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Abstract With the advanced 3D reconstruction and printing technologies, creating

a super-real 3D facial mask becomes feasible at an affordable cost. This brings a new

challenge to face presentation attack detection (PAD) against 3D facial mask attack.

As such, there is an urgent need to solve this problem as many face recognition

systems have been deployed in real-world applications. Since this is a relatively

new research problem, few studies has been conducted and reported. In order to

attract more attentions on 3D mask face PAD, this book chapter summarizes the

progress in the past few years, as well as publicly available datasets. Finally, some

open problems in 3D mask attack are discussed.
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1 Background and Motivations

Face presentation attack, a widely used face attack approach where a fake face of an

authorized user is present to cheat the face recognition system, is one of the greatest

challenges in practice. With the increasing variety of face recognition applications,

this security concern has been receiving increasing attentions [13, 15]. Face image or

video attacks are the two traditional spoofing methods that can be easily conducted

through prints or screens. The face images or videos can also be easily acquired

from the internet with the boosting of social networks. In the last decade, a large

number of efforts have been devoted to face presentation attack detection (PAD) on

photo and video attacks [27, 10, 26, 32, 22, 3, 40, 25, 12, 18, 39, 14, 17, 15, 37] and

encouraging results have been obtained.

Recently, with the rapid development of 3D printing and reconstruction technolo-

gies, creating a super-real 3D facial mask at an affordable cost become feasible. For

instance, to make a customized Thatsmyface 3D mask as shown in Figure 1(a),

the user is only required to submit a frontal face image with a few attributed key

points. The 3D facial model is reconstructed from it and used to print the 3D mask.

Compared with the 2D image or video attacks, 3D masks own 3D structure close

to human faces while retaining the appearance in terms of skin texture and facial

structure. In this case, the traditional 2D face PAD approaches may not work.

Recent research [9] points out that Thatsmyface1 masks can successfully spoof

many exiting popular face recognition systems. On the 3D Mask Attack Dataset

(3DMAD) which is made of Thatsmyface masks, the Inter Session Variability (ISV)

modeling method [36] achieves around a Spoofing False Acceptance Rate (SFAR)

of around 30%. In addition, the REAL-f mask as shown in Figure 1(b) using the

3D scan and ”Three-Dimension Photo Form (3DPF)” technique to model the 3D

structure and print the facial texture, can achieve higher appearance quality and

3D modeling accuracy than the Thatsmyface mask [21]. By observing the detailed

textures such as the hair, wrinkle, or even eyes’ vessels, without the context infor-

mation, even a human can hardly identify whether it is a genuine face or not. As

such, there is an urgent need to address the 3D mask face PAD.

While 3D mask PAD is a new research problem, some work has been developed

and reported which can be mainly categorized as the appearance-based approach,

motion-based approach, and remote Photoplethysmography based approach. Simi-

lar to the image and video attacks, 3D masks may contain some defects due to the

printing quality. Thereby, using the appearance cues such as the texture and color

becomes a possible solution [9]. The motion-based approaches detect mask attacks

by using the fact that current 3D masks mainly have a hard surface and they cannot

retain the subtle facial movements. Motion cues can hardly perform well against 3D

mask attacks since 3D masks preserve both the geometric and appearance properties

of genuine faces. Moreover, the soft silicone gel mask is able to preserve the subtle

movement of the facial skin, which make the motion based approaches less reliable.

1 www.thatsmyface.com
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(a) ThatsMyface Mask (b) Real-F Mask

Fig. 1 High resolution sample images of Thatsmyface mask and REAL-f mask.

As such, it is necessary to develop a new intrinsic liveness cue that can be in-

dependent of the appearance variation and motion patterns of different masks. Re-

cently, studies turned out that the heartbeat signal on a face can be observed through

a normal RBG camera by analyzing the color variation of the facial skin. If it is

applied to the 3D mask PAD, the periodic heartbeat signal can be detected on a

genuine face but not on a masked face since the mask blocks the light transmis-

sion [21]. Due to the uniqueness of this new liveness cues, we categorize is as the

remote Photoplethysmography based approach. The book chapter is organized as

follows. We have given the background and motivations of this research work. Nex-

t, the publicly available 3D mask datasets and evaluation protocols are reviewed in

section 2. In section 3, we discuss the methods developed in three categories for face

PAD, namely appearance based, motion-based, and remote photoplethysmography

based. The performances of the three approaches are evaluated on publicly avail-

able datasets in section 4. Finally, open challenges in 3D mask attack are discussed

in section 5.

