Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids

Carlos Cativiela ${ }^{\mathrm{a},{ }^{*}}$ and Mario Ordóñez ${ }^{\mathrm{b},{ }^{*}}$
adepartamento de Química Orgánica, ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza (Spain)
${ }^{\text {b }}$ Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos (México)

Abstract

The most recent papers describing the stereoselective synthesis of cyclic quaternary α-amino acids are collected in this review. The diverse synthetic approaches are classified according to the size of the ring and taking into account the bond that is formed to complete the quaternary skeleton.

1. Introduction

Linear peptides are highly flexible molecules that can adopt many conformations in solution and, of these, only a few are responsible for their biological activity. The construction of novel peptide sequences with tailor made enhanced properties is one of the most challenging areas in biomimetic research. The incorporation of rigid amino acid surrogates provides very useful information on the bioactive conformation and results in beneficial physiological effects. Between these rigid amino acids the use of quaternary compounds is one of the most interesting approaches, and for this reason during the last few years many procedures towards the stereoselective synthesis of these compounds have been described. In this context, we have previously reviewed (1998 and 2000) the stereoselective synthesis of these interesting compounds,,${ }^{1} 2$ and taking into account the great quantity of procedures reported, more recently we have published an update about the stereoselective synthesis of the acyclic α-amino acids3 that we would like to complete now with a corresponding update of the cyclic systems.

Before beginning the summary of the new procedures concerning the stereoselective synthesis of these cyclic derivatives it is worth mentioning that apart from our own contributions, during the last years some reviews focused on some particular aspects have been published in relation to the synthesis of some cyclic amino acid and derivatives, ${ }^{4,5}$ the synthesis of heterosubstituted carbocyclic α-amino acids, ${ }^{6}$ the synthesis of some fluorinated acyclic and cyclic amino acids,
7 the synthesis of unnatural α-amino acids ${ }^{8}$ and the modelling and synthesis of some conformationally constrained amino acids. ${ }^{9}$ Much more recently, the synthesis of the family of enantiomerically pure 1-amino-2-phenylcycloalkanecarboxylic acids, ${ }^{10}$ an excellent review of 1-aminocyclopropane-carboxylic acids, ${ }^{11,12}$ the catalytic asymmetric synthesis of α-amino acids including some quaternary derivatives, ${ }^{13}$ the synthesis of cyclic α-amino acids and their use in the preparation of stable conformational short peptides, ${ }^{14}$ and also some recent approaches towards the asymmetric synthesis of quaternary amino acids ${ }^{15}$ have been reported.

[^0]Nevertheless, and in spite of all these reviews, some of which are from a general point of view and others focused on some particular aspects or families of compounds, we would like to review all methodologies in a manner that is useful to organic experimentalists.

Some data concerning the structural analysis of cyclic amino acids in small and medium size $\mathrm{Ac}_{\mathrm{n}} \mathrm{c}$ (1-aminocycloalkanecarboxylic acids) has been completed during these years and the synthesis and structural studies of model peptides containing these cyclic amino acids has been reported.16-24 Apart from these classical rings, the conformational tendencies of other cyclic amino acids such as $\mathrm{Hms}(\mathrm{Ipr})$ or O, O-isopropylidene- α-hydroxymethylserine, ${ }^{25} \mathrm{Afc}$ or 9-amino-9-fluorenecarboxylic acid, ${ }^{26,27}$ Daf or 9-amino-4,5-diazafluorene-9-carboxylic acid, 28,29 Adt 4-amino-1,2-dithiolane-4-carboxylic acid, ${ }^{30}$ the axially chiral α-amino acids Bip and $\operatorname{Bin}^{31-37}$ or the Bip system incorporating a crown ether receptor ${ }^{38}$ have been reported. More recently, the synthesis and properties of antAib, a novel tetrasubstituted α-amino acid of the $\mathrm{Ac}_{5} \mathrm{c}$ type possessing a fused anthracene fluorophore has also been reported. ${ }^{39,40}$

Theoretical calculations focused on the study of the conformational tendencies of 1-aminocycloalkanecarboxylic acids $\left(\mathrm{Ac}_{\mathrm{n}} \mathrm{c}\right)$ have been reported. ${ }^{41-43}$ Of these compounds the cyclopropane derivatives have attracted the attention of many researchers, probably due to the particular characteristics that the cyclopropane ring confers to the amino acid. When additional substituents are incorporated into the ring, two chiral centres are formed and, as a consequence, new stereoisomers are possible. In the particular case of the incorporation of one phenyl ring as a substituent (named, $\mathrm{c}_{3} \mathrm{Phe}$), the compound can be considered as a constrained phenylalanine and in this case several theoretical studies has been reported ${ }^{44}$ to explain the behaviour previously described by our group. ${ }^{45,46}$ The presence of an additional phenyl group in a different carbon atom ($c_{3} \mathrm{diPhe}$) confers peculiar characteristics to the molecule these have been reported both from an experimental ${ }^{47}$ and theoretical point of view. ${ }^{48}$ The case of the cyclopropane derivative in which both phenyl substituents are on the same carbon atom ($\mathrm{c}_{3} \mathrm{Dip}$) seems particularly interesting since it has been reported that it confers important tendencies to give a γ-turn in some model peptides. ${ }^{49,50}$ The structural tendencies of other cyclopropane derivatives such as $\mathrm{c}_{3} \mathrm{Val}^{51,52}$ or other 2-phenyl-1-aminocycloalkanecarboxylic acids such as $\mathrm{c}_{5} \mathrm{Phe}^{53}$ and $\mathrm{c}_{6} \mathrm{Phe}^{54-56}$ have also been reported. Additionally, the theoretical study of 8-aminopentacycloundecane-8-carboxylic acid has been reported. ${ }^{57}$ Very recently, the helical screw sense exclusively governed by chiral centres in the side chain of some cyclic amino acids has been reported. ${ }^{58-60}$

Finally, some systematic structure-activity relationships between biological properties of peptides incorporating quaternary cyclic amino acids has also been reported. ${ }^{61-63}$

2. Synthesis of 1-aminocycloalkanecarboxylic acids

2.1. Using cyclic compounds as starting materials

One of the most useful methodologies to prepare 1-aminocycloalkanecarboxylic acids in a stereoselective manner involves the use of cyclic compounds (typically aldehydes but ketones for the synthesis of quaternary α-amino acids) as starting materials, although in this case the introduction of both functional groups (amino and carboxylic acid) is necessary. Of all reported methodologies, the Strecker reaction ${ }^{64,} 65$ and related synthesis have been repeatedly used. The diastereoselective Strecker reaction involves the addition of cyanide or its equivalents to the previously formed $\mathrm{C}=\mathrm{N}$ bond from the corresponding ketone and a chiral amine, and subsequent hydrolysis of the nitrile group. For the Strecker reaction several chiral auxiliaries such as (S) - α-methylbenzylamine $(\alpha-$ MBA $),{ }^{66}(R)$-phenylglycinol, ${ }^{67}(R)$-phenylglycine amide, ${ }^{68}\left(S_{\mathrm{S}}\right)$ - p-toluene- and $\left(S_{\mathrm{S}}\right)$-tert-butane-sulfinimides, ${ }^{69}(S)$-1-amino-2methoxymethylpyrrolidine (SAMP), ${ }^{70}$ (S)-1-amino-2-methoxymethyl-indoline (SAMI), ${ }^{71}$ and 2,3,4,6-tetra- O-pivaloyl- β-D-galactopyranosyl amine ${ }^{72}$ have been used.

The stereoselective synthesis of 1-aminocycloalkanecarboxylic acids using this methodology have been grouped depending on the size and type of the starting carbonyl compound.

The 1-aminocyclopropanecarboxylic acids probably are the most interesting carbocyclic α amino acids and several methodologies have been described for their stereoselective synthesis. However, to the best of our knowledge the work of Fadel et al. ${ }^{66}$ is the only example reported in the literature in which, the Strecker reaction has been used for their stereoselective synthesis. In this context, reaction of cyclopropanone hemiacetal $(2 S)-\mathbf{1}$ with the chiral amine $[(S)$ - $\alpha-$ MBA or (S)- α-methoxymethylbenzylamine ((S)-MOMBA)] afforded the imines 2a,b, which, by addition of NaCN gave the α-aminonitriles $(1 R, 2 S)-\mathbf{3 a}, \mathbf{b}$ with moderate diastereoselective excess. Hydrolysis of diastereoisomerically pure $(1 R, 2 S)-\mathbf{3 a}, \mathbf{b}$ with concentrated sulfuric acid at $0{ }^{\circ} \mathrm{C}$, followed by hydrogenolysis over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ provided the amine amide $(1 R, 2 S)-\mathbf{4 a}$, which, by treatment with 6 N HCl at reflux, gave the $(1 R, 2 S)$-1-amino-2methylcyclopropanecarboxylic acid 5a (allo-norcoronamic acid) in 85\% yield (Scheme 1).

On the other hand, condensation of the cyclobutanones $(\pm)-\mathbf{6 a}-\mathbf{c}^{73}$ with $(S)-\alpha-\mathrm{MBA}$ in the presence of a catalytic amount of acetic acid or p-toluenesulfonic acid (TsOH), followed by addition of sodium cyanide ${ }^{74}$ or trimethylsilylcyanide (TMSCN) 75 in the presence of ZnCl_{2}, afforded the α-amino nitriles cis-7a-c, trans-8a-c, cis-9a-c, and trans-10a-c in moderate yield and diastereoisomeric ratio. The results are summarized in Table 1.

Hydrolysis of diastereoisomerically pure cis-7b $(\mathrm{R}=i-\mathrm{Pr})$ with concentrated sulfuric acid at 0 ${ }^{\circ} \mathrm{C}$ gave the amide 11b in 85% yield, which, by hydrogenolysis over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, furnished the amine amide $(1 S, 2 S)$ - 12b in 98% yield. Finally, hydrolysis of $(1 S, 2 S) \mathbf{- 1 2 b}$ with 6 N HCl under reflux followed by treatment with propylene oxide in ethanol gave the α-amino acid ($1 S$, $2 S)$ - $\mathbf{1 3 b}$ in $90-94 \%$ yield. Under identical conditions, cis-9b was transformed into ($1 R$, 2R)-13b (Scheme 2). ${ }^{74}$

In a similar way, treatment of the mixture of α-amino nitriles $8 \mathbf{- 1 0} \mathbf{c}$ with concentrated sulfuric acid at $0{ }^{\circ} \mathrm{C}$ followed by separation and subsequent hydrogenolysis with $\mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{Pd} / \mathrm{C}$ conditions, and hydrolysis with concentrate HCl led to $(1 R, 2 R)-\mathbf{1 3} \mathbf{c},(1 S, 2 S)-\mathbf{1 3} \mathbf{c}$ and $(1 R$, $\mathbf{2 S}$)-14c as chlorohydrate salt (Scheme 3). ${ }^{75}$

Recently, Fadel et al. ${ }^{76}$ have reported the stereoselective synthesis of ($1 R, 2 R$)-1-amino-2-hydroxy-cyclobutanecarboxylic acid 13d, a serine derivative from racemic or optically pure 2-benzyloxy-cyclobutanone $\mathbf{6 d}(\mathrm{R}=\mathrm{OBn})$, and $(1 R, 2 R)$ - and $(1 S, 2 S)$-1,2diaminocyclobutanecarboxylic acid 13e an ornitine derivative, from racemic 2aminocyclobutanone $\mathbf{6 e}$. For this purpose, the condensation of either (\pm)-or enantiopure $\mathbf{6 d}$ with $(S)-\alpha-\mathrm{MBA}$, followed by addition of sodium cyanide gave the corresponding α-amino nitrile mixture 7-10d. The formation of the four diastereoisomers 7-10d using (R) - or $(S)-\mathbf{6 d}$ was probably due to the partial racemization of enantiomerically pure starting ketone under Strecker conditions. ${ }^{76 \mathrm{a}}$ On the other hand, one-pot reaction of $\mathbf{6 e}$ with $(S)-\alpha-\mathrm{MBA}$ in the presence of AcOH and NaCN afforded, under thermodynamic control, only two major stereoisomers $\mathbf{8 e}$ and $\mathbf{1 0 e}$ in 55:45 ratio and excellent yield. ${ }^{76 \mathrm{~b}}$ The results are summarized in Table 2.

Hydrolysis of diastereoisomerically pure $\mathbf{8 d}(\mathrm{R}=\mathrm{OBn})$ with hydrogen peroxide and ethanolic potassium hydroxide solution, followed by hydrogenolysis over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in the presence of di-tert-butylcarbonate [(Boc) $)_{2} \mathrm{O}$], afforded the amide $(1 R, 2 R)$ - $\mathbf{1 5 d}$ in 69% yield. Finally, hydrolysis of $(1 R, 2 R) \mathbf{- 1 5 d}$ with 6 M HCl under reflux gave the quaternary α-amino acid $(1 R$, $2 R)$ - $\mathbf{1 3 d}$ in 74% yield as chlorohydrate salt. Under identical conditions trans-8e and trans-10e were transformed into quaternary 1,2-diamino acids ($1 R, 2 R$)- and ($1 S, 2 S$)-13e in good chemical yield (Scheme 4). ${ }^{76}$

On the other hand, condensation of the 2-alkylpentanones 16a-e ${ }^{77}$ with $(R)-\alpha-\mathrm{MBA}$ in the presence of a catalytic amount of TsOH , followed by addition of TMSCN and ZnCl_{2} in methanol or hexane under thermodynamically or kinetically controlled conditions, produced the four diastereoisomeric α-amino nitriles 17a-e to 20a-e. The results are summarized in Table $3 .{ }^{78}$

Hydrolysis of the mixture of α-amino nitriles 17a-e to 20a-e obtained using methanol as solvent with concentrate sulfuric acid, produced the diastereoisomerically pure α-amino carboxyamides 21a-e to $\mathbf{2 4 a} \mathbf{- e}$, after separation by flash chromatography and preparative HPLC. Hydrogenolysis of diastereoisomerically pure α-amino carboxyamides 21a-e, 22a-e, 23a-c and 24a-c with $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ and Pd / C, followed by hydrolysis with concentrate HCl and subsequent treatment with cation exchange resin, gave the 2-alkylated 1aminocyclopentanecarboxylic acids $(1 R, 2 R)$ - and $(1 S, 2 S)$-25a-e, and $(1 R, 2 S)$ - and $(1 S$, 2R)-26a-c (Scheme 5). ${ }^{78}$

Condensation of the 5-bromo-1-indanone 27, which is easily obtained from 3bromobenzaldehyde, with (R)-phenylglycinol followed by addition of TMSCN and subsequent treatment with HCl , afforded the mixture of α-amino esters 28 in 61% yield and $7: 1$ diastereoisomeric ratio, which, under reflux in toluene gave the spiro derivatives (S, R)-29 and (R, R) - $\mathbf{3 0}$ in 59% yield. Palladium-catalyzed carbonylation of diastereoisomerically pure $(S, R)-29$ with $\mathrm{Pb}(\mathrm{OAc})_{2}$ and 1,3-bis(diphenyl-phosphino) propane (dppp) in ethanol produced the derivative (S, R) - $\mathbf{3 1}$ in 67% yield, which, by cleavage of spiro ring with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol produced the diester (S, R) - 32 in 70% yield. Finally, oxidative cleavage of benzyl fragment in $(S, R)-\mathbf{3 2}$ with $\mathrm{Pb}(\mathrm{OAc})_{2}$ followed by acidic hydrolysis and subsequent treatment with propylene oxide furnished the 1 -aminoindane-1,5-dicarboxylic acid 33 [(S)-AIDA] in 65% yield and this is an antagonist of metabotropic glutamate receptors (Scheme 6). ${ }^{79}$

On the other hand, palladium-catalyzed phosphonylation of diastereoisomerically pure $(S, R)-\mathbf{2 9}$ whith diethyl phosphite produced the ethyl phosphonate (S, R)-34 in 83% yield, which, by cleavage of spiro ring with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol, led to diester $(S, R)-35$ in 70% yield. Finally, oxidative cleavage of benzyl fragment in $(S, R)-35$ with $\mathrm{Pb}(\mathrm{OAc})_{2}$, followed by acidic hydrolysis and subsequent treatment with propylene oxide furnished the 1-amino-5-phosphoindane-1-carboxylic acid $\mathbf{3 6}$ [(S)-APICA] in 65\% yield (Scheme 7). ${ }^{79}$

Schann et al. ${ }^{80}$ reported the first stereoselective synthesis of aminopyrrolidinedicarboxylic acids 41 and $\mathbf{4 2}$, which have been used in the preparation of glutamate receptor compounds. ${ }^{81}$ Thus, the Bucherer-Bergs reaction ${ }^{82}$ of (S) -37, readily obtained from $(2 S, 4 R)-4-$ hydroxyproline, with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN in ethanol gave the spirohydantoin mixture 38 in $68-78 \%$ yield, which, by basic hydrolysis followed by treatment with SOCl_{2} and methanol under reflux afforded, after chromatographic separation, the amino esters $(2 S, 4 S)-39$ and ($2 S$, $4 R)-40 . N$-Boc protection of $(2 S, 4 S)-39$ and $(2 S, 4 R)-40$, followed by cleavage of benzyl protective group by hydrogenolysis under $\mathrm{HCO}_{2} \mathrm{NH}_{4}$ and Pd / C conditions, and subsequent saponification and cleavage of Boc protective group with HCl , gave the amino acids ($2 S$, $4 S)-\mathbf{4 1}$ and $(2 S, 4 R)-\mathbf{4 2}$, respectively. Under identical conditions (R) - $\mathbf{3 7}$ was transformed into $(2 R, 4 R)-41$ and $(2 R, 4 S)-42$ (Scheme 8$)$.

On the other hand, reaction of the ulose 43, readily obtained by oxidation of diacetone-Dglucose, with ammonia in the presence of $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$, followed by addition of TMSCN, provided the glycol- α-amino nitrile 44 in 80% yield as the only detectable stereoisomer, which, by treatment with carbon dioxide in MeOH at $75 \mathrm{~atm} / 85^{\circ} \mathrm{C}$ or $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at $70^{\circ} \mathrm{C}$, gave the spirohydantoin 45 in 80% yield. Selective hydrolysis of one of the acetonides of 45 with 1 N HCl , followed by hydantoin ring opening with barium hydroxide and subsequent
ion-exchange chromatography, furnished the quaternary glycoamino acid $\mathbf{4 6}$ in 55\% yield in three steps (Scheme 9). ${ }^{83}$

Recently De Micheli et al. ${ }^{84}$ reported the stereoselective synthesis of conformationally constrained α-amino acid 50, an analogue of aspartic acid, based on the Strecker methodology. Thus, TsOH -catalyzed condensation of the ketone 47 with 4-methoxybenzylamine (PMBNH_{2}), followed by addition of TMSCN in the presence of ZnCl_{2}, afforded the cyano derivative 48 as a single detectable stereoisomer. Cleavage of PMB protective group in 48 with cerium (IV) ammonium nitrate (CAN) provided the α-amino nitrile 49, which, by hydrolysis and subsequent ion-exchange chromatography gave the conformationally constrained α-amino acid 50 in 27% overall yield (Scheme 10).

Conformationally constrained ($1 S, 2 S, 5 R, 6 S$)-2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylic acid, also known as (LY354740), ${ }^{85}$ is a highly potent and selective agonist for group II metabotropic glutamate (mGlu) receptors, specifically mGlu2 and mGlu3, that has been found to possess anxiolytic, antipsychotic, anticonvulsant, anti-Parkinsonian, analgesic, and neuroprotective properties in vivo. 86 Additionally the peptides of type $\mathbf{5 1}$ are effective prodrugs of LY354740. ${ }^{87}$ For this reason several analogues of LY354740 have been prepared.

Monn et al..88 reported the synthesis of conformationally constrained α-amino acids (+)- and $(+)-55$ and $(-)-56$, which, were evaluated as mGlu receptors. In this context, reaction of the optically pure bicyclic ketone (+)-53, obtained from 52, ${ }^{89}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN in ethanol gave the spirohydantoin (+)-54 in 28% yield after crystallization, which, by basic hydrolysis, gave the conformationally constrained α-amino acid (+)-55 in 55% yield. In a similar way, $(-)-53$ was transformed into $(-)-56$ (Scheme 11).

On the other hand, Lee and Miller ${ }^{90}$ reported the stereoselective synthesis of conformationally constrained α-diamino acid $(-)-60$ starting from the cyclic ketone $(-)-57$. In this context, the intermolecular cyclopropanation of the α, β-unsaturated ketone $(-)-57$ with the sulfonium ylide obtained from (ethoxycarbonylmethyl)dimethylsulfonium bromide and 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), afforded the bicyclic ketone (-)-58 in $60-73 \%$ yield, ${ }^{91}$ which, by a Bucherer-Bergs reaction with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN in ethanol, provided the spirohydantoin $(-)-\mathbf{5 9}$ in 59% yield and 96% ee. Basic hydrolysis of $(-)-59$ and sequential treatment with
copper(II) carbonate, benzoyl chloride and ion-exchange chromatography, furnished the α diamino acid (-)-60 with $>98 \%$ ee (Scheme 12).

Mann et al. ${ }^{92}$ reported the synthesis of constrained cycloalkyl analogue of glutamic acid 64 with a ω-phosphonic acid function, an analogue of AP4. ${ }^{93}$ Thus, reaction of the bicyclic ketone 61 with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN in $\mathrm{H}_{2} \mathrm{O}$ produced the spirohydantoins 62 and $\mathbf{6 3}$ in 68% yield and 4:1 ratio as an inseparable mixture of diastereoisomers, from which, by acidic hydrolysis and crystallization, the α-amino acid $\mathbf{6 4}$ could be obtained in 56% yield (Scheme 13).

On the other hand, reaction of the optically pure bicyclic ketone $(-)-\mathbf{6 6}$, obtained in 9 steps from chiral methyl ester $(1 R, 5 R)-65$, with ammonia in the presence of $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$ in methanol followed by addition of TMSCN, afforded the α-amino nitrile 67 in 80% yield and 13.1:1 diastereoisomeric ratio, which, by cristallyzation and subsequent hydrolysis with 8 N HCl and AcOH , furnished the optically pure conformationally constrained fluoro α-amino acid (+)-68 in 94% yield (Scheme 14). ${ }^{94}$

Nakazato et al. 95,96 reported the synthesis of several conformationally constrained fluoro α amino acids, which were evaluated as potent and selective group II metabotropic glutamate receptor antagonists. For example, reaction of the optically pure cyclic sulfates (+)-70a,b, obtained in 3 steps from the bicyclic ketone (-)-69, with sodium azide followed by treatment with sulfuric acid, gave the azide derivatives $(1 R, 2 R, 3 R, 5 R, 6 R)-71 \mathbf{a}, \mathrm{~b}$ in good yield. Catalytic hydrogenation of benzyl ester and azide functions in 71b followed by acidic hydrolysis provided the conformationally constrained α-amino acid ($1 R, 2 R, 3 R, 5 R, 6 R$)-72 in 79% yield (Scheme 15).

