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ABSTRACT

Solitons are stable localized wave packets that can propagate long distance in dispersive media without changing their shapes. As particle-like
nonlinear localized waves, solitons have been investigated in different physical systems. Owing to potential applications in optical communi-
cation and optical signal processing systems, optical solitons have attracted intense interest in the past three decades. To experimentally study
the formation and dynamics of temporal optical solitons, fiber lasers are considered as a wonderful nonlinear system. During the last decade,
several kinds of theoretically predicted solitons were observed experimentally in fiber lasers. In this review, we present a detailed overview of
the experimentally verified optical solitons in fiber lasers, including bright solitons, dark solitons, vector solitons, dissipative solitons,
dispersion-managed solitons, polarization domain wall solitons, and so on. An outlook for the development on the solitons in fiber lasers is
also provided and discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091811

I. INTRODUCTION

Solitons, also called solitary waves, are a specific kind of wave
that exists in nonlinear systems.1,2 Solitons have been theoretically pre-
dicted for more than 50 years and have been observed in different
physical systems. During the past decades, solitons have been inten-
sively investigated in the field of nonlinear optics.3–13 Owing to the
simplicity, easy, and precise control on the experimental parameters,
ultrafast fiber lasers are considered a perfect platform to study the opti-
cal solitons. Various kinds of solitons have been experimentally inves-
tigated in the fiber laser systems. In the following text, we review
recent progress on optical solitons in fiber lasers. Specifically, we
emphasize on several types of solitons generated in fiber lasers and
demonstrate their unique properties and characteristics. The review
starts with a brief introduction to the historic development of solitons
and basic theory on solitons in Sec. I. We then discuss the bright and
dark solitons described by nonlinear Schr€odinger equation (NLSE) in
mode locked fiber lasers in Sec. II. In Sec. III, we review vector soliton
formation in fiber lasers. In Sec. IV, we review dissipative solitons in
fiber lasers. In Sec. V, breathers and dispersion-managed solitons are
reviewed. In Sec. VI, multiple soliton interactions and dynamics are

reviewed. We briefly review polarization domain wall (DW) and its
potential applications in Sec. VII. Finally, we discuss the challenges
and future directions on this topic in Sec. VIII.

A. Brief history of solitons

The phenomenon of solitons was first observed by John Scott
Russell in a canal of Scotland in 1834. In his report, a soliton was
defined as a special kind of wave that can propagate over a long dis-
tance without distortion. In physics, a soliton is a self-reinforcing local-
ized wave packet that maintains its shape while it propagates at a
constant velocity. The study of solitons covers a large area of nonlinear
physics scenarios, including fluid dynamics, plasma physics, optics,
biological and atmospheric systems, nonlinear fiber optics, and so on.
In 1965, soliton behavior in media described by the Korteweg–de
Vries equation (KdV equation) was reported by Zabusky and
Kruskal.14 In 1967, analytical solution of the KdV equation was devel-
oped by inverse scattering transformation.15 This solution was
extended to soliton generation by Peter Lax who proposed Lax pairs
and the Lax equation. Solitons are, by definition, unaltered in shape
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and speed by a collision with other solitons. So, solitary waves on a
water surface are not exactly solitons as after the interaction of two sol-
itary waves, they change a bit in amplitude, and an oscillatory residual
is left behind.16 Solitons are also studied in quantum mechanics,
thanks to the fact that they could provide a new foundation through
de Broglie’s unfinished program, known as “double solution theory”
or “nonlinear wave mechanics.” This theory, developed by de Broglie
in 1927 and revived in the 1950s, is the natural continuation of de
Broglie’s ideas developed between 1923 and 1926, which extended the
wave-particle duality introduced by Einstein for the light quanta, to all
the particles of matter.

B. Optical solitons

In optics, an optical soliton refers to an optical field that does not
change during propagation because of a delicate balance between lin-
ear and nonlinear effects in the optical media.17 According to the for-
mation mechanism, optical solitons can be classified as temporal
solitons or spatial solitons. Temporal optical solitons are formed due
to the combined effects of the refractive nonlinearity and the pulse dis-
persion, while spatial solitons are formed due to the combined effects
of the nonlinearity and the beam diffraction.

The first theoretical prediction on the optical solitons shaping in
optical fibers comes from Hasegawa and Tappert in 1973.18,19 In their
prediction, optical solitons in fibers are mathematically described by
the nonlinear Schr€odinger equation (NLSE). NLSE and KdV equation
have the same structure of Lax pair. The conventional temporal optical
solitons governed by nonlinear Schr€odinger equation can be basically
classified as the bright solitons, which are characterized as intensity
peaks in the time domain, and the dark solitons which are character-
ized as intensity dips embedded in a continuous wave background.
Based on NLSE, optical bright solitons are supported when the group
velocity dispersion (GVD) of the fiber is anomalous, while optical dark
solitons are supported when the GVD of the fiber is normal.

Owing to bending and strains in single mode fibers, two orthogo-
nal polarization modes are supported when light is propagating in it.
Solitons with two coupled polarization components are named as vec-
tor solitons. Optical solitary wave propagation in birefringent optical
fibers was first theoretically studied by Menyuk.20 It is demonstrated
that above a certain pulse intensity level, two orthogonally polarized
solitons with different center wavelengths could couple together and
propagate at the same group velocity. Coupled NLSEs have been
employed to describe the solitons in the single mode fibers.

Based on the above-mentioned theory, it is natural to develop
pulse fiber lasers as a platform to generate the solitons. Optical soliton
formation in fiber lasers is a result of the mutual interaction among
the cavity dispersion, fiber nonlinearity, laser gain saturation, and gain
bandwidth filtering. Strictly speaking, the solitons in fiber lasers are
dissipative solitons which are governed by the Ginzburg–Landau
Equation (GLE). However, NLSE solitons could also be obtained in
fiber lasers under certain conditions as long as the gain is balanced by
losses and the gain bandwidth filtering effect could be ignored. Thus,
both GLE and NLSE can be considered to describe the soliton genera-
tion in fiber lasers. Moreover, owing to the birefringence of the single
mode fibers, vector solitons are also supported in single mode fiber
lasers. Vector solitons in fiber lasers are mathematically described by
the coupled GLEs or NLSEs.

Solitons can be experimentally generated by using passive mode
locking technique in fiber lasers. Mode locking produces an initial
optical pulse in the cavity. The pulse is then shaped into solitons under
the balance between the dispersion and nonlinearity, gain, and losses.
Based on the method bright solitons governed by the NLSE, dissipative
solitons governed by the GLE, bright-bright solitons governed by the
coupled NLSEs, and bright-bright vector dissipative solitons governed
by the coupled GLEs were experimentally verified and studied.
Moreover, in the nonmode locking regime, several other kinds of soli-
tons that were theoretically predicted under certain conditions have
also been experimentally observed, such as dark solitons, polarization
domain wall solitons, vector dark-bright solitons, and so on. Besides,
another intrinsic feature of solitons in fiber lasers is multiple soliton
formation and soliton interactions. A typical pattern of multiple soli-
ton interactions is bound solitons or also named as soliton molecules.
In Secs. II–VIII, we will present a comprehensive review of theoretical
and experimental investigations on the solitons formed in fiber lasers.