2 Publicly Available Datasets and Experiments Evaluation

Protocol

2.1 Datasets

As far as we know, there are two rigid and two soft 3D mask attack datasets for

3D mask PAD. The two rigid mask datasets are: 3D Mask Attack Dataset (3D-

MAD) [8], Hong Kong Baptist University 3D Mask Attack with Real World Vari-
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ations (HKBU-MARs) dataset [20]. The two soft mask datasets are: Silicone Mask

Attack Dataset (SMAD) [23] and Multi-spectral Latex Mask based Video Face

Presentation Attack (MLFP) dataset [2].

2.1.1 3DMAD

Fig. 2 The 17 customized Thatsmyface masks used in 3DMAD dataset [9].

The 3D Mask Attack Dataset (3DMAD) [8] is the first publicly available 3D

mask attack dataset in which the attackers wear the customized 3D facial masks

of a valid user. The Custom Wearable Masks used in 3DMAD, are built from

Thatsmyface.com and proved to be good enough to spoof facial recognition sys-

tem [8]. The dataset contains a total of 255 videos of 17 subjects, as shown in

Figure 2. It is noted that the eyes and nose holes are uncovered by the masks for

a better wearing experience. The 3DMAD dataset is recorded by Kinect and con-

tain color and depth information of size 640×480 at 30 frames per second. Each

subject has 15 videos with ten live faces and five masked faces. This dataset is

divided into three sessions that include two real access sessions recorded with a

time delay and one attack session captured by a single operator (attacker). 3D-

MAD is the first public available 3D mask dataset which can be downloaded

from https://www.idiap.ch/dataset/3dmad.

2.1.2 HKBU-MARs

The Hong Kong Baptist University 3D Mask Attack with Real World Variations

(HKBU-MARs) dataset [20] proposes to simulate the real world application sce-
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narios by adding variations in terms of type of mask, camera setting, and light-

ing condition. In particular, the HKBU-MARs dataset contains 12 subjects with 12

masks. To imitate different types of mask attacks in practice, 6 masks are from

Thatsmyface and the other 6 are from REAL-f. Figure 3 shows the masks used

in HKBU-MARs. Since face recognition systems are widely deployed in differ-

ent applications, such as the mobile application and the immigration, 7 differen-

t cameras from the stationary and mobile devices are used to capture around 10

seconds videos. For the stationary applications, A web camera Logitech C920, an

industrial camera and, and a mirrorless camera (Canon EOS M3) are used to rep-

resent different types of face acquisition systems. For the mobile devices, three s-

martphones: Nexus 5, iPhone 6, Samsung S7 and one tablet: Sony Tablet S are

used. In addition, the HKBU-MARs dataset considers 6 lighting conditions to cov-

er the typical scenes of face recognition applications, which includes the Low

light, room light, bright light, warm light, side light and upside light as shown

in Figure 4. In sum, each subject contains 42 (7 cameras * 6 lightings) genuine

and 42 mask sequences and the total size is 1008 videos. The HKBU-MARs that

contains the variations of mask type, camera setting, and lighting condition can

be used to evaluate the generalization ability of face PAD systems across dif-

ferent application scenarios in practice. More detailed information can be found

at http://rds.comp.hkbu.edu.hk/mars/. A preliminary version of the

HKBU-MARs, namely the HKBU-MARs V1 [21] has been publicly available

at http://rds.comp.hkbu.edu.hk/mars/. HKBU-MARsV1 contains 8

masks including 6 Thatsmyface masks and 2 REAL-f masks. It is recorded through

a Logitech C920 webcam at a resolution of 1280×720 under natural lighting con-

ditions.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 3 Sample mask images from the HKBU-MARs dataset. (a)-(f) are ThatsMyFace masks and

(g)-(l) are Real-F masks.
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(a) (b) (c) (d) (e) (f)

Fig. 4 Different lighting conditions in the HKBU-MARs dataset. (a)-(f) represents the low light,

room light, bright light, warm light, side light, and upside light, respectively.