On the other hand, reaction of $(1 R, 2 R, 3 R, 5 R, 6 R)$-71a with trifluoromethanesulfonyl anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}\right)$ in pyridine afforded the derivative $(-)-73$, which, by treatment with KNO_{2} in the presence of 18 -crown- 6 and subsequent addition of water, gave the compound $(1 R, 2 R, 3 S, 5 R$, $6 R$)-74 in 80% yield. Reduction of azide group in 74 under Staudinger conditions ${ }^{97}$ using PMe_{3}, followed by basic hydrolysis, produced the α-amino acid ($1 R, 2 R, 3 S, 5 R, 6 R$)-75 in 48% yield (Scheme 16). ${ }^{95}$

Additionally, optically pure ($1 R, 2 R, 3 R, 5 R, 6 R$)-71a and $(1 R, 2 R, 3 S, 5 R, 6 R)$-74 have been transformed into conformationally constrained α-amino acids ($1 R, 2 R, 3 R, 5 R, 6 R$)-76 and ($1 R$, $2 R, \mathrm{RS}, 5 R, 6 R$)-77a,b, respectively, which have been evaluated as potent and selective group II metabotropic glutamate receptor antagonists (Scheme 17). ${ }^{95,96}$

On the other hand, reaction of cyclic sulfate $(1 S, 2 S, 3 R, 5 R, 6 S)$-78a with sodium azide, followed by treatment with sulfuric acid, gave the azide derivative ($1 S, 2 R, 3 R, 5 R, 6 S$)-79a in 91% yield. Reaction of 79a with benzyl trichloroacetimidates $\left(\mathrm{ArCH}_{2} \mathrm{OC}(=\mathrm{NH}) \mathrm{CCl}_{3}\right)$ in the presence of a catalytic amount of trifluoromethanesulfonic acid (TfOH) afforded the corresponding ether derivatives $(1 S, 2 R, 3 R, 5 R, 6 S)-\mathbf{8 0}$. Reduction of the azide function in $\mathbf{8 0}$ with PMe_{3} and subsequent basic hydrolysis produced the α-amino acids ($1 S, 2 R, 3 R, 5 R, 6 S$)-81 (several aryl groups were used) (Scheme 18). ${ }^{96 a}$

Very recently, Woltering et al. ${ }^{98}$ reported the stereoselective synthesis of ($1 S, 2 R, 3 R, 5 R, 6 S$)-2-amino-3-hydroxybicyclo[3.1.0]hexane-2,6-dicarboxylic acid 82 [(+)-HYDIA], a group II mGlu receptor. Thus, the selective ring opening of cyclic sulfate ($1 S, 2 S, 3 R, 5 R, 6 S$)-78b with sodium azide afforded the azide derivative ($1 S, 2 R, 3 R, 5 R, 6 S$)-79b in 62% yield. Catalytic hydrogenation of the benzyl ester and azide functions of 79b, followed by acidic hydrolysis and subsequent treatment with propylene oxide, produced the (+)-HYDIA, 82 in 87% yield (Scheme 19).

Oxidation of the alcohol group in $(1 S, 2 R, 3 R, 5 R, 6 S)-79 \mathbf{b}$ with PCC gave the corresponding ketone $(1 S, 2 R, 5 R, 6 S)-\mathbf{8 3}$ in 67% yield, and subsequent reduction with NaBH_{4} afforded the alcohol $(1 S, 2 R, 3 S, 5 R, 6 S)$-84 in 51% as a single diastereoisomer. Catalytic hydrogenation of the benzyl ester and azide functions in $\mathbf{8 4}$, followed by acidic hydrolysis and subsequent treatment with propylene oxide, produced the β-hydroxy- α-amino acid ($1 S, 2 R, 3 S, 5 R, 6 S$)-85 in 86% yield. On the other hand, treatment of $\mathbf{7 9 b}$ with $\mathrm{Tf}_{2} \mathrm{O}$ in pyridine provided the triflate $(1 S, 2 R, 3 R, 5 R, 6 S)-86$ in 86% yield and a subsequent $\mathrm{S}_{\mathrm{N}} 2$ reaction using sodium azide furnished ($1 S, 2 R, 3 S, 5 R, 6 S$)-87 in 49% yield as a single diastereoisomer. Catalytic hydrogenation of the benzyl ester and azide functions of $\mathbf{8 7}$, followed by acidic hydrolysis and subsequent treatment with propylene oxide produced the α, β-diamino acid $(1 S, 2 R, 3 S, 5 R, 6 S)-\mathbf{8 8}$ in 79% yield (Scheme 20). ${ }^{98}$

Reaction of the (+)-pentacyclo[5.4.0.0 $0^{2,6} .0^{3,10} .0^{5,9}$]undecane-8-one $\mathbf{8 9}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN in $\mathrm{H}_{2} \mathrm{O}$ produced the spirohydantoin 90 in 83% yield as the main product and hydrolysis of 90 with barium hydroxide gave the quaternary α-amino acid (-)-91 in 67% yield. Under identical conditions, the enone (-)-92 was transformed into the quaternary α-amino acid $(+)-94$ through the spirohydantoin (+)-93 (Scheme 21). ${ }^{99}$

Condensation of the 2-metoxycyclohexanone (\pm)-95a with (S) - α-MBA, followed by addition of TMSCN in the presence of ZnCl_{2} in methanol, gave the α-amino nitriles mixture $96 \mathbf{a}$ (cis/ trans $=26: 74$ ratio) under thermodynamic control, and (cis/trans $=75: 25$) under kinetic control conditions. Hydrolysis of the mixture of α-amino nitriles cis/trans-96a with concentrate sulfuric acid produced, after chromatographic separation, the mixture of the α-amino carboxyamides cis/trans-97a, and the hydrogenolysed product ($1 S, 2 R$)-98a. Low pressure liquid chromatography (LPLC) separation of the carboxyamides cis/trans-97a afforded the diastereoisomerically pure α-amino carboxyamide trans-97a [($\left.\left.1 S, 2 S, 1^{\prime} S\right)-97 \mathbf{a}\right]$, which, by hydrogenolysis over Pd / C followed by hydrolysis with 12 M HCl and subsequent ion-exchange chromatography on a Dowex 50W column, led to $(1 S, 2 S)$-1-amino-2hydroxycyclohexanecarboxylic acid 99a. On the other hand, acidic hydrolysis of 98a and subsequent treatment with Dowex resin gave the quaternary α-amino acid $(1 S, 2 R)-\mathbf{1 0 0 a}$ (Scheme 22). ${ }^{100}$

Frahm et al. ${ }^{101}$ reported the stereoselective synthesis of 1,2-diaminocyclohexanecarboxylic acids $(1 R, 2 R)$ - and $(1 S, 2 S)$-99b starting from the 2-benzoylaminocyclohexanone (\pm)-95b by applying the Strecker methodology. Thus, the condensation reaction of $(\pm)-\mathbf{9 5 b}$ with (R) - $\alpha-$ MBA, followed by addition of TMSCN in the presence of ZnCl_{2} in methanol or hexane, under thermodynamic conditions, afforded the corresponding α-amino nitriles mixture cis/ trans-96b in 99% yield, which, by hydrolysis with concentrate sulfuric acid at $-20^{\circ} \mathrm{C}$ produced, after LPLC separation, the α-amino carboxyamides $\left(1 R, 2 R, 1^{\prime} R\right)-\mathbf{9 7 b}$ and $\left(1 S, 2 S, 1^{\prime} R\right)-\mathbf{1 0 1 b}$ in 19 and 8% yield, respectively. Hydrogenolysis of diastereoisomerically pure 97b and 101b over Pd / C, followed by hydrolysis with 12 M HCl and subsequent ion-exchange chromatography gave the corresponding α, β-diamino acids ($1 R, 2 R$)- and ($1 S, 2 S$)-99b in 97% yield (Scheme 23).

On the other hand, condensation of ethyl 2-cyclohexanoneacetate $(\pm)-95 \mathrm{c}$ with $(R)-\alpha-\mathrm{MBA}$, followed by addition of TMSCN in the presence of ZnCl_{2} in methanol under kinetic or thermodynamic control, gave the α-amino nitriles mixture cis/trans- $96 \mathbf{c}$ in 96% yield. Hydrolysis of the mixture of α-amino nitriles $\mathbf{9 6 c}$ with concentrate sulfuric acid at $-20^{\circ} \mathrm{C}$, followed by chromatographic separation and subsequent hydrogenolysis under $\mathrm{HCO}_{2} \mathrm{NH}_{4}, \mathrm{Pd} /$ C conditions produced the azabicyclo compounds $(1 R, 2 S)$ - and $(1 S, 2 R)$ - $\mathbf{1 0 2}$ (Scheme 24). ${ }^{102}$

Reaction of the enantiopure ketone $\mathbf{1 0 3}^{103}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN , followed by treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ produced the spirohydantoins 104 and 105 in 49% yield and 5:2 dr. Basic
hidrolysis of diastereoisomerically pure 104, obtained after chromatographic separation, afforded the quaternary α-amino acid (S, S) - $\mathbf{1 0 6}$ in 91% yield (Scheme 25). ${ }^{104}$

Condensation of the ketones $\mathbf{1 0 7 a}, \mathbf{b}$ with (S) - $\alpha-\mathrm{MBA}$, followed by addition of HCN in the presence of a catalytic amount of ZnI_{2} afforded the α-amino nitriles mixture 108a,b. Hydrolysis of 108a with concentrate sulfuric acid furnished the α-amino carboxyamides ($1 S, 1 ' S$)-109a and ($1 R, 1 ' S$)-110a in 86% yield and 10:1 diastereoisomeric ratio. Hydrolysis of $\mathbf{1 0 8 b}$ under identical conditions gave the α-amino carboxyamides ($1 S, 1^{\prime} S$)-109b and ($1 R, 1^{\prime} S$)-110b in 50% yield and $45: 55 \mathrm{dr}$. Hydrogenolysis of diastereoisomerically pure ($1 S, 1^{\prime} S$)-109a over Pd / C, followed by acidic hydrolysis provided the quaternary α-amino acid (S)-111a in quantitative yield. In a similar way, $\left(1 R, 1^{\prime} S\right)$-110b was transformed into (R)-111b in quantitative yield (Scheme 26). ${ }^{105}$

In a similar way, condensation of the ketones $107 \mathbf{a}-\mathbf{c}$ with (R)-phenylglycinol, followed by addition of TMSCN afforded the α-amino nitriles mixture 112a-c. Hydrolysis of 112a,b with concentrate sulfuric acid produced the corresponding α-amino carboxyamides ($1 S$, $\left.1^{\prime} R\right) \mathbf{- 1 1 3 a}, \mathbf{b}$ and $\left(1 R, 1^{\prime} R\right) \mathbf{- 1 1 4 a , b}$ with a predominance of $\left(1 S, 1^{\prime} R\right) \mathbf{- 1 1 3 a}, \mathbf{b}$, and small quantities of the lactones $\left(1 S, 1^{\prime} R\right) \mathbf{- 1 1 5 a}, \mathbf{b}$. On the other hand, hydrolysis of 112c under identical conditions gave the lactone $\left(1 S, 1^{\prime} R\right)-\mathbf{1 1 5 c}$ as the principal product, which, by treatment with dry ammonia led to the α-amino carboxyamide ($1 S, 1^{\prime} R$)-113c. Oxidative cleavage of the chiral auxiliary fragment in diastereoisomerically pure $\left(1 S, 1^{\prime} R\right)-\mathbf{1 1 3 a}-\mathbf{c}$ with $\mathrm{Pb}(\mathrm{OAc})_{2}$, followed by acidic hydrolysis and subsequent treatment with propylene oxide, provided the quaternary α amino acids (S)-111a-c in $60-72 \%$ yield (Scheme 27). ${ }^{105}$

Warmuth et al. ${ }^{106}$ reported the stereoselective synthesis of conformationally constrained lysine derivatives (S, S) - $\mathbf{1 2 2}$ and (R, S)-123. In this context, selective monoprotection of one of the carbonyl groups of the diketone $\mathbf{1 1 6}$ using 1,2-ethanedithiol in the presence of a catalytic amount of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$, followed by reaction with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN , gave the corresponding spirohydantoins mixture 117 in almost quantitative yield, which, by cleavage of the thiocetal group with AgNO_{3} and subsequent treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ in the presence of a catalytic amount of 4-dimethylaminopyridine (DMAP), produced the N, N^{\prime}-bis-Boc-protected spirohydantoins mixture 118 in 79% yield. Condensation of 118 with (R)-phenylglycinol, followed by reduction of the imine formed with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ in THF and subsequent chromatographic separation, afforded the diastereoisomerically pure ($S, S, 1^{\prime} R$)-119 and $(R, S$, $\left.1^{\prime} R\right)$ - $\mathbf{1 2 0}$ in 38 and 45% yield, respectively. Oxidative cleavage of chiral auxiliary fragment in ($S, S, 1^{\prime} R$) $\mathbf{- 1 1 9}$ with $\mathrm{Pb}(\mathrm{OAc})_{2}$, followed by hydrolysis with HCl and subsequent N-Bocprotection led to $(S, S)-121$ in 62% yield, which, by hydrolysis and esterification, gave the lysine analogue (S, S)-122 in 41% yield. In a similar way, $\left(R, S, 1^{\prime} R\right)$ - $\mathbf{1 2 0}$ was transformed into (R, S)-123 (Scheme 28).

Condensation of the ketone (\pm) - $\mathbf{1 2 4}$ with $(S)-\alpha-$ MBA in the presence of TiCl_{4}, followed by addition of TMSCN in the presence of AlCl_{3} afforded, after separation, the corresponding α amino nitriles $\mathbf{1 2 5 a}$ and $\mathbf{1 2 5 b}$ in 31 and 39% yield, respectively. Reaction of the enantiomerically pure ketone (+)-124 under identical conditions, gave the α-amino nitrile 125a in 68% yield as a single stereoisomer. Hydrolysis of the benzyl ester, nitrile and N debenzylation in the diastereoisomerically pure $\mathbf{1 2 5 a}$ with HCl and acetic acid at $160^{\circ} \mathrm{C}$, followed by addition of diazomethane gave the dimethyl ester (-)-126 in $\mathbf{4 9 \%}$ yield and this was transformed into dibenzyl ester $(-) \mathbf{- 1 2 7}$ by ester exchange reaction with benzyl alcohol in the presence of $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}$. Finally, cleavage of the benzyl groups in $(-)-\mathbf{1 2 7}$ under hydrogenolysis over $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ produced the conformationally constrained glutamic acid derivative (-)-128 in 68% yield. Under identical conditions, 125b was transformed into (+)-128 (Scheme 29). ${ }^{107}$

In some cases the intramolecular Strecker reaction has been used as an interesting methodology focused on the synthesis of quaternary α-amino acids. For example, intramolecular condensation of the ketones $\mathbf{9 5 d} \mathbf{d}$ in the presence of TFA afforded the ketimine mixture 129d\mathbf{g} and $\mathbf{1 3 1 d} \mathbf{- g}$, presumably under a rapid equilibrium through the enamines $\mathbf{1 3 0 d} \mathbf{- g}$. Addition of $\mathrm{NaCN} / \mathrm{TFA}$ (condition A) or TMSCN/ ZnCl_{2} (condition B) to the imine mixture $\mathbf{1 2 9 d} \mathbf{d} \mathbf{g}$ and 131d-g gave the α-amino nitriles $(1 S, 6 S) \mathbf{- 1 3 2 d} \mathbf{- g}$ and $(1 S, 6 R)-\mathbf{1 3 3 d} \mathbf{- g}$ in moderate to excellent yield and with low to good diastereoselective ratio. The cyanide addition to the ketimines having an alkyl side chain gave a small amount of the $(1 R)$-stereoisomers. The results are summarized in Table 4. ${ }^{108}$

Oxidation of $(1 S, 6 S)$-132d $(\mathrm{R}=\mathrm{Bn})$ with 1,4-diazabicyclo[2.2.2]octane (DABCO) and tertbutyl hypochlorite $(t-\mathrm{BuOCl})$, followed by hydrolysis with concentrate HCl gave the $(1 R$, $2 S$)-1-amino-2-hydroxycyclohexanecarboxylic acid 100a in 92% yield. On the other hand, oxidation of $(1 S, 6 R)-\mathbf{1 3 3 g}(\mathrm{R}=t$ - Bu$)$ with ozone and subsequent hydrolysis with concentrate HCl afforded the $(1 R, 2 R)-99 \mathrm{a}$ in 90% yield (Scheme 30). ${ }^{108}$

This methodology has also been used in the stereoselective synthesis of several quaternary α amino acids. ${ }^{109}$

The electrophilic α-amination of carbonyl compounds is a conceptually attractive method for the synthesis of nitrogenated compounds by $\mathrm{C}-\mathrm{N}$ bond formation. ${ }^{110}$ In this context, apart from Strecker and related reactions, it has been reported that cyclic quaternary α-amino acids can be alternatively obtained through electrophilic amination reactions starting from molecules containing a carbonyl functionality. For example, Pellacani et al. ${ }^{111}$ reported that the α amination of enamine $\mathbf{1 3 4}$ bearing $(R)-\alpha-\mathrm{MBA}$, with ethyl N-[(4-nitrobenzenesulphonyl)oxy] carbamate $\left(\mathrm{NsONHCO}_{2} \mathrm{Et}\right)$ as electrophilic aminating reagent, gave the quaternary α-amino derivative $\mathbf{1 3 6}$ in 95% yield and 60% ee, through the aziridine intermediate $\mathbf{1 3 5}$. The stereochemistry of $\mathbf{1 3 6}$ was not reported (Scheme 31).

On the other hand, the α-amination of α-keto esters $\mathbf{1 3 7}$ using azodicarboxylates as the electrophilic aminating reagent, in the presence of $5-20 \mathrm{~mol} \%$ of chiral catalyst such as β isocupreidine $\mathbf{1 3 8}^{112}$ (a constrained quinidine-derivative), the urea 139,113 cinchonine $\mathbf{1 4 0}$, 114 chiral guanidine 141 with a seven-membered-ring structure, ${ }^{115}$ palladium complex 142, 116 and (S, S)-ip-pybox 143,117 afforded the corresponding α-aminated derivatives 144 in good yield and excellent levels of enantioselectivity, which are important precursors of quaternary cyclic α-amino acids. The results are summarized in Table 5.

(R)-141

139

142

(S,S)-ip-pybox 143

Asymmetric organocatalysis utilizes organic molecules to induce chirality in various C-C, CN , and C-O bond-forming reactions. ${ }^{118}$ For example, the enantioselective catalytic $\alpha-$ amination of the carboxaldehydes 145a-c with dibenzyl azodicarboxylate in the presence of (R)-proline ($20 \mathrm{~mol} \%$) produced the corresponding α-aminated products 146a-c in good yield and $>99 \%$ ee. Oxidation of the aldehyde group in 146a,b with NaClO_{2}, followed by esterification with (trimethylsilyl)-diazomethane $\left(\mathrm{TMSCHN}_{2}\right)$ gave the esters $\mathbf{1 4 7 a}, \mathbf{b}$ in 82% yield (Scheme 32). ${ }^{119}$

Hydrolysis of 147b with pyridine and trifluoroacetic anhydride (TFAA), followed by $\mathrm{N}-\mathrm{N}$ bond cleavage with SmI_{2} and subsequent treatment with propylene oxide gave the (S)-AIDA 33 in 70% yield. On the other hand, palladium-catalyzed phosphonylation of 147a furnished the ethyl phosphonate 148 in 77% yield, which, by hydrolysis followed by $\mathrm{N}-\mathrm{N}$ bond cleavage and subsequent treatment with propylene oxide led to (S)-APICA 36 in 80% yield. (Scheme 33). ${ }^{119}$

Very recently, Shibasaki et al. ${ }^{120}$ reported the catalytic asymmetric α-amination of the succinimide 149. Thus, reaction of $\mathbf{1 4 9}$ with di-tert-butyl azodicarboxylate in the presence of a catalytic amount of $(R) \mathbf{- 1 5 0}$ derived from D -valine, $\mathrm{La}(\mathrm{Oi}-\mathrm{Pr})_{3}$ and N, N-dimethylacetamide (DMA) in chloroform at $0^{\circ} \mathrm{C}$, afforded the corresponding α-aminated product (R) - $\mathbf{1 5 1}$ in quantitative yield and 92% ee (condition A). Identical results were obtained using a catalytic amount of $(R)-\mathbf{1 5 0}$, and readily available and much less expensive $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}$ and H -D-Val$\mathrm{O} t$ - Bu in ethyl acetate at $0^{\circ} \mathrm{C} .{ }^{121}$ Treatment of $\mathbf{1 5 1}$ with $\mathrm{HCl}(\mathrm{g})$ in toluene, followed by cleavage of the $\mathrm{N}-\mathrm{N}$ bond by hydrogenation over Raney-Ni and recrystallization led to the enantiomerically pure (R)-3-amino-3-ethoxycarbonyl-pyrrolidin-2,5-dione $\mathbf{1 5 2}$ in 66% yield
(Scheme 34). The quaternary α-amino derivative 152 is a key intermediate in the synthesis of AS-3201 (Ranirestat), a highly potent aldose reductase inhibitor. ${ }^{122}$

Other methodology focused on the stereoselective synthesis of cyclic α-amino acids starting from cyclic carbonyl compounds is the amidation reaction, which, is carried out using nitrogen as the nucleophilic reagent. For example, Satoh et al. ${ }^{123}$ reported the synthesis of the cyclic quaternary α-amino acids (R) - and (S) - $\mathbf{1 5 7}$ through the selective ring-opening of diastereoisomerically pure sulfinyloxiranes $\left(2 S, 3 R, R_{\mathrm{S}}\right)-\mathbf{1 5 4}$ and $\left(2 R, 3 R, R_{\mathrm{S}}\right) \mathbf{- 1 5 5}$. In this context, reaction of the β-tetralone with the lithium α-sulfinyl carbanion generated from enantiomerically pure (R)-chloromethyl p-tolyl sulfoxide and lithium diisopropylamide (LDA), afforded the adduct 153 as a mixture of two diastereoisomers in 82% yield, which, by treatment with t-BuOK gave the sulfinyloxiranes $\left(2 S, 3 R, R_{\mathrm{S}}\right)-\mathbf{1 5 4}$ and $\left(2 R, 3 R, R_{\mathrm{S}}\right)-\mathbf{1 5 5}$ in 93% yield and $3: 1 \mathrm{dr}$. These compounds were separated by column chromatography. Treatment of diastereoisomerically pure $\left(2 S, 3 R, R_{\mathrm{S}}\right)-\mathbf{1 5 4}$ with sodium azide, followed by oxidation of the resulting aldehyde intermediate with a methanolic solution of iodine and KOH , produced the azido methyl ester $(R)-\mathbf{1 5 6}$ in 82% yield, which, by catalytic hydrogenation, led to enantiomerically pure (R) - $\mathbf{1 5 7}$ in 98% yield. In a similar way, $\left(2 R, 3 R, R_{\mathrm{S}}\right)-\mathbf{1 5 5}$ was transformed into (S)-157 (Scheme 35).

Recently, Honda et al. ${ }^{124}$ in order to obtain the (R)-deoxydysibetaine and 4-epi-dysibetaine, they carried out the addition of the lithium salt of chloroform to the ketone $\mathbf{1 5 8}$, which is readily obtained from (R)-4-hydroxyproline, to give the alcohol 159 in 74% yield and high diastereoselectivity, which, by treatment with DBU and sodium azide in the presence of 18-crown-6 under modified Corey-Link reaction, ${ }^{125}$ gave the dimethyl ester $\mathbf{1 6 1}$ in 56% yield through the intermediate epoxide $\mathbf{1 6 0}$. Reduction of azide group in $\mathbf{1 6 1}$ with H_{2} over RaneyNi , followed by protection of resulting primary amine with $(\mathrm{Boc})_{2} \mathrm{O}$, furnished the protected quaternary α-amino acid 162 in 75% yield, and subsequent treatment with SmI_{2} in THF-HMPA or THF-DMEA afforded the δ-lactam ${ }^{126}(R)$ - $\mathbf{1 6 3}$ in $>90 \%$ yield (Scheme 36).