II. FUNDAMENTAL SOLITON GENERATION IN FIBER
LASERS

When propagating in optical fibers, the properties of optical
pulses are undergoing complicated changes due to chromatic disper-
sion and intermodal delay effects. Typical physical effects influencing
pulses include fiber dispersion and nonlinearity.

Dispersion is an intrinsic feature of materials. In optical fibers,
dispersion is defined as the dependence of the phase velocity on the
optical frequency or the propagation mode. In single mode optical
fibers (SMFs), there are mainly two types of dispersions that need to
be considered, namely, the chromatic dispersion and the polarization
mode dispersion. The chromatic dispersion of an optical medium is
the phenomenon that the phase velocity and group velocity of light
wave depend on the optical frequency. Generally, there are two sources
of chromatic dispersion, namely, the material dispersion and the wave-
guide dispersion. Material dispersion depends on the materials used to
make the optical fiber. For most fibers, material dispersion is the prin-
ciple component of chromatic dispersion. The origin of chromatic
dispersion is related to the characteristic resonance frequencies at
which the medium absorbs the electromagnetic radiation through
oscillations of bound electrons. In other words, the refractive index of
optical media is a function of optical frequency of the light wave.

Nonlinear effects in optical fibers are originated from the nonlin-
ear response of polarization to a strong optical field, which is another
factor that must be taken into account in the study of pulse propaga-
tion in optical fibers. As optical fibers are made of silica, which has an
amorphous microstructure, the lowest-order nonlinear effects in opti-
cal fibers are the third-order effects. In optical fibers, there are various
types of third-order nonlinear effects, such as optical Kerr effect, third-
harmonic generation, four-wave mixing, stimulated Raman scattering,
and stimulated Brillouin scattering. The phase matching condition
must be fulfilled for the occurrence of some third-order nonlinear
effects. The optical Kerr effect is one of the most common nonlinear
effects in optical fibers because the phase match condition for optical
Kerr effect is automatically fulfilled. Thus, optical Kerr effect is always
considered in the study of nonlinear pulse propagation in optical
fibers. Optical Kerr effect originates from the intensity dependence of
the refractive index which is given by
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n Ið Þ ¼ n0 þ n2I; (1)

where I is the optical intensity, n0 is the linear index of refraction, and
n2 is the nonlinear refractive index of the medium. The value of n2 can
be measured with the z-scan technique.21 The optical Kerr effect has
an instantaneously occurring nonlinear response and corresponds to
the intensity variation of the light. Thus when we consider intense pulse
propagation in optical fibers, both fiber dispersion and nonlinearity
must be considered. Derived from the well-known Maxwell equation
with several approximations, optical pulse propagation in single mode
fibers is described by the nonlinear Schrodinger equation as follows:

@A

@z
¼ �i

b2
2

@2A

@t2
þ icjAj2A; (2)

where A is the slow varying envelope of the optical pulse, c is the non-
linear parameter, b2 is the second order dispersion coefficient which
corresponds to the group velocity dispersion (GVD) effect. It is noted
that the higher order dispersion effects are omitted. NLSE gives a sim-
ple description over the propagation of an optical pulse in optical
fibers, which takes into account both the GVD and nonlinear effects.
The nonlinear effects always generate a positive frequency chirp in the
pulse and the GVD can introduce either positive or negative chirp,
depending on the sign of GVD. If GVD introduces a negative chirp,
i.e., the b2 < 0, the frequency chirp can be eliminated by the balance
between the nonlinear Kerr effect and the GVD. Under this condition,
the soliton solution can be obtained by solving the NLSE using the
inverse scattering method. Depends on the signature of b2, NLSE has
different soliton solutions. The soliton solutions in the optical fibers
will be discussed later.

Considering pulse propagation in fiber lasers, apart from the
propagation in passive single mode fibers, pulse propagation in the
gain fibers and the laser output loss must also be taken into account.
Thus, the Ginzburg–Landau equation is used to describe the pulse
propagation in fiber lasers

@A

@z
¼ �b1

@A

@t
� i

2
b2

@2A

@t2
þ ic Aj j2Aþ g � a

2
Aþ g

2X2
g

@2A

@t2
; (3)

where g represents the gain and a represents the loss, and Xg is the
bandwidth of the laser gain. In a fiber laser system, if the effect of gain
and gain bandwidth can be neglected, the equation will be simplified
to NLSE.

A. Bright solitons and passive mode locking technique

Mathematically, according to the NLSE, a bright soliton is a solu-
tion of the NLSE when b2 < 0, namely, the fiber dispersion is anoma-
lous. The fundamental bright soliton solution is given by22

Aðz; tÞ ¼
ffiffiffiffiffi

2c
p

g expf�4iðn2 � g2Þz
�2int þ iugsech 2g t � t0ð Þþ8gnzð Þ; (4)

where g, n, u, and t0 are all constants and b2¼ �2.
As shown in Fig. 1, in the context of optical fibers, bright solitons

are in the form of short pulses with high peak intensities. It is noted
that the bright soliton solution of NLSE describes the pulse propaga-
tion in optical fibers that are a conservative system, where no gain and
losses exist. In fiber lasers, pulse propagation experiences gain and

losses; NLSE is thus extended to Ginzburg–Landau equation where
gain and gain bandwidth effects have to be taken into account.
However, in certain conditions, the solitons in fiber lasers can also be
described by NLSE as long as the gain is balanced by the losses and the
gain bandwidth effect can be ignored.

A typical method that can generate bright solitons in fiber lasers
is based on the mode locking technique. A comprehensive review on
the mode locking techniques in lasers can be found in Ref. 23.
Depending on the mode locking methods used, laser mode locking
can be classified as active mode locking and passive mode locking.
Active mode-locking of a fiber laser is typically obtained by inserting a
modulator into the cavity to modulate either the amplitude or the
phase of the intracavity optical field at a frequency that equals to inte-
ger multiples of the cavity longitude mode spacing.24 Active mode
locking is a preferred choice for producing ultralow-jitter pulses at
high repetition rates as high as tens of GHz with pulse duration in the
picosecond range. However, as there are too many pulses in the lasers,
which share the energy of the intra cavity laser beam, the energy of
each pulse is weak and the pulse width is correspondingly broad.
Moreover, a broad pulse width also means low peak power. Due to the
low peak power of the active mode-locked pulses, nonlinear self-phase
modulation (SPM) is so weak that soliton shaping is almost impossible
in most actively mode locked lasers. Moreover, drop-out problem also
exists in the actively mode-locked fiber lasers owing to the gain com-
petition between the pulses.25,26 To overcome the shortcomes of active
mode locking, passive mode locking of lasers is therefore proposed
which may solve these problems.