2.1.3 SMAD

Different from 3D printed masks, silicon masks with soft surface can retain both

the appearance and facial motions. As shown in the Hollywood movie Mission

Impossible, Ethan Hunt wears silicon masks to impersonate others identities and

even human can hardly recognize them. In this case, face recognition systems

are highly vulnerable as well. The Silicone Mask Attack Database (SMAD) [23]

is proposed to help research in developing 3D mask attack detection methods in

such scenarios. The SMAD contains 130 real and attack videos (65 for each) that

obtained from online resources under unconstrained settings. The genuine videos

are auditioning, interviewing, or hosting shows collected from multiple sources

so they contain different application environment in terms of illumination, back-

ground and camera settings. The time interval of videos varies from 3 to 15 sec-

ond. In particular, the silicon masks in attack videos fit the eyes and mouths holes

properly and some masks include hair or mustache. Note that the silicon masks

in SMAD are not the customized masks with identities in genuine videos due to

the very expensive price. The Text file that contains the videos URLs is available

at: http://www.iab-rubric.org/resources.html.

2.1.4 MLFP

Since the soft 3D mask can be super real while maintaining the facial movemen-

t, using appearance or motion-based methods in the visible spectrum may not be

effective. The Multi-spectral Latex Mask based Video Face Presentation Attack

(MLFP) dataset is proposed to help research in designing multi-spectral based face

PAD method [2]. The MLFP contains 1350 videos of 10 subjects with or without 7

latex and 3 paper masks. Note that the masks in MLFP are also not the customized

masks with identities in genuine videos. The MLFP is recorded in three differen-

t spectrums: visible, near-infrared, and thermal with the environmental variations

which include indoor and outdoor with fixed and random backgrounds. The MLFP

dataset is not yet publicly available at the writing of the chapter.
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2.2 Experimental Evaluation Protocol

The performance of a 3D mask face PAD method is mainly evaluated under intra

dataset, cross dataset, and intra/cross variation scenarios to test its discriminability

and generalizability. The intra dataset testing is conducted in one dataset by separat-

ing the subjects into non-overlapping part as the training, development, and testing

sets. The cross dataset, and intra/cross variation testing are designed to simulate the

scenarios that the training samples are limited and different from the testing sam-

ples.

2.2.1 Intra Dataset Testing

For intra dataset testing, the classifier is trained on the training set and test with

the testing set. It is noted that the development set is used to tune the parameters

for real application scenarios (e.g., the testing set). Erdogmus et al. propose to use

cross validation to assign different subjects into the training, development and test

sets [8]. This protocol is updated to the leave one out cross validation (LOOCV)

in [9], which selects one testing subject at each iteration and divides the rest subjects

into training and development sets. For instance, the experiments on 3DMAD are

done in 17-folds. In each fold, after selecting 1 subject’s data as the testing set, for

the remaining 16 clients, the first 8 is chosen for training and the remaining for

development. Liu et al. updated the LOOCV by randomly assigning the remaining

subjects for training and development to avoid the effect caused by the order of

subjects in a dataset [21].

2.2.2 Cross Dataset Testing

The cross-dataset protocol uses different datasets for training and testing to simu-

late the practical scenarios where the training data are limited and may be different

from the testing samples. To conduct the cross-dataset testing, one can select one

dataset for training and use the other dataset for testing. Due to the limited number

of subjects of 3D mask attack datasets, the result may not be representative. We may

select part of the subjects from one dataset for training and the final result is sum-

marized by conducting several rounds of cross dataset testing. For instance, for the

HKBU-MARsV1 and 3DMAD cross testing, Liu et al. randomly selected five from

the former dataset as the training set and used all data of 3DMAD for testing [21].

