-1
receptor antagonists in the treatment of chronic PTSD is currently underway, but the
potential role for CRF-1 antagonists as a method of primary prevention has not yet been
explored.

Recently, much attention has been devoted to furthering our understanding of the
relationship between the eCB system and the HPA axis in response to stress. Animal models
showed that (1) in vivo exposure to stress was capable of modulating eCB content in the
hypothalamus, and (2) eCB signalling in vivo exerted negative regulation over the HPA axis
[117, 168]. It is believed that a functional crosstalk exists between eCB signalling and the
HPA axis, and changes in one system have a ripple effect on the other [117]. This
relationship poses the opportunity for further development and understanding of unique
therapeutic targets in the treatment of PTSD.

6 Opioid System
Multiple lines of evidence connect opioid systems in the pathophysiology of PTSD. Opioid
receptors (ORs) belong to the superfamily of G protein-coupled receptors and are generally
classified into at least three subtypes: δ (encephalin preferring), κ (dynorphin preferring)
and μ (morphine preferring) [169]. The dynorphin/κ opioid receptor (κ-OR) is of particular
interest, as it has been implicated in several brain disorders including substance (particularly
psychostimulant) abuse [170], epilepsy [171], Tourette’s syndrome [172] and Alzheimer’s
disease [173]. Moreover, recent evidence suggests a role for the dynorphin/κ-OR in the
expression of stress-induced behaviours [174].

Relevant to the aetiology of PTSD, is the expression pattern of the κ-OR with high receptor
levels in a ventral medial, prefrontal, cortex-hippocampal-limbic circuit (see Fig. 4) [175,
176] where they mediate anxiety-like behaviours [177]. These brain regions are also
implicated in the aetiology of PTSD [27].

There is a growing body of basic science data [178] showing that although κ-OR signalling
during acute stress may create the physical ability and motivation to escape a threatening
situation, κ-OR signalling in response to chronic and inescapable stress can lead to
persistent depressive and anxious behaviours [179], which resemble important components
of the phenotype of PTSD [180].

Recent preclinical evidence suggests that κ-ORs may emerge as targets for treatment
development for patients with anxious-depressive phenotypes [179]. This would be an
important step forward in the treatment of PTSD because current FDA-approved medication
treatments (SSRIs) offer relatively little benefit to most PTSD patients [181, 182]. A recent
study showed that κ-OR antagonists, in contrast to the SSRI fluoxetine, possess unique
antidepressant-anxiolytic properties in models of unlearned and learned fear [183], which
are informative models to our further understanding of trauma-related psychopathology
leading to the development of new treatment approaches [184].

Clinical evidence implicating opioid systems in the aetiology of PTSD are three-fold. First,
survivors of intimate partner violence can exhibit persistent pain syndromes [185]. Second,
there is an association between childhood sexual trauma and exaggerated rate of opioid use
later in life [186]. Lastly, the use of morphine during trauma care may reduce the risk of
subsequent development of PTSD after traumatic injuries in military personnel [187], burn
victims [188], and children [189] and adult [190] patients.
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The ability to image the κ-OR would be important in allowing us to further understand the
circuitry of the κ-OR and characterize the involvement of κ-OR transmission in PTSD. A
greater understanding of the neuromodulatory role the κ-OR plays in the aetiology and
course of PTSD may provide a basis and justification for the development of experimental
drugs targeting the κ-OR. In vivo functional imaging using PET is currently the sole method
for providing a quantitative measurement of κ-OR-mediated signalling in the brain [191],
and novel imaging approaches are currently under development.

To date, data suggest direct involvement of the κ-OR system in the maladaptive stress
response resulting in the phenotype of PTSD. The implications of these lines of evidence are
that the κ-OR system could emerge as a system of interest for targeted evidence-based
treatment development for this patient population, either alone or as combined
pharmacotherapy with behavioural exposure, a therapeutic strategy that has recently been
validated to enhance extinction of conditioned fear in PTSD patients [192]. Pharmacological
therapies targeting the κ-OR might be particularly effective in the management of
depression and co-morbid anxiety, the typical phenotype of PTSD. Such developments
would be critical steps forward in the clinical care of this severely ill patient population.