Passive mode-locking is a widely used mode-locking technique
which does not require any externally modulated media or devices27–29

but only employs a saturable absorber (SA) in the fiber laser cavity to
realize the mode-locking. A typical passively mode locked fiber laser
which can generate solitons is shown in Fig. 2. By inserting an SA into
the laser cavity, passive mode locking is capable of producing ultra-
short optical pulses, because SAs are able to modulate the resonator
losses much faster than any electronic modulator. A SA usually refers
to an optical device or medium that exhibits an intensity-dependent
transmission,30 which selectively absorbs low intensity light and trans-
mits light with sufficiently high intensity. SAs in passively mode-
locked lasers could be divided into two categories: Artificial SAs based
on nonlinear light interference and real SAs based on material’s
nonlinear optical absorption property. A typical artificial saturable
absorber is the nonlinear polarization rotation (NPR) technique,

FIG. 1. A typical bright soliton solution of Eq. (4) with c ¼ 2, g ¼ 1/2, n ¼ 1, and
t0 ¼ 0. (a) Bright soliton solution. (b) Evolution of a bright soliton.
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which is normally realized by inserting a polarizer in the fiber cavity.
Thus, the solitons generated are linear polarized. These linear polar-
ized bright solitons are defined as scalar solitons to distinguish with
vector solitons. NPR technique was first successfully employed to
mode lock fiber lasers in 1992. Since then solitons formed in fiber
lasers mode-locked by the NPR technique have been intensively inves-
tigated.31–35 A great number of related interesting properties have
been revealed and the corresponding physical mechanisms have been
explained, such as Kelly sidebands,36 multiple soliton formation,37–39

soliton energy quantization,39–41 and soliton interaction.42–44 For the
real saturable absorbers, semiconductor saturable absorber mirrors
(SESAMs) discovered by Keller et al. in the 1990s are widely used in
fiber lasers.45 Apart from the SESAMs, there are several other types
of mode lockers discovered recently, like carbon nanotubes,46–66

graphene,67–105 black phosphorus,106–127 and other graphene-like
two-dimensional materials.128–135 Discovery of the 2D materials based
saturable absorbers significantly enhanced the study of the ultrashort
pulse lasers and solitons in fiber lasers. Bright solitons have been so far
observed in mode locked fiber lasers with various kinds of saturable
absorbers.

Bright solitons governed by the NLSE are the first fundamental
solitons verified experimentally in fiber laser systems. With different
mode locking techniques, one can obtain the mode locked pulses with
different pulse widths and stabilities in a fiber laser, but as long as soli-
tons are formed, the influence of the specific mode locking technique
on the general properties of solitons is subtle. In general, mode-
locking can be considered as an effective approach to generate bright
solitons in fiber lasers. As the mode-locking technique develops, bright
solitons with new features and properties could be further discovered.

B. Dark solitons

Dark solitons are local pulses that appear as “holes” on a continu-
ous wave background. A dark soliton is formed in optical fibers with
normal dispersion and is also governed by the NLSE. In 1973, by using
the inverse scattering method, Zakharov and Shabat obtained the dark
soliton solutions with the boundary condition jAðx; tÞj ! 1; At ! 0
(At refers to the first-order partial derivative of A with respect to t) as
t ! 61 and they can be written as136

Aðz; tÞ ¼
ffiffiffiffiffiffiffi

� 2

c

r

ðkþ ivÞ2 þ exp f2vðt � t0 � 2kzÞg
1þ exp f2vðt � t0 � 2kzÞg ; (5)

where k2 þ v2 ¼ 1. A typical dark soliton solution is shown in Fig. 3.
According to the minimum pulse intensity, dark solitons can be

divided into black solitons and gray solutions. The soliton shown
above is known as a gray soliton. The black solitons with the boundary
condition were given by Menza and Gallo in 2007.137 In 2007,
Takhtajan and Faddeev got the dark N-soliton solutions.138 Gredeskul
and Kivshar theoretically predicted that different from the NLSE type
of bright solitons, whose formation requires a certain fixed pulse inten-
sity threshold, the formation of the NLSE type of dark solitons could
have no threshold.139 A comprehensive review on the dark solitons,
which includes the physical origin and properties of dark solitons in
optical fibers, was finished by Kivshar in 1998.140

In addition of the above-mentioned theoretical studies, there are
numerical studies on the dark solitons in optical fibers141–143 and fiber
lasers.144–146 However, experimental observation of dark solitons in
optical fibers and fiber lasers are still challenging. In optical fibers,
dark solitons were first experimentally observed by utilizing specially
shaped antisymmetric input pulses at a wavelength of �617 nm in
1988.147 In fiber lasers, it is well known that mode-locking technique
can be used to generate “bright pulses.” However, there is no similar
technique to generate dark pulses. Nevertheless, according to
Kivishar’s prediction, in a normal dispersion cavity fiber laser a small
intensity dip embedded in a high intensity continuous wave back-
ground could evolve into dark solitons. In 2009, a scalar dark pulse
train was first observed in a continuous wave fiber laser by Zhang
et al.148 Although the measured optical spectrum of the laser emission
exhibited clear characteristics of the dark solitons numerically simu-
lated for the fiber laser, the measured dark pulses had a broad pulse
width which could not be verified as dark solitons, as pointed out by
Coen and Sylvestre.149 The dark solitons related to the measured opti-
cal spectra would have several picosecond pulse width, which cannot
be detected by the low speed detecting system used in the experiment.
Thanks to the rapid advance of the ultrafast optoelectronics technol-
ogy, Tang et al. repeated the experiment using an ultrahigh-speed
real-time electronic detection system in 2013 and revealed the detailed
properties of the dark solitons formed in fiber lasers.150 According to
Tang et al., a small initial intensity dip in the laser cavity could be
evolved into dark solitons, and with a high speed detection system
these dark solitons can be experimentally observed.150 The dark

FIG. 2. A typical schematic diagram of a soliton fiber ring laser operating at
1550 nm based on passive mode locking technique. EDF: Erbium-doped fiber;
WDM: Wavelength division multiplexer; PC: Polarization controller; OC: Optical cou-
pler; ISO: Isolator; and OSA: Optical spectrum analyzer.

FIG. 3. A typical dark soliton described by Eq. (5) with v ¼
ffiffi

3
p

2
, k ¼ � 1

2
, and

c ¼ �2. (a) Dark soliton profile. (b) Evolution plot of the dark soliton.
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solitons were always automatically formed in the cavity once the intra-
cavity laser intensity was sufficiently strong, which is different from
the bright solitons formation in a fiber laser, where in order to form
the bright solitons a mode locked pulse needs to be formed in prior.
As the dark solitons can be easily formed, and in a fiber ring laser there
are plenty sources, e.g., the environmental noise and the mode beating,
that could cause weak intensity dips, many dark solitons were simulta-
neously formed in the laser cavity. The dark solitons are randomly
embedded in the laser emission. However, due to their narrow pulse
width they are undetectable with even a moderate (<15GHz) speed
detection system. Under sufficiently strong pumping where dark
solitons have bunched together and formed giant dark pulses, their
existence would also become detectable even with 1GHz bandwidth
detection systems, as reported previously.148 Tang further study the
dark soliton formation in fiber lasers without antisaturable absorber
and verified that dark soliton formation is a general feature of fiber
laser.151 In 2014, a 280GHz dark soliton fiber laser was reported which
opens the study of high repetition rate dark solitons.152 The modula-
tion instability induced in a fiber loop cavity was adopted to increase
the repetition rate of the dark solitons. The repetition rate of the dark
solitons was tunable by adjusting the power of the pump laser. This
finding may enhance the dark soliton’s potential for optical communi-
cation applications in the future.