2.2.3 Intra Variation Te sting

For the HKBU-MARs dataset [20] that contains three types of variations: mask

type, camera, and lighting condition, the intra variation testing protocol is designed

to evaluate the robustness of a 3D mask face PAD method when encountering only
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one specific variation. Under the selected variation (fixed mask type, camera, and

lighting condition), LOOCV is conducted to obtain the final results. Although the

intra variation testing may not match the practical scenarios, it is useful to evaluate

the robustness of a 3D mask PAD method.

2.2.4 Cross-Variation Testing

The cross-variation testing protocol is designed to evaluate the generalization ability

across different types of variation in practice. In particular, the leave one variation

out cross validation (LOVO) [20] is proposed to evaluate the robustness of one type

of variation, the others are fixed. For one specific type of variation, in each iteration,

one subvariation is selected as the training set and the rests are regarded as the

testing set. For example, for the LOVO on camera type variations, the data captured

by one type of camera is selected as the training set and data captured by the rest

types of cameras is selected as the testing set. Note that the other types of variation:

mask and lighting condition are fixed. In sum, the LOVO of cameras under different

mask types and lighting conditions involves a total of 2×6 (mask types × lightings)

sets of results [20].

3 Methods

3.1 Appearance based Approach

As the appearance of a face in printed photos or videos is different from the real

face, several texture-based methods have been used for face PAD and achieve en-

couraging results [22, 12, 17, 5]. The 3D mask also contains the quality defect that

results in the appearance difference from a genuine face, due to the imperfection

precision problems of 3D printing technology. For example, the skin texture and de-

tailed facial structures in masks as shown in Figure 1(a) have perceivable differences

compared to those in real faces.

Erdogmus et al. evaluate the LBP based methods on 3DMAD dataset and show

their effectiveness [9]. The Multi-Scale LBP (MS-LBP) [22] achieves the best per-

formance under most of the testing protocols. From a normalized face image, MS-

LBP extracts LBPu2
16,2, LBPu2

8,2 from the entire image and LBPu2
8,1 from the 3×3 over-

lapping regions. Therefore, one 243-bin, one 59-bin, and nine 59-bin histograms

which contain both the global and local information are generated and then concate-

nated as the final 833-dimensional feature. It is reported that the MS-LBP achieves

99.4% Area Under Curve (AUC), 5% Equal Error Rate (EER) on the Morpho

dataset2. Multi-Scale LBP [22] concatenates different LBP settings and achieves

promising performance on 3D mask detection [9]. While the results are promising

2 http://www.morpho.com
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with the above methods, recent studies indicate that they cannot generalize well in

a cross-dataset scenario [11, 37]. It is reported that the MS-LBP is less effective

(22.6% EER and 86.8% AUC) on HKBU-MARsV1 due to the super-real mask—

REAL-f [21].

Since the differences between 3D masks and real faces are mainly from the tex-

tures, analyzing the textures details in the frequency domain can be effective. Agar-

wal et al. propose the RDWT-Haralick [1] which uses redundant discrete wavelet

transform (RDWT) and Haralick descriptors [16] to analyze the input image under

different scales. Specifically, the input image is divided into 3×3 blocks and then

the Haralick descriptors are extracted from the 4 sub-bands of the RDWT results

and the original image. For video input, the RDWT-Haralick features are extract-

ed from multiple frames and concatenated as the final feature vector. After feature

dimension reduction using principal component analysis (PCA), the final result is

obtained through Support Vector Machine (SVM) with linear kernel. It is report-

ed that the RDWT-Haralick feature can achieve 100% accuracy and 0% HTER on

3DMAD dataset.

Despite the texture based methods, the perceivable differences between gen-

uine faces and fraud masks also exist in their 3D geometric appearance. Tang

et al. analyze the 3D meshed faces (acquired through a 3D scanner) and highlight

the dissimilarities of micro-shape of genuine and masked faces by the principal cur-

vature measures [7] based 3D geometric attribute [33]. Specifically, they design a

shape-description-oriented 3D facial feature description scheme which represents

the 3D face as a histogram of principle curvature measures (HOC). It is reported

that the HOC can achieve 92% true acceptance rate (TAR) when FAR is 0.01 on

Morpho dataset.

