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Abstract

Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic

strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars

and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb.

Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned

genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant

introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes

were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and

molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH

resistance are discussed.
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Introduction

Rice is the most important cereal crops in the Asia-Pacific

region, particularly China, India, Japan, Indonesia, and

Vietnam, where the brown planthopper (BPH, Nilapar-

vata lugens Stål) has become its most damaging insect

pest. In 2005 and 2008 China reported a combined rice

production loss of 2.7 million tons due to direct damage

caused by BPH (Brar et al. 2009). Currently, the main

method of controlling BPH is application of pesticides

such as imidacloprid. However, the intensive and indis-

criminate use of chemicals leads to environmental pollu-

tion, kills natural enemies of the target pest, may result in

development of BPH populations that are resistant/toler-

ant to insecticides, ultimately leading to a resurgence in

BPH populations (Lakshmi et al. 2010; Tanaka et al. 2000).

Host-plant resistance is therefore most desirable and

economic strategy for the control or management of BPH

(Jena et al. 2006).

BPH is a migratory, monophagous rice herbivore.

According to the length of the wing, adults BPH are

biomorphic with varying wing lengths. The short winged

cannot migrate, but produces larger amounts of eggs;

BPH with long wings are able to fly between regions and

bridge gaps in subsequent cropping seasons. The com-

bined effect of the two types makes BPH an internationally

explosive and devastating pest of rice. The differentiation of

wing type is genetically controlled and a research group at

Zhejiang University recently identified two highly homolo-

gous insulin receptor genes that play a key role in the wing

differentiation (Xu et al. 2015).

Different biotypes (or races) of BPH vary in virulence

(or ability to infest) different rice genotypes (Sogawa

1978). Four biotypes have been well known since the

1980s. In China, biotype 2 dominates, from the 1990s

has sometimes been mixed with biotype 1 (Tao et al.

1992). However, the current population may be shifting

to the more destructive Bangladesh type (Lv et al. 2009).

New biotypes arise to overcome resistance genes

prolonged use in a single widely used variety or suite of

varieties with the same resistance gene (Cohen et al. 1997;

Jing et al. 2012). For example, the first resistant variety

IR26 possessing the Bph1 gene became susceptible of
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biotype 2 after only two years of use (Khush 1971). The

genetic mechanism of BPH biotype generation in BPH is

still not well understood, but there is overwhelming

evidence from many plant disease/pest combinations that

virulence involves the change or loss of specific effector

proteins that are recognized by the plant host to induce

the resistance (antibiosis) response.

Rice varieties have different mechanisms of resistance

to BPH, classed as antixenosis, antibiosis and tolerance

(Alam and Cohen 1998; Painter 1951). Antibiosis is the

most commonly studied mechanism (Cohen et al.

1997; Du et al. 2009; Qiu et al. 2010). BPH behavior

(host-searching, feeding, mating) is most obviously

affected by resistant varieties through antibiosis. After

infestation by BPH the rice plant activates its own stress

response for defense, including secretion of insect-toxic

compounds, activation of expression of genes producing

metabolic inhibitors, and formation of physical barrier

(such as cuticle thickening, and callose deposition) to

prevent continuous feeding by BPH (Cheng et al. 2013).

Hao et al. (2008) showed that plants carrying Bph14

undergo quicker deposition of callose on the sieve plate

following infestation than those without the gene, suggest-

ing that sieve tube plugging is an important mechanism

for defense to BPH.

Since the development of molecular markers (SSR,

InDel, SNPs) and functional genomics, the genetic studies

of BPH resistance in rice have intensified. To date 29 BPH

resistance genes have been detected in rice, and four

(Bph14, Bph26, Bph17 and bph29) have been cloned (Du

et al. 2009; Liu et al. 2015; Tamura et al. 2014; Wang et al.

2015). Both marker-assisted selection (MAS) and conven-

tional breeding have enabled resistance genes to be

combined (or ‘pyramided’) in elite rice varieties to im-

prove BPH resistance and its durability. We review here

recent progress on BPH resistance genetics and molecular

breeding in rice, aiming to help a wider utilization of BPH

resistance genes.