In general, study of dark solitons in the fiber lasers is still at its
early stage. Comparing to the bright solitons, dark soliton pulses show
more stable behavior under perturbations, including amplifier noise,
fiber losses, and so on. The dark solitons are also less sensitive to the
backgrounds and lower pulse shape distortion. Study of the dark soli-
tons would be a promising field of the optical solitons and may find
applications in optical signal processing, optical computing and optical
communications, and so on.

III. VECTOR SOLITONS IN FIBER LASERS

Vector solitons generally refer to solitons that have multiple
mutually coupled components. In fiber optics, vector solitons can be
formed in weakly birefringent single mode optical fibers (SMFs),
where the light propagation is mathematically described by the cou-
pled NLSEs. Theoretically, different forms of vector solitons, such as
the bright-bright solitons, dark-bright solitons, and dark-dark solitons,
have been predicted for the coupled NLSEs. Mathematically, coupled
NLSEs are integrable if the nonlinear terms would have the same mag-
nitude of coefficients. When both of the nonlinear terms are focusing,
the integrable case is known as the focusing Manakov model, where
the bright-bright soliton solutions can be found.153 When both of the
nonlinear terms are defocusing, the integrable case is called the defo-
cusing Manakov model, where the dark-bright solitons154 and dark-
dark solitons154–156 can be found. If the nonlinear terms are a mixture
of focusing and defocusing, then bright-bright solitons,157,158 dark-
bright solitons,159 and dark-dark solitons154,156,160–163 can be found.

The light propagation in weakly birefringent single mode fiber is
described by the coupled NLSEs as follows:

@u

@z
¼ ibu� d

@u

@t
� ib2

2

@2u

@t2
þ ic juj2 þ 2

3
jvj2

� �

uþ i
c

3
v2u�;

@v

@z
¼ ibv þ d

@v

@t
� ib2

2

@2v

@t2
þ ic jvj2 þ 2

3
juj2

� �

v þ i
c

3
u2v�;

(6)

where u and v are the two normalized slowly varying pulse envelopes
along the slow and the fast axes, u� and v� represent their conjugates,
2b ¼ 2Dn/k is the wave-number difference, and 2d ¼ 2bk/2pc is the
group velocity difference. The additional terms v of the first term on
the right hand side refers to the cross phase modulation effect. The
second term of the right hand side refers to the effect of four-wave
mixing.

Furthermore, if a light pulse is propagating in a weakly birefrin-
gent cavity fiber laser where the laser gain and losses must also be con-
sidered, the NLSE can be further extended to the coupled GLEs as
follows:
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¼ ibu� d
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@t2
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þ i
c
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2X2
g

@2u

@t2
;

@v

@z
¼ �ibv þ d
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3
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þ i
c

3
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2
v þ g

2X2
g

@2v

@t2
: (7)

The coupled GLEs are traditionally used to model the vector soliton
formation and dynamics in dissipative nonlinear systems. The equa-
tions can also be used to study the vector soliton formation in fiber
lasers. However, it is to note that a soliton circulating in a laser cavity
is also subjected to the actions of other cavity components and feed-
back. These effects are not considered in the coupled GLEs above.

A. Bright-bright vector solitons

Bright-bright vector solitons refer to the vector solitons with
bright pulse in both of the two polarization components. In 1973,
Manakov studied the Manakov system

iut þ uxx þ ðjuj2 þ jvj2Þu ¼ 0

ivt þ vxx þ ðjuj2 þ jvj2Þv ¼ 0
(8)

and obtained the bright-bright soliton solution as

u; vð ÞTðx; tÞ ¼ 2gsech 2gðx þ 4nt � x0Þ½ �e�2inx�4i n2�g2ð Þt

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja1j2 þ ja2j2
q a1; a2ð ÞT ; (9)

where the two real parameters n and g determine the velocity and
amplitude, respectively, x0 is the coordinate at t¼ 0, and a1 and a2 are
two complex constants. A typical bright-bright vector soliton is shown
in Fig. 4.

Experimentally, bright-bright vector solitons can be simply gen-
erated in passively mode-locked fiber lasers, which has been inten-
sively studied.71,84,89,93,98–100,109,144,164–219 To generate the vector
solitons, all the fibers and passive components of the mode locked
fiber lasers have to be polarization insensitive. The main challenge for
achieving vector soliton operation of a fiber laser is to find an appro-
priate saturable absorber that has polarization insensitive saturable
absorption. In fiber lasers, SESAM is the earliest proposed SA which
has a polarization independent saturable absorption; vector soliton
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properties in SESAM fiber lasers have been verified and intensively
investigated.20–24

In the last decade, carbon based SAs, represented by carbon
nanotubes, with low cost and ultrafast recovery time were proposed
and applied in the ultrafast lasers. Since 2009, graphene and graphene-
like 2D materials as a group of novel wideband saturable absorbers with
low cost, high damage threshold, large modulation depth, and easy fab-
rication were proposed and widely studied in the mode-locked fiber
lasers. Similar to SESAM, these SAs are also polarization independent
which supports vector soliton formation in fiber lasers. So far, vector sol-
itons have been observed in ultrafast fiber lasers passively mode locked
by carbon nanotubes,181,187 graphene,71,84,89,93,98–100,198 PbS quantum
dots,183 black phosphorus,109 and so on. Vector solitons are not only
observed in ytterbium-doped fiber lasers and erbium-doped fiber lasers
but also in mid-infrared mode locked fiber lasers.183,204,208,217

It is noted that bright-bright vector solitons produced by the cou-
pled NLSEs may be asymmetric, with different energies and propaga-
tion constants in the two components. Bright-bright vector solitons
with internal dynamics were studied by Kaup et al.220 Indeed, depend-
ing on the net cavity birefringence and coupling strength between the
two components, experimentally the two orthogonal polarization
components of the formed vector solitons could have different phases
and intensities group velocities.

In a weak linear birefringence cavity, vector solitons will experi-
ence coherent energy exchange caused by the four wave mixing that
was observed by Zhang et al.173 In a birefringent fiber laser cavity
induced solitons could also be formed.221

Besides, depending on the cavity birefringence and cross-
polarization coupling strength, vector solitons formed can be classified
as polarization locked vector solitons, polarization rotation vector
solitons, and group-velocity locked vector solitons and so on. Vector
solitons with a uniform, nonevolving polarization state during the
propagation is referred to as polarization locked vector solitons or
phase locked vector solitons.167,168,172,181,222–224 Polarization locked
vector solitons were first experimentally reported and investigated by
Cundiff et al. in a SESAMmode locked fiber laser.222 They presented a
comprehensive study on polarization locked vector solitons in fiber
lasers in 2000,167,168 which reveals that the two orthogonal polarization
components of the polarization locked vector solitons have6p/2 rela-
tive phases. In 2008, high order polarization locked vector solitons in a
SESAMmode locked fiber laser were reported.172

Polarization rotation vector solitons are theoretically predicted by
Afanasjev.225 The polarization rotation period of a polarization rota-
tion vector soliton formed in a fiber laser is equal to (or a multiple of)
the period of the cavity round trip time. Although the total soliton
intensity is still uniform, the pulse intensity along two orthogonal
polarization components varies with a certain period. The intensity of
the pulses typical alters among two or several values, which is different
from that of polarization locked vector solitons. Polarization rotation
is a general feature of the vector solitons in fiber lasers, which has been
observed in erbium-doped fiber lasers mode locked by SESAM,174,178

graphene,99 carbon nanotube,213 and so on. Sergeyev et al. investigated
the polarization dynamics of vector solitons in a carbon nanotube sat-
urable absorber mode locked fiber laser and it was found that the soli-
tons have a locked and processing polarization states.226

Another type of vector solitons is the group velocity locked vector
solitons. Formed in a highly birefringent fiber, the two orthogonally
polarized components of the vector soliton can trap and overcome the
group-velocity difference through the nonlinear cross coupling.227

This type of vector solitons has been observed experimentally in fiber
transmission systems. Group velocity locked vector solitons (GVLVSs)
are reported as high order GVLVS,228,229 dissipative GVLVS,200,230,231

and bound state of GVLVS214 and so on.