Recently, with the booming of the deep learning, the community adopts deep

networks to extract discriminative appearance features for biometric PAD [24, 38].

Compared to the solutions that rely on domain knowledge, Menotti et al. propose

to learn a suitable CNN architecture through the data [24]. In the meantime, the

filter weights of the network are learned via back-propagation. The two approach-

es interact with each other to form the final adapted network, namely the spoofnet.

The authors report 100% accuracy and 0% HETER on the publicly available 3D-

MAD dataset. While the performances are significant, the deep learning based fea-

tures require well designed large-scale training data. Due to the intrinsic data-driven

nature [11], the over-fitting problem of the deep learning based methods in cross-

dataset scenario remains open.

The hand-crafted features are difficult to be robust across multiple kinds of appli-

cation scenarios. On the other hand, the deep network based features require signifi-

cantly large and representative training dataset. Ishan et al. propose to use deep dic-

tionary [34] via greedy learning algorithm (DDGL) for PAD [23]. It is reported that

DDGL can achieve impressive performance on both the photo, video, hard mask,

and silicon mask attacks. On the other hand, its generalizability under cross-dataset

scenarios is less promising since the DDGL is also based on the feature learning

framework and the performance, to some extent, still depends on the training data.
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3.2 Motion based Approach

Since most existing 3D masks are made of hard materials, the facial motion, such

as eye blinks and mouth movements, and facial expression changes may not be ob-

served on a masked face. As such, the motion based methods on 2D face PAD, such

as the dynamic textures [12] or Histograms of Oriented Optical Flow (HOOF) [6]

are effective in detecting these hard 3D masks.

Talha et al. propose the multifeature Videolet by encoding the appearance texture

with the motion information [30] of both facial and surrounding regions. The texture

feature is based on a configuration of local binary pattern, namely the multi-LBP.

The motion feature is encoded by extracting HOOF from different time slots of the

input video. The multi-feature Videolet method not only achieves 0% EER on the

3DMAD dataset but is also effective in detecting the image and video presentation

attacks.

Shao et al. propose to exploit the lower convolutional layer to obtain the dynamic

information from fine-grained textures in feature channels [28]. In particular, given

a preprocessed input video, fine-grained textures in feature channels of a convolu-

tional layer of every frame are first extracted using a pre-trained VGG [31]. Then the

dynamic information of textures in each feature channel (of all frames) are estimat-

ed using optical flow [4]. To exploit the most discriminative dynamic information,

a channel-discriminability constraint is learned through minimizing intra-class vari-

ance and maximizing inter-class variance. The authors report 0.56% and 8.85% EER

on 3DMAD and HKBU-MARsV1 dataset, respectively. To evaluate the generaliz-

ability, the cross-dataset [21] testing is conducted and yields 11.79% and 19.35%

EER for 3DMAD to HKBU-MARsV1, and HKBU-MARsV1 to 3DMAD.

3.3 Remote Photoplethysmography based Approach

Different from the aforementioned two traditional approaches, a new intrinsic live-

ness cue based on the remote heartbeat detection is proposed recently [21, 19]. The

rationale of the rPPG based approach, and two state-of-the-art methods are illustrat-

ed in the following subsections.

3.3.1 What is remote Photoplethysmography (rPPG)?

The remote heartbeat detection is conducted through the remote photoplethysmog-

raphy (rPPG). The photoplethysmography (PPG) is an optically obtained plethys-

mography, which measures the volumetric of an organ, such as the heart. PPG mea-

sures the changes in light absorption of a tissue when heart pumps blood in a cardiac

cycle [29]. Different from PPG that often uses the pulse oximeter attached to the skin

to detect the signal, rPPG capture it remotely through a normal RGB camera (e.g.,

web-camera or mobile phone camera) under ambient lighting conditions.
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3.3.2 Why rPPG Works for 3D Mask Presentation Attack Detection?