Review

BPH resistant germplasms

Evaluation of BPH resistance

A thorough evaluation of BPH resistance in the abundant

germplasms is critical for identification and utilization of

BPH resistance genes (Jena and Kim 2010). Various

evaluation methods were developed to measure response

to BPH in rice varieties. Based on the type host:pest

interaction, evaluation methods can be divided into two

groups. The first directly evaluates host resistance by

measuring the degree of damage following BPH infest-

ation. The modified seedbox test (SSST test) is recognized

as a standard method. SSST assesses damage to seedlings

(leaf yellowing, plant withering and dwarfing) caused by

the progeny of an initial infestation with a set number of

nymphs (Panda and Khush 1995). It is suitable time- and

space-saving assay for testing of germplasm and breeding

materials. However, results from this test are affected by

temperature, humidity, nymphs instar, density, biotype,

population and natural enemies. The second approach

indirectly the relative host response by examining the

physiological and biochemical reactions of the BPH

(feeding rate, fecundity and survival) feeding on different

varieties. Parameters measured include honeydew excre-

tion, survival rates, preference settling, and feeding behavior

(Pathak et al. 1982; Sangha et al. 2008; Klignler et al. 2005).

Some t evaluation methods attempt to address host

tolerance using compensation ability and yield loss rate

(Dixon et al. 1990; Alam and Cohen 1998). Ultimately, all

possibilities for reducing the insect population or its fitness

through use host genotype must be reconfirmed in labora-

tory/greenhouse trials and in the field.

Source of BPH resistance

Since the 1970s, a large number of germplasm acces-

sions have been screened for response to BPH at the

International Rice Research Institute (IRRI) by mass

screening evaluation (Jackson 1997). After searching

the Genesy database (https://www.genesys-pgr.org/zh/

welcome) maintained at IRRI we identified a total of

573 cultivated rice accessions that showed resistance

to at least one BPH biotype. Among them, 484 acces-

sions (92.5 %) showed resistance to biotype 1, and

only 80 accessions (15.3 %) were resistant to all three

biotypes (Fig. 1). Wild rice is a key source of resistant

germplasm. Various species commonly show high re-

sistance to all three biotypes. Eighteen species of wild

rice, comprising 265 accessions, were highly resistant,

Fig. 1 Frequencies of rice accessions resistant to different BPH biotypes.

The data were partially selected and summarized from the Genesy

database (https://www.genesys-pgr.org/zh/welcome). The total of 573

cultivated rice accessions showed resistance to at least one biotype.

Biotype 1, Biotype 2 and Biotype 3 represent the number of cultivars only

resistance to biotype1, 2 or 3 of BPH, respectively. 1 + 2 + 3 denotes the

number of cultivars resistance to all three biotypes
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and two species (O. officinalis and O. minuta)

accounted for 41 % of the total (Fig. 2).

The first BPH resistance was identified in 1967 (Pathak

et al. 1969). Since then genes Bph1, bph2, Bph3 and

bph4 have been identified in genetic analyses of various

donors (Lakashminarayana and Khush 1977; Khush et

al. 1985). These four genes have been used extensively in

breeding programs in Southeast Asia (Jairin et al.

2007a), and a large number of BPH resistant varieties

have been released by IRRI since 1976. However, some

of them have lost effectiveness with the evolution and

subsequent increase of new biotypes (Table 1).

Genetics of BPH resistance

Mapped BPH resistance genes

Twenty nine BPH resistance genes have been identified

from ssp. indica and wild relatives (Ali and Chowdhury

2014; Wang et al. 2015). Most of these genes were

located to specific rice chromosome regions, but the

identities of a few (e.g. bph5 and bph8) are confusing

because of the lack marker technology in early studies

(Qiu et al. 2014). Since the development of molecular

markers (such as SSR, InDel, and SNPs) and functional

genomics increasing numbers of resistance genes have

been fine mapped and some were cloned. To date, more

than ten genes have been fine mapped to regions of less

than 200 kb (Table 2). Most of resistance alleles are

dominant, but several are a few are recessive (bph4,

bph5, bph7, bph8, bph19 and bph29).

All BPH resistance genes identified to date are from

indica varieties and wild relatives. Bph1-Bph9, Bph19,

Bph25-Bph28 are from indica accessions, wheraes

Bph10-Bph18, Bph20, Bph21, Bph27 and bph29 are from

wild rice species (Table 2). Introgression lines (ILs)

derived from crosses of O. sativa and wild species have

been used to map many of the BPH resistance genes

(Jena and Khush 1990; Brar and Khush 1997). For

example, Bph18, located on 12 L, was identified in

IR65482-17-216-1-2, a BPH resistant IL derived from O.

australiensis. Up to now, 11 genes have been identified in

wild rice, including Bph11-Bph15 were from O. officinalis,

Bph10 and Bph18 were from O. australiensis, Bph20 and

Bph21 were from O. minuta, and Bph27 and bph29 were

from O. rufipogon.