B. Dark-bright vector solitons

In 1997, Sheppard and Kivshar154 investigated the NLSEs

i
@~e

@z
þ 1

2

@2~e

@t2
� j~ej2~e ¼~0; (10)

where z and t are distance and time coordinates, respectively, and~e
¼ ðeþ; e�ÞT refers to the transversely polarized light. By Hirota’s
bilinear method, the authors derived the dark-bright soliton solutions
as the form of

eþ ¼ s i sin /þ cos/tanh aðt � bzÞ½ �
� �

eictþi c2

2þs2½ �z;

e� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 cos2/� a2
p

sech aðt � bzÞ½ �eibtþi b2�a2

2 �s2½ �z;
(11)

where a, b, c, and s are constants satisfying a2 þ ðc2 � b2Þ � s2 and
/ ¼ arctan c�b

a
. A typical dark-bright vector soliton is shown in Fig. 5.

For the mixed case, Vijayajayanthi, Kanna, and Lakshmanan got
the dark-bright soliton solutions in 2008.159 The existence of dark-
bright solitons in the single mode fibers is first theoretically predicted

FIG. 4. The bright-bright soliton described by Eq. (9) with a1 ¼
ffiffiffi

3
p

; a2 ¼ 1;
g ¼ 0:5; n ¼ 1; x0 ¼ 0. (a) Bright-bright soliton profiles. (b) Evolution plot of the
bright-bright vector soliton.

FIG. 5. The dark-bright soliton solution of Eq. (11) with a¼ 0.8, b ¼ �0.2, c¼ 0.2,
and s ¼ 2. (a) Bright-bright soliton solution. (b) Evolution plot of bright soliton.
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by Christodoulides.232 Based on the coherently coupled NLSEs, he
pointed out that under a weak birefringence, the dark-bright vector
solitons can exist in different dispersion regimes with different proper-
ties. In normal dispersion regime, the dark soliton plays a dominant
role, and in the anomalous dispersion regime the bright soliton domi-
nates. Their predictions provide a guideline for the experimental study
on the dark-bright solitons in fiber lasers.

According to the theoretical prediction of Christodoulides, there
are two crucial conditions for the dark-bright soliton formation in
fiber lasers. First, the birefringence of the fiber cavity must be suffi-
ciently weak so that the two polarization components of the light can
be strongly coupled, and second, the energy of the intra cavity should
be sufficiently high to support the formation of dark solitons. Similar
to the case of scalar dark soliton, the main challenge in the dark-bright
soliton experiment study is how to detect the existence of the dark soli-
tons as they are difficult to be observed in the time domain. Although
there are several experimental observations in fiber lasers,233–244 in
which they claim that the “dark-bright pulse” was obtained. However,
these reported pulses were not verified as dark-bright solitons. Owing
to the limitation of the detection system, there are still no systematic
experimental studies on the formation of the dark-bright solitons in
fiber lasers, to the best of the authors’ knowledge.

To generate the dark-bright vector solitons, both dark pulse and
bright pulse must be automatically obtained in the cavity. Therefore,
proper cavity dispersion must be chosen. Based on the previous
experiments, it was found that in all anomalous dispersion cavities,
dark solitons were difficult to be achieved, while bright pulses cannot
be shaped into solitons without mode locking in all normal dispersion
cavities. A dispersion-managed cavity is thus necessary in order to
achieve the dark-bright soliton operation of the fiber lasers. The
authors have experimentally investigated dark-bright solitons in the
fiber lasers. We found that stable dark-bright solitons could be formed
in fiber lasers when the net cavity dispersion is set near the net zero
point. Technically, this was achieved with a dispersion-managed laser
cavity. Another essential condition for dark-bright soliton formation is
low birefringence of the cavity so that the coherent coupling could
occur between the two polarizations of the light in the fiber. A near
zero dispersion regime is preferred to keep the balance between the
dark component and the bright component. Fulfilling the above
conditions, a stable dark-bright soliton pulse train can be generated.
Through the above experimental studies, the mechanism of the dark-
soliton generation is also revealed. The dark-bright soliton formation
is due to the strong cross polarization coupling of light in the fiber
lasers, which coincides with the theoretical prediction of
Christodoulides.232 The generation of stable dark-bright soliton pulses
provides a potential on the study of the vector dark-bright solitons and
other vector solitons for optics communications.

C. Dark-dark vector solitons

Dark-dark soliton solutions appear in the case of defocusing
Manakov model and the mixed focusing and defocusing nonlinearity.
For the first case, Radhakrishnan and Lakshmanan studied the cou-
pled equations as follows:

iuz � utt þ 2lðjuj2 þ jvj2Þu ¼ 0;

ivz � vtt þ 2lðjuj2 þ jvj2Þv ¼ 0;
(12)

by Hirota’s bilinear method in 1995.155 They derived the dark-dark
solitons

uðz; tÞ¼�s1

2
ð1þZgÞ�ð1�ZgÞ tanh

P1t�X1zþn01
2

� �� �

� ei l1t�ðk�l21Þzþw0
1½ �;

vðz; tÞ¼�s2

2
ð1þZhÞ�ð1�ZhÞ tanh

P2t�X2zþn02
2

� �� �

� ei l1t�ðk�l21Þzþw0
1½ �;

(13)

where l1, l2, w
0
1; w0

2, P1, X1, and n
0
1 are all real constants, s1, s2, Zg, and

Zh are all complex constants, and jZg j ¼ jZg j ¼ 1. A typical dark-dark
vector soliton is shown in Fig. 6.

For the second case, Ohta, Wang, and Yang solved the N-dark-
dark soliton solutions by Hirota’s bilinear method in 2011.160 Vector
dark solitons in optical fibers have been theoretically predicted for two
decades.245 Vector dark pulses were reported by Zhang et al.246 In 2015,
Guo predicted the energy exchange of dark solitons in fiber lasers.144

However, the soliton properties of the pulses have not been confirmed
owing to the low speed detecting system. Dark vector solitons so far
have not been experimentally verified in the fiber laser systems. It would
be a potential study direction on the soliton fiber lasers.