(a) Genuine Face (b) Masked Face

Fig. 5 Effect of rPPG extraction on a genuine face (a), and a masked face (b) [21].

rPPG can be the intrinsic liveness cue for 3D mask face PAD. As shown in Fig-

ure 5(a), environmental light penetrates skin and illuminates capillary vessel in the

subcutaneous layer. When the heart pumps blood in each cardiac cycle, the blood

oxygen saturation changes, which results in a periodic color variation, namely the

heartbeat signal. The heartbeat signal then transmits back from the vessels and can

be observed by a normal RGB camera. Such an intrinsic liveness cue can be very

effective on 3D mask face PAD. As shown in Figure 5(b) for a masked face, the light

needs to penetrate the mask and the source heartbeat signal needs to go through the

mask again to be observed. Consequently, the rPPG signal extracted from a masked

face is too weak to reflect the liveness evidence. In summary, rPPG signals can be

detected on genuine faces but not on masked faces, which shows the feasibility of

rPPG based 3D mask face PAD.

3.3.3 rPPG-based 3D Mask Presentation Attack Detection

Liu et al. are the first that exploit rPPG for 3D mask face PAD [21]. First, the input

face is divided into local regions based on the facial landmarks and used to extrac-

t local rPPG signals. Then they model a correlation pattern from it to enhance the

heartbeat signal and weaken the environmental noise. This is because the local rPPG

signals share the same heartbeat frequency and the noise does not. Finally, the local

rPPG correlation feature is fed into an SVM tuned by the learned confidence map.

The experiments shows that this method achieves 16.2% EER and 91.7% AUC on

HKBU-MARsV1 and 95.5% AUC and 9.9% EER on a Combined dataset formed

of the 3DMAD and HKBU-MARsV1. In addition, since the rPPG signal is inde-

pendent of the mask’s appearance quality, the local rPPG solution yields good gen-

eralizability. Under the cross-dataset testing, it achieves 94.9% and 91.2% AUC for

3DMAD to HKBU-MARsV1 and HKBU-MARsV1 to 3DMAD.
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Li et al. develop a generalized rPPG based face PAD which works for both 3D

mask and traditional image and video attacks [19]. Given the input face video, the

Viola-Jones face detector [35] is used to find the bounding box for landmark de-

tection. A customized region of interest is then defined to extract three raw pulse

signals from the RGB channels. Next, they apply temporal filters to remove frequen-

cies not relevant for pulse analysis. Signals are analyzed in the frequency domain

and the liveness feature, a vector that consists of the maximum power amplitudes

and the signal to noise ratio of the three channels, is extracted from the power den-

sity curves. This method achieves 4.71% EER on 3DMAD and 1.58% EER on two

REAL-f masks [19]. It is also noted that most of the error cases are false negatives.

This is because heart rate is fragile due the factors like darker skin tone and small

facial resolution.

4 Experiments

Two experiments are conducted to evaluate the performance of the appearance-

based, motion-based, and rPPG-based methods. In particular, MS-LBP [9], HOOF [30],

RDWT-Haralick [1], convMotion [28], the local rPPG solution (LrPPG) [21], and

the global rPPG solution (GrPPG)[19] are implemented and evaluated under both

intra and cross dataset testing protocols. For the appearance based methods, only

the first frame of the input video is used. It is also noted that only the HOOF part of

the videoLet [30] method is adopted to compare the motion cue with other methods.

The final results are obtained through MATLAB SVM with RBF kernel for MS-LBP,

HOOF, RDWT-Haralick and LrPPG and linear kernel for GrPPG.

To evaluate the performance, HTER [9, 15], AUC, EER and False Fake Rate (F-

FR) when False Liveness Rate (FLR) equals 0.1 and 0.01 are used as the evaluation

criteria. For the intra-dataset test, HTER is evaluated on the development set and

testing set, which are named as HTER dev and HTER test, respectively. A ROC

curve with FFR and FLR is used for qualitative comparisons.