Multiple BPH resistance genes are clustered in a similar

way to blast resistance genes (Jena and Kim 2010;

Fig. 2 Frequencies of wild rice species accessions with resistance to BPH at IRRI. Data are summarized from a search of the Genesy database; 265

accessions (involving 18 species) showed high resistance to all three BPH biotypes
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Ramalingam et al. 2003). For example, eight genes (Bph1,

Bph2, Bph9, Bph10, Bph18, Bph19, Bph21 and Bph26) are

cluster in a 22–24 Mb region on chromosome 12 L, and

six (Bph12, QBph4, QBph4.2, Bph15, Bph17 and Bph20)

are closely linked in a region of 5–9 Mb on chromosome

4S. Another three genes together are located within a19–

22 Mb on chromosome 4 L, and four are concentrated in

a 0–2 Mb region on chromosome 6S (Table 2, Fig. 3).

These QTLs/gene clusters might involve different genes,

different alleles at a single locus, or even the same gene,

but mediate different resistance mechanisms or show dif-

ferent response to different BPH biotypes (Qiu et al.

2010). Additional genetic analyses, including allelism tests

and gene cloning are needed to resolve these possibilities.

Multiple BPH resistance genes/QTLs with the same

names are also located to different positions. For ex-

ample, Bph1 from three different donors (Mudgo, TKM6

and Nori-PL3) was mapped to different positions on

chromosome 12 (Table 2). Bph26 was recently cloned

and sequence comparison indicated that it is the same

as Bph2 (Tamura et al. 2014). Discrepancies in genetic

maps have caused duplicated nomenclature for the same

gene. For example, Bph27 and Bph27(t) were fine

mapped to the adjacent locations on the long arm of

chromosome 4 (Huang et al. 2013; He et al. 2013), and

it is possible that they might be different due to their

different origins (derived from wild rice and a cultivated

relative, respectively). According to the rules of genetic

nomenclature for rice, it is necessary for the authors of

different reports to rename duplicated genes to avoid

confusion to readers. Bph3 and Bph17 each described as

single Mendelian factors in the resistant cultivar Rathu

Heenati (RH) by different research groups. The rice sci-

entific community has accepted the findings as Bph17

on chromosome 4 (Rahman et al. 2009, Qiu et al. 2012)

and Bph3 on chromosome 6 (Jairin et al. 2010,

Myint et al. 2012). These reports acknowledged in

review papers (Jena and Kim, 2010, Fujita et al. 2013,

Cheng et al. 2013) and on the cereal crop GRA-

MENE website (http://archive.gramene.org/documen-

tation/nomenclature/) as well as Oryzabase (http://

www.shigen.nig.ac.jp/rice/oryzabase/). However, Liu et

al. (2015) reported the gene chromosome 4 cloned

from RH as’Bph3’ when it actually originally reported

as ‘Bph17’ (Sun et al. 2005). In our opinion the

cloned gene on chromosome 4 (Liu et al., 2015)

should have been reported as ‘Bph17’.

Mapping of minor BPH resistance QTLs

Using different mapping populations (RIL, DH, F2:3)

from crosses of susceptible and resistant varieties, more

QTLs were detected on all rice chromosomes except 5

and 9 (Alam and Cohen, 1998; Soundararajan et al.

2004; Liu et al. 2009; Ali and Chowdhury, 2014). How-

ever, those minor QTLs could not be confirmed due to

the complex inheritance of the BPH resistance (Jena and

Kim, 2010). Several studies showed that some highly

resistant varieties carry many minor QTLs in addition to

one or more major genes. Such combinations suggest

possibilities for more durable resistance contributed by

minor QTLs (Bosque-Perez and Buddenhagen 1992).