2.2. Construction of the ring by cyclization reactions

Due to the wide range of methodologies reported to the construction of the cyclic by $\mathrm{C}-\mathrm{C}$ bond formation, we have decided to organize this section according to the size of the ring to be prepared. Since the Grubbs reaction is common to different cycles it can be considered independently.

Enantiomerically pure epichlorohydrins have been used as bifunctional electrophiles for the asymmetric synthesis of aminocyclopropanecarboxylic acids. For example, treatment of chiral glycine equivalent $\mathbf{1 6 5}$ obtained from enantiopure 164, with 2.1 equiv. of sodium bis (trimethylsilyl)amide (NaHMDS), followed by addition of (R)-epichlorohydrin gave the cyclopropane as derivative $\mathbf{1 6 6}$ in 69% yield. Hydrolysis of $\mathbf{1 6 6}$ afforded the $(1 R, 2 R)$-1-amino-2-(hydroxymethyl)cyclopropanecarboxylic acid 167 in 59% yield. On the other hand, Swern-oxidation of 166, followed by reductive amination - performed with aniline and $\mathrm{NaBH}_{3} \mathrm{CN}$ - produced the compound 168 in good yield. Subsequent hydrolysis furnished the diamino acid $(1 R, 2 S)$ - $\mathbf{1 6 9}$ in 62% yield. Under identical conditions, the alkylation of $\mathbf{1 6 5}$ with (S)-epichlorohydrin and subsequent reactions produced the quaternary α-amino acids ($1 R$, $2 S)$-170 and $(1 R, 2 R)$ - $\mathbf{1 7 1}$ (Scheme 37). ${ }^{127}$

In a similar way, alkylation of chiral glycine equivalent $(S) \mathbf{- 1 7 3}$, obtained in four steps from carboxylic acid (S)-172, with (R)-epichlorohydrin gave the cyclopropane derivative $\mathbf{1 7 4}$, which under identical conditions to those described in Scheme 37 was transformed into quaternary α-amino acids $(1 S, 2 R)-\mathbf{1 7 0}(\mathrm{X}=\mathrm{OH})$ and $(1 S, 2 S)-\mathbf{1 7 1}(\mathrm{X}=\mathrm{NHPh})$. Alkylation of (S) - $\mathbf{1 7 3}$ with (S)-epichloro-hydrin afforded the cyclopropane derivative 175, which was transformed into quaternary α-amino acids $(1 R, 2 S)-\mathbf{1 7 0}$ and $(1 R, 2 R)$-171 (Scheme 38). ${ }^{128}$

On the other hand, treatment of 174 with 1-phenyl-3-(trifluoroacetyl)urea 176 and diisopropyl azodicarboxylate (DIAD) under Mitsunobu ${ }^{129}$ conditions afforded the urea 177 in 65% yield, which, by cleavage of the trifluoroacetyl group with aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$, led to compound $\mathbf{1 7 8}$ in 76% yield. Finally, hydrolysis of $\mathbf{1 7 8}$ produced the quaternary diamino acid ($1 S, 2 S$)-179 in 24% yield (Scheme 39). ${ }^{128}$

Recently, Acher et al. ${ }^{130}$ reported the utility of $(1 S, 2 R)$ - and $(1 R, 2 R)$-1-amino-2-(hydroxymethyl) cyclopropanecarboxylic acid derivatives $\mathbf{1 8 0}$ and $\mathbf{1 8 5}^{131}$ in the synthesis of $(1 S, 2 R)$ and ($1 R, 2 R$)-1-amino-2-phosphonomethylcyclopropanecarboxylic acids $\mathbf{1 8 4}$ and $\mathbf{1 8 6}$ (APCPr), ${ }^{132}$ which were evaluated at the recombinant group III metabotropic glutamate receptor. Thus, the bromination of $(1 S, 2 R)-\mathbf{1 8 0}$ with CBr_{4} and polymer bond PPh_{3} in the presence of triethylamine led to bromo derivative $(1 S, 2 R)-\mathbf{1 8 1}$ in 56% yield. In order to prevent the cyclopropane cleavage in the next Arbuzov reaction, ${ }^{133}$ the Boc protective group was replaced by a more electron-withdrawing trifluoroacetyl group, obtaining ($1 S, 2 R$)-182 in 95% yield. Arbuzov reaction of $\mathbf{1 8 2}$ with trimethyl phosphite gave the corresponding phosphonate $(1 S, 2 R)-\mathbf{1 8 3}$ in 51% yield, which, by hydrolysis, followed by ion exchange chromatography, produced the optically pure $(1 S, 2 R)-\mathbf{1 8 4}, \mathrm{APCPr}$ in 96% yield. Under identical conditions, $(1 R, 2 R)-\mathbf{1 8 5}$ was transformed into $(1 R, 2 R)-\mathbf{1 8 6}, ~ A P C P r(S c h e m e ~ 40)$.

Carboni et al. ${ }^{134}$ reported the application of Belokon's Ni(II) complex (S) - $\mathbf{1 8 7}$ (a glycine equivalent) in the diastereoselective synthesis of $(1 S, 2 R)$ - and $(1 R, 2 S)$-allonorocoronamic acid 5a through a double alkylation. In this context, treatment of $\mathrm{Ni}(\mathrm{II})$ complex (S)-187 with potassium tert-butoxide followed by addition of sulfate (S) - $\mathbf{1 8 8}$ gave the corresponding enolate 189, which, by intramolecular alkylation, afforded the cyclopropane derivative ($S, 1 S$, $2 R$)-190 in $\mathbf{7 0 \%}$ yield. Acidic hydrolysis of $\mathbf{1 9 0}$ followed by ion exchange chromatography produced the $(1 S, 2 R)$-allonorcoronamic acid $\mathbf{5 a}$ in $\mathbf{9 6 \%}$ yield. Alkylation of $\mathrm{Ni}(\mathrm{II})$ complex (S) - $\mathbf{1 8 7}$ with the sulfate $(R)-\mathbf{1 8 8}$, followed by hydrolysis, gave the $(1 R, 2 S)$-allonorcoronamic acid 5a (Scheme 41).

Recently, Fox et al. ${ }^{135}$ reported the catalytic stereoselective synthesis of $(1 R, 2 S)$ dehydrocoronamic acid methyl ester 196, through a double alkylation of glycine anion equivalents 191a,b. Thus, asymmetric allylic alkylation of 191a,b with 3,4-epoxy-1-butene in the presence of a catalytic amount of $(S, S)-192-(\text { allylPdCl })_{2}$ complex, afforded the allyl derivatives mixture 193a,b in quantitative yield and 3:2 dr, which, by mesylation followed by treatment with NaH or potassium tert-butoxide in THF, gave the cyclopropanes 194a,b and dihydroazepines 195a,b. Hydrolysis of the mixture of 194a and 195a followed by separation led to $(1 R, 2 S)-196$ in 14% yield and 88% ee (Scheme 42). ${ }^{136}$

Reaction of 2,3-epoxy-1,1,1-trifluoropropane 197 with the sodium salt of 198 gave the γ hydroxy nitrile derivative 199 in 73% yield and 30% de, which, by reaction with tosyl chloride (TsCl) followed by treatment with NaH and subsequent recrystallization, afforded the diastereoisomerically pure cyclopropyl cyanide ($1 S, 2 S$)-200 in $\mathbf{7 0} \%$ yield. Oxidative degradation of the pyrrole ring of $\mathbf{2 0 0}$ with NaIO_{4} in the presence of a catalytic amount of RuCl_{3} produced the α-amino nitrile $(1 S, 2 S)-\mathbf{2 0 1}$ in 71% yield. Subsequent hydrolysis with HCl furnished the optically pure trifluoronorcoronamic acid ($1 S, 2 S$)-202 in 67% yield (Scheme 43). 137

In a similar way, reaction of $\mathbf{1 9 7}$ with the sodium salt of 203 gave the γ-hydroxy nitrile 204, which, by reaction with TsCl followed by treatment with sodium hydride and subsequent recrystallization, furnished the diastereoisomerically pure cyclopropyl cyanide ($1 R, 2 S$)-205 in 70% yield. Hydrolysis of nitrile function of $\mathbf{2 0 5}$ with hydrogen peroxide under basic conditions produced the amide $(1 R, 2 S)$-206 in 79% yield, which, by Hoffman rearrangement ${ }^{138}$ followed by oxidative degradation of aromatic ring of $\mathbf{2 0 7}$ with NaIO_{4} in the presence of a catalytic
amount of RuCl_{3}, produced the optically pure N-Boc-trifluoronorcoronamic acid ($1 R$, $2 S$)-208 in 30\% yield (Scheme 44). ${ }^{137}$

Synthesis of optically pure 1-aminocycloalkanecarboxylic acids starting from α-amino acids is another methodology that has been used. For example, Donkor et al. ${ }^{139}$ reported the synthesis of all four diastereoisomers of N -Cbz-2,3-methanoleucine from L - and D -valine. Deamination of L-valine with $\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}$ followed by reduction of the carboxylic acid with LiAlH_{4} produced the corresponding diol (S)-209 in 42% yield. This compound was transformed into cyclic sulfate (S)-210 in $\mathbf{9 1} \%$ yield. Reaction of (S) - $\mathbf{2 1 0}$ with the sodium dimethyl malonate afforded the cyclopropane derivative (R)-211 in $\mathbf{8 4 \%}$ yield and selective hydrolysis with KOH and subsequent Curtius rearrangement ${ }^{140}$ with diphenylphosphorazide (DPPA) in the presence of triethylamine (TEA), followed by addition of benzyl alcohol, gave the diprotected α-amino acid $(1 S, 2 R)-212$ in good yield. Finally, hydrolysis of $(1 S, 2 R)-212$ with KOH gave ($1 S$, $2 R$)-213 in 91% yield (Scheme 45).

On the other hand, selective hydrolysis of $(R)-\mathbf{2 1 1}$ with KOH followed by treatment with hydrazine gave the compound 214 , which, by reaction with $\mathrm{NaNO}_{2} / \mathrm{H}_{2} \mathrm{SO}_{4}$ and subsequent esterification with diazomethane provided the azide derivative 215. Curtius rearrangement of 215 followed by hydrolysis with KOH furnished ($1 R, 2 R$)-216 (Scheme 46). Under indentical conditions the diastereoisomers $(1 R, 2 S)$ - $\mathbf{2 1 3}$ and $(1 S, 2 S)$ - $\mathbf{2 1 6}$ were obtained from D-valine. ${ }^{139}$

Frick et al. ${ }^{141}$ reported the stereoselective synthesis of protected 2,3-methano amino acids $(1 S, 2 S) \mathbf{- 2 2 4}$ and $(1 R, 2 R)-\mathbf{2 2 5}$, which are analogues of ornithine and glutamic acid, respectively. Initially, treatment of 218, obtained from epoxide 217, 142 with 3,5-dinitrobenzoic acid under Mitsunobu conditions gave the corresponding 3,5-dinitrobenzoate 219 in 91% yield. This compound was reacted with NaH to give the cyclopropane derivative $\mathbf{2 2 0}$ in 81% yield. Cleavage of the benzyl protective group with H_{2} over Pd / C followed by treatment with TFA furnished the lactone $(1 R, 6 R)-\mathbf{2 2 1}$ in 97% yield. The synthesis of the lactone $(1 S, 6 S)$ - $\mathbf{2 2 1}$ was reported by Frick et al. ${ }^{142}$ (Scheme 47).

Reaction of $(1 S, 6 S)$-221 ${ }^{142}$ with ethyl chloroformate followed by treatment with sodium azide and subsequent Curtius rearrangement of the corresponding azide under heating and the addition of benzyl alcohol, produced the N-Cbz-amino derivative ($1 S, 6 S$)-222 in 90% yield, which, by hydrolysis with LiOH and subsequent esterification with MeI, afforded the protected amino acid $(1 S, 2 S)$ - $\mathbf{2 2 3}$ in 93% yield. Reaction of $(1 S, 2 S)$ - $\mathbf{2 2 3}$ with methanesulfonyl chloride (MsCl), followed by reaction with sodium azide and subsequent reduction of the azido group with H_{2} over $\mathrm{Pd}-\mathrm{BaSO}_{4}$ in the presence of $(\mathrm{Boc})_{2} \mathrm{O}$, gave the protected 2,3-methanoornithine analogue ($1 S, 2 S$)-224 in 79% yield (Scheme 48). ${ }^{141}$

Under identical conditions to those described in the scheme $48,(1 R, 6 R)-\mathbf{2 2 1}$ was transformed into $(1 R, 2 R)$-223 in good yield and subsequent oxidation with pyridine- SO_{3} followed by treatment with sodium chlorite gave, the methyl 2,3-methanoglutamate derivative ($1 R$, $2 R$)-225 in 80% (Scheme 49). ${ }^{141}$

Chiral didehydroamino acid derivatives from a cyclic glycine template have been used in the stereoselective synthesis of cyclopropane amino acid derivatives through diastereoselective cyclopropanation reactions by using Corey's ylide. For example, reaction of (S)-oxazinone 227, obtained in four steps from (S)-2-hydroxyisovaleric acid 226, with acetaldehyde and propanaldehyde in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and tetrabutylammonium bromide (TBAB), produced the didehydroamino acid derivatives (S)-228a,b with high selectivity in 50-55\% yield. Treatment of these compounds with Corey's dimethylsulfoxonium methylide gave the cyclopropanation products $\mathbf{2 2 9} \mathbf{a}, \mathbf{b}$ in moderate yield and 9:1 diastereoisomeric ratio. Hydrolysis of diastereoisomerically pure 229a,b with HCl afforded the $(1 S, 2 R)$-allo-
norcoronamic acid $\mathbf{5 a}$ in 60% yield and $(1 S, 2 R)$-allo-coronamic acid $\mathbf{5 b}$ in 67% yield (Scheme 50). ${ }^{143}$

On the other hand, condensation of the protected (S)-pyrazine-2-one 231, obtained in three steps from (S) - α-aminoketone 230, with acetaldehyde and propanaldehyde furnished the Z α, β-unsaturated compounds (S)-232a,b in 88 and 86% yield, respectively. Treatment of these compounds with Corey's dimethylsulfoxonium methylide gave the cyclopropanation products 233a,b in moderate yield and 23:1 dr. Hydrolysis of diastereoisomerically pure 233a with HCl afforded the enantiomerically pure ($1 S, 2 R$)-allo-norcoronamic acid 5a in 24% yield (Scheme 51). ${ }^{144}$

Didehydroamino acid derivatives from cyclic glycine templates have also been used in the stereoselective synthesis of cyclopropane amino acid derivatives, through diastereoselective cyclopropanation reactions with phosphorus or sulfur ylides. For example, addition of $\mathrm{Me}_{2} \mathrm{C}$ $(\mathrm{Li}) \mathrm{PPh}_{3}$ and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CD}_{2}(\mathrm{Li}) \mathrm{SO}$ to the dehydroalanine $(S)-\mathbf{2 3 4}$ afforded the spiro derivatives $(3 S, 6 S)-\mathbf{2 3 5 a}, \mathbf{b}$ in excellent yield and diastereoselectivity ($>98: 2$), which, by treatment with TFA, gave the diketopiperazines ($3 S, 6 S$)-236a,b in good yield. Finally, hydrolysis of 236a,b with 6 M HCl followed by esterification with $\mathrm{SOCl}_{2} / \mathrm{MeOH}$ produced the corresponding methyl ester hydrochloride salts (S)-237a,b in excellent yield (Scheme 52). ${ }^{145}$

Enantioselective organocatalytic intermolecular cyclopropanation of protected dehydroalanine 238 with the ammonium ylide generated from reaction of tert-butyl bromoacetate with catalytic amounts of quinine derivatives $\mathbf{2 3 9}$ or $\mathbf{2 4 0}$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base, afforded the cyclopropane compound (+)-241 in 97% ee using $\mathbf{2 3 9}$ as a catalyst, and (-)-241 in 90% ee using $\mathbf{2 4 0}$ as a catalyst (Scheme 53). ${ }^{146}$

On the other hand, condensation of $(R) \mathbf{- 2 4 2}$ with benzylamine, followed by addition of TMSCN afforded a mixture of α-amino nitriles $(1 R, 2 S)$ - $\mathbf{2 4 3}$ and $(1 S, 2 S)-\mathbf{2 4 4}$ in $\mathbf{7 5 \%}$ yield and $85: 15$ diastereoisomeric ratio. Protection of the amino function of diastereoisomerically pure ($1 R$, $2 S)$ - $\mathbf{2 4 3}$ with methyl chloroformate (MocCl) gave ($1 R, 2 S$)-245 in 98% yield, which, by selective cleavage of the tert-butyldimethylsilyl (TBS) protective group with acetic acid and subsequent reaction with PPh_{3} and chloroform or bromoform, led to the derivatives ($1 R$, $2 S) \mathbf{- 2 4 6 a}, \mathbf{b}$ in excellent yield. Intramolecular alkylation of $(1 R, 2 S)$-246a with $\mathrm{KOH}-\mathrm{DMF}$ or potassium tert-butoxide in THF gave the cyclopropylaminonitrile $(1 S, 2 R)-247$ in 82% yield and $>98: 2 \mathrm{dr}$, which, by treatment with hydrogen peroxide under basic conditions, furnished the amide $(1 S, 2 R)-\mathbf{2 4 8}$ in 87% yield (Scheme 54). ${ }^{147}$

Wanner et al. ${ }^{148}$ reported the synthesis of all four stereoisomers of 1-amino-2-(hydroxymethyl)-cyclobutanecarboxylic acid $(1 S, 2 S)$ - and $(1 R, 2 R)-\mathbf{1 3 f},(1 S, 2 R)$ - and $(1 R$, $2 S) \mathbf{- 1 4 f}$ through a double alkylation of the chiral glycine equivalent $(R) \mathbf{- 1 7 3}$. In this context, reaction of $(R)-\mathbf{1 7 3}$ with s - BuLi in THF at $-78^{\circ} \mathrm{C}$, followed by addition of but-3-enyl triflate, afforded the alkylated products 249a and 249b in 69% yield and 95.5:4.5 dr. The use of other bases and 4-bromobut-1-ene as the alkylating reagent gave both low yield and diastereoselectivity. Oxidation of the terminal double bond of the butenyl side chain in $\mathbf{2 4 9} \mathbf{a}, \mathbf{b}$ with a catalytic amount of OsO_{4} in combination with $\mathrm{Me}_{3} \mathrm{NO}$ as a co-oxidant, followed by selective protection of primary hydroxy group with tert-butyldimethylsilyl chloride (TBSCl) and subsequent selective replacement of secondary hydroxy group with PPh_{3} and I_{2}, produced the iodohydrins 250a-d in good overall yield and 4:4:1:1 dr. Reaction of 250ad with phosphazenic base $\left(t-\mathrm{BuP}_{4}\right)$ gave the corresponding cyclobutane derivatives, which, by treatment with tetrabutylammonium fluoride (TBAF) and subsequent separation by preparative HPLC, furnished the hydroxyl derivatives 251a-d in good yield and 48:31:18:3 dr. Finally, hydrolysis of diastereoisomerically pure 251a led to $(1 S, 2 S)$ - $\mathbf{1 3} \mathbf{f}$ in 71% yield. In a similar way,

251b afforded $(1 S, 2 R) \mathbf{- 1 4 f}$ in 76% yield. The diastereoisomers $(1 R, 2 R)$ - $\mathbf{1 3 f}$ and $(1 R, 2 S)-\mathbf{1 4 f}$ were obtained from (S)-173 (Scheme 55).

Dialkylation of N -(diphenylmethylene)glycine ethyl ester 191a with 1,4-diiodo derivative (S)-253, obtained in 4 steps from (S)-malic acid dimethyl ester 252, afforded the cyclopentane derivative mixture $\mathbf{2 5 4}$ in $2: 1$ dr. Hydrolysis of $\mathbf{2 5 4}$ with 2 M HCl followed by treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ and subsequent chromatographic separation, gave the diprotected quaternary α-amino acids $(1 S, 3 S)$ - $\mathbf{2 5 5}$ and $(1 R, 3 S)-\mathbf{2 5 6}$ in 36 and 19% yield, respectively, and these were used in the preparation of the thymine derivatives 257 and 258 (Scheme 56). ${ }^{149}$

On the other hand, reduction of dicarboxylic acid (S, S) - $\mathbf{2 5 9}$ with LiAlH_{4}, followed by treatment with I_{2} and PPh_{3}, afforded the diiodide $\mathbf{2 6 0}$ in 83% yield. Dialkylation of ethyl isocianoacetate with 260, followed by hydrolysis and subsequent treatment with $(\mathrm{Boc})_{2} \mathrm{O}$, gave the ethyl 1-N-Boc-aminocyclopentanecarboxylate 261 in 59% yield. Ozonolysis of 261 followed by treatment with NaBH_{4} and subsequent oxidation of the resulting diol with oxone gave the dicarboxylic acid $\mathbf{2 6 2}$ in 25% overall yield. On the other hand, hydrogenation of $\mathbf{2 6 1}$ over $\mathrm{Pd} /$ C produced the diprotected quaternary α-amino acid 263 in 99% yield. Finally, ozonolysis of 261 followed by treatment with benzylamine and subsequent reduction with $\mathrm{NaBH}_{3} \mathrm{CN}$ produced the compound 264 in 53\% yield (Scheme 57). ${ }^{150}$

Ma et al. ${ }^{151}$ reported the stereoselective synthesis of (S)-1-aminoindane-1,6-dicarboxylic acid 269 and related analogues, through the intramolecular acylation of enantiopure $\alpha, \alpha-$ disubstituted amino acid (S)-266. In this context, the protection of (R)-phenylglycine with methyl chloroformate followed by condensation with benzaldehyde dimethyl acetal, afforded the cis-oxazolidinone $(2 R, 4 S)$-265, which, by alkylation with tert-butyl bromoacetate followed by hydrolysis, produced the carboxylic acid (S)-266. Reaction of (S) - $\mathbf{2 6 6}$ with PCl_{5} followed by treatment with AlCl_{3} gave the acylated product (S)-267 in 92% yield, and this was hydrogenated over Pd / C to provide the cyclic α-amino acid (S)-268 in 94% yield. Sequential iodination with $\mathrm{I}_{2} / \mathrm{Hg}(\mathrm{OTf})_{2}$, palladium-catalyzed carbonylation under $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{CO} / \mathrm{MeOH}$ conditions, and hydrolysis led to (S)-269 in 40% overall yield (Scheme 58).