7 Conclusion
In a sharp distinction from other medical disorders such as cancer, coronary artery disease
and diabetes, which have objective biological tests for diagnosis, severity of illness and
response to treatment, biological markers cannot yet independently confirm the assessment
of PTSD. Current procedures for diagnosing PTSD rely on self-report screening measures
and clinical interviews. Treatment has been limited to symptom management rather than
targeting the biological aetiology. To date, drug development in PTSD has been
opportunistic, building almost solely on empirical observations with drugs approved for
other conditions. As of today, not a single pharmacological treatment has been developed
specifically for PTSD. Utilizing our existing knowledge of the circuits and substrates
underlying the development and maintenance of PTSD, and the critical importance of
forthcoming research findings, we are now able to guide future PTSD treatments altering
brain mechanisms with proven relevance to PTSD.
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Fig. 1.
Post-traumatic stress disorder (PTSD) patients, overall, have lower serotonin 5-HT1B
receptor density in the anterior cingulate cortex (ACC), hippocampus (HC) and pallidum as
well as other regions implicated in PTSD [70]. Specific alterations in 5-HT1B receptor
density in PTSD have been shown, using the 5-HT1B selective radioligand [11C]P943, to be
linked to specific domains of PTSD symptomology. Decreased 5-HT1B receptor binding in
the ACC has been shown to increase re-experiencing symptoms. Decreased 5-HT1B receptor
binding in the HC has been shown to increase numbing symptoms. Decreased 5-HT1B
receptor binding in the pallidum has been shown to increase anxious arousal, re-
experiencing, and numbing symptoms [193]
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Fig. 2.
Chemical structures of endogenous compounds that bind to cannabinoid receptors
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Fig. 3.
Plasma anandamide (AEA) levels are decreased in post-traumatic stress disorder (PTSD)
patients (0.72 ± 0.12 pmol/mL) relative to healthy control subjects without trauma history
(hippocampus [HC]; 2.74 ± 0.85 pmol/mL, t = 2.47, degrees of freedom [df] = 17, p =
0.024)
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Fig. 4.
MRI scans and positron emission tomography (PET) images of kappa opiate receptors in the
brain of a healthy individual. For both left and right panels, the left column shows the axial
slice, the middle column shows the coronal slice and the right column shows the sagittal
slice. The PET images of the receptors confirm their known distribution in the human brain,
with high levels in a circuit implicated in post-traumatic stress disorder, which includes the
amygdala, hippocampus and ventromedial prefrontal cortex. Left panel: Top row: MRI
images. Middle row: 0–10 min summed PET image. Bottom row: 60–120 min summed PET
image. Right panel: Top row: MRI images. Middle row: corresponding binding potential
(BPND images estimated using a simplified reference tissue model [SRTM]). Bottom row:
corresponding BPND images estimated using the SRTM2; it is slightly less noisy than the
SRTM, as would be expected.
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Table 1

Evidence for altered noradrenergic function in PTSDa

Physiological observations Study results

Baseline/resting state measures

 Increased resting heart rate and blood pressure +/−

 Increased resting urinary noradrenaline
(norepinephrine) and adrenaline (epinephrine)

+

 Decrease in basal and stimulated activity of cAMP +/−

 Decreased binding to platelet α2 receptors +

 Decrease in platelet MAO activity +

 Increased resting plasma noradrenaline or MHPG +/−

Challenge test markers

 Increased plasma noradrenaline with traumatic
reminders/panic attacks

+

 Increased heart rate and blood pressure response to
traumatic reminders/panic attacks

+++

 Increased orthostatic heart rate response to exercise +

 Increased symptoms, heart rate and plasma MHPG
with yohimbine noradrenergic challenge

++

 Differential brain metabolic response to yohimbine +

a
The evidence for altered noradrenergic functioning in PTSD is stronger in challenge test designs (i.e., incorporating threat responses, trauma

reminders) in comparison to baseline/resting state studies

cAMP cyclic adenosine 3′5′-monophosphate, MAO monoamine oxidase, MHPG 3-methosy-4-hydroxyphenylglycol, PTSD post-traumatic stress
disorder, +/− indicates an equal number of studies support this finding and do not support this finding, + indicates at least one study supports this
finding and no studies do not support the finding, or the majority of studies support the finding, ++ indicates two or more studies support this
finding, and no studies do not support the finding, +++ indicates three or more studies support this finding, and no studies do not support the
finding

CNS Drugs. Author manuscript; available in PMC 2014 March 01.