For example, an elite variety IR64 from IRRI showed

more durable and stable resistance than IR26, although

Table 1 Resistance of Asian cultivars carrying BPH resistance genes

Name ACCa Originb Gene RSc RLd

MGL 2 6218 IND Bph1 3.00 R

MTU15 6365 IND Bph1 9.00 S

IR 28 30411 PHL Bph1 4.00 MR

IR 29 30412 PHL Bph1 7.47 MS

IR 30 30413 PHL Bph1 7.14 MS

IR 34 30415 PHL Bph1 4.12 MR

IR 26 24154 PHL Bph1 2.83 R

IR 44 39341 PHL Bph1 2.56 R

IR 46 32695 PHL Bph1 8.57 S

ASD9 6380 IND bph2 9.00 S

PTB18 11052 IND bph2 1.80 HR

IR 32 30414 PHL bph2 5.00 MS

IR 38 32536 PHL bph2 2.65 R

IR 40 36958 PHL bph2 5.59 MS

IR 42 36959 PHL bph2 3.37 MR

IR 36 39292 PHL bph2 2.50 R

IR 54 55969 PHL bph2 5.92 MS

GANGALA 15259 LKA Bph3 3.01 MR

MUDUKIRIEL 15719 LKA Bph3 5.46 MS

HONDERAWALA 31415 LKA Bph3 1.86 HR

KURU HONDARAWALU 36303 LKA Bph3 3.00 R

MUTHUMANIKAM 40850 LKA Bph3 1.46 HR

BABAWEE 8978 LKA bph4 1.50 HR

VELLAI ILLANKALI 15233 LKA bph4 4.12 MR

HEENHORANAMAWEE 15286 LKA bph4 3.24 MR

KAHATA SAMBA 15297 LKA bph4 3.57 MR

GAMBADA SAMBA 15406 LKA bph4 3.69 MR

LEKAM SAMBA 15412 LKA bph4 2.92 R

SULAI 15421 LKA bph4 3.25 MR

The rice varieties or lines was selected from Genesy database (https://

www.genesys-pgr.org/zh/welcome) in IRRI. The information of genes that

these lines carry was described as Ali and Chowdhury (2014) and Jena and

Kim, (2010). The resistance data of these lines were obtained in our previous

study of seeding resistance
aAccession numbers in the IRRI genebank
bIND (India), PHL (Philippines), LKA (Sri Lanka)
cResistance scores at seedling stage
dResistance level, HR (highly resistant), R (resistant), MR (moderately resistant),

MS (Moderately susceptible), S (susceptible)
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both carry Bph1. In a further seven minor QTLs were

detected on chromosomes 1, 2, 3, 4, 6 and 8 from IR64

(Alam and Cohen 1998). Likewise, the Sri Lankan variety

Rathu Henati has shown durable resistance to all four

BPH biotypes in Southeast Asia since the 1970s, as it

not only carries major genes Bph3 and Bph17, but also

minor QTLs on chromosomes 2, 3, 4, 6 and 10 (Jairin et

al. 2007a; Kumari et al. 2010; Sun et al. 2005). A recent

study showed that indica cultivar ADR52 possesses two

major genes Bph25 and Bph26, along with several minor

QTLs associated with resistance to BPH, white-backed

planthopper (WBPH) and green leafhopper (Srinivasan

et al. 2015).

Map based cloning of BPH resistance genes

Gene identity helps to clarify the molecular mechanisms

of BPH resistance. Advances in sequencing technology

and functional genomics have facilitated BPH resistance

gene cloning. To date, Bph14, Bph26, Bph17 and bph29

have been cloned by map-based cloning.