4.1 Intra Dataset Evaluation

To evaluate the discriminability of the 3D mask methods, LOOCV experiments

on both 3DMAD and HKBU-MARsV1 datasets are conducted. For the 3DMAD

dataset, we randomly choose 8 subjects for training and the remaining 8 for de-

velopment. For the HKBU-MARsV1 dataset, we randomly choose 3 subjects as

training set and the remaining 4 as the development set. We conduct 20 rounds of

experiments.

Table 1 shows the promising results of the texture based method on 3DMAD

dataset while the performance drop on the HKBU-MARsV1 points out the limi-

tation on the high-quality 3D masks. HOOF achieves similar results on the two
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Fig. 6 Average ROC curves of two datasets under intra-dataset protocol.

datasets while the precisions are below the average. Note that the rPPG based meth-

ods perform better on 3DMAD than on HKBU-MARsV1. Since the rPPG signal

quality depends on the number of pixels of the region of interests, this circum-

stances may due to the facial resolution of videos from 3DMAD (around 80×80)

are smaller than the videos from HKBU-MARsV1 (around 200×200). Specifically,

LrPPG achieves better results due to the robustness of the cross-correlation mod-

el and confidence map. It is also noted that, as shown in Figure 6 the major error

classifications fall on the false reject due to the weakness of rPPG signals on face.

The convMotion that fuses deep learning with motion liveness cue achieves the best

performance among the existing methods.

Table 1 Comparison of results under intra dataset protocol on the 3DMAD dataset

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [9] 0.15 ± 0.6 1.56 ± 5.5 0.67 100.0 0.00 0.42

HOOF [30] 32.9 ± 6.5 33.8 ± 20.7 34.5 71.9 62.4 85.2

RDWT-Haralick [1] 7.88 ± 5.4 10.0 ± 16.2 7.43 94.0 2.78 89.1

convMotion [28] 0.10 ± 0.1 0.95 ± 0.6 0.56 100.0 0.00 0.30

GrPPG [19] 8.99 ± 3.1 10.7 ± 11.5 9.41 95.3 8.95 70.7

LrPPG [21] 7.12 ± 4.0 7.60 ± 13.0 8.03 96.2 7.36 14.8

4.2 Cross Dataset Evaluation

To evaluate the generalization ability across different datasets, we design cross-

dataset experiments where the training and test samples are from two different
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Table 2 Comparison of results under intra dataset protocol on the HKBU-MARsV1 dataset

HTER dev(%) HTER test(%) EER(%) AUC
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [9] 17.5 ± 10.8 11.9 ± 18.2 21.1 86.8 55.4 93.9

HOOF [30] 25.4 ± 12.8 23.8 ± 23.9 28.9 77.9 75.0 95.6

RDWT-Haralick [1] 16.3 ± 6.8 10.3 ± 16.3 18.1 87.3 31.3 81.7

convMotion [28] 2.31 ± 1.7 6.36 ± 3.5 8.47 98.0 6.72 27.0

GrPPG [19] 14.9 ± 6.5 15.8 ± 13.1 16.8 90.2 31.3 73.5

LrPPG [21] 11.5 ± 3.9 13.0 ± 9.9 13.4 93.6 16.2 55.6

datasets. In particular, when 3DMAD and HKBU-MARsV1 are used as the training

and testing datasets (3DMAD→HKBU-MARsV1 for short), we randomly select 8

subjects from 3DMAD for training and use the remaining 9 subjects from 3DMAD

for development. When HKBU-MARsV1 and 3DMAD are used as the training and

testing datasets (HKBU-MARsV1→3DMAD for short), we randomly select 4 sub-

jects from HKBU-MARsV1 as the training set and the remaining 4 subjects from

HKBU-MARsV1 as the development set. We also conduct 20 rounds of experi-

ments.

As shown in Table 3 and 4, the rPPG based methods and convMotion achieve

close results as the intra dataset testing, which shows their encouraging robustness.