IV. DISSIPATIVE SOLITONS IN FIBER LASERS

Dissipative solitons are localized structures of an electromagnetic
field that are balanced through an energy exchange with the environ-
ment in the presence of nonlinearity, dispersion, or diffraction.247 The
concept of dissipative solitons is not restricted to optics, which can be
extended to physics, biology, andmedicine and so on. The most prom-
inent feature of dissipative solitons is that they exist only when there is
a continuous energy supply from an external source. In the fiber lasers,
conventional solitons are formed due to the balance between anoma-
lous fiber dispersion and self-phase modulation (SPM), whose proper-
ties are determined by the nonlinear Schr€odinger equation, while
dissipative solitons are formed as a result of the mutual nonlinear
interactions among the normal cavity dispersion, SPM, effective gain
bandwidth filtering, and gain saturation. Properties of the dissipative
solitons are determined by the Ginzburg–Landau equation. As a result
of different soliton formation mechanism, the dissipative solitons

FIG. 6. The dark-dark soliton solution of Eq. (13) with s1¼4
ffiffiffi

2
p

þ4
ffiffiffi

2
p

i, s2¼4
ffiffiffi

2
p

�4
ffiffiffi

2
p

i, Zg¼cos 1
2
þ isin 1

2
, Zh¼cos 1

4
þ isin 1

4
, P1¼X1¼X2¼1, X2¼2, and

n01¼n01¼0. (a) Dark-dark vector soliton profiles. (b) Evolution plot of the dark-dark
vector soliton.
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exhibit remarkably distinct properties from those of the conventional
solitons.

A. Ginzburg–Landau equation and dissipative soliton

solution

The Ginzburg–Landau equation, which is a nonintegrable sys-
tem, can be seen as the nonlinear Schr€odinger equation with gain and
loss. In 2016, the bright solitons and dark solitons were demonstrated
by Mirzazadeh et al.248 The earlier study of the bright-soliton-like sol-
utions was given by Pereira and Stenflo in 1977.249 The works of Liu,
Li, and Tian demonstrated the dark-soliton-like solutions in 2009.250

Considering the Ginzburg–Landau equation, If g¼ 0 and a ¼ 0,
the equation returns back to the NLSE. According to the study of
Pereira and Stenflo,249 an exact solution of GLE in the anomalous dis-
persion regime is a chirped hyper-secant pulse which is given by

lðn; sÞ ¼ Ns sech ptð Þ exp½iKsn� iq ln cosh psð Þ
	 
�; (14)

where n ¼ zjb2j
T2
0
; s ¼ T

T0
; u ¼ ðcT

2
0

jb2jÞ
1=2. Ns, p, q, and Ks are constants

depending on the parameter d ¼ gT2
2

jb2j. Equation (14) is a dissipative sol-

iton solution. Solitons whose dynamics are described by one-
dimensional GLE are known as the scalar dissipative solitons. Vector
dissipative solitons are governed by a coupled GLE.

Strictly speaking, solitons in the fiber lasers are all dissipative
owing to the existence of the gain fiber and losses. As NLSE based
bright solitons are not supported in all normal dispersion regime,
NLSE type solitons were experimentally studied in mode locked fiber
lasers with anomalous dispersion. While dissipative solitons are inten-
sively studied in the mode-locked fiber lasers with all normal disper-
sion.251 Dissipative solitons in the fiber lasers are initially named as
gain-guided solitons when they were first observed in fiber lasers with
net normal dispersion.252–255 In 2012, Grelu and Akhmediev reviewed
the recent development of dissipative solitons in lasers.247 Therefore,
we will not discuss it further here.

B. Flat-top dissipative soliton

Dissipative solitons are closely related to the high-energy pulses
in the fiber lasers owing to its intrinsic feature.256–267 As the develop-
ment of the dissipative soliton research, an interesting pattern called
dissipative soliton resonance (DSR) was reported. A DSR pulse is a
complex of two interacting dissipative fronts. Under small gain condi-
tions, two fronts are closely connected, forming a plain dissipative soli-
ton. With increasing gain, the resonance effect limits the growth of
peak power, while allowing for two fronts moving apart from each
other. The pulse generates a plane wave in the center, which strongly
binds two fronts together. The central plane wave extends, and the
distance between the two fronts grows linearly and infinitely with the
energy supply, whereas the fronts themselves do not change. The cen-
tral plane wave and the fronts were also found to feature different
chirps: A moderately low linear chirp throughout the extended central
plane wave and large linear chirps across both fronts.

Dissipative soliton resonance is an interesting phenomenon in
fiber lasers with dissipative solitons and has been frequently observed
and reported.90,188,218,257,268–328 The concept of dissipative soliton reso-
nance was first proposed by Chang in 2008.269,270 They theoretically
predicted existence of dissipative soliton resonance in a mode-locked

fiber laser, which enables an almost infinite boost in the pulse energy
without wave breaking.278 They also predicted that DSR operation
could be obtained in both anomalous and normal dispersion
regions.269,272 Experimentally in the fiber lasers, DSR phenomenon
leads to the formation of flat-top dissipative solitons. In 2009, Wu et al.
observed DSR operation in a 1.56lmnormal-dispersion erbium-doped
fiber laser mode-locked by nonlinear polarization rotation.273 The pulse
width of the as observed flat top solitons increased as the pump power
increased. It was claimed that the DSR occurs when the pulse peak is
clamped in the laser cavity. In 2012, Luo et al. reported the pulse
dynamics operating in the DSR region of a ring laser, which showed
that DSR phenomenon transits a sech-like pulse to flat top dissipative
soliton as the input power increased.276 In 2014, Mei et al. demon-
strated the generation of width- and amplitude-tunable DSR pulses by
a dual-pump passive mode-locked erbium-doped fiber laser.325 A
numerical study on the DSR in the fiber laser showed that DSR-type
flat-top dissipative soliton generation is attributed to the peak power
clamping effect by inducing spectral filtering into the laser cavity.288

DSR type flat-top pulses were continuously studied because of
their high pulse energy. Krzempek et al. successfully realized high-
power pulse generation in figure-8 Er:Yb double-clad fiber laser with a
2.3 lJ pulse energy and a 455ns pulse width.293 Semaan et al. further
increased the DSR pulse energy to as high as �10 lJ with a pulse
width of 416ns from figure-8 double-clad Er:Yb fiber laser.297 Du
et al. proposed a short-length nonlinear optical loop mirror to signifi-
cantly boost the peak power of the DSR pulse and achieved 100 ps
DSR pulses at a wavelength of 1.56lm with an average power of
1.2W and a peak power of 700W.308DSR pulses in 2lm all-fiber laser
were recently reported by Xu et al. with 6.19 ns pulse width and 19.51
nJ pulse energy290 and they further obtained 1.96lm DSR pulses with
a tunable pulse width of 3.74–72.19 ns and a peak power of only
0.56W.301 Du et al. reported direct generation of a high power and
large energy dissipative soliton resonance in a thulium-doped double-
clad fiber laser with pulse energy of 353 nJ.324 Recently, DSR is
reported in a holmium doped fiber laser,329 which further proves that
DSR is an intrinsic feature of the mode locked fiber lasers.

In the fiber lasers, another flat-top solitons based on GLE, which
was named as kink-antikink bound states, was theoretical predicted by
Malomed.330 Experimentally, this type of soliton was observed
together with polarization domain walls in the fiber lasers, which will
be further discussed in Sec. VII.