Bph14 is the first cloned BPH resistance gene originated

from O. officinalis. Bph14 was originally fine-mapped to a

Table 2 Chromosome locations of BPH resistance genes/QTLs in rice

Gene/QTL chr Position (Mbp) Donor References

Bph1 12 13.10–13.28 Mudgo, TKM6 Kim and Sohn 2005

12 L 22.81–22.93 Mudgo Cha et al. 2008

12 L 24.00–25.00 Nori-PL3 Sharma et al. 2002

bph2 12 L 22.13–23.18 IR1154-243 Murai et al. 2001

12 L 13.21–22.13 ASD7 Sun et al. 2006

Bph26/bph2 12 L 22.87–22.88 ADR52 Tamura et al. 2014

bph7 12 L 19.95–20.87 T12 Qiu et al. 2014

Bph9 12 L 19.11–22.13 Kaharamana Su et al. 2006

12 L 19.00–22.50 Pokkali Murata et al. 2001

Bph10(t) 12 L 19.00–23.00 IR65482-4-136, O. australiensis Ishii et al. 1994

Bph18(t) 12 L 22.25–23.48 IR65482-7-216, O. australiensis Jena et al. 2006

Bph21(t) 12 L 23.28–24.41 IR71033-121-15, O. minuta Rahman et al. 2009

Bph12 4S 5.21–5.66 B14, O. latifolia Qiu et al. 2012

Bph15 4S 6.68–6.90 B5, O. officinalis Lv et al. 2014

QBph4.1 4S 6.70–6.90 IR02W101, O. officinalis Hu et al. 2015a

QBph4.2 4S 6.58–6.89 IR65482-17-511, O. australiensis Hu et al. 2015b

Bph17 4S 6.93–6.97 Rathu Heenati Sun et al. 2005

Bph20(t) 4S 8.20–9.60 IR71033-121-15, O. minuta Rahman et al. 2009

Bph6 4 L 21.36–21.39 Swarnalata Qiu et al. 2010

Bph27 4 L 19.12–19.20 GX2183, O. rufipogon Huang et al. 2013

Bph27(t) 4 L 20.79–21.33 Balamawee He et al. 2013

bph12(t) 4 L 20.20–21.20 O. officinalis Hirabayashi et al. 1999

bph11(t) 3 L 35.60–35.80 O. officinalis Hirabayashi et al. 1998

Bph14 3 L 35.70–35.72 B5, O. officinalis Du et al. 2009

QBph3 3 L 35.63–35.67 IR02W101, O. officinalis Hu et al. 2015a

Bph13 3S 5.18–5.70 IR54745-2-21, O. officinalis Renganayaki et al. 2002

bph19 3S 7.18–7.24 AS20-1 Chen et al. 2006

qBph3 3 18.27–20.25 Rathu Heenati Kumari et al. 2010

Bph3 6S 1.21–1.40 Rathu Heenati Jairin et al. 2007b

bph4 6S 1.20–1.76 Babawee Kawaguchi et al. 2001

Bph25 6S 0.20–1.71 ADR52 Myint et al. 2012

bph29 6S 0.48–0.49 RBPH54, O. rufipogon Wang et al. 2015

Bph6 11 17.23–18.27 IR54741-3-21-22, O. officinalis Jena et al. 2003

Bph28(t) 11 16.90–16.96 DV85 Wu et al. 2014
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34 kb region on chromosome 3 L. Sequence comparison

base on two parents showed that gene Ra was unique to

the resistant parent. Further genetic complementation

tests determined that Ra was the Bph14, which encodes a

coiled-coil, nucleotide-binding and leucine-rich repeat

(CC-NB-LRR) protein. The unique LRR domain might

function in specific recognition of a BPH effector, with

consequent activation of the defense response, possibly

through induction of a SA-dependent resistance pathway

(Du et al. 2009).

Bph26 was cloned from indica variety, ADR52. Early

study showed that ADR 52 carries two genes, Bph25 and

Bph26 located on chromosomes 6S and 12 L, respect-

ively (Myint et al. 2012). Like Bph14, Bph26 encodes a

CC-NB-LRR protein that mediates antibiosis to BPH.

Sequence comparison indicated that Bph26 is the same

as Bph2, which was overcome by biotype 2. However,

pyramiding of Bph25 and Bph26 could significantly im-

prove BPH resistance, suggesting a valuable application

in rice resistance breeding (Tamura et al. 2014).

Bph17 was cloned from Sri Lankan indica variety

Rathu Heenati. Initially, Bph17 was fine-mapped to a

79 kb region containing four clustered genes on

chromosome 4S. Transgenic tests showed that three

genes independently confer resistance to BPH, and gene

pyramided transgenic lines showed enhanced resistance.

Bph17 is actually a cluster of three genes encoding

plasma membrane-localized lectin receptor kinases

(OsLecRK1—OsLecRK3), which collectively function to

confer broad-spectrum, durable resistance and provide

an important gene source for MAS and transgenic

breeding for BPH resistance (Liu et al. 2015).

bph29, a recessive gene from O. rufipogon, fine-map to

a 24 Kb region on chromosome 6S. Through a trans-

genic experiment, the bph29 allele from the susceptible

variety was transferred into the resistant variety, and the

positive progenies were susceptible, whereas the negative

progenies retained high resistance. bph29 encodes a B3

DNA-binding protein. Expression patterns analysis

showed that bph29 is restricted to the vascular tissue

where BPH attacks. Expression of bph29 activates the

SA signaling pathway and suppresses the jasmonic acid/

ethylene (JA/Et)-dependent pathway after BPH infest-

ation and induces callose deposition in phloem cells,

resulting in antibiosis to BPH (Wang et al. 2015).

Genes and TFs associated with BPH resistance

In addition to the traditional map-based cloning method,

some genes and transcription factors (TFs) associated with

BPH resistance have been identified through reverse

genetics approaches such as T-DNA mutants and genes

homology. Bphi008a is a resistance gene that is induced

by BPH feeding; it is involved in ethylene signaling. Plants

carrying a transgenic Bphi008a allele show significantly

enhanced resistance to BPH (Hu et al. 2011b). Another

two genes, OsERF3 and OsHI-LOX, are ethylene response

factors and lipoxygenase genes, respectively, involved in a

JA/Et-dependent pathway and act as inhibitor of the gene

Fig. 3 Locations of BPH resistance genes on rice chromosomes
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expression to improve resistance to BPH (Lu et al. 2011;

Zhou et al. 2009). With the development of rice genomics

and proteomics, continued screening and validation of

genes that are regulated by BPH feeding, and clarification

of resistance mechanisms will promote research of

BPH—associated genes and offer possibilities for resist-

ance breeding.