The main reason behind the rPPG based method’s success is that the rPPG signal for

different people under different environment is consistent, so the features of genuine

and fake faces can be well separated. On the other hand, the performance of MS-

LBP and HOOF drop. Specifically, the appearance based methods, MS-LBP and

RDWT-Haralick achieve better results for HKBU-MARsV1→3DMAD, since the

HKBU-MARsV1 contains two types of masks while the 3DMAD contains one (the

classifier can generalize better when it is trained with larger data variance). It is also

noted that the RDWT-Haralick feature achieves better performance than MS-LBP

as it analyzes the texture differences from different scales with redundant discrete

wavelet transform [1]. The HOOF fails on the cross dataset as for different dataset,

the motion patterns based on optical flow may vary with the different recording

settings.

Table 3 Cross-dataset evaluation results under 3DMAD→HKBU-MARsV1.

3DMAD→HKBU-MARsV1

HTER(%) EER(%) AUC(%)
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [9] 43.6 ± 5.9 44.8 57.7 98.8 100.0

HOOF [30] 51.8 ± 12.0 50.6 47.3 84.1 92.1

RDWT-Haralick [1] 23.5 ± 4.7 39.6 68.3 71.6 98.1

convMotion [28] 10.1 ± 2.1 11.8 96.2 13.8 33.9

GrPPG [19] 29.7 ± 11.9 15.6 90.5 27.4 77.0

LrPPG [21] 10.7 ± 3.7 11.4 96.2 12.3 55.6
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Fig. 7 Average ROC curves under cross-dataset protocol.

Table 4 Cross-dataset evaluation results under HKBU-MARsV1→3DMAD.

HKBU-MARsV1→3DMAD

HTER(%) EER(%) AUC(%)
FFR@
FLR=0.1

FFR@
FLR=0.01

MS-LBP [9] 45.5 ± 2.8 25.8 83.4 41.2 69.0

HOOF [30] 42.4 ± 4.1 44.1 57.6 77.6 93.1

RDWT-Haralick [1] 13.8 ± 7.5 21.3 86.7 37.1 90.3

convMotion [28] 17.2 ± 1.3 19.4 89.6 27.4 56.0

GrPPG [19] 29.0 ± 11.6 22.7 83.2 57.3 91.9

LrPPG [21] 12.8 ± 3.3 13.2 93.7 16.9 55.9

5 Discussion and Open Challenges

With the development of 3D printing and 3D face reconstruction technology, 3D

mask is proved to be able to spoof a face recognition system. As such, this problem

has drawn an increasing attention with the boosting numbers of related publica-

tions. In this chapter, we revealed the challenges of 3D mask presentation attack,

summarized the existing datasets and evaluation protocols, and discussed different

approaches that have been proposed. Still, there are issues remain open.

Although the costs of 3D masks are expensive, there are two publicly available

datasets address the 3D mask presentation attack challenges. However, the number-

s of the subjects and customized 3D masks are quite limited because of the cost.

Without sufficient number of data, the evaluation results of toy experiments may

not be convincing enough for real world applications. Additionally, the variations

like the recording device and conditions are limited which results in the difficulties

of evaluating the generalization capabilities of the methods in practical scenarios.

The existing publicly available datasets using customized masks are mainly record-

ed through a stationary camera under single lighting condition. While in practice,
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the training data may vary from the testing samples, in terms of the mask types,

camera devices, or lighting conditions. For instance, since the mobile applications

are getting more and more popular, the scenario of a mobile device with camera

motion interferences under unconstrained lighting conditions could be the common

situation. Therefore, more data with real world settings should be designed and col-

lected.

On the other hand, since the 3D mask face PAD is at the beginning stage, current

researches mainly focus on the detection under fixed conditions with simple testing

protocols, which may not reflect the practical scenarios. The excellent results on

single dataset indicate that more challenging evaluation protocols are needed before

the 3D mask face PAD can be applied at the practical level. Additionally silicone

mask attacks need to be first ”collected” and then studied. For the appearance based

methods, adapting different mask qualities, cameras, and lighting conditions are the

challenges to be addressed. The motion-based methods may not work on the soft

masks that can preserve the facial motion. The rPPG based methods may not be

robust under lower lighting condition or with motion interferences. In sum, larger

dataset is still the most critical issue for designing more complicated protocols to

evaluate not only the discriminability but also the generalizability.
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