V. BREATHERS: DISPERSION-MANAGED SOLITONS

Breather as an essential extension of the concept of fundamental
single-soliton state is an important class of solutions in nonlinear
Schrodinger equation. Breather is the periodic solution with two types:
Standing ones and traveling ones. The first was obtained by
Kuznetsov331 In 1979, Ma studied the focusing NLS equation (2) and
derived the regular breather332 as follows:

A z; tð Þ ¼ eixz d þ
4�b

d2
� 4in

d2
leixz þ l�e�ixz
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lðtÞ ¼ lð0Þeð�4ivn�2id2Þz;
njlj2
4v2

¼ e4vz0 ; b ¼ iðleixz � l�e�ixzÞ:

Later, Akhmediev also derived the breather solution in 1987.333

Recently, dynamics of nonlinear Schr€odinger breathers in a potential
trap was reported by Malomed et al.334 A typical breather solution is
shown in Fig. 7.

Experimentally, two-soliton or N-soliton breathers are intrinsi-
cally unstable in a fiber laser due to the perturbations of the cavity
components and gain and losses, so far they have not been observed in
fiber lasers; therefore, we did not specifically discuss the case. In the
mode locked fiber lasers, breathers were generated in the oscillator
with dispersion-management technique. As discussed in Sec. II, con-
ventional solitons governed by NLSE are generated and studied in the
fiber laser with all anomalous dispersion. While the dissipative solitons
are studied in all-normal dispersion cavity. Breathers are studied in a
dispersion-managed cavity, in which fibers with negative dispersion
and positive dispersion are distributed. The generated pulses are com-
pressed and stretched in different dispersion regime, which is named
as stretch pulse generation in fiber lasers. Stretch pulse technique, first
proposed by Tamura et al.,335 by using the dispersion management,
is capable to support the generation of ultrashort pulse with pulse
duration of<100 fs or large single pulse energy>1 nJ in the fiber laser
cavity. Dispersion managed soliton is intensively studied in mode
locked fiber lasers.87,177,196,336–358 A detailed review on the dispersion-
managed solitons in fiber lasers was reported by Turitsyn et al. at
2012.359

VI. SOLITON DYNAMICS: MULTIPLE SOLITON
INTERACTIONS AND BOUND STATES OF SOLITONS

Soliton dynamics has been a subject of intensive research in fiber
lasers.38,360,361 Harmonic mode-locking,362 period doubling,363 and
soliton pairs364,365 are examples of phenomena that deserved substan-
tial theoretical and experimental efforts. In the case of vector soliton,
Menyuk et al. showed that two orthogonally polarized components of
pulse propagating in a birefringent nonlinear environment can be cou-
pled and propagate with equal group velocity.20 This phenomenon
underlies the formation of vector solitons in the laser cavity. In
multiple-pulse regime typical for cavities with anomalous dispersion,
the vector soliton interaction could lead to a bunch development prop-
agating as an entity at fundamental repetition rate. It was found that
contrary to scalar soliton bunch behavior, the vector solitons exhibit
periodic-like contractive and repulsive motion within the bunch. The

slow response of absorption from mode locker induces an attractive
force between vector solitons resulting in a tight bunch formation with
temporal separation between pulses at a picoseconds scale.179

Therefore, it was established that details of absorption recovery could
be an instrumental for vector soliton control.

In this section, we will briefly review the multiple soliton forma-
tion, and interactions and formation of bound solitons, which is a typi-
cal pattern owing to the effect of soliton interactions.

A. Multiple soliton interactions

Multiple soliton formation in mode locked fiber lasers is a well-
known phenomenon and has been extensively investigated in the
past.43,44,366–371 It has been shown that various mechanisms could lead
to the formation of multiple solitons. These mechanisms include the
wave-breaking effect, the effective spectral filter effect, the soliton peak
clamping effect, and the soliton shaping of dispersive waves. Indeed, in
previous experimental studies on the multiple solitons formed in the
fiber lasers, people have observed various modes of multiple soliton
operation, such as soliton bunches, soliton collisions,372 vibration of
soliton pairs,365 restless solitons,179 bound state of solitons,373,374 and
so on. Some of these effects can be traced back as a result of the direct
soliton interaction of the dissipative solitons, or the dispersive waves
mediated NLSE type of soliton interaction. Therefore, based on the
different features of the multiple soliton operation of a fiber laser, one
can get an insight into the properties of the formed solitons. Recently,
a novel form of multiple soliton operation named as “soliton rain” was
observed by Chouli et al.375–377 It was shown that the multiple soliton
formation in a fiber laser could even manifest the process of the rain-
drop formation in the nature, or in another word, the multiple soliton
interaction in a fiber laser follows the universal statistics of the many
body systems.

To study the multiple vector soliton formation, SESAM was ini-
tially employed in the fiber laser cavity. In an experiment with a
SESAM as the passive mode locker, Zhao et al. have observed a state of
so-called bunched restless vector solitons.179 Vector soliton bunching
controlled by SESAMs with different recovery times was also experi-
mentally investigated by Gumenyuk et al.378 Recently, the mode lock-
ing of fiber lasers with atomic-layer graphene based saturable absorbers
has attracted considerable attention of research.84,89,93,98–100,191,198

B. Bound states of solitons

Bound states of solitons, also named as bound soliton or soliton
molecules, are referred to that two or more fundamental solitons bind
tightly together in the temporal or spatial domain through the direct
soliton interaction. The solitons in the state have not only fixed separa-
tions but also fixed phase differences, and the assembly of the solitons
behaves like a new super-soliton. The formation of bound solitons can
be attributed to the multiple soliton interactions.

In 1994, Haelterman and Sheppard studied the coupled NLSEs
and showed the existence of bound vector solitary waves which had
the possibility to increase the bandwidth of transmission lines.379

Theoretically, formation of bound states of conventional solitons in
the extended nonlinear Schr€odinger equation systems was first pre-
dicted by Malomed.380,381 Afanasjev et al. theoretically studied the sta-
bility of bound state of dissipative solitons in the Ginzburg–Landau
equations.382 Akhmediev et al. also studied the formation of bound

FIG. 7. The breather solution of Eq. (15) with x ¼ 1, d ¼ 1, l ¼ 1, n ¼ 4,
v ¼ 1, and z0 ¼ 0. (a) Breather solution. (b) Evolution plot of breather.
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states of solitons in the complex Ginzburg–Landau equation sys-
tem.383,384 Formation of bound states of solitons in fiber lasers has
attracted considerable interest experimentally. It is anticipated that the
soliton fiber lasers could serve as an ideal testbed for the study on
bound solitons. So far, there have been plenty of reports on bound
solitons72,75,80,86,100,110,130,134,187,348,371,374,385–442 or claimed as soliton
molecules70,74,78,96,131,189,209,214,354,443–463 in mode locked fiber lasers.
The bound states of solitons were first experimentally observed in a
fiber laser mode locked with the nonlinear polarization rotation tech-
nique.374,385 Later, with the development of novel material based real
saturable absorber (SA) mode locking techniques, such as the carbon
nanotube mode locking and 2D-nano-materials mode locking, forma-
tion of bound states of solitons has also been observed in fiber lasers
mode locked with the carbon nanotubes,410,421,423,464,465 gra-
phene,70,72,74,75,78,80,86,96,100 MoS2,