Molecular breeding for BPH resistance

Since the 1970s, several BPH resistance genes such as

Bph1, bph2, Bph3 and bph4 have been identified and

transferred into elite susceptible varieties at IRRI, and a

series of improved cultivars (e.g. IR26, IR36, IR50 and

IR72) with BPH resistance were developed and released

(Jairin et al. 2007a; Jena and Kim, 2010). However, the

improved cultivars carrying single resistance gene lose

effectiveness due to the evolution of new biotypes

(Jena and Kim 2010). Therefore, to develop new var-

ieties with more durable and stable BPH resistance,

there has to be use of more genes, preferably pyra-

mided into multiple gene lines or possibly deployed

in multiline single gene mixtures such that new

biotypes will be hampered or delayed.

Integrating MAS into conventional rice breeding

MAS greatly increases the efficiency and effectiveness of

breeding. By determining and developing DNA markers

for target genomic regions, desired individuals posses-

sing particular genes or QTLs can be identified in

germplasm collections based on genotyping rather than

phenotyping (Collard et al. 2005). New strategy that fits

breeder requirements should include a planned MAS

strategy, MAS-based backcrossing breeding (MABC)

and gene pyramiding (Fig. 4).

Construction of a MAS system for using BPH resistance genes

The efficiency of MAS largely depends on the distance

between molecular markers and genes/QTLs associated

with target traits. The development of useful markers

tightly linked to target traits is accomplished by QTL

mapping experiments. Generally, the markers are vali-

dated in fine mapping studies. Based on the positional

information of BPH-resistance genes previously reported

(Table 2), SSR and InDel markers adjacent to related

genes were designed, and used to track the target genes

in the segregating generation, and to test whether these

markers were closely linked with genes. Thus, several

Fig. 4 An integrated strategy of MAS and conventional breeding. MAS strategy is in the center position throughout the entire process of breeding.

The primary goal is development of useful markers tightly linked to target QTLs/genes by QTL mapping experiments (primary mapping, fine mapping

and QTL validation). MABC include three generations of backcrosses and one generation of selfing, accompanied by positive and negative selection

for minimizing the donor segments linked to target gene, and background selection for maximizing the recurrent genome. After phenotype

evaluation of BC3F2 lines, NILs containing single target gene are obtained. Multiple NILs that carrying different genes are crossed each other to

produce pyramided lines. MAS based conventional breeding include 8–9 generations of selfing, accompanied by multiple cross within three parents,

field and MAS selection in a large F2 population, preliminary and further yield trials in F3 and F4-8 population. After phenotype evaluation, the F8-9
progenies with enhanced target traits and high yield potential could be obtained, designated as ‘improved versions’
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MAS systems with high efficiency associated with these

genes were developed (Table 3).

MABC for BPH resistance

It takes a minimum of 6–8 backcrosses to fully recover a

recurrent parent genome using conventional breeding

methods, but MABC enables the procedure to be short-

ened to 3 or 4 backcrosses (Tanksley et al. 1989). There

are three levels of selection in which markers are applied

in backcross breeding (Fig. 5). Firstly, markers are used

to select target alleles whose effects are difficult to ob-

serve phenotype (e.g. resistance in the absence of actual

disease/pest tests), this is referred to as ‘positive selec-

tion’; secondly, markers are used to select for progeny

with the target gene and tightly-linked flanking markers

in order to produce chromosomes that harbor the target

allele with minimal surrounding DNA from the donor

parent (minimizing linkage drag), designated as ‘negative

selection’ or ‘recombinant selection’; thirdly, markers

that are distributed across all 12 rice chromosomes can

be selected for recovery of the recurrent parent genome,

known as ‘background selection’. A typical example of

MABC that used markers for all three objectives was

performed by Chen et al. (2000).

MABC has been used to develop multiple BPH-

resistance introgressions (ILs) or near-isogenic lines

(NILs). Using a Bph18-cosegergation marker 7312. T4A

for positive selection, and 260 SSR markers across all rice

12 chromosomes for background selection, Bph18 was

transferred into an elite japonica variety ‘Junambyeo’ and

ILs with enhanced BPH resistance were developed

(Suh et al. 2011). Using negative selection, linkage drag

between Bph3 and Wxa alleles was successfully broken

resulting in ILs with broad spectrum BPH resistance and

good quality (Jairin et al. 2009). In our laboratory, a num-

ber of genes (Bph3, Bph6, Bph9, Bph14, Bph15, Bph10,

Bph18, Bph20, QBph4, QBph3) were individually incorpo-

rated into 9311 (an elite variety in China) using MABC,

and a set of NILs was developed with enhanced BPH re-

sistance. These NILs harbor target gene regions of less

than 100 kb and the recurrent parent genome (>99.5 %)

was recovered with a breeding chip with high-density SNP

markers for negative and background selection (data

unpublished).