On the other hand, treatment of $(S) \mathbf{- 2 6 8}$ with acetyl chloride catalyzed with AlCl_{3}, followed by Baeyer-oxidation using m-chloroperbenzoic acid (m-CPBA) and subsequent hydrolysis, produced the phenol derivative (S)-270 in good yield. Iodination of (S) - $\mathbf{2 7 0}$ with $\mathrm{I}_{2} /$ pyridine followed by palladium-catalyzed carbonylation using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{CO} / \mathrm{EtOH}$ afforded the diester (S)-271 in 55% overall yield, and this compound was hydrolysed with TMSI to give the conformationally constrained (S)-272 in 75\% yield. Additionally, iodination of (S)-270 followed by palladium-catalyzed phosphonylation with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{HP}(\mathrm{O})(\mathrm{OEt})_{2}$ afforded the phosphonate (S)-273 in 58% yield, which, by hydrolysis with TMSI, gave the phosphonic acid $(S)-274$ in 82% yield (Scheme 59). ${ }^{151}$

Asymmetric Strecker reaction of 4-methylbenzaldehyde with (R)-phenylglycinol and NaCN , followed by hydrolysis and subsequent intramolecular esterification with TsOH afforded the corresponding lactone mixture 275 in 57% yield. Alkylation of 275 with tert-butyl bromoacetate and subsequent opening of the lactone ring with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH}$, produced the alkylated products $(S, R)-276$ and $(R, R)-277$ in 65% yield and $4: 1 \mathrm{dr}$. Cleavage of the chiral auxiliary of diastereo-isomerically pure $(S, R)-\mathbf{2 7 6}$ with $\mathrm{Pd}(\mathrm{OAc})_{4} / \mathrm{NaOAc}$, followed by acidic hydrolysis and subsequent protection of the resulting amino group with methyl chloroformate led to (S)-278 in $\mathbf{7 5} \%$ yield. Subsequent intramolecular acylation with oxalyl chloride and AlCl_{3} gave (S)-279 in 93% yield. Benzylic bromination of (S)-279 with N-bromosuccinimide (NBS) catalyzed with 2,2'-azoiso-butyronitrile (AIBN) produced the bromo derivative (S)-280 in 87% yield. This compound was oxidised with $\mathrm{Ag}_{2} \mathrm{O}$ and AgNO_{3} and subsequent esterification with $\mathrm{MeI} / \mathrm{K}_{2} \mathrm{CO}_{3}$ furnished the diester (S) - $\mathbf{2 8 1}$ in 64% yield. Reduction of the
ketone function of (S) - $\mathbf{2 8 1}$ by Pd / C-catalyzed hydrogenation gave (S)-282 in 97% yield, which, by hydrolysis with 6 N HCl and subsequent treatment with propylene oxide afforded the (S) AIDA 33 in 78\% yield (Scheme 60). ${ }^{151}$

The alkylidene carbene $\mathrm{C}-\mathrm{H}$ insertion is another strategy for the enantioselective synthesis of conformationnaly constrained α-amino acids. For example, reaction of (R)-283, obtained in six steps from L-serine, with lithium (trimethylsilyl)diazomethane generated in situ by treatment of (trimethylsilyl)diazomethane with n - BuLi , gave the alkylidene carbene 284, which, through a $1,5-\mathrm{C}-\mathrm{H}$ insertion reaction, produced the spiro compound $(S)-\mathbf{2 8 5}$ in 62% yield. Catalytic hydrogenation of (S) $\mathbf{- 2 8 5}$ over Pd / C afforded the hydrogenated product ($1 S$, $3 R$)-286 in $\mathbf{7 9 \%}$ yield as a single diastereoisomer, which, by cleavage of the acetonide function with $\mathrm{BF}_{3} .2 \mathrm{AcOH}$ furnished the alcohol ($1 S, 3 R$)-287 in $60-70 \%$ yield. Finally, Dess-Martin periodinane oxidation of $(1 S, 3 R)-287$ followed by treatment with sodium chlorite afforded the $(1 S, 3 R)$ - N-Boc-2,5-methanoleucine 288 in 70% yield and $>95 \%$ ee (scheme 61). ${ }^{152}$

In a similar way, treatment of $(R) \mathbf{- 2 8 9}$, obtained from L-serine, with lithium (trimethylsilyl)diazomethane led to a 1,5-C-H insertion reaction that gave the spiro compound (S)-290 in 69\% yield. Catalytic hydrogenation of this compound over Pd / C produced $(1 S, 3 R)-\mathbf{2 9 1}$ in $\mathbf{7 9 \%}$ yield and $>10: 1 \mathrm{dr}$. Selective cleavage of TBS protective group in $(1 S, 3 R)-\mathbf{2 9 1}$ with $\mathrm{HF} / \mathrm{MeCN}$ led to diol $(1 S, 3 R)-292$ in 81% yield, which, by oxidation of hydroxy groups with $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4}$ followed by treatment with HCl and subsequent ion exchange chromatography, afforded the quaternary α-amino acid ($1 S, 3 R$)-ACPD, 293 in 49% yield (scheme 62). ${ }^{153}$

Treatment of 295a,b, obtained from (R)-glyceraldehyde dimethyl acetal 294, with NBS in MeCN afforded the bicyclic lactone 297 in 42% yield. This product is probably obtained through the oxidation of $\mathbf{2 9 5}$ to the imine intermediate $\mathbf{2 9 6}$ followed by an intramolecular attack of the free OH group on the carbon-nitrogen double bond. Hydrolysis of bicyclic lactone 297 with HCl and subsequent cleavage of the TBS protective group gave the quaternary α amino acid methyl ester 298 (Scheme 63). ${ }^{154,155}$

Alkylation of commercially available (R)-bislactim ether $\mathbf{2 9 9}$ with the dibromide $\mathbf{3 0 0}$ and n BuLi in THF at $-78^{\circ} \mathrm{C}$ afforded the alkylated product $(2 R, 5 S)$ - $\mathbf{3 0 1}$ in 95% yield and $93: 7 \mathrm{dr}$, which, by treatment with diluted n - BuLi , furnished the corresponding spiro derivative ($2 R$, $5 R)$ - $\mathbf{3 0 2}$ in 99% yield as a single diastereoisomer. Hydrolysis of $(2 R, 5 R)$ - $\mathbf{3 0 2}$ gave the methyl ester of 2-amino-tetraline-2-carboxylic acid (R)-157 in 98\% yield (Scheme 64). ${ }^{156}$

Jørgensen et al. ${ }^{157}$ reported the first highly enantioselective catalytic alkylation of ketimines, a methodology used for the synthesis of quaternary α-amino acids. In this context, addition of ketene acetal 304 to the ketimine 303 in the presence of a catalytic amount of (R, R) - Ph -pybox$\mathrm{Zn}(\mathrm{OTf})_{2} \mathbf{3 0 5}$ afforded the Mannich base $\mathbf{3 0 6}$ in 98% yield and 93% ee. Selective N-protection of $\mathbf{3 0 6}$ with $(\mathrm{Boc})_{2} \mathrm{O}$ gave the compound 307 in 78% yield, which, by treatment with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, produced the δ-lactone $\mathbf{3 0 8}$ in 79% yield by spontaneous cyclization of the resulting phenol function (Scheme 65).

On the other hand, the first direct organocatalytic enantioselective Mannich reaction of the ketimine $\mathbf{3 0 9}$ with several aldehydes in the presence of a catalytic amount of the chiral amine 310, afforded the corresponding Mannich products 311a-h and 312a-h in good yield and with moderate to excellent diastereoisomeric ratio ($4: 1$ to $>20: 1$), with a predominance of 311ah. These compounds can be used as intermediates in the synthesis of quaternary α-amino acids (Scheme 66). ${ }^{158}$

Olefin metathesis is a fundamental chemical reaction involving the rearrangement of carboncarbon double bonds and can be used to couple, cleave, ring-close, ring-open, or polymerize olefinic molecules. The widely accepted view that olefin metathesis revolutionized the
different fields of synthetic chemistry led to the award of the 2005 Nobel Prize in Chemistry to Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock "for the development of the metathesis method in organic synthesis". 159 The ring closing metathesis (RCM) synthetic methodology has also been used in the stereoselective synthesis of different size of cyclic α amino acids, ${ }^{160}$ and in this review we present this methodology as an independient section. For example, $\mathrm{Ru}(\mathrm{II})$-catalyzed ring-closing metathesis reaction of dialkylated compounds $\mathbf{3 1 3 a}, \mathbf{b}$, obtained from bislactim ether (R)-299, in 1,2-dichloroethane (DCE) gave the spiro derivatives $\mathbf{3 1 4 a}, \mathbf{b}$, which, by dihydroxylation of the five and six-membered-rings with a catalytic amount of OsO_{4} in combination of morpholine N-oxide (NMO) afforded the diols $\mathbf{3 1 5 a}, \mathbf{b}$ and 316a,b. Treatment of the diols $\mathbf{3 1 5 a}, \mathbf{b}$ with methyl iodide and sodium hydride, followed by hydrolysis with TFA, produced the conformationally constrained cyclic α-amino acids methyl esters $\mathbf{3 1 7 a}, \mathbf{b}$. Hydrolysis of diol $\mathbf{3 1 5 a}$ with TFA, followed by acetylation, gave the acetylated α-amino acid methyl ester 318a (Scheme 67). ${ }^{161}$

Ring closing metathesis of dialkylated derivatives 313a-d in the presence of a catalytic amount of Grubbs second generation catalyst $\mathrm{PhCH}=\mathrm{RuCl}_{2}(\mathrm{IMes})\left(\mathrm{PCy}_{3}\right)$ under microwave assisted heating, gave the corresponding spiro compounds with five-, six- and seven-membered rings containing a double bond 314a-d in 63-99\% yield. Hydrolysis of the bis-lactim ether of 314ad with TFA at room temperature or under microwave conditions, followed by treatment with (Boc) $)_{2} \mathrm{O}$ afforded the N -Boc protected quaternary amino acid ethyl esters $\mathbf{3 1 9 a}$-d in good yield, which, by basic hydrolysis under microwave assisted heating, produced the amino acids 320ad in 76-93\% yield (Scheme 68). ${ }^{162}$

Cascade $\mathrm{Ru}(\mathrm{II})$-catalyzed ring closing metathesis reaction of 321a,b produced the RCM products 322a,b in excellent yield. In a similar way, reaction of 323a-c, obtained from 321a,b, under identical conditions furnished the conformationally constrained amino acids 324a-c in good yield (Scheme 69). ${ }^{163,164}$

Diels-Alder reaction of 324a,b,d with diethyl acetylenedicarboxylate (DEAD) followed by aromatization with MnO_{2} gave the conformationally constrained α-amino acids $\mathbf{3 2 5 a}, \mathbf{b}, \mathbf{d}$ in good yield (Scheme 70). ${ }^{164}$

On the other hand, ring closing metathesis reaction of triyne 327, readily obtained from 326, in the presence of a catalytic amount of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in toluene at $85^{\circ} \mathrm{C}$ gave the product $(2 R, 7 R)-\mathbf{3 2 8}$ in 58% yield. ${ }^{165}$ Ring closing metathesis reaction of triyne $\mathbf{3 2 6}$ in the presence of a catalytic amount of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in toluene at $85^{\circ} \mathrm{C}$ gave 329 in 90% yield, ${ }^{165,166}$ and a quantitative yield was obtained when the reaction of $\mathbf{3 2 6}$ was carried out under microwave assisted heating. Identical results were obtained using $\mathrm{PhCH}=\mathrm{RuCl}_{2}$ (IMes) $\left(\mathrm{PCy}_{3}\right)_{2}$ as a catalyst. ${ }^{166}$ Hydrolysis of $\mathbf{3 2 9}$ with 0.1 M TFA gave the constrained α-amino acid methyl ester $(2 R, 7 R)$ - $\mathbf{3 3 0}$ in 35% yield (Scheme 71). ${ }^{167}$

Ring closing metathesis reaction of tetraene 331 in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in toluene at $85^{\circ} \mathrm{C}$ in order to obtain the spirane 332 was unsatisfactory, probably due to a sterically congested substrate. The more reactive $\mathrm{PhCH}=\mathrm{RuCl}_{2}$ (IMes) $\left(\mathrm{PCy}_{3}\right)$ catalyst also failed to effect the spiroannulation of $\mathbf{3 3 1}$. However, ring closing metathesis reaction of less bulky tetraene 333, obtained by hydrolysis of 331, under identical conditions gave the spiranes $\mathbf{3 3 4}$ and $\mathbf{3 3 5}$ in 73% yield and 3:2 isomeric ratio (Scheme 72). ${ }^{168}$

On the other hand, $\mathrm{Ru}(\mathrm{II})$-catalyzed ring closing metathesis reaction of diastereoisomerically pure $\mathbf{3 3 6}$ gave the cyclic α-amino acid methyl ester $\mathbf{3 3 7}$ in 96% yield (Scheme 73). ${ }^{169}$

Chemoselective allylation of imino ester $\mathbf{3 3 8}$ with allylzinc bromide afforded the diene $\mathbf{3 3 9}$ in 95% yield as a single diastereoisomer, which, by ring closing metathesis reaction in the presence of Grubbs first generation catalyst $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$, gave the cyclic amino ester

340 in 92% yield and $>98 \%$ de. Cleavage of the benzyl group in 340 under $\mathrm{H}_{2} / \mathrm{Pd}(\mathrm{OH})_{2}$ conditions provided the amino ester 341 in almost quantitative yield, which, by treatment with TBAF and subsequent ion-exchange chromatography, furnished the quaternary α-amino acid 342 in 70% yield (Scheme 74). ${ }^{170}$

Undheim et al. ${ }^{171}$ reported the stereoselective synthesis of rigidified homoserine analogues 350 and 351 through the ring closing metathesis reaction. In this context, reaction of hydroxy derivative $\mathbf{3 4 3}$ in the presence of a catalytic amount of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in DCE at $65^{\circ} \mathrm{C}$ gave the spiro compound $\mathbf{3 4 4}$ in 72% yield. Swern oxidation of $\mathbf{3 4 4}$ produced the α, β unsaturated ketone 346 in 74% yield. On the other hand, oxidation of $\mathbf{3 4 3}$ under Swern conditions furnished the ketone 345 in 79% yield, which, by ring closing metathesis reaction in the presence of a catalytic amount of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in benzene at $70^{\circ} \mathrm{C}$, afforded the spiro derivative 346 in 37% yield. Conjugate addition of lithium dimethylcuprate to 346 furnished $\mathbf{3 4 7}$ in 91% yield and high diastereoselectivity (Scheme 75).

Reduction of the carbonyl group of $\mathbf{3 4 7}$ with NaBH_{4} in methanol afforded the alcohols 348 and 349 in 37 and 57% yield, respectively. Hydrolysis of diastereoisomerically pure 348 with 0.1 MTFA gave the amino ester 350 in 38% yield, whereas the hydrolysis of $\mathbf{3 4 9}$ under identical conditions afforded the dipeptide 351 in 77% yield (Scheme 76). ${ }^{171}$

Møller and Undheim ${ }^{172}$ reported the synthesis of spiro derivatives $\mathbf{3 5 4}$ and $\mathbf{3 5 7}$ by palladiummediated 5-exo-trig-spiroannulation and these compounds are precursors of functionalized cyclic quaternary α-amino acids. Thus, the lithiation of $\mathbf{3 5 2}$ followed by addition of 2,3dibromopropene gave the diene $\mathbf{3 5 3}$ in 60% yield and $>98 \%$ de and treatment of $\mathbf{3 5 3}$ with a catalytic amount of $\mathrm{Pb}(\mathrm{OAc})_{2}$ in the presence of $\mathrm{PPh}_{3} / \mathrm{Ag}_{2} \mathrm{CO}_{3}$ afforded the spiro compound 354 in 60% yield. In a similar way, reaction of $\mathbf{3 5 5}$, obtained from $352,172 \mathrm{~b}$ produced the spiro derivative 356 in 60% yield and treatment with a catalytic amount of NiCl_{2} (dppp) and MeMgBr led to compound 357 in 64% yield (Scheme 77).

On the other hand, aldol reaction of $\mathbf{3 5 8 a}, \mathbf{b}$ using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as a base in acetonitrile, afforded the spiroannulated compounds $\mathbf{3 5 9} \mathbf{a}, \mathbf{b}$ in 49 and 63% yield, respectively, and subsequent hydrolysis with 0.1 M TFA gave the amino esters 360a,b in 56 and 59% yield, respectively (Scheme 78). Using this methodology the α-amino acid methyl esters $\mathbf{3 6 0 c}-\mathbf{f}$ were obtained from the appropriate substrates. ${ }^{173}$

2.3. Cicloadditions and related reactions

Direct incorporation of an "amino acid synthetic equivalent" into an alkene by transition metal catalyzed diazo decomposition has also been used for the synthesis of quaternary 1 -aminocyclopropanecarboxylic acids. ${ }^{174,175}$ For example, the asymmetric catalytic cyclopropanation of styrene with α-nitro- α-diazocarbonyl compounds 361a-d in the presence of a catalytic amount of 362-366 as a chiral catalyst, afforded the cyclopropane derivatives trans- and cis-367a-d in good selectivity trans:cis, but with low enantioselectivity. ${ }^{176}$ The results are summarized in Table 6.

Moreau and Charette ${ }^{177}$ reported the catalytic asymmetric cyclopropanation of styrene with iodonium ylides derived from nitroacetates. For example, reaction of phenyliodonium with methyl nitroacetate gave the corresponding phenyliodonium ylide 368, which, by
cyclopropanation reaction with styrene in the presence of a catalytic amount of isopropilidene bis(4-phenyl-2-oxazoline) 366a and AgSbF_{6}, afforded the methyl 1-nitrocyclopropyl carboxylate 367a in 79% yield and excellent diastereo- and enantioselectivity (similar results were obtained using others alkyl and aryl alkenes). Reduction of the nitro group of 367a with $\mathrm{Zn} / \mathrm{HCl}$ in 2-propanol furnished the aminoester $\mathbf{3 6 9}$ in 89% yield (Scheme 79).

On the other hand, reaction of chiral carbenes $\mathbf{3 7 0 a}, \mathbf{b}$ with terminal olefins in toluene under reflux produced the corresponding cyclopropanes $\mathbf{3 7 1 a}, \mathbf{b}$ and $\mathbf{3 7 2} \mathbf{a}, \mathbf{b}$ as a mixture of both cis diastereoisomers in low yield and $2: 1$ and 1.5:1 diastereoisomeric ratio, respectively, with a predominance of 371a,b (Scheme 80). ${ }^{178}$

Reaction of (Z)-373 with (-)-menthol in the presence of bis-(dibutylchlorotin)oxide gave the aminoacrylate (Z)-374 in 78% yield and subsequent treatment with diazomethane in dichloromethane produced the Δ^{1}-pyrazolines $\mathbf{3 7 5}$ a and $\mathbf{3 7 5 b}$ in 93% yield and 1.8:1 dr, (reversal of diastereoselectivity was observed when (+)-menthol was used as chiral auxiliary). Heating of diastereoisomerically pure $\mathbf{3 7 5 a}$ and $\mathbf{3 7 5 b}$ at $150^{\circ} \mathrm{C}$ afforded the constrained cysteines derivatives $(1 S, 2 S)$ - and $(1 R, 2 R)-\mathbf{3 7 6}$, respectively, in good yield and diastereoselectivity. Saponification of $(1 S, 2 S)-\mathbf{3 7 6}$ with NaOH in methanol gave the carboxylic acid $(1 S, 2 S)$ - 377 in 44% yield (Scheme 81$).{ }^{179}$

1,3-Dipolar cycloaddition of α, β-unsaturated compound 379, obtained from Horner-Wadsworth-Emmons reaction of (S)-294 and the phosphonate 378, with diazomethane followed by photolysis of the resultant pyrazoline gave the cyclopropane derivative $\mathbf{3 8 0}$ in 87% yield. ${ }^{180}$ Hydrolysis of the acetonide in $\mathbf{3 8 0}$ with HCl afforded the corresponding diol, which was oxidised with NaIO_{4} produced the aldehyde $(1 R, 2 S)$ - $\mathbf{3 8 1}$ in good yield. Reduction of $\mathbf{3 8 1}$ with NaBH_{4} and subsequent saponification of methyl ester gave $(1 R, 2 S)$ - $\mathbf{3 8 2}$ in good yield. Finally, cleavage of the N-Boc protective group in $(1 R, 2 S)-\mathbf{3 8 2}$ followed by treatment with propylene oxide provided the α-aminocyclopropanecarboxylic acid $(1 R, 2 S)$ - $\mathbf{1 7 0}$ in excellent yield (Scheme 82). ${ }^{181}$

Reaction of aldehyde $(1 S, 2 R)$ - $\mathbf{3 8 1}$ with N-methylglycine and [60]fullerene afforded the fulleropyrrolidine 384 in 25% yield, through the 1,3-dipolar cycloaddition of the in situ produced azomethine ylide $\mathbf{3 8 3}$. Cleavage of the N-Boc protective group of $\mathbf{3 8 4}$ with TMSI in chloroform led to compound $\mathbf{3 8 5}$ in 89% yield (Scheme 83). ${ }^{182}$

On the other hand, 1,3-dipolar cycloaddition of diazomethane to α, β-unsaturated compound 386 followed by photolysis of the resultan pyrazoline gave the cyclopropane derivative 387 in 48% yield, which, by saponification of the methyl ester and cleavage of the acetonide using pyridinium p-toluenesulfonic acid (PPTS), gave the keto amino acid ($\left.1 R, 2 R, 1^{\prime} R, 3^{\prime} R\right)$ - $\mathbf{3 8 8}$ in 35% yield. In a similar way, reaction of $\mathbf{3 8 9}$ with diazomethane followed by photolysis produced the diprotected quaternary α-amino acid ($1 S, 2 S, 1^{\prime} S, 3^{\prime} R$)-390 in 45% yield (Scheme 84). ${ }^{183}$

Recently, Avenoza et al. ${ }^{184}$ reported the asymmetric [2+2] cycloaddition of 2acylaminoacrylates $\mathbf{3 9 1}$ with donor olefins $\mathbf{3 9 2}$ in the presence of a catalytic amount of sterically hindered aluminum aryloxides, such as methylaluminum bis(4-bromo-2,6-di-tertbutyl phenoxide) (MABR) and methylaluminoxane (MAO) as a Lewis acid. These reactions gave the constrained protected serine analogues $\mathrm{c}_{4} \mathrm{Ser}(\mathrm{OBn}) \mathbf{3 9 3 a - h}$ and 394. ${ }^{185}$ The results are summarized in Table 7. The best diastereoselectivity was obtained in the reaction of vinyl ether bearing ($1 R, 2 S$)-2-phenylcyclohexyl gragment as a chiral auxiliary (entries 3, 6 and 9).

Recently, Tanaka et al. ${ }^{186}$ reported the synthesis of α, α-disubstituted α-amino esters 396a-g by Rh-catalyzed $[2+2+2]$ cycloaddition of 1,6 -diynes $\mathbf{3 9 5 a} \mathbf{a}$ g with protected dehydroamino ester 391c. In all cases the compounds 396a-g were obtained in good yield and with good
enantioselectivity and, in the case of unsymmetrical 1,6-diynes, moderate regioselectivity was observed. The results are summarized in Table 8.