130,131,134 black phosphorus,109,110

and so on. As these saturable absorbers may be polarization indepen-
dent, bound states of vector solitons were also reported in fiber
lasers.100,187,189,209,214,464 Mou et al. reported the existence of bound
vector solitons in a carbon nanotube mode locked fiber laser.464 Luo
et al. observed the group velocity locked vector soliton molecules in a
SESAM mode locked fiber laser.214 Bound vector solitons were also
found with properties of soliton interaction in the laser cavity. In 2016,
Song reported the experimental observation of coexistence and inter-
actions between vector and bound vector solitons in a fiber laser pas-
sively mode locked by graphene.100 Owing to the bound soliton
interactions, bound-bound soliton was also found experimentally.465

VII. POLARIZATION DOMAINWALL AND DOMAIN
WALL SOLITONS

Domain wall (DW) refers to a topological defect that connects
two stable static states of a physical system. Formation of the DWs is
recognized as a spontaneous symmetry-breaking phase transition in a
variety of contexts, which are ubiquitous and generic in the entire field
of nonlinear physics ranging from ferromagnetism theory to optics
and Bose-Einstein condensate, DNA fluctuations, deoxyribonucleic
acid, and string theory. In mathematics, domain wall also appears as
kinks, in close analogy with the celebrated kink solutions of the Sine-
Gordon equation. In 1982, Boiti, Laddomada, and Pempinelli solved
kink solitons by applying the B€acklund transformation to the
NLSE.466 The single-kink soliton solution is given by

Aðz; tÞ ¼ 2r0tanh
ffiffiffi

2
p

r0ðt � t0 þ 4n0zÞ
h i

ei �2n0t�4ðr20þn20Þz�h0½ �; (16)

where r0 and n0 are two real parameters, the real constants h0, t0 fix
the location of the traveling wave at the initial time, b ¼ �2, and c

¼�1. A kink soliton solution is shown in Fig. 8. It is noted that the
kink solitons are different from the dark solitons shown in Fig. 3. As
shown in Figs. 3 and 8, kink soliton has different boundary conditions
as x!61 or t!61. While the dark soliton has the same bound-
ary conditions as x ! 61 or t!61. By a method based on the
association of the Painl�eve test theory and Hirotas bilinear technique,
Pelap and Faye obtain the kink solitons of Ginzburg–Landau equation
in 2004.467

In the field of nonlinear optics, Zakharov and Mikhailov first the-
oretically predicted the existence of stable optical domain walls.468

Formation of optical domain walls is independent of dispersion, purely
through the interaction between the polarization states of two counter-

propagating electromagnetic waves.468 They pointed out that in analog
to the formation of the magnetic domains in the ferromagnetic materi-
als, the cross-interaction between two counter-propagating optical
beams in a third-order nonlinear medium could lead to the formation
of optical polarization domains. Physically, the formation of polariza-
tion domains is due to that a Hamiltonian system in the stable state
must have the minimum energy. Associated with the formation of
polarization domains, it turns out that the domain walls that separate
the polarization domains are a stable localized structure. They consti-
tute a fundamentally new type of solitary waves, known as the polariza-
tion domain wall solitons,469 In optical fibers, Wabnitz and Daino
analytically predicted the possibility of generating domain walls as a
result of polarization switching,470 and Pitois experimentally confirmed
the prediction.471 Later, Haelterman, Sheppard, and Malomed found
that the dynamics of domain wall soliton could be well encapsulated by
the incoherently coupled NLSEs where both the nonlinear polarization
coupling and normal dispersion were taken into account.173,174 In
1990, the domain wall of coupled Ginzburg–Landau equation was
obtained by Malomed, Nepomnyashchy, and Tribelsky.472 In 1994,
Haelterman and Sheppard obtained the domain walls by studying the
coupled NLSEs.473 Malomed also theoretically studied the formation of
domain walls between two traveling waves,474 and the dynamical prop-
erties of domain walls formed in twist single mode fibers.475 It was
shown that domain walls between linearly polarized beams could also
be possible.

Experimental observation of kink solitons in fiber lasers does not
reply on the dispersion of the fiber cavity. And the kink solitons
observed have good long-term stability. It is different from the NLSE
dark solitons, which were only supported in normal dispersion regime
and difficult to be observed. Experimental demonstration of the polari-
zation domains is as early as 1995 when Kockaert et al. experimentally
demonstrated the generation of polarization domains using a spun
fiber.476

So far, a few experimental observations on the polarization
domain formation and polarization domain wall solitons in fiber lasers
are reported.180,246,320,477–483 Zhang et al. reported the experimental
observation of a kind of periodic fast polarization switching between
the two orthogonal linear eigen-polarizations of an erbium-doped fiber
ring laser.246 The experimental studies on the phenomenon suggested
that it could be due to the polarization domain formation in the laser.
In their experiment, the detection system is of 1GHz bandwidth to
monitor the polarization resolved laser emission. Limited by the

FIG. 8. The kink soliton solution of Eq. (16) with r0 ¼ n0 ¼ 1, h0 ¼ t0 ¼ 1. (a)
Kink soliton solution. (b) Evolution plot of kink soliton.
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bandwidth of the detection system, some important features of the
polarization dynamics of the laser could not be observed. In 2014,
Tang et al. experimentally and theoretically studied the polarization
domain formation and domain dynamics in a quasi-isotropic cavity
fiber laser.483 It is shown experimentally that the polarization domain
formation is a general feature of the quasi-isotropic cavity fiber lasers;
it can occur either under the incoherent or coherent coupling between
the two orthogonal linear polarization modes of the lasers. Lecaplain
et al. present a simple theoretical model that explains polarization
switching in fiber ring lasers operating with a normal path-averaged
dispersion and a typical intermediate level of birefringence. The pro-
posed polarization dynamics is based on a type of polarization domain
wall structures and was named as polarization domain wall complex
in fiber lasers.479

Recently, Gilles et al. experimentally demonstrated the existence
of a universal class of polarization domain walls in the form of local-
ized polarization knots in conventional optical fibers.484 It is demon-
strated that how trapping energy in a well-defined train of polarization
domain walls allows undistorted propagation of polarization knots at a
rate of 28GHz along a 10 km length of normally dispersive optical
fiber. These results constitute the first experimental observation of
kink-antikink solitary wave propagation in nonlinear fiber optics,
which may find important applications for the polarization domain
walls in the future.

VIII. SUMMARY AND OUTLOOK

In summary, we have presented divergent aspects of the physics
of optical solitons in fiber lasers, including analytical, numerical, and
experimental results. They demonstrate a number of interesting prop-
erties of these nonlinear waves which can exist on a background being
characterized by a nontrivial phase distribution of the field. In many
cases discussed in this review, these solitary waves not only can be
described analytically and numerically for a variety of nonlinear mod-
els but also, and this is the most amazing fact, be verified, with rela-
tively good accuracy, by employing the fiber lasers as a platform.

In the last decade, development of two-dimensional materials has
enhanced the investigation on solitons in fiber lasers. Searching for
and employing new materials with strong nonlinear properties may
sufficiently speed up this process. Recently, a novel technique named
time-stretch spectroscopy was applied in the analysis of the ultrafast
lasers.485,486 This technique has been applied for the analysis of pulse
growth dynamics,487 soliton molecules,488 soliton burst,489 dissipative
solitons,490 dissipative soliton molecules and interactions,491 rogue
waves,492 and so on. It can be anticipated that time-stretch dispersive
Fourier transform technique will be a powerful tool for the study of
soliton in fiber lasers in the future.
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