Pyramiding BPH resistance genes

Using MAS, we can simply and easily combine multiple

genes/QTLs together into a single genotype simultaneously.

Table 3 Markers used in MAS for BPH resistance in rice

Marker chr position QTL/gene F(5′–3′) R(5′–3′) Reference

c3-14 3 35646876 QBph3 GGCAAAATTAGACGGCACG GAATATGCATTTTGTTTGGAG Hu et al. 2015a

IN76-2 3 35689799 Bph14 CTGCTGCTGCTCTCGTATTG CAGGGAAGCTCCAAGAACAG Du et al. 2009

RM261 4 6579056 Bph15,QBph4.1 CTACTTCTCCCCTTGTGTCG TGTACCATCGCCAAATCTCC Hu et al. 2015a

g12140-2 4 6691854 Bph15 ACCAAACACGGTGGATGAGA AATGGAAAAGAGGAGGACAACAG Lv et al. 2014

xc4-27 4 6899420 Bph15,QBph4.1 GCATAAGCGCCCTAGCC GCTAGTTGCAGGCACGC Hu et al. 2015a

20 M14 4 6900345 Bph15 ATGCTGACGGTGCTAGGAGT CAGTCCATCCACACAACTTGA Lv et al. 2014

RH7 4 6949655 Bph17 CTTGCGTTCCGTAGGAGAAG TGAGTGTAACCCGAAGTGGC Liu et al. 2015

RHC10 4 6972108 Bph17 CAATACGGGAGATTTGGAGT TTGGGAAGCATACGAGTGA Liu et al. 2015

IN156 4 7006594 Bph15, Bph17 AGGTGAAGCTGATGTGCTTG CGATACTTATTGCAACACAC Hu et al. 2012

B43 4 8760137 Bph20 ACTCCAATTGGTTCCTGTGG TGGACTAAAAGCCGATGAGC Rahman et al. 2009

RM119 4 21414516 Bph6 CATCCCCCTGCTGCTGCTGCTG CGCCGGATGTGTGGGACTAGCG Qiu et al. 2010

S00310 6 214474 Bph25 CAACAAGATGGACGGCAAGG TTGGAAGAAAAGGCAGGCAC Myint et al. 2012

RM589 6 1381865 Bph3 ATCATGGTCGGTGGCTTAAC CAGGTTCCAACCAGACACTG Jairin et al. 2009

RM260 12 19549286 Bph10 ACTCCACTATGACCCAGAG GAACAATCCCTTCTACGATCG Ishii et al. 1994

RM313 12 20872949 Bph10 TGCTACAAGTGTTCTTCAGGAC GCTCACCTTTTGTGTTCCAC Ishii et al. 1994

RM463 12 22125823 Bph2 TTCCCCTCCTTTTATGGTGC TGTTCTCCTCAGTCACTGCG Sun et al. 2006

RM6869 12 22253179 Bph2 GAGCTCCTTGTAGTGACCCG ATCAGCCTCGCCAGCTTC Sun et al. 2006

RM6217 12 22671954 Bph9 CGCAGATGGAGATTCTTGAAGG ACAGCAGCAAGAGCAAGAAATCC Su et al. 2006

IN187 12 22875241 Bph18,Bph9 GACCCCCTTCGAGTCTAAGAAC CTTCTTTGAACTCATAGACAG Hu et al. 2013

7312.T4 12 22885300 Bph18 ACGGCGGTGAGCATTGG TACAGCGAAAAGCATAAAGAGTC Jena et al. 2006

RM3331 12 23494476 Bph18 CCTCCTCCATGAGCTAATGC AGGAGGAGCGGATTTCTCTC Suh et al. 2011

RM5479 12 24356237 Bph21,Bph26 AACTCCTGATGCCTCCTAAG TCCATAGAAACAATTTGTGC Myint et al. 2012

B121 12 24202618 Bph21 CGTCGTACATTCTGAAATGGAG GGACATGGAGATGGTGGAGA Rahman et al. 2009
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Through conventional breeding to pyramid traits, individ-

ual plants/lines must be phenotypically screened for all

tested traits. However, it may be impossible or extremely

difficult to pyramid traits such as pest resistance where

unique biotypes may be needed for screening as the pres-

ence of one gene may prevent phenotypic selection for

others. Pyramiding of resistance genes or QTLs in rice has

now become an effective method for developing lines with

disease and pest resistance (Divya et al. 2014; Dokku et al.