Pyne et al. ${ }^{187}$ reported the synthesis of conformationally constrained cyclopentenylglutamate analogues in a regioselective and diastereoselective manner using a formal [3+2] cycloaddition reaction of chiral dehydroamino esters. For example, [3+2] cycloaddition of ylide 398a generated in situ from ethyl 2,3-dienoate 397a, with the chiral dehydroamino ester (R) - 399 gave the mixture of the two regioisomers 400a and 401a in 17 and 49% yield, respectively, after column chromatographic separation. In a similar way, cycloaddition of $\mathbf{3 9 8 b}, \mathbf{c}$, obtained from $\mathbf{3 9 7 a} \mathbf{a}, \mathbf{b}$, with $(R)-399$ afforded the spiro compounds $\mathbf{4 0 0 b}, \mathbf{c}$ in 38 and 78% yield, respectively, as a single diastereoisomers. Hydrolysis of optically pure 400a-c with HCl followed by ion-exchange chromatography and subsequent treatment with HCl produced the conformationally constrained amino acids 402a-c in good yield as chlorohydrate salt. In a similar way, 401a was transformed into the quaternary α-amino acid (S)-403 (Scheme 85).

Reaction of dehydroamino ester 404 with ethyl butynoate 405 in the presence of PPh_{3} gave the cycloadducts 406 and 407 in 87% yield and 60:40 dr, which, by successive selective hydrolysis of the $\mathrm{N}=\mathrm{CPh}_{2}$ group, $N-\mathrm{Cbz}$ protection, preparative HPLC separation and hydrolysis of the esters, afforded the cyclic glutamic acid analogues (R) - and (S)-402a in good yield (Scheme 86). ${ }^{187}$

Diels-Alder reaction of (S)-228c with cyclopentadiene at room temperature gave, after flash chromatography, the cycloadduct endo-408 in 85% yield and 15% of other diastereoisomers, and with cyclohexa-1,3-diene at $90^{\circ} \mathrm{C}$ afforded the cycloadduct endo-409 in 88% yield and 12% of other diastereoisomers. Hydrolysis of the imine moiety of the cycloadducts endo-408 and endo-409, followed by catalytic hydrogenation of double bound $\mathrm{C}=\mathrm{C}$ and subsequent hydrolysis of the ester function with 6 N HCl , produced the constrained α-amino acids $(S) \mathbf{- 4 1 0}$ and (S)-411, respectively, in good yield (Scheme 87). ${ }^{144,188}$

In a similar way, Diels-Alder reaction of (S)-232c with cyclopentadiene and cyclohexa-1,3diene gave, after flash chromatography, the cycloadducts endo-412 and endo-413 as the main diastereoisomers, respectively. Catalytic hydrogenation of these compounds over Pd / C, followed by hydrolysis with 6 N HCl and subsequent ion-exchange chromatography, furnished the α-amino acids (S)-410 and (S)-411 in moderate yield (Scheme 88). ${ }^{144}$

Diels-Alder cycloaddition of chiral methylene piperazine-2,5-diones 414a-g with cyclopentadiene gave the four diastereoisomers exo-415a-g, exo-416a-g, endo-417a-g and endo-418a-g in low to moderate yield and with good exolendo selectivity. The results are summarized in Table 9. ${ }^{189}$

Diels-Alder cycloaddition of chiral acrylates 419a,b, bearing (+)- or (-)-menthyl as a chiral auxiliary, with cyclopentadiene in the presence of EtAlCl_{2} or $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ under thermal or ultrasound conditions, gave the four diastereoisomers exo-420a,b, exo-421a,b, endo-422a,b and endo-423a,b in moderate to good yield, good exo/endo selectivity, and good enantioselectivity. The results are summarised in Table 10. ${ }^{190}$

On the other hand, enantioselective Diels-Alder cycloaddition of achiral acrylate $\mathbf{4 2 4}$ with cyclopentadiene in the presence of a catalytic amount of chiral ligands 366a, 425, 426, and 427, and $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ or $\mathrm{Ce}(\mathrm{OTf})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, gave the spiro compounds mixture of two endo-428a,b and two exo-429a,b, both with poor enantioselectivity. ${ }^{190,191}$ The results are summarised in Table 9.

Recently, Pellegrino et al. ${ }^{192}$ reported that the Diels-Alder cycloaddition of acylaminoacrylate 430, bearing the $(-)-8$-phenylmenthyl group as a chiral auxiliary, with cyclopentadiene in the presence of a catalytic amount of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ under ultrasound conditions gave the adducts exo-431a,b and endo-432a,b in 87% yield and $7: 1 \mathrm{dr}$, with a predominance of exo-431a (only trace amount of the second exo-431b (0.3%) and endo432b (0.9%) isomers were detected). Hydrogenation of the $\mathrm{C}=\mathrm{C}$ double bond of diastereoisomerically pure exo- $\mathbf{4 3 1}$ followed by selective hydrolysis with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and subsequent oxidation of alcohol group, led to the β-keto ester exo-433 in excellent yield. This compound was used in the synthesis of cis-3carboxycyclopentylglycine ($1 S, 3 R, 1^{\prime} S$)-434a and its epimer ($1 S, 3 R, 1^{\prime} R$)-434b (Scheme 89).

The same authors ${ }^{193}$ reported that Diels-Alder cycloaddition of chiral aminoacrylate 391a, bearing the $(-)-8$-phenylmenthyl group as a chiral auxiliary, with cyclopentadiene in the presence of a catalytic amount of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ under ultrasound conditions. This reaction gave the norbornenes exo-435 and endo-436 in 84% yield, a ratio of $83: 17$ and with high diastereoselectivity (exo 97% and endo 96%). Selective hydrolysis of major exo-435 produced the enantiopure constrained α-amino acid exo-437 in 79\% yield (Scheme 90).

On the other hand, oxidative cleavage of the $\mathrm{C}=\mathrm{C}$ double bond of norbornene exo-435 with potassium permanganate furnished $(1 S, 2 R, 4 S)-438$ in 81% yield and selective hydrolysis of the ester function under basic conditions provided the tricarboxylic acid ($1 S, 2 R, 4 S$)-439 in 80% yield. Finally, hydrolysis of amide function of $(1 S, 2 R, 4 S)-439$ with 6 M HCl gave the quaternary α-amino acid $(1 S, 2 R, 4 S)-\mathbf{4 4 0}$ in 83% yield. In a similar way, $(1 R, 2 S, 4 R)$ -endo-436 was transformed into quaternary α-amino acid ($1 S, 2 S, 4 R$)-441 (Scheme 91). ${ }^{193,194}$

Dihydroxylation of $\mathrm{C}=\mathrm{C}$ double bond in the norbornene exo- $\mathbf{4 3 5}$ with NMO in the presence of a catalytic amount of osmium tetroxide afforded the diol exo-442, ${ }^{195}$ which, by cleavage of $\mathrm{C}_{5}-\mathrm{C}_{6}$ bond with sodium periodate, gave the bisaldehyde $(1 S, 2 R, 4 S)-443$. Reductive amination of bisaldehyde 443 with p-methoxybenzylamine $\left(\mathrm{PMBNH}_{2}\right)$ and sodium triacetoxyborohydride as a reducing agent, provided the derivative ($1 S, 5 S, 6 S$)-exo-444, which, by treatment with sodium in methanol produced the constrained α-amino acid ($1 S, 5 S, 6 S$)-exo-445 in 57% overall yield. In a similar way, $(1 R, 2 S, 4 R)$-endo- 436 was transformed into quaternary α-amino acid ($1 R, 5 R, 6 S$)-endo-446 (Scheme 92). ${ }^{196}$

On the other hand, reductive amination of bisaldehydes $(\pm)-447 \mathbf{a}, \mathrm{~b}$ using $(R)-\alpha-\mathrm{MBA}$ and sodium triacetoxyborohydride afforded, after chromatographic separation, the azabiciclo derivatives ($1 R, 5 R, 6 R, 1^{\prime} R$)-exo-448a, ($1 S, 5 S, 6 S, 1^{\prime} R$)-exo-448b, $\left(1 R, 5 R, 6 S, 1^{\prime} R\right)$-endo-449a and ($1 S, 5 S, 6 R, 1^{\prime} R$)-endo-449b in $25 \%, 28 \%, 12 \%$ and 10% yield, respectively. Cleavage of the benzyl group by hydrogenolysis over Pd / C on diastereoisomerically pure exo-488a,b and endo-489a,b, followed by hydrolysis with 6 N HCl gave the constrained α-amino acids ($1 R$, $5 R, 6 R$)-exo-450, $(1 S, 5 S, 6 S)$-exo-450, $(1 R, 5 R, 6 S)$-exo-451 and ($1 S, 5 S, 6 R$)-exo-451 in good yield (Scheme 93). ${ }^{197}$

2.4. Resolution procedures

2.4.1. Chemical resolution-Mash et al. ${ }^{198}$ reported the synthesis of 2-amino-4-bromo-7-methoxyindane-2-carboxylic acid (S) - $\mathbf{4 6 1}$ by chemical resolution. In this context, a double alkylation of ethyl glycinate 452a with 2,3-bis(bromomethyl)-4-bromoanisole 453 afforded the racemic compound $(\pm)-\mathbf{4 5 4}$, which, by hydrolysis of imine function furnished the corresponding α-amino ester (\pm) - $\mathbf{4 5 5}$ in 33% yield. Coupling of $(\pm)-455$ with the N-Bocphenylalanine (S)-456 in the presence of benzotriazol-1-yloxy-tris(dimethylamino)
phosphonium hexafluorophosphate (BOP) gave a 50:50 mixture of the dipeptides $(R, S)-457$ and $(S, S)-\mathbf{4 5 8}$ in 93% yield and these were separated by column chromatography. Cleavage of the N-Boc protective group of diastereoisomerically pure $(S, S)-\mathbf{4 5 8}$ with TFA produced the dipeptide $(S, S)-\mathbf{4 5 9}$, which was treated with phenylisothiocyanate and triethylamine to furnish the corresponding thiourea $(S, S)-\mathbf{4 6 0}$ in 71% yield. Finally, hydrolysis of $(S, S)-\mathbf{4 6 0}$ with HCl provided the quaternary α-amino acid (S)-461 in 83% yield (Scheme 94). The α-amino acid $(S)-\mathbf{4 6 1}$ has been used in the synthesis of piperazine-2,5-diones.

Monn et al. ${ }^{199}$ reported the synthesis of heterobicyclic α-amino acids (-)- and (+)-465a,b by resolution and these compounds were evaluated as agonist for group II mGlu receptors. In this context, reaction of furan or thiophene with ethyl diazoacetate in the presence of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ produced the bicyclic adducts $(\pm)-\mathbf{4 6 2 a}, \mathrm{b}$ in $(20-40 \%)$ yield. Reaction of $(\pm)-\mathbf{4 6 2 a}, \mathbf{b}$ with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN , followed by saponification, gave the (\pm)-carboxylic acids 463a,b in 72% yield. These compounds were resolved by selective crystallization of either the (R) - or (S)-phenylglycinol salts (-)-464 or (+)-464, respectively. Hydrolysis of diastereoisomerically pure salts (- -464a,b and (+)-464a,b followed by ion-exchange chromatography furnished the optically pure $(-)$ - and (+)-465a,b in good yield (Scheme 95).

The diastereoisomer (-)-465b has been transformed into sulfoxides 469 and $\mathbf{4 7 0}$ as well as sulfone 472, and these compounds were evaluated as potent, selective, and orally bioavailable agonist for $\mathrm{mGlu} 2 / 3$ receptors. Thus, esterification of $(-)-\mathbf{4 6 5 b}$ with thionyl chloride in methanol followed by treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ gave the methyl ester 466 in 79% yield, which, by oxidation with m-CPBA afforded the sulfoxides mixture 467 and 468 in 5% and 85% yield, respectively. Hydrolysis of diastereoisomerically pure 467 and 468 produced the quaternary α-amino acids 469 and 470 in 65% and 69% yield, respectively. On the other hand, oxidation of sulfoxide function in 467 with m-CPBA provided the corresponding sulfone $\mathbf{4 7 1}$ in 84%, which, by hydrolysis afforded the quaternary α-amino acid 472 in 71% yield (Scheme 96). ${ }^{200}$

On the other hand, Bucherer-Bergs reaction of 6-bromo-2-tetralone 473 with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and KCN gave the spirohydantoin 474 in 81% yield, which, by cleavage of the hydantoin ring and esterification, afforded the methyl (\pm)-2-amino-6-bromotetraline-2-carboxylate $\mathbf{4 7 5}$ in 54% yield. Resolution of $(\pm)-\mathbf{4 7 5}$ as the L-mandelic acid salt produced the ammonium salt $(S, S)-476$ in 25% yield and treatment with $(\mathrm{Boc})_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$, followed by basic hydrolysis, produced the constrained N-Boc α-amino acid (S)-477 in 77% yield. This compound was converted in four steps into (2S)-N-Boc-amino-6-(diethylphosphono)tetraline-2-carboxylic acid 478 (Scheme 97). ${ }^{201}$

Treatment of $(\pm)-\mathbf{4 8 0}$, which is readily obtained from $(\pm)-\mathbf{4 7 9}$, with (S)-phenylalanine cyclohexylamide 481 in N -methylpyrrolidin-2-one (NMP) at $90^{\circ} \mathrm{C}$, followed by column chromatography separation, produced the diastereoisomerically pure ($1 S, 2 S, 1^{\prime} S$)-482a and $\left(1 R, 2 R, 1^{\prime} S\right)$-482b in 36 and 35% yield, respectively. Subsequent hydrolysis and treatment with propylene oxide furnished the 1-amino-2-hydroxycyclohexanecarboxylic acid ($1 S, 2 S$)- and $(1 R, 2 R)-99 a$ in good yield (Scheme 98). ${ }^{202}$

In a similar way, treatment of (\pm) - $\mathbf{4 8 3}$ with (S)-2-acetoxypropanoyl chloride $(S)-\mathbf{4 8 4}$ in the presence of triethylamine, followed by column chromatography separation, gave the diastereoisomerically pure $\left(1 S, 2 R, 1^{\prime} S\right)-485$ and $\left(1 R, 2 S, 1^{\prime} S\right)-486$ in 40 and 50% yield, respectively. Hydrogenation of $\left(1 S, 2 R, 1^{\prime} S\right)-\mathbf{4 8 5}$ and $\left(1 R, 2 S, 1^{\prime} S\right)-\mathbf{4 8 6}$ over Pt / C, followed by hydrolysis and subsequent treatment with propylene oxide, led to $(1 S, 2 R)$ - and $(1 R, 2 S)-100 a$ in good yield (Scheme 99). ${ }^{202}$

Recently, Gelmi et al. ${ }^{194}$ reported the synthesis of the four diastereoisomers of constrained α amino acids exo-437 and exo-487 by resolution. In this context, treatment of (\pm)-exo-437 with $(R)-\alpha-\mathrm{MBA}$ gave the corresponding diastereoisomeric salts, hydrolysis of which afforded, after
crystallization, the enantiomerically pure $(1 R, 2 R, 4 R)-437$ and $(1 S, 2 S, 4 S)-437$ in 31 and 37% yield, respectively. In a similar way, the resolution of (\pm)-endo- $\mathbf{4 8 7}$ gave the enantiomerically pure $(1 R, 2 S, 4 R)-487$ and $(1 S, 2 R, 4 S)-487$ in 42 and 40% yield, respectively (Scheme 100).

Reaction of N-protected amino acids RCO-Bin-OH $(\pm)-\mathbf{4 8 8 a}, \mathrm{b}$ with $(S)-481$ in the presence of N-hydroxybenzotriazole (BtOH) and N-ethyl- N-dimethylaminopropylcarbodiimide hydrochloride (EDC) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by column chromatography separation, afforded the diastereoisomerically pure $(R, S)-\mathbf{4 8 9 a}, \mathbf{b}$ and $(S, S)-490 \mathbf{a}, \mathbf{b}$ in good yield. Hydrolysis of diastereoisomerically pure $(R, S)-\mathbf{4 8 9 a}, \mathbf{b}$ and $(S, S)-\mathbf{4 9 0 a}, \mathbf{b}$, followed by esterification with $\mathrm{MeOH} / \mathrm{HCl}$, furnished the H -Bin-OMe (R) - and (S)-491 in good yield (Scheme 101). ${ }^{203}$

On the other hand, reaction of racemic diesters (\pm)-cis-492 with commercially available ($1 S$, $2 S, 5 S)$-2-hydroxy-3-pinanone 493 in the presence of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ afforded the corresponding Schiff bases (S)-cis and (R)-cis-494. Crystallization of the diastereoisomeric mixture gave (S)-cis-494 as a single diastereoisomer. The remaining diastereoisomer (R)-cis-494 could not be isolated from mother liquor either by crystallization or by chromatography on silica gel. However, (R)-cis-494 could be converted into the (S)-cis-494 diastereoisomer by thermal equilibration. Hydrolysis of diastereoisomerically pure (S)-cis-494 followed by treatment with (Boc) ${ }_{2} \mathrm{O}$ furnished the enantiomerically pure N-Boc-protected methyl ester (S)-cis-495. Under identical conditions, N-Boc-protected methyl ester (S)-trans-497 was obtained from (\pm)-trans-496 (Scheme 102). $2{ }^{204}$

Treatment of racemic Boc-[OH $]_{2}$-Bip-OMe $(\pm)-498$ with the ditosylate $(R)-499$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in DMF at $60{ }^{\circ} \mathrm{C}$ gave the methyl esters N-Boc-[20-C-6]-(R)-Bip-OMe (R, R) - 500 and N-Boc-[20-C-6]-(S)-Bip-OMe (R, S)-501 in 25 and 26% yield, respectively. Cleavage of ether function of $(R, R)-500$ with large excess of BBr_{3} followed by esterification with thionyl chloride and methanol, produced the (R)-binaphthol and H - $[\mathrm{OH}]_{2}$-Bip-OMe (R) - 502 (Scheme 103). ${ }^{205,206}$

On the other hand, epoxidation of 319a with m-CPBA afforded the epoxides $\mathbf{5 0 3}$ and $\mathbf{5 0 4}$ in 59% yield and $85: 15 \mathrm{dr}$. Desymetrization of the major epoxide isomer $\mathbf{5 0 3}$ with s-BuLi in the presence of $(-)$-sparteine gave the allyl alcohol $(1 S, 4 R)-505$ in 14% yield and 33% ee, which, by hydrogenation over Pd / C provided the alcohol ($1 S, 3 R$)-256 in $\mathbf{7 1 \%}$ yield. Treatment of $(1 S, 3 R)-\mathbf{2 5 6}$ with acetic acid under Mitsunobu conditions produced the alcohol $(1 S, 3 S)-\mathbf{2 5 5}$ in 58% yield and subsequent mesylation followed by reaction with NaCN and hydrolysis with 6 M HCl led to ($1 S, 3 R$)-ACPD 293 in $\mathbf{4 5 \%}$ yield. In a similar way, $(1 S, 3 R)$ - $\mathbf{2 5 6}$ was transformed into ($1 S, 3 S$)-ACPD 506 in 34% overall yield (Scheme 104). ${ }^{207}$

Recently, Varie et al. ${ }^{208}$ reported a pilot-plant desymetrization of the cyclic meso-epoxide 507a using a chiral lithium amide prepared from (R, R)-diamine $\mathbf{5 0 8}$ and n-BuLi to give the allyl alcohol ($1 S, 4 R$)-509 in $\mathbf{7 2 \%}$ yield and $\mathbf{9 9 . 3 \%}$ ee. However, treatment of meso-epoxide $\mathbf{5 0 7 b}$ under identical conditions gave the allyl alcohol ($1 S, 4 S$)-510 in only $\mathbf{3 \%}$ yield and 48% ee (Scheme 105).
2.4.2. Enzymatic resolution-Enzymatic hydrolysis of prochiral bis(2,2,2-trifluoroethyl)-2,2-dimethylcyclopropane-1,1-dicarboxylate $\mathbf{5 1 1}$ with pig liver esterase (PLE) gave the (R)-2,2-dimethyl-1-(2,2,2-trifluoroethoxycarbonyl)-cyclopropane-1-carboxylic acid $(R)-512$ in 62% yield and $>95 \%$ ee, which, by Curtius rearrangement with diphenylphosphoryl azide (DPPA), followed by work-up with ethanol gave the diprotected α-amino acid (S)-513 in 34% yield. Finally, basic hydrolysis of (S) - 513 produced the (S)-1-amino-2,2-dimethylcyclopropane-1-carboxylic acid (S)-514 in 75% yield and $>84 \%$ ee (Scheme 106). ${ }^{209}$

Recently, Beaulieu et al. ${ }^{210}$ reported the pilot plant large-scale synthesis of ($1 R, 2 S$)-1-amino-2vinylcyclopropanecarboxylic acid methyl ester ($1 R, 2 S$)-196 from (\pm)-trans- 515 using inexpensive esterase enzyme (Alcalase) as a resolution agent. In this context, treatment of (\pm)-trans-515, obtained in three steps from 452b, with a large excess of Alcalase under $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer conditions at $\mathrm{pH} 8.1-8.2$ produced $(1 R, 2 S)-515$ in 49% yield and 97% ee, and $(1 S, 2 R)-516$ in with 99% ee, after separation. ${ }^{211}$ Hydrolysis of $(1 R, 2 S)-515$ with HCl gave the $(1 R, 2 S)-516$ in 64% yield as hydrochloride salt with $>97 \%$ ee (Scheme 107). The vinylACCA derivative $(1 R, 2 S)-\mathbf{1 9 6}$ is an important building block for the preparation of HCV protease inhibitors. ${ }^{212}$

Kirihara et al. ${ }^{213}$ reported an efficient synthesis of (R) - and (S)-1-amino-2,2-difluorocyclopropanecarboxylic acid $\mathbf{5 2 1}$ by lipase-catalyzed desymetrization of diol $\mathbf{5 1 7}$ or diacetate $\mathbf{5 2 2}$. Thus, lipase-catalyzed transesterification of prochiral diol 517 with vinyl acetate as the acyl donor in the presence of lipase PS from Pseudomonas cepacia in benzene and diisopropyl ether, afforded the corresponding mono-acetylated product $(R)-\mathbf{5 1 8}$ in 97% yield and $\mathbf{9 1 . 3 \%}$ ee. Oxidation of $(R)-518$ followed by treatment with DPPA and subsequent work-up with tert-butyl alcohol and $\mathrm{Et}_{3} \mathrm{~N}$ under reflux gave the carbamate $(R)-519$ in 51% yield. Cleavage of the acetyl group of $(R)-\mathbf{5 1 9}$ produced the N-protected aminoalcohol $(R)-\mathbf{5 2 0}$ in $\mathbf{6 6 \%}$ yield and $>99 \%$ ee, which, by oxidation followed by hydrolysis led to (R) - $\mathbf{5 2 1}$ in 99% yield (Scheme 108).

On the other hand, lipase-catalyzed deacetylation of the prochiral diacetate $\mathbf{5 2 2}$ with lipase PS in a mixed solvent of acetone and phosphate buffer gave the corresponding mono-acetylated product $(S)-518$ in 86% yield and 91.7% ee, which, under identical conditions to those described in the Scheme 108, was transformed into (S)-1-amino-2,2-
difluorocyclopropanecarboxylic acid 521 as hydrochloride salt (Scheme 109). ${ }^{213}$
Catalytic hydrolysis of ($\mathbf{\pm}$)-523 with lipase CALB from Pseudomonas cepacia in a mixed solvent of acetone and phosphate buffer gave the corresponding mono-acid ($3 \mathrm{a} S, 5 S$, $6 \mathrm{a} S)-\mathbf{5 2 4}$ and the residual diester $(3 \mathrm{a} R, 5 R, 6 \mathrm{a} R)-\mathbf{5 2 3}$, both with $>99 \%$ ee. Hydrolysis of ($3 \mathrm{a} S$, $5 S, 6 \mathrm{a} S)$ - $\mathbf{5 2 4}$ and $(3 \mathrm{a} R, 5 R, 6 \mathrm{a} R)-\mathbf{5 2 3}$ furnished the constrained α-amino acids ($3 \mathrm{a} S, 5 S$, $6 \mathrm{a} S)-525$ and $(3 \mathrm{a} R, 5 R, 6 \mathrm{a} R)-525$ in 60 and 74% yield, respectively (Scheme 110). ${ }^{214}$

In a similar way, hydrolysis of (\pm)-526 using lipase proleather (Subtilysin Carlsberg) in acetone and phosphate buffer gave the monoacid $(3 \mathrm{a} R, 5 S, 6 \mathrm{a} R)-527$, the product derived from the hydrolysis of methyl ester linked to position 5, and the residual diester ($3 \mathrm{a} S, 5 R, 6 \mathrm{a} S$)-526, both with $>99 \%$ ee. Similar results were obtained with papain-catalyzed hydrolysys of (\pm)-526, but with reversal of the stereochemistry. Hydrolysis of ($3 \mathrm{a} R, 5 S, 6 \mathrm{a} R)-\mathbf{5 2 7}$ and ($3 \mathrm{a} S, 5 R, 6 \mathrm{a} S$)-526 led to the constrained α-amino acids ($3 \mathrm{a} R, 5 S, 6 \mathrm{a} R$)-528 and ($3 \mathrm{a} S, 5 R, 6 \mathrm{a} S$)-528 in 78 and 64% yield, respectively (Scheme 111). ${ }^{214,215}$

On the other hand, the pig liver esterase (PLE) enzymatic desymetrization of diacetate $\mathbf{5 2 9}$ afforded the monoacetate $(S)-\mathbf{5 3 0}$ with 80% ee along with diol 531. The monoacetate $(S)-530$ was transformed in three steps into diprotected alkyne (S) - and (R)-532. Addition of the carbanion derived from (S)-532 to the lactone $\mathbf{5 3 3}$ gave the compound $\mathbf{5 3 4}$ in $\mathbf{6 8 \%}$ as a $1: 1$ mixture of anomers. Partial reduction of the alkyne followed by the spiroketalization and subsequent cleavage of the silyl protecting groups with TBAF, acetylation and HPLC separation, produced the spiro derivative $\mathbf{5 3 5}$ in 53% overall yield. Reduction of the azide and olefin fuctional groups and simultaneous removal of (DMB) protective group in 535 in the presence of acetic anhydride furnished the acetamide $\mathbf{5 3 6}$ in 59% yield. Oxidation of $\mathbf{5 3 6}$ with Dess-Martin periodinane and NaClO_{2} gave the $\alpha-N$-acetylgalactosaminylserine derivative $\mathbf{5 3 7}$ in 89% yield. In a similar way, $(R)-\mathbf{5 3 2}$ was transformed into derivative 538 (Scheme 112). 216

Metathesis reaction of $\mathbf{5 3 9}$, which is readily obtained by dialkylation of dimethyl malonate with 4-bromo-1-butene, in the presence of Grubbs catalyst gave the cycloheptene $\mathbf{5 4 0}$ in $\mathbf{9 8 \%}$ yield. Epoxidation of this compound with m-CPBA followed by hydrolysis with sulfuric acid afforded the cycloheptane-trans-1,2-diol (\pm)-541 in 80% yield. Kinetic resolution of (\pm)-541 with Amano AK in vinyl acetate produced the diol $(4 R, 5 R)-541$ and the monoacetate $(4 S$, $5 S$)-542 in $\mathbf{4 3} \%$ and 33% yield, respectively, both with $>99 \%$ ee. Methylation of ($4 R$, $5 R)-541$ with MeI and $\mathrm{Ag}_{2} \mathrm{O}$ produced the dimethoxy compound $(4 R, 5 R)-543$ in quantitative yield and selective hydrolysis with NaOH , followed by Curtius rearrangement and subsequent workup with benzyl alcohol, furnished the cyclic amino acid ($4 R, 5 R$)-544 in 92% yield (Scheme 113). ${ }^{217}$
2.4.3. HPLC resolution—Semipreparartive chiral HPLC resolution of (\pm)-546, obtained in four steps from α, β-dehydroamino acid derivative 545 , using a mixture of 10 -undecenoate $/ 3,5$ dimethylphenylcarbamate of amylose covalently attached to allylsilica gel (CSP-2) as a chiral stationary phase, afforded the enantio-merically pure $(2 R, 3 R)$ - and $(2 S, 3 S)-\mathbf{5 4 6}$. Hydrolysis of each enantiomer gave the constrained cyclopropane analogues of phenylalanine $\mathrm{c}_{3} \mathrm{diPhe}(2 R$, $3 R$)- and ($2 S, 3 S$)-547 in excellent yield as hydrochloride salt (Scheme 114). ${ }^{218}$

In a similar way, chiral HPLC resolution of $(\pm)-\mathbf{5 4 9}$, obtained in three steps from $\alpha, \beta-$ dehydroamino acid derivative 548, using a mixture of 10 -undecenoate/3,5dimethylphenylcarbamate of cellulose linked to allylsilica gel (CSP-1) as a chiral stationary phase, afforded the enantiomerically pure (R) - and $(S)-549$, which, by cleavage of the benzoyl group with hydrazine followed by hydrolysis gave the constrained cyclopropane analogues of valine $\mathrm{c}_{3} \operatorname{Val}(R)$ - and (S)-514 in excellent yield as hydrochloride salt (Scheme 115). ${ }^{219}$

Chiral HPLC resolution of trans-c c_{4} Phe (\pm)-550, using CSP-1 as a chiral stationary phase and a mixture of hexane/2-propanol/chloroform (95/3/2) as eluent afforded the enantiomerically pure $(1 S, 2 R)$ - and $(1 R, 2 S)-\mathbf{5 5 0}$. Hydrolysis of each enantiomer gave the constrained cyclobutane analogues of phenylalanine ($1 S, 2 R$)- N-Boc- $\mathrm{c}_{4} \mathrm{Phe}-\mathrm{OH}(1 S, 2 R)$-551 and $(1 R, 2 S)$ -N-Boc-c ${ }_{4} \mathrm{Phe}-\mathrm{OH}(1 R, 2 S)$-551 in excellent yield. Under identical conditions, (\pm) - 552 gave $(1 R, 2 R)-N-C b z-c_{4} \mathrm{Phe}-\mathrm{OH}(1 R, 2 R)-553$ and $(1 S, 2 S)-N$-Cbz-c ${ }_{4} \mathrm{Phe}-\mathrm{OH}(1 S, 2 S)-553$ in excellent yield (Scheme 116). ${ }^{220}$

Chiral HPLC resolution of cis- N-(1-cyano-2-phenylcyclopentyl)benzamide (\pm)-554 using CSP-1 as a chiral stationary phase and a mixture of hexane/2-propanol/acetone (95/3/2) as eluent afforded the enantiomerically pure $(1 R, 2 R)$ - and $(1 S, 2 S)-554$, hydrolysis of which produced the constrained cyclopentane analogues of phenylalanine $(1 R, 2 R)-c_{5} \mathrm{Phe}$ and $(1 S$, $2 S$)-c ${ }_{5} \mathrm{Phe} 555$ in excellent yield as hydrochloride salt. Finally, reaction of $(1 R, 2 R)$ - and ($1 S$, $2 S)-555$ with TMSCl, followed by addition of benzyl chloroformate (CbzCl) furnished the $(1 R, 2 R)-N-C b z-\mathrm{c}_{5} \mathrm{Phe}-\mathrm{OH}$ and $(1 S, 2 S)-\mathrm{N}$-Cbz-c ${ }_{5} \mathrm{Phe}-\mathrm{OH} 556$ in 60 and 65% yield, respectively. In a similar way, (\pm) - 557 afforded the $(1 R, 2 S)$ - c_{5} Phe and $(1 S, 2 R)$-c c_{5} Phe 558 in 95 and 92% yield, respectively, and these compounds were transformed into $(1 R, 2 S)-N$-Boc$\mathrm{c}_{5} \mathrm{Phe}-\mathrm{OH}$ and $(1 S, 2 R)-\mathrm{N}$-Boc- $\mathrm{c}_{5} \mathrm{Phe-OH} 559$ (Scheme 117). ${ }^{221}$

Natalini et al. ${ }^{222}$ reported the preparative resolution of 1-aminoindane-1,5-dicarboxylic acid (\pm)-AIDA 33 by chiral ligand-exchange chromatography (CLEC), using (S)- $\mathrm{N}, \mathrm{N}-$ dimethylphenylalanine as the chiral selector in the movile phase, obtaining the enantiomerically pure (S)- and (R)-AIDA 33 with high ee (Scheme 118).

On the other hand, chiral HPLC resolution of methyl cis-1-benzamido-2-phenylcyclohexanecarboxylate (\pm)-560 using CSP-2 as a chiral stationary phase and a mixture of hexane/2propanol/chloroform (96/1/3) as eluent to afford enantiomerically pure $(1 R, 2 R)$ - and $(1 S$, $\mathbf{2 S}) \mathbf{- 5 6 0}$, which, by hydrolysis with HCl under reflux, produced the constrained cyclohexane
analogues of phenylalanine $(1 R, 2 R)-\mathrm{c}_{6} \mathrm{Phe}$ and $(1 S, 2 S)-\mathrm{c}_{6} \mathrm{Phe} \mathbf{5 6 1}$ in quantitative yield as chlorhydrate salt. Finally, reaction of $(1 R, 2 R)$ - and $(1 S, 2 S)-561$ with TMSCl, followed by addition of CbzCl , provided the $(1 R, 2 R)-N-\mathrm{Cbz}^{2} \mathrm{c}_{6} \mathrm{Phe}-\mathrm{OH}$ and $(1 S, 2 S)-\mathrm{N}-\mathrm{Cbz}-\mathrm{c}_{6} \mathrm{Phe}-\mathrm{OH}$ 562 in 70 and 80% yield, respectively. (Scheme 119). ${ }^{223}$

Esterification of $(1 R, 2 R)$ - and $(1 S, 2 S)$ - $\mathbf{5 6 1}$ with thionyl chloride and methanol, followed by coupling with protected aspartic acid $(S)-N-\mathrm{Cbz}-\mathrm{Asp}(\mathrm{O} t-\mathrm{Bu})-\mathrm{OH}$ using $i-\mathrm{BuOCOCl}$ in the presence of NMM, produced the protected dipeptides $(S, 1 R, 2 R)-563$ and $(S, 1 S, 2 S)-564$ in 90% yield. Subsequent deprotection with TFA, followed by hydrogenolysis over Pd / C, led to the optically pure aspartame analogues $\mathrm{H}-(S)$ - $\mathrm{Asp}-(1 R, 2 R)-\mathrm{c}_{6} \mathrm{Phe}-\mathrm{OMe},(S, 1 R, 2 R)-565$ (sweet) and H-(S)-Asp-($1 S, 2 S$)-c ${ }_{6} \mathrm{Phe}-\mathrm{OMe},(S, 1 S, 2 S)-566$ (bitter), in 96 and 98% yield, respectively (Scheme 120). ${ }^{224}$

On the other hand, chiral HPLC resolution of trans- N-(1-cyano-2-phenylcyclohexyl)acetamide trans-(\pm)-567 using CSP-1 as a chiral stationary phase and a mixture of hexane and 2-propanol (93:7) as eluent, gave the enantiomerically pure $(1 R, 2 S)$ - and $(1 S, 2 R)-567$, which, by hydrolysis with HCl under reflux, produced the constrained cyclohexane analogues of phenylalanine $(1 R, 2 S)-\mathrm{c}_{6}$ Phe and $(1 S, 2 R)-\mathrm{c}_{6} \mathrm{Phe} \mathbf{5 6 8}$ as chlorhydrate salts in 92 and 98% yield, respectively. Finally, reaction of $(1 R, 2 S)$ - and $(1 S, 2 R)-568$ with $(\mathrm{Boc})_{2} \mathrm{O}$ in tetramethylammonium hydroxide (TMAH) furnished the $(1 R, 2 S)-N-\mathrm{Boc}-\mathrm{c}_{6} \mathrm{Phe}-\mathrm{OH}$ and $(1 S, 2 R)-N-\mathrm{Boc}-\mathrm{c}_{6} \mathrm{Phe}-\mathrm{OH}$ 569 in 50 and 46% yield, respectively (Scheme 121). ${ }^{225}$

Enantiomerically pure $(1 R, 2 S)$ - and $(1 S, 2 R)-568$ were transformed into optically pure aspartame analogues $\mathrm{H}-(S)$-Asp- $(1 R, 2 S)$-c ${ }_{6} \mathrm{Phe}-\mathrm{OMe}(S, 1 R, 2 S)$ - 570 (sweet) and $\mathrm{H}-(S)$-Asp$(1 S, 2 R)$-c ${ }_{6} \mathrm{Phe}-\mathrm{OMe}(S, 1 S, 2 R)-\mathbf{5 7 1}$ (bitter) under identical conditions to those described above (Scheme 122). ${ }^{226}$

3. Synthesis of azacycloalcane-2-carboxylic acids

2.1. Using cyclic compounds as starting materials

One of the most useful procedures to the stereoselective synthesis of these compounds involves alkylation reactions using the non-quaternary cyclic amino acids as starting materials whenever stereochemical control can be achieved. For example, Wulff et al. ${ }^{227}$ reported the highly diastereoselective alkylation of enantiopure aziridine-2-carboxylic acid ethyl esters 572 and $\mathbf{5 7 3}{ }^{228}$ with complete retention of the stereochemistry. In this context, treatment of $\mathbf{5 7 2}$ with LDA at $-78{ }^{\circ} \mathrm{C}$ in 1,2-dimethoxyethane (DME) and diethyl ether, followed by addition of several alkylating agents, afforded the alkylated compounds $\mathbf{5 7 4} \mathbf{a} \mathbf{- j}$ as single stereoisomers and in good yields with complete retention of the stereochemistry. Similar results were obtained in the methylation of $\mathbf{5 7 3}(\mathrm{R}=\mathrm{Ph})$, with the methylated product 575 obtained with high diastereoselectivity and in 91% yield. ${ }^{229}$ Treatment of $\mathbf{5 7 5}$ with triflic acid and anisole produced the trisubstituted aziridine 576 in 84% yield (Scheme 123).

This methodology has been extensively used for the stereoselective synthesis of α alkylprolines. Since most of the examples have been collected in a recent review, ${ }^{230}$ we only report here the most recents papers. Sommer and Williams ${ }^{231}$ reported the stereoselective synthesis of ${ }^{13} \mathrm{C}$-labeled α-alkyl- β-methylproline ethyl ester $(2 R, 3 S)-\mathbf{5 7 9}$, a key intermediate in the elaboration of paraherquamides E, F and related derivatives, through the stereocontrolled allylation of β-methylproline ethyl ester $(2 S, 3 S)$-577. In this context, treatment of β methylproline ethyl ester $(2 S, 3 S)$-577, obtained from expensive $1-{ }^{13} \mathrm{C}$ - (S)-isoleucine, with KHMDS at $-78^{\circ} \mathrm{C}$ followed by addition of allyl iodide 578 afforded the α-allylated product $(2 R, 3 S)-579$ in 88% yield as a single diastereoisomer. Identical results were obtained in the allylation of $(2 R, 3 S)-\mathbf{5 8 0}$, obtained in several steps from (R) - α-MBA and the cheap $1-{ }^{13} \mathrm{C}$-ethyl
bromoacetate. The stereochemistry obtained in the allylation of $(2 S, 3 S)-\mathbf{5 7 7}$ and $(2 R, 3 S)-\mathbf{5 8 0}$ is influenced strongly by the methyl group in the β-position on the proline ring (Scheme 124).

Very recently, Chandan and Moloney ${ }^{232}$ reported the synthesis of 2,2,5-trisubstituted pirrolidines 585a-c from allylic pyroglutamates 581a-c by Ireland-Claisen ester rearrangement. Thus, treatment of $\mathbf{5 8 1 a - c}$ with LiHMDS and $\mathrm{Al}(i-\mathrm{OPr})_{3}$ in the presence of quinine under Kazmaier's conditions, ${ }^{233}$ gave the rearrangement products 582a-c in good yield as single diastereo-isomers through the transition state A. Interestingly, the Claisen rearrangement only occurred in the presence of quinine. Esterification of 582a-c with MeOH and TsOH , followed by treatment with Lawesson's reagent afforded the thiolactams 583a-c, which, by an Eschenmoser sulfide contraction ${ }^{234}$ with diethyl bromomalonate and sodium bicarbonate, produced the enamines $\mathbf{5 8 4 a} \mathbf{- c}$ in good yield. Finally, reduction of enamine function in 584a-c with sodium cyanoborohydride provided the corresponding 2,2,5trisubstituted pirrolidines 585a-c in good yield as single diastereoisomers (Scheme 125).

In 1981, Seebach et al. ${ }^{235}$ reported a methodology that formally allows the direct α-alkylation of L-proline without loss of the optical purity and with retention of the configuration, thus constituying a showcase of their concept of self-reproduction of chirality. ${ }^{236}$ In recent years this methodology has been used for the stereoselective synthesis of quaternary proline analogues. For example, treatment of the oxazolidinone $(3 S, 7 \mathrm{a} R)-\mathbf{5 8 6}$, readily obtained from L-proline,,237 with LDA in THF at $-78{ }^{\circ} \mathrm{C}$ followed by addition of 3-bromoprop-1-yne gave the α-alkylated product ($3 S, 7 \mathrm{a} R$)-587 in 24% yield as a single diastereoisomer. Subsequent cleavage of the oxazolidinone moiety with TMSCl in methanol under microwave conditions, followed by treatment with CbzCl , furnished the N-Cbz protected α-propargyl proline $(R)-588$ in $\mathbf{7 3 \%}$ yield. Cycloaddition of (R) - $\mathbf{5 8 8}$ with the appropriate azide derivative, followed by treatment with CuSO_{4} and $\mathrm{Cu}(0)$ under microwave conditions, afforded the corresponding triazoles (R)-589a-d in 62-79\% yield (Scheme 126). ${ }^{238}$

On the other hand, aldol reaction of the oxazolidinone ($3 S, 7 \mathrm{a} R)-\mathbf{5 9 0}$, readily obtained from Lproline,235b,c with the Garner's aldehyde ${ }^{239}(R)-591$ afforded the aldol products 592 and $\mathbf{5 9 3}$ in 58% yield and $4: 1 \mathrm{dr}$. Dess-Martin oxidation of $\mathbf{5 9 2}$ followed by reduction with NaBH_{4} gave $\mathbf{5 9 3}$ in 43% yield and this was used in the synthesis of $(2 S, 3 S, 4 R, 7 R, 9 S)$ kaitocephalin. ${ }^{240}$ Under identical conditions, aldol reaction of ($3 S, 7 \mathrm{a} R$) $-\mathbf{5 9 0}$ with the aldehyde (S)-591 gave $\mathbf{5 9 4}$ and $\mathbf{5 9 5}$ in $\mathbf{5 1 \%}$ yield and 2:3 dr. Oxidation of $\mathbf{5 9 4}$ followed by reduction with NaBH_{4} gave 595 in 31% yield and this was used in the synthesis of $(2 R, 3 S, 4 R, 7 R, 9 S)$ kaitocephalin ${ }^{241}$ (Scheme 127).

Aldol reaction of enantiopure trans-596 with Garner's aldehyde (S)-597 ${ }^{242}$ afforded the aldol products in 60% yield as a complex mixture, indicating a mis-matched double stereodifferentiation, whereas the same reaction using the aldehyde $(R)-597$ gave the aldol product 598 in $40-50 \%$ yield as a single diastereoisomer, which, confirm a matched double stereodifferentiation. On the other hand, treatment of trans-596 with LDA in THF at $-78{ }^{\circ} \mathrm{C}$, followed by addition of N-acylimidazole (S)-599, gave the corresponding β-keto ester $\mathbf{6 0 0}$ in $40-50 \%$ yield as a single diastereoisomer, which, by reduction of the keto function with DIBAL at -78 to $25^{\circ} \mathrm{C}$, gave the β-hydroxy ester $\mathbf{6 0 1}$ in $86-93 \%$ yield and $>30: 1 \mathrm{dr}$. The latter compound is an epimer of $\mathbf{5 9 8}$ and is a key compound for the synthesis of $(2 R, 3 S, 4 R, 7 R, 9 S)$ kaitocephalin (Scheme 128). ${ }^{243}$

Recently, we reported ${ }^{244}$ a versatile methodology for the synthesis of ($2 R, 3 \mathrm{a} S, 7 \mathrm{a} S$)-2-methyl-octahydroindole-2-carboxylic acid $\mathbf{6 0 5}$. Treatment of $(S, S, S, R)-\mathbf{6 0 3}$, obtained in three steps from (S)-indoline-2-carboxylic acid 602, with LDA in THF at $-78^{\circ} \mathrm{C}$ followed by addition of several alkyl electrophiles produced the alkylated products $\mathbf{6 0 4 a} \mathbf{- c}$ in good yield. In these compounds both the trichloromethyl group and the newly introduced substituent are cis to each
other on the exo side of the bicyclic constituted by the two five-membererd rings, as in the pioneering investigations by Seebach. ${ }^{235 b}$ Hydrolysis of (S, S, S, R)-604a with 6 N HCl in acetic acid gave the α-methylated indoline ($2 R, 3 \mathrm{aS}, 7 \mathrm{a} S$)-605 in 92% yield as the hydrochloride salt (Scheme 129).

Treatment of enantiopure $\mathbf{6 0 6}$ with LDA followed by addition of several alkyl halides produced the 3,3-disubstituted bicyclic derivatives 608a-f in good yield and with >95\%
diastereoselectivity, through the exocyclic lithium enolate 607 (Scheme 130). ${ }^{245}$
Symmetry-breaking enolization reaction of meso-diester 610, obtained in three steps from dipicolinic acid 609, with the chiral bis-lithium amide base $\mathbf{6 1 1}$ followed by addition of several alkylating reagents afforded the alkylated compounds 612a-f in good yield and with $>98 \%$ ee (Scheme 131). ${ }^{246}$

Hou et al. ${ }^{247}$ have reported the synthesis of (R) - and (S)-2-alkyl pipecolic acids 617 a-e by diastereoselective alkylation of (R)-5-phenylmorpholin-2-one 613. In this context, commercially available (R)-phenylglycinol was transformed in three steps into (R)-613 in 34\% overall yield, and treatment of this compound with NaHMDS followed by the addition of 1,4diiodobutane gave the iodide derivative $(R, R)-614$ in 65% yield as a single diastereoisomer. Cleavage of Boc protective group of $(R, R)-614$ with TFA and subsequent cyclization under basic conditions produced the ($4 R, 9 \mathrm{a} R$)-oxazin-2-one 615 in 65% yield. Treatment of 615 with KHMDS followed by addition of several alkyl halides afforded the corresponding alkylated compounds $(4 R, 9 \mathrm{a} S)-616 \mathbf{a}-\mathbf{d}$ and $(4 R, 9 \mathrm{a} R)-\mathbf{6 1 6 e}$ in good yield and diastereoselectivity. Hydrogenation of $(4 R, 9 \mathrm{a} S)$-616a-d and $(4 R, 9 \mathrm{a} R)-\mathbf{6 1 6 e}$ in the presence of Pearlman's catalyst gave the 2 -substituted pipecolic acids (S)-617a-c and $(R)-617 \mathrm{e}$ in quantitative yield (Scheme 132).

On the other hand, Porzi and Sandri ${ }^{248}$ reported the synthesis of unnatural dipeptides ($2 S$, $\left.2^{\prime} S\right)$-622 and ($3 S, 2$ 'S)-623 through an alkylation-cyclization reaction using the mono-lactim ether $(S)-\mathbf{6 1 8}$ as starting material. In this context, treatment of (S)-618 with LiHMDS, followed by addition of 1 -chloro-4-iodobutane and α, α '-dibromo- o-xylene afforded the monoalkylated products 619a,b in moderate yield and 98:2 dr, which, by heating in DMF, gave the bicyclic derivatives $\mathbf{6 2 0 a}, \mathbf{b}$ in good yield. Reaction of $\mathbf{6 2 0 a}, \mathbf{b}$ with LiHMDS and subsequent addition of methyl iodide produced the methylated compounds 621a,b in $80-85 \%$ yield and with $1,4-$ trans induction. Successive cleavage of the benzyl group with $\mathrm{Li} / \mathrm{NH}_{3}$, treatment with $\mathrm{Et}_{3} \mathrm{OBF}_{4}$ and acidic hydrolysis furnished the dipeptides ($2 S, 2^{\prime} S$)-622 and ($3 S, 2^{\prime} S$)-623a in $\mathbf{6 5 \%}$ yield (Scheme 133).

3.2. Construction of the ring by cyclization reactions

The following paragraphs cover all current methodologies for cyclcization reactions and these are arranged into several according to the strategy involved. The first want involves the $\mathrm{N}-\mathrm{C}$ bond formation starting from quaternary acyclic compounds in which the stereocentre has been previously formed. For example, nosylation reaction of methyl α-alkylserinates 624a-c with $o-\mathrm{NsCl}$ and excess of KHCO_{3} in acetonitrile under reflux provided the N-nosyl aziridines 625a-c in good yield (Scheme 134). ${ }^{249}$

On the other hand, treatment of (R)-5-phenylmorpholin-2-one $\mathbf{6 1 3}$ with NaHMDS, followed by addition of several alkylating reagents, gave the corresponding alkylated compounds $(R, R)-626 a-\mathbf{f}$ in $49-79 \%$ yield as single diastereoisomers. Treatment of these compound with KHMDS and subsequent addition of 1,4-diiodobutane (the alkylation of 626e-f did not proceed), followed by cleavage of Boc protective group with TFA and subsequent cyclization under basic conditions produced the $(4 R, 9 \mathrm{a} R)$-oxazin- 2 -one $\mathbf{6 2 7 a}-\mathbf{d}$ in $56-67 \%$ yield.

Hydrogenation of $\mathbf{6 2 7 a} \mathbf{- d}$ in the presence of Pearlman's catalyst gave the 2-substituted pipecolic acids $(R)-617 \mathbf{a}-\mathbf{c}$ in quantitative yield (Scheme 135). ${ }^{247}$

In a similar way, treatment of (S) - $\mathbf{6 1 8}$ with LiHMDS followed by the addition of allyl bromide provided $\mathbf{6 2 8}$ in 85% yield and $85: 15 \mathrm{dr},{ }^{250}$ which, by alkylation using LiHMDS as a base and α, α '-dibromo-o-xylene as an alkylating reagent, afforded the dialkylated derivative ($3 R$, $6 S)-629$ in 80% yield. Heating of $(3 R, 6 S)$ - $\mathbf{6 2 9}$ in DMF produced the bicyclic derivative $\mathbf{6 3 0}$ in 85% yield and treatment of this compound under identical conditions to those described for 621a,b, gave $\left(3 R, 2^{\prime} S\right)$ - 631 in 67% yield (Scheme 136). ${ }^{248}$

Maruoka et al. ${ }^{251}$ reported the catalytic enantioselective synthesis of tetrahydroisoquinolineand dihydroisoquinoline-3-carboxylic acid derivatives 634a-c and 636a, \mathbf{c} by a phase-transfer alkylation-cyclization process. Thus, treatment of Shiff bases 632a-c, obtained from p chlorobenzaldehyde and the appropriate α-amino acid tert-butyl esters, with α, α^{\prime}-dibromo- oxylene and $50 \% \mathrm{KOH}$ in the presence of C_{2}-symmetric chiral quaternary ammonium salt $(S, S)-3,4,5-\mathrm{F}_{3}-\mathrm{Ph}-\mathrm{NAS}-\mathrm{Br} 633$, followed by hydrolysis with citric acid and subsequent treatment with excess of NaHCO_{3}, produced the (3R)-3-alkyl-1,2,3,4-tetrahydroisoquinolines derivatives $\mathbf{6 3 4 a} \mathbf{- c}$ in moderate yield and good enantioselectivity. In a similar way, alkylation of 632a,c with 635 in the presence of 633 , followed by hydrolysis with HCl and subsequent treatment with excess of NaHCO_{3}, produced the (3R)-3-alkyl-3,4-dihydroisoquinoline derivatives 636a,c in good yield and enantioselectivity (Scheme 137).

Formation of the $\mathrm{C}-\mathrm{N}$ bond can be achieved by cyclization of carbenoid intermediates. For example, intramolecular cyclization of enantiopure carbenoids $637 \mathrm{a}, \mathrm{b}$, obtained from (R)-299, in the presence of a catalytic amount of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave the bicyclic compounds $\mathbf{6 3 8} \mathbf{a}, \mathbf{b}$ with complete chemoselectivity at the adjacent annular nitrogen and a preference for carbon-carbon double bond additions or $\mathrm{C}-\mathrm{H}$ insertions. Hydrolysis of $\mathbf{6 3 8} \mathbf{a}, \mathbf{b}$ with 3 M HCl , followed by treatment with $(\mathrm{Boc})_{2} \mathrm{O}$ and triethylamine, produced the protected dipeptides 639a,b (Scheme 138). 252

In a similar way, intramolecular cyclization of enantiopure carbenoids $(2 S, 5 R) \mathbf{- 6 4 0 a}, \mathbf{b}$ in the presence of a catalytic amount of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, afforded the bicyclic compounds $643 \mathrm{a}, \mathrm{b}$ as the main products and $\mathbf{6 4 4 a}, \mathbf{b}$, probably due to isomerization at C-5 through the intermediates 641 and 642. Chemoselective opening ring of the iminoether function in the diastereoisomerically pure 643a,b with 3 M HCl , followed by treatment with (Boc$)_{2} \mathrm{O}$ and triethylamine, produced the corresponding dipeptides $\left(2 S, 2^{\prime} R\right)-\mathbf{6 4 5 a}, \mathbf{b}$ in moderated yield. Under identical conditions the enantiopure carbenoids ($2 R, 5 R$)-646a,b were transformed into the dipeptides $\left(2 R, 2^{\prime} S\right)-645 a, b$ (Scheme 139). ${ }^{253}$

Other protocol reported by our group involved the large scale reduction of enantiopure ketone $648,{ }^{254}$ obtained in several steps from 647 by a Diels-Alder reaction. In this context, reduction of $\mathbf{6 4 8}$ with K-selectride in THF at $-78^{\circ} \mathrm{C}$ afforded the mixture of alcohols (axial $\mathbf{6 4 9}$ and equatorial 650) in 98% yield and an $85: 15$ ratio. Treatment of these compounds with MsCl and triethylamine followed by base-promoted internal nucleophilic displacement with sodium hydride and DMF, gave the 7-azabicyclo[2.2.1]heptane derivative $\mathbf{6 5 1}$ in 75% yield (Scheme 140). ${ }^{255}$

Cleavage of the acetonide function of $\mathbf{6 5 1}$ with PPTS in acetone-water provided the corresponding diol 652 in 67% yield, which, by oxidation with NaIO_{4} and RuCl_{3} followed by hydrolysis with 6 N HCl gave the ($1 S, 2 R, 4 R$)-7-azabicyclo[2.2.1]heptane-1,2-dicarboxylic acid as hydrochloride salt 653 in 75% yield. On the other hand, oxidation of $\mathbf{6 5 2}$ with NaIO_{4} furnished the aldehyde ($1 S, 2 R, 4 R$)-654 in 90% yield, which, by Wittig reaction with $\mathrm{RCH}=\mathrm{PPh}_{3}$, provided the vinyl derivatives $(1 S, 2 R, 4 R)-\mathbf{6 5 5 a}-\mathrm{e}$ in $75-99 \%$ yield. The vinyl derivative 655a was also obtained through the two-step Corey-Winter ${ }^{256}$ procedure. In this
context, reaction of diol 652 with N, N-thiocarbonyldiimidazole (TDCI) provided the thiocarbonate $\mathbf{6 5 6}$ in 83% yield. Treatment of $\mathbf{6 5 6}$ with 1,3-dimethyl-2-phenyl-1,3,2diazaphospholidine (DMPDAP) led to 655a in 86% yield. Finally, hydrogenation of $\mathrm{C}=\mathrm{C}$ double bond of $\mathbf{6 5 5 a}$-e over $\mathrm{Pd}(\mathrm{OH})_{2}$ followed by hydrolysis with 6 N HCl afforded the $(1 S$, $2 R, 4 R$)-proline derivatives 657a-d in good yield (Scheme 141). ${ }^{257}$

Additionally, the aldehyde $(1 S, 2 R, 4 R)-654$ has been used in the synthesis of 7-azanorbornane β-susbtituted prolines. ${ }^{258}$ For example, reduction of aldehyde function in $(1 S, 2 R, 4 R)-\mathbf{6 5 4}$ with NaBH_{4} followed by treatment with MsCl and triethylamine produced the corresponding mesylate $(1 S, 2 R, 4 R)-\mathbf{6 5 8}$, which, by nucleophilic substitution, afforded the compounds ($1 S$, $2 R, 4 R$)-659a-e in $60-100 \%$ yield. Hydrolysis of $(1 S, 2 R, 4 R)-\mathbf{6 5 9 a}, \mathbf{b}, \mathbf{d}$ with 6 M HCl provided the amino acids $(1 S, 2 R, 4 R)-660 a, b, d$ in quantitative yield and these can be considered as ($2 S, 3 R$)-3-methylproline, $(2 S, 3 R)$-3-methylthio-methylproline and $(2 S, 3 R)$-3carboxymethylproline analogues. Additionally, $(1 S, 2 R, 4 R)-\mathbf{6 5 9} \mathbf{e}$ was transformed into amino compounds ($1 S, 2 R, 4 R$)-661a-d (Scheme 142).

The second reported methodology involves the formation of a $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond. In this case the stereoselectivity of the cyclization reaction depends on the chirality of the non-quaternary α amino acid used as starting material, wherever the chirality of the stereocentre can be remembered to some extent (memory of chirality). This methodology has been repeatedly used for the stereoselective synthesis of four-, five-, six- and seven-membered rings. These results have been collected in recent reviews, ${ }^{259}$ and we therefore only describe here the most recents papers. For example, Kawabata et al. ${ }^{260,261}$ reported the four-membered cyclization for the straightforward synthesis of cyclic amino acids with tetrasubstituted stereocentres from chiral α-amino acids through memory of chirality. In this context, treatment of 662a,b with KHMDS in DMF at $-60{ }^{\circ} \mathrm{C}$ furnished the four-membered compounds $\mathbf{6 6 3 a}, \mathrm{b}$ with good enantioselectivity and retention of configuration, while that the use of lithium 2,2,6,6tetramethylpiperidine (LTMP) as a base in THF at $-20^{\circ} \mathrm{C}$ led to $\mathbf{6 6 3 a}, \mathrm{b}$ with good enantioselectivity but with inversion of the configuration. Treatment of $(R)-663$ a with methanolic NaOMe followed by cleavage of the N-Boc protective group with 4 N HCl gave the azetidine derivative (R)-664 in 56\% yield (Scheme 143).

In a similar way, treatment of $\mathbf{6 6 5}$ and $\mathbf{6 6 6}$ with KHMDS in DMF at $-60^{\circ} \mathrm{C}$ provided the piperidine derivative 667 in 84% yield and 97% ee, and the azepane $\mathbf{6 6 8}$ in 31% yield and 83% ee (666 was recovered). The stereochemical course of the cyclization was with retention of the configuration (Scheme 144). ${ }^{260}$

Recently, Kawabata et al. ${ }^{262}$ reported that the asymmetric cyclization of $\mathbf{6 6 2 a} \mathbf{a} \mathbf{c}(\mathrm{n}=2), \mathbf{6 6 9} \mathbf{a -}$ $\mathbf{c}(\mathrm{n}=3)$, and $\mathbf{6 6 5 a - c}(\mathrm{n}=4)$ using powdered KOH as an efficient base in DMSO at $20^{\circ} \mathrm{C}$ afforded the four- five- and six-membered compounds 663a-c, 670a-c and 667a-c, respectively, in good yield and excellent enantioselectivity. The results are summarised in Table 12.

This protocol has been used in the synthesis of Fmoc-cyclic amino acid 671, which is expected to be an useful building block for conformationally constrained peptides of biological interest. In this context, treatment of isoleucine derivative 669d with powdered KOH in DMSO at 20 ${ }^{\circ} \mathrm{C}$ afforded the cyclic product $\mathbf{6 7 0 d}$ in 94% yield as a single diastereoisomer, which, by hydrolysis with HCl and subsequent N-Fmoc protection, led to the proline derivative 671 in 53% yield (Scheme 145). ${ }^{262}$

Very recently, Kawabata et al. ${ }^{263}$ reported the asymmetric intramolecular alkylation of β -alcoxy- α-amino esters through memory of chirality methodology. In this context, treatment of serine derivatives 672a, 673a-f and 674a with CsOH as an efficient base in DMSO at $20^{\circ} \mathrm{C}$
afforded the cyclization products 675a, 676a-f and 677a in 13-89\% yield and enantioselectivities in the range 82 to 94%. The results are summarized in Table 13.

Memory of chirality in intramolecular conjugate addition of enolates is another metholodogy used for the asymmetric synthesis of nitrogen heterocycles with contiguous quaternary stereocentres. For example, treatment of α, β-unsaturated derivatives $\mathbf{6 7 8 a}, \mathbf{b}$ with KHMDS in DMF-THF at $-78{ }^{\circ} \mathrm{C}$ gave the piperidine derivatives 679a,b as a single detectable diastereoisomers in moderate yield. Seven-membered ring cyclization of α, β-unsaturated compound 678c proceeded to give 679c in 91% ee, albeit in only 19% yield (Scheme 146). ${ }^{264}$ Compounds 679a-c are precursors of conformationally constrained L-glutamate analogues.

On the other hand, treatment of α, β-unsaturated compound $\mathbf{6 8 0}$ with KHMDS in DMF-THF at $-78{ }^{\circ} \mathrm{C}$ gave the tetrahydroisoquinoline derivative $\mathbf{6 8 1}$ as a single diastereoisomer in 95% ee and 94% yield. ${ }^{261,264}$ Treatment of $\mathbf{6 8 0}$ with LTMP in THF at $0^{\circ} \mathrm{C}$ led to ent- $\mathbf{6 8 1}$ as a single diastereoisomer in 91% ee and 62% yield (Scheme 147). ${ }^{261}$

The third methodology reported involves the cyclization by C-C bond formation, starting from the corresponding quaternary α-amino acids previously obtained with both chain appropriately functionalized. For example, ring closing metathesis of dialkylated derivative $(R)-683$, obtained in three steps from $\mathbf{6 8 2},{ }^{265}$ in the presence of a catalytic amount of $\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$ in benzene under reflux gave the corresponding six-membered derivative $(R)-684$ in 94% yield. Subsequent hydrogenation of the $\mathrm{C}=\mathrm{C}$ double bond over $\mathrm{Pd} /$ C afforded the α-quaternary pipecolic acid derivative $(R)-685$ in 95% yield (Scheme 148). ${ }^{266}$

Finally, the one-pot aza-Darzens reaction has been reported as a competitive alternative for the synthesis of aziridine carboxylic acids. For example, aza-Darzens reaction ${ }^{267}$ of (S)sulfinimine 686a with the lithium α-bromoenolate generated from methyl α-bromopropianate $\mathbf{6 8 7}$ and LiHMDS in THF at $-78^{\circ} \mathrm{C}$, afforded the corresponding aziridines $\left(S_{\mathrm{S}}, 2 R, 3 S\right)$ - $\mathbf{6 8 8}$ and ($S_{\mathrm{S}}, 2 S, 3 S$)-689 in 55 and 21% yield, respectively. Oxidation of diastereoisomerically pure $\left(S_{\mathrm{S}}, 2 R, 3 S\right)$ - $\mathbf{6 8 8}$ with m-CPBA gave the N-tosyl aziridine ($2 R, 3 S$)-690 in excellent yield. On the other hand, reaction of diastere-oisomerically pure ($S_{\mathrm{S}}, 2 R, 3 S$)- $\mathbf{6 8 8}$ with MeMgBr provided the aziridine $(2 R, 3 S)-691$ in 92% yield (Scheme 149). ${ }^{268}$

In a similar way, the one-pot reaction of (S)-sulfinimines 686b,c with the lithium α bromoenolate generated from methyl 3-benzyloxy-2-bromopropionate $\mathbf{6 9 2}^{269}$ and LiHMDS in THF at $-78{ }^{\circ} \mathrm{C}$, produced the aziridines $\left(S_{\mathrm{S}}, 2 S, 3 S\right)$-693b and $\left(S_{\mathrm{S}}, 2 R, 3 S\right)-694 b(\mathrm{R}=\mathrm{Ph})$ in 70% yield and $95: 5 \mathrm{dr}$, and the aziridines $\left(S_{\mathrm{S}}, 2 S, 3 S\right)-693 \mathrm{c}$ and $\left(S_{\mathrm{S}}, 2 R, 3 S\right)-694 \mathrm{c}(\mathrm{R}=E$ $\mathrm{MeCH}=\mathrm{CH})$ in 79% yield and 15:85 dr. Selective cleavage of N-sulfinyl bond in ($S_{\mathrm{S}}, 2 S$, $3 S)-693 \mathrm{~b}$ with TFA gave the aziridine $(2 S, 3 S)-695 \mathrm{~b}$ in 76% yield, whereas the treatment of $\left(S_{\mathrm{S}}, 2 R, 3 S\right)-694 \mathrm{c}$ with excess of MeMgBr provided the aziridine ($2 R, 3 S$)-696c in 86% yield (Scheme 150). ${ }^{270}$

3.3. Cycloadditions and related reactions

This strategy has been elegantly used to the synthesis of different types of prolines and derivatives and it is especially useful in the synthesis of polysubstituted (polyfunctional) prolines. Nevertheless, most of the published papers have been gathered in our recent review. ${ }^{230}$ As a result we only include here the reports that have appeared very recently. For example, Xie et al. ${ }^{271}$ reported a practical asymmetric synthesis of highly substituted proline derivatives 698 and 700 on a multi-kilogram scale. In this context, [3+2] cycloaddition reaction of methyl acrylate with the enantiopure imine $(S)-697 a$, readily obtained by condensation of L-leucine tert-butyl ester with 2-thiazole-carboxaldeyde, in the presence of a catalytic amount of hydroquinine, AgOAc , and molecular sieves, produced the proline derivative $\mathbf{6 9 8}$ in 85:15 enantiomeric ratio (er). Treatment of the resulting compound with $(R)-1,1^{\prime}$-binaphthyl-2,2'-
dehydrogenphosphate in 2-propanol and subsequent crystallization gave 698 in 99.9:0.1 er and 57% overall yield. In asimilar way, $[3+2]$ cycloaddition reaction of $(S)-697$ a with methyl vinyl ketone in the presence of a catalytic amount of cinchonidine and AgOAc gave the proline derivative 699 as a mixture of α / β epimers in 98:2 ratio, which, by treatment with $10 \mathrm{~mol} \%$ of DBU, gave the β epimer $\mathbf{7 0 0}$ as the main product with 73:27 er (Scheme 151).

Very recently, Kobayashi et al. ${ }^{272}$ reported the [3+2] cycloaddition reaction of different imines (\pm) - 701 with several acrylates 702 in the presence of a catalytic amount of the bisoxazolines 703a-e and $\mathrm{Ca}(\mathrm{O} i-\mathrm{Pr})_{2}$ in THF and molecular sieves. The substituted pyrrolidine derivatives 704 were obtained in high yields and with high diastereoselectivities and enantioselectivities (Scheme 152)

The [3+2] cycloaddition reaction was used by Kobayashi el at. ${ }^{272}$ in the synthesis of optically pure pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potentially effective antiviral agents. In this context, [3+2] cycloaddition reaction of tert-butyl acrylate with the enantiopure imines $(R)-697 a, b$ in the presence of a catalytic amount of the bisoxazolines 703a,b and $\mathrm{Ca}(\mathrm{Oi}-\mathrm{Pr})_{2}$ in THF and molecular sieves, produced the pyrrolidine derivatives 705a,b in high yield with perfect diastereoselectivities and high enantioselectivities (Scheme 153).

Another approach to generate enantiomerically enriched polysubstitutted prolines or pyrrolidine derivatives is the 1,3-dipolar cicloaddition between electrophilic alkenes and stabilized or nonstabilized dipolarophiles, respectively. This strategy allows the creation of up four stereogenic centres in only one step and gives high regioselectivity and endolexodiastereoselectivities. For example, Nájera et al. ${ }^{273}$ reported the stereoselective synthesis of polysubstituted prolines $(2 R, 4 R, 5 S)$ - and $(2 S, 4 S, 5 R)-707$ by a 1,3-dipolar cicloaddition, In this context, the cycloaddition reaction between the racemic imino ester $(\pm)-697 \mathrm{~b}$ with acrylate bonded to methy (S)-lactate 706 in the presence of a catalytic amount of AgOAc and KOH in toluene, afforded the polysubstituted proline ($2 R, 4 R, 5 S$)-707 in 77% yield and $96 \% \mathrm{de}$. In similar way, reaction of $(\pm)-697 \mathrm{~b}$ with acrylate bonded to methy (R)-lactate 706 gave the polysubstituted proline ($2 S, 4 S, 5 R$)-707 in 88% yield and 96% de. $(2 R, 4 R, 5 S$)-707 And ($2 S$, $4 S, 5 R)-\mathbf{7 0 7}$ were transformed into $(2 R, 4 R, 5 S)$ - and $(2 S, 4 S, 5 R)-\mathbf{7 0 8}$, two promising potential drugs, particularly for the hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents (Scheme 154).

Recently, Nájera et al. ${ }^{274}$ reported that the catalytic enantioselective 1,3-dipolar cycloaddition reaction of racemic benzylideneiminoglycinates 709a-d with tert-butyl acrylate in the presence of a catalytic amount of $\left(S_{\mathrm{a}}, R, R\right) \mathbf{- 7 1 0}, \mathrm{AgClO}_{4}$ and triethylamine or 1,4-diazabicyclo [2.2.2] octane (DABCO) as a base, afforded the corresponding prolines 711a,b and 712c,d with high enantiomeric ratio (Scheme 155). ${ }^{275}$

1,3-Dipolar cycloaddition reaction of racemic methyl N-benzylidenealaninate 713 with the vinyl sulfone in the presence of copper(I)/click ferrophos complex $\mathbf{7 1 4}$ and CuOAc , produced the quaternary methyl prolinate derivative $\mathbf{7 1 5}$ in 83% yield and 93% ee (Scheme 156). ${ }^{276}$

Very recently, Carretero et al. ${ }^{277}$ reported the stereoselective synthesis of 3-pyrrolines $\mathbf{7 1 9 a}, \mathrm{b}$ by asymmetric 1,3-dipolar cycloaddition reaction. Thus, the reaction of racemic methyl N-benzylidene-alaninates 713a,b with trans-1,2-bisphenylsulfonyl ethylene 716 in the presence of a catalytic amount of $\mathrm{Cu}(\mathrm{MeCN})_{4} \mathrm{PF}_{6}$, Fesulphos $(R)-717$ and $\mathrm{Et}_{3} \mathrm{~N}$, afforded the quaternary methyl prolinate derivatives 718a,b in good yield and with good enantioselectivity. Subsequent treatment of these compounds with $\mathrm{Na}(\mathrm{Hg})$ gave the quaternary derivatives 719a,b in 85 and 77\% yield, respectively. (Scheme 157).

Cyclopropanation reaction of a cyclic dehydroaminoacid derivative allowed the synthesis of new constrained quaternary pipecolic derivatives. Thus, the reaction of (S)-2,3-
didehydropipecolate 721, obtained in five steps from N, N-diprotected L-lysine methyl ester
720, with dimethylsulfoxonium methylide afforded the 2,3-methano-6-methoxypipecolate $(2 S, 3 R)-\mathbf{7 2 2}$ in 73% yield and treatment with NaBH_{4} in formic acid gave the 2,3methanopipecolate ($2 S, 3 R$)-723 in $\mathbf{7 5 \%}$ yield and 85% ee. Finally, hydrolysis of $(2 S, 3 R)-\mathbf{7 2 3}$ with TMSI produced the ($2 S, 3 R$)-methanopipecolic acid 724 in 50% yield (Scheme 158). ${ }^{278}$

3.4. Resolution procedures

3.4.1. Chemical resolution—Reaction of alcohol (\pm)-726, obtained from (\pm)-725, ${ }^{279}$ with (R)-methoxytrifluorophenylacetic acid $\left[(R)\right.$-MTPA] in the presence of $N, N^{\prime}-$ dicyclohexylcarbodiimide (DCC) and DMAP, followed by crystallization, gave the diastereoisomeric esters ($1 S, 2 S, 4 R, 2^{\prime} R$)-727 and $\left(1 R, 2 R, 4 S, 2^{\prime} R\right)$ - $\mathbf{7 2 8}$ in 95% yield and $>95 \%$ optical purity. Hydrolysis of $\mathbf{7 2 7}$ and $\mathbf{7 2 8}$ with methanolic NaOMe followed by hydrolysis with 6 N HCl at $60{ }^{\circ} \mathrm{C}$ furnished the enantiomerically pure $(1 S, 2 S, 4 R)-729$ and $(1 R, 2 R$, $4 S$)-729, respectively, and these are analogues of 3-hydroxyproline (Scheme 159). ${ }^{280}$
3.4.2. HPLC Resolution—Preparative HPLC resolution of β-lactam (\pm)-730 on CSP-1 as a chiral stationary phase gave the β-lactams (S)- and (R)-730 with 85 and 92% enantiomeric purity. Subsequent saponification of these compounds provided the conformationally constrained amino acids (S) - and (R) - 731. On the other hand, reduction of the amide function of (S) - and $(R)-\mathbf{7 3 0}$ with $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ and $\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}$ followed by cleavage of PMB protective group under H_{2} and $\mathrm{Pd}(\mathrm{OH})_{2}$, provided the optically pure Phe-derived conformationally constrained amino esters (S) - and (R)-732 (Scheme 160). ${ }^{281}$

Preparative HPLC resolution of (\pm) - 733, obtained from 545, on CSP-1 as a chiral stationary phase gave the enantiomerically pure $(1 S, 2 S, 4 R)-\mathbf{7 3 3}$ and $(1 R, 2 R, 4 S)-\mathbf{7 3 3}$, which, were separately treated with 6 N HCl to give the enantiomerically pure proline-phenylalanine chimeras $(1 S, 2 S, 4 R)$ - and $(1 R, 2 R, 4 S)-734$ in 95% yield. Oxidative cleavage of the phenyl substituent on the azabicyclic ring of $(1 S, 2 S, 4 R)$ - and $(1 R, 2 R, 4 S)$ - $\mathbf{7 3 3}$ produced the corresponding carboxylic acids ($1 S, 2 R, 4 R$)- and ($1 R, 2 S, 4 S$)-735 in 45% yield. Hydrolysis of these compounds provided the enantiomerically pure $(1 S, 2 R, 4 R)$ - and $(1 R, 2 S, 4 S)-3-$ carboxyproline analogues $\mathbf{7 3 6}$ in 95% yield. On the other hand, the conversion of the carboxylic acid function of $(1 S, 2 R, 4 R)$ - and $(1 R, 2 S, 4 S)$ - 735 into methyl alcohols $(1 S, 2 R, 4 R)$ - and $(1 R$, $2 S, 4 S$)-737 was carried out by treatment with isobutylchloroformate (IBCF) and triethylamine followed by reduction with NaBH_{4}. Finally, Dess-Martin oxidation of the alchohol function of $(1 S, 2 R, 4 R)$ - and $(1 R, 2 S, 4 S)-737$ gave the corresponding aldehyde derivatives $(1 S, 2 R, 4 R)$ and $(1 R, 2 S, 4 S)-738$ in 80% yield, and these proved to be a versatile synthetic intermediate in the preparation of a wide variety of β-substituted azabicyclic prolines (Scheme 161). ${ }^{282}$

3.5. Miscellaneus and notes added in proofs

Several other special cyclization procedures useful for very particular cases have been reported. For example, the Pictet-Spengler cyclization of N-sulfonyl- β-phenylethylamines 739a,b with menthyl α-chloro- α-phenylseleno propionate 740 in the presence of SnCl_{4} gave the corresponding 1,2,3,4-tetrahydrosioquinoline-1-carboxylates derivatives 741a,b in moderate yield and good diastereo-selectivity after crystallization (Scheme 162). ${ }^{283}$

Pictet-Spengler cyclization of quaternary oxazolidines 742a-d in the presence of TiCl_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ provided the corresponding tetrahydroisoquinolines 743a-d with good regioselectivity, which, by cleavage of the benzyl functionality under H_{2} and $\mathrm{Pd}(\mathrm{OH})_{2}$, gave the quaternary amino acids 744a-d in 30-96\% yield (Scheme 163). ${ }^{284}$

On the other hand, Pictet-Spengler cyclization of quaternary N-Boc- N-MOM- α-methyl- and α-allyltrytophan derivatives 746a,b, obtained from alkylation of $\mathbf{7 4 5}$, with HCl in ethyl acetate afforded the corresponding tryptoline derivatives $\mathbf{7 4 7 a}, \mathrm{b}$ in good yield, where the MOM protective group serves as a formaldehyde equivalent (Scheme 164). ${ }^{285}$

Reaction of enantiopure quaternary α-amino acid derivative $\mathbf{7 4 8}$ with paraformaldehyde in formic acid followed by treatment with $\mathrm{H}_{2} \mathrm{O}$ and TsOH provided the lactone cis-752 and the hydroxy ester trans-753 in 50 and 32% yield, respectively. The transformation from 748 to cis-752 and trans-753 should occur through the chairlike N-tosyliminium intermediate 749 followed by cyclization to give the secondary cation $\mathbf{7 5 0}$, which, is stabilized by the ester carbonyl group to produce the dioxycarbenium ion 751. Finally, the hydrolysis of $\mathbf{7 5 1}$ followed by treatment with TsOH gave the lactone cis-752 and the hydroxy ester trans-753 (Scheme 165). ${ }^{286}$

Clayden et al. ${ }^{287}$ reported the synthesis of α-methyl kainic acid (an α-methylproline 3,4disubstituted system) by the stereospecific lithiation-dearomatizing cyclization of the chiral benzamide (R, R)-754. Thus, reaction of the benzamide $(R, R)-754$ with tert-BuLi at $-78{ }^{\circ} \mathrm{C}$ followed by treatment with 0.5 M HCl produced the corresponding bicyclic compound 755 as a single stereo- and regioisomer in 70% yield. Conjugated addition of $\mathrm{Me}_{2} \mathrm{CuLi}$ to 755 followed by cleavage of the benzyl fragment with CAN and subsequent treatment with (Boc) $)_{2} \mathrm{O}$ gave 756 in 66% yield, which, in turn was transformed into α-methyl kainic acid after 12 steps (Scheme 166).

Finally, during the corrections of this review, Makosza et al. ${ }^{288}$ reported the stereoselective synthesis of ($2 R$)-4-nitroarylprolines $\mathbf{7 5 9 a} \mathbf{- c}$ through oxidative nucleophilic substitution of hydrogen in nitroarenes using the chiral carbanion of L-proline derivative ($3 S, 7 \mathrm{a} R$)-590, applying the self-reproduction of chirality methodology. Thus, treatment of $(3 S, 7 \mathrm{a} R)-\mathbf{5 9 0}$ with KHMDS in THF-DMF at $-78^{\circ} \mathrm{C}$ followed by the addition of corresponding nitroarene, afforded the σ^{H} adduct 757, which, by oxidation with 2,3-dichloro-5,6-dicyano- p benzoquinone (DDQ) gave the 4-nitroaryl derivatives 758a-c as a single detectable diastereoisomeres with $29-72 \%$ yield (reaction with 2 -fluor, 2-chloro and 2methylnitrobenzene failed). Hydrolysis of $(3 S, 7 \mathrm{a} R)$-758a-c with HBr and subsequent treatment with propylene oxide led to the (2R)-4-nitroarylprolines 759a-c with 55-85\% yield (Scheme 167).

Concluding remarks

In this review, we have covered recent progress in the development of new synthetic methodologies for the preparation of cyclic α, α-dialkylamino acids and we have also discussed extensions to well established synthetic routes. The use of cyclic compounds as starting materials is one of the most convenient procedures reported.

The construction of the cycle using cyclization or cycloaddition reactions both in a diastereoselective or enantioselective manner is one excellent alternative. All of these strategies can be completed with the use of resolution procedures (chemical, enzymatic or chromatographic) that have emerged as another good alternative.

All of these methodologies give the synthetic organic chemist the opportunity to select the most appropriate way to obtain the desired cyclic α, α-dialkylamino acid in enantiomerically pure form on both a laboratory scale and a multigram scale.

Abbreviations

Ac	acetyl
AcOH	acetic acid
ACCA	1-aminocyclopropanecarboxylic acid
acac	acetylacetone
ACPD	1-amino-1, 3-cyclopentane dicarboxic acid
Adt	4-amino-1,2-dithiolane-4-carboxylic acid
Afc	O, O-isopropylidene- α-hydroxymethylserine
AIBN	2,2'-azoisobutyronitrile
AIDA	1-aminoindane-1,5-dicarboxylic acid
APCPr	1-amino-2-phosphonomethylcyclopropanecarboxylic acid
APICA	1-amino-5-phosphoindane-1-carboxylic acid
AP4	L-2-amino-4-phosphonobutanoic acid
BINAP	2,20-bis(diphenylphosphanyl)-1,10-binaphthyl
BINOL	1,10-bi-2-naphthol
Bn	benzyl
Boc	tert-butoxycarbonyl
BOP	benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate
BtH	benzotriazole
BuLi	butyl lithium
Bz	benzoyl
CALB	Candida antarctica lipase B
CAN	ceric ammonium nitrate
Cbz	benzyloxycarbonyl
CLEC	chiral ligand-exchange chromatography
Daf	9-amino-9-fluorenecarboxylic acid
DABCO	1,4-diazabicyclo[2.2.2]octane
DAM	di-p-anisylmethyl
DBDA	dibenzyl azodicarboxylate
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	N, N^{\prime}-dicyclohexylcarbodiimide
DCE	1,2-dichloroethane
DDQ	2,3-dichloro-5,6-dicyano-p-benzoquinone
DEAD	diethyl acetylenedicarboxylate
DEAD	diethyl azodicarboxylate
DIAD	diisopropyl azodicarboxylate
DMA	N, N^{\prime}-dimethylacetamide

DMB	3,4-dimethoxybenzyl
DMAP	4-dimethylaminopyridine
DMEA	dimethylethanolamine
DME	1,2-dimethoxyethane
DMF	$N, N{ }^{\prime}$-dimethylformamide
DMPDAP	1,3-dimethyl-2-phenyl-1,3,2-diazaphospholidine
DMSO	dimethylsulfoxide
DPPA	diphenylphosphorazide
dppp	1,3-bis(diphenylphosphino)propane
dr	diastereoisomeric ratio
EDA	ethylenediamine
EDC	N-ethyl- N^{\prime}-dimethylaminopropylcarbodiimide hydrochloride
ee	enantiomeric excess
er	enantiomeric ratio
HMPA	hexamethylphosphoramide
HOBt	N-hydroxybenzotriazole
HPLC	High Performance Liquid Chromatography
HYDIA	amino-3-hydroxybicyclo[3.1.0]hexane-2,6-dicarboxylic acid
IBCF	isobutylchloroformate
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
LPLC	Low pressure liquid chromatography
LTMP	lithium 2,2,6,6-tetramethylpiperidide
KHMDS	potasium bis(trimethylsilyl)amide
MABR	methylaluminum bis(4-bromo-2,6-di-tert-butyl phenoxide)
MAO	methylaluminoxane
MBA	methylbenzylamine
m-CPBA	m-chloroperbenzoic acid
MOM	methoxymethyl
MOMBA	methoxymethylbenzylamine
MS	molecular sieves
Ms	methanesulfonyl (mesyl)
MTPA	methoxytrifluorophenylacetic acid
NaHMDS	sodium bis(trimethylsilyl)amide
NBS	N -bromosuccinimide
NMM	N -methylmorpholine

NMO	morpholine N-oxide
NMP	N-methylpyrrolidin-2-one
Ns	nitrobenzenesulphonyl
PCC	pyridinium chlorochromate
PLE	pig liver esterase
PMB	p-methoxybenzyl
mGlu	metabotropic glutamate
PPTS	pyridinium p-toluenesulfonic acid
RCM	ring closing metathesis
rt	room temperature
SAMI	(S)-1-amino-2-methoxymethylindoline
SAMP	(S)-1-amino-2-methoxymethylpyrrolidine
TBAB	tetrabutylammonium bromide
TBAF	tetra- n-butylammonium fluoride
TBS	tert-butyldimethylsilyl
TDCI	N,N'-thiocarbonyldiimidazole
TEA	triethylamine
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
TfOH	trifluoromethanesulfonic acid
THF	tetrahydrofuran
TMAH	tetramethylammonium hydroxide
TMSCl	trimethylsilyl chloride
TMSI	trimethylsilyl ioide
TMSCN	trimethylsilylcyanide
TMSE	trimethylsilylethyl
Tolyl	
Ts tosyl)	
TA	

Acknowledgments

[^1]
References

1. Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 1998;9:3517-3599.
2. Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2000;11:645-732.
3. Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 2007;18:569-623.
4. Undheim K. Amino Acids 2008;34:357-402. [PubMed: 17476570]
5. Park K-H, Kurth MJ. Tetrahedron 2002;58:8629-8659.
6. Gelmi ML, Pocar D. Org. Prep. Proced. Int 2003;35:141-205.
7. Qiu X-L, Meng W-D, Qing F-L. Tetrahedron 2004;60:6711-6745.
8. Perdih A, Dolenc MS. Curr. Org. Chem 2007;11:801-832.
9. Galeazzi R, Mobbili G, Orena M. Curr. Org. Chem 2004;8:1799-1829.
10. Lasa M, Cativiela C. Synlett 2006:2517-2533.
11. Brackmann F, de Meijere A. Chem. Rev 2007;107:4493-4537. [PubMed: 17944521]
12. Brackmann F, de Meijere A. Chem. Rev 2007;107:4538-4671. [PubMed: 17944522]
13. Nájera C, Sansano JM. Chem. Rev 2007;107:4584-4671. [PubMed: 17915933]
14. (a) Tanaka M. Chem. Pharm. Bull 2007;55:349-358. [PubMed: 17329870] (b) Maity P, König B. Biopolymers (Pept. Sci.) 2007;90:8-27.
15. (a) Vogt H, Bräse S. Org. Biomol. Chem 2007;5:406-430. [PubMed: 17252120] (b) Nájera C. Synlett 2002:1388-1493.
16. Arduin M, Spagnolo B, Calò G, Guerrini R, Carrà G, Fischetti C, Trapell C, Marzola E, McDonald J, Lambert DG, Regoli D, Salvadori S. Bioorg. Med. Chem 2007;15:4434-4443. [PubMed: 17490886]
17. Prasad S, Mathur A, Jaggi M, Singh AT, Mukherjee R. J. Pept. Sci 2007;13:544-548. [PubMed: 17617800]
18. Vijayalakshmi S, Rao RB, Karle IL, Balaram P. Biopolymers 2000;53:84-98. [PubMed: 10644953]
19. Saviano M, Iacovino R, Menchise V, Benedetti E, Bonora GM, Gatos M, Graci L, Formaggio F, Crisma M, Toniolo C. Biopolymers 2000;53:200-212. [PubMed: 10679624]
20. Saviano M, Iacovino R, Benedetti E, Moretto V, Banzato A, Formaggio F, Crisma M, Toniolo C. J. Pept. Sci 2000;6:571-583. [PubMed: 11147716]
21. Moretto A, Formaggio F, Crisma M, Toniolo C, Saviano M, Iacovino R, Vitale RM, Benedetti E. J. Pept. Res 2001;57:307-315. [PubMed: 11328488]
22. Romanelli A, Garella I, Menchise V, Iacovino R, Saviano M, Montesarchio D, Didierjean C, di Lello P, Rossi F, Benedetti E. J. Pept. Sci 2001;7:15-26. [PubMed: 11245201]
23. Datta S, Rathore RNS, Vijayalakshmi S, Vasudev PG, Rao RB, Balaram P, Shamala DN. J. Pept. Sci 2004;10:160-172. [PubMed: 15113088]
24. Ohwada T, Kojima D, Kiwada T, Futaki S, Sugiura Y, Yamaguchi K, Nishi Y, Kobayashi Y. Chem. Eur. J 2004;10:617-626.
25. Wolf WM, Stasiak M, Leplawy MT, Bianco A, Formaggio F, Crisma M, Toniolo C. J. Am. Chem. Soc 1998;120:11558-11566.
26. Savrda J, Mazaleyrat J-P, Wakselman M, Formaggio F, Crisma M, Toniolo C. J. Pept. Sci 1999;5:6174. [PubMed: 10100122]
27. Crisma M, Formaggio F, Mezzato S, Toniolo C, Savrda J, Mazaleyrat J-P, Wakselman M. Lett. Pept. Sci 2000;7:123-131.
28. Mazaleyrat J-P, Wakselman M, Formaggio F, Crisma M, Toniolo C. Tetrahedron Lett 1999;40:62456248.
29. Peggion C, Crisma M, Formaggio F, Toniolo C, Wright K, Wakselman M, Mazaleyrat J-P. Biopolymers 2002;63:314-324. [PubMed: 11877741]
30. Aschi M, Lucente G, Mazza F, Mollica A, Morera E, Nalli M, Paradisi MP. Org. Biomol. Chem 2003;1:1980-1988. [PubMed: 12945783]
31. Formaggio F, Crisma M, Toniolo C, Tchertanov L, Guilhem J, Mazaleyrat J-P, Gaucher A, Wakselman M. Tetrahedron 2000;56:8721-8734.
32. Formaggio F, Peggion C, Crisma M, Toniolo C, Tchertanov L, Guilhem J, Mazaleyrat J-P, Goubard Y, Gaucher A, Wakselman M. Helv. Chim. Acta 2001;84:481-501.
33. Mazaleyrat J-P, Wright K, Gaucher A, Wakselman M, Oancea S, Formaggio F, Toniolo C, Setnička V, Kapitán J, Keiderling TA. Tetrahedron: Asymmetry 2003;14:1879-1893.
34. Mazaleyrat J-P, Wright K, Gaucher A, Toulemonde N, Wakselman M, Oancea S, Peggion C, Formaggio F, Setnička V, Keiderling TA, Toniolo C. J. Am. Chem. Soc 2004;126:12874-12879. [PubMed: 15469284]
35. Mazaleyrat J-P, Wright K, Gaucher A, Toulemonde N, Dutot L, Wakselman M, Broxterman QB, Kaptein B, Oancea S, Peggion C, Crisma M, Formaggio F, Toniolo C. Chem. Eur. J 2005;11:69216929.
36. Dutot L, Gaucher A, Wright K, Wakselman M, Mazaleyrat J-P, Oancea S, Peggion C, Formaggio F, Toniolo C. Tetrahedron: Asymmetry 2006;17:363-371.
37. Gaucher A, Dutot L, Barbeau O, Wakselman M, Mazaleyrat J-P, Peggion C, Oancea S, Formaggio F, Crisma M, Toniolo C. Tetrahedron: Asymmetry 2006;17:30-39.
38. Mazaleyrat J-P, Goubard Y, Azzini M-V, Wakselman M, Peggion C, Formaggio F, Toniolo C. Eur. J. Org. Chem 2002:1232-1247.
39. Lohier J-F, Wright K, Peggion C, Formaggio F, Toniolo C, Wakselman M, Mazaleyrat J-P. Tetrahedron 2006;62:6203-6213.
40. Wright K, Lohier J-F, Wakselman M, Mazaleyrat J-P, Peggion C, Formaggio F, Toniolo C. Biopolymers (Pept. Sci.) 2007;88:797-806.
41. Gómez-Catalán J, Alemán C, Pérez JJ. Theor. Chem. Acc 2000;103:380-389.
42. Casanovas J, Zanuy D, Nussinov R, Alemán C. Chem. Phys. Lett 2006;429:558-562.
43. Alemán C, Zanuy D, Casanovas J, Cativiela C, Nussinov R. J. Phys. Chem. B 2006;110:21264-21271. [PubMed: 17048955]
44. Alemán C, Jiménez AI, Cativiela C, Pérez. JJ, Casanovas J. J. Phys. Chem. B 2002;106:11849-11858.
45. Jiménez AI, Vanderesse R, Marraud M, Aubry A, Cativiela C. Tetrahedron Lett 1997;38:7559-7562.
46. Jiménez AI, Cativiela C, Aubry A, Marraud M. J. Am. Chem. Soc 1998;120:9452-9459.
47. Jiménez AI, Cativiela C, Marraud M. Tetrahedron Lett 2000;41:5353-5356.
48. Casanovas J, Jiménez AI, Cativiela C, Pérez JJ, Alemán C. J. Org. Chem 2003;68:7088-7091. [PubMed: 12946154]
49. Jiménez AI, Ballano G, Cativiela C. Angew. Chem. Int. Ed 2005;44:396-399.
50. Casanovas J, Jiménez AI, Cativiela C, Pérez JJ, Alemán C. J. Phys. Chem. B 2006;110:5762-5766. [PubMed: 16539522]
51. Jiménez AI, Marraud M, Cativiela C. Tetrahedron Lett 2003;44:3147-3150.
52. Peggion C, Formaggio F, Crisma M, Toniolo C, Jiménez AI, Cativiela C, Kaptein