2013; Jiang et al. 2015; Pradhan et al. 2015; Singh et al.

2015; Suh et al. 2013; Wan et al. 2014).

Using MAS based conventional breeding, progress has

been made in pyramiding two or more major BPH re-

sistance genes into susceptible cultivars. The pyramided

lines (PLs) carrying Bph1 and bph2 genes showed higher

resistance than the lines with only bph2 (Sharma et al.

2004). Qiu et al. (2012) used MAS for pyramiding Bph6

and Bph12 genes into japonica and indica cultivars. The

PLs had stronger resistance level than ILs with Bph6

alone, followed by the single-Bph12 ILs. In addition,

three dominant BPH resistance genes (Bph14, Bph15,

Bph18) were pyramided into the elite indica rice 9311

and its hybrids using MABC. The results showed an

additive effect of those pyramiding genes, the order of

the gene effect being 14/15/18 ≥ 14/15 > 15/18 ≥ 15 > 14/

18 ≥ 14 ≥ 18 > none (Hu et al. 2013). Additionally, pyra-

miding BPH resistance genes and other resistances have

become routine in rice breeding. Wan et al. (2014)

Fig. 5 A flowchart for marker assisted backcross breeding (MABC). M3 and M4 are markers for positive selection of target genes. M1, M2, M5 and M6

are linked markers for negative selection of linked segments of target genes
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reported development of a new elite restorer line posses-

sing tolerance to BPH, stem borer, leaf folder and

herbicide through pyramiding Bph14, Bph15, Cry1C,

and glufosinate-resistance gene bar.

In order to develop new cultivars with durable BPH

resistance, we should not only use gene pyramiding, but

exploit genetic diversity for ecological reasons. Zhu et al.

(2000) reported an example of genetic diversity and blast

disease control in rice. Furthermore, multiple NILs were

developed representing all possible combinations of sev-

eral blast resistance QTLs/genes from a durably resistant

cultivar (Fukuoka et al. 2015; Khanna et al. 2015). Simi-

larly, we have pyramided Bph14 and Bph15 into several

different rice hybrids, and experiments indicated that

planting resistant pyramided hybrids around conven-

tional susceptible hybrids significantly reduced the over-

all population of BPH over a large field area, thereby

reducing the BPH threat and contributing to sustainable

of rice production (Hu et al. 2011a). Moreover, multi-

lines (NILs, ILs, or PLs) carrying different assortments

of genes should also help in containing BPH populations

to manageable levels.

Conclusion and perspective

In the recent years, significant progress has been made

in molecular breeding of rice for yield, quality, biotic

and abiotic stress resistances and certain agronomic

traits (Rao et al. 2014). However, the genetics rice: BPH

interaction and molecular breeding for BPH resistance

have been restrained due to the intricacy of interaction

between rice and BPH. Host—plant resistance is an ef-

fective environmentally friendly approach to control

BPH and maintain yield potential of cultivars (Jena and

Kim, 2010). Future breeding approaches must focus on de-

veloping cultivars with durable, broad-spectrum resistance.

The first objective is to identify and characterize new

resistance genes from diverse germplasm resources, par-

ticularly wild species. The second objective is to under-

stand the molecular interactions between rice and BPH.

We should not only accelerate research on map-base

cloning of BPH resistance genes, but also pay attention

to and the genome and genetics of BPH itself. The BPH

genome was sequenced and genomes of BPH and its en-

dosymbionts revealed complex complementary contribu-

tions for host adaptation (Xue et al. 2014). Mapping of

the rice resistance-breaking gene of the BPH has facili-

tated understanding of interactions of BPH and rice

(Jing et al. 2014; Kobayashi et al. 2014). The third ob-

jective is to pyramid major genes or QTLs or to deploy

NILs or ILs carrying multiple single resistance genes in

multilines. Recently, molecular breeding design (MDB)

have become popular for molecular breeding in crop

improvement and should contribute to future breeding

outcomes (Xu and Zhu, 2012). Molecular breeding

designs for BPH resistance will involve three steps: (1)

map all QTLs for BPH resistance by high-throughput

genotyping and reproducible phenotyping; (2) evaluate

and reconfirm allelic variation in these QTLs by devel-

opment of NILs; and (3) conduct design breeding

according to a bioinformatics platform and simulation

studies. The final objective is to develop new varieties

that contain the best genotypic combinations to confer

durable resistance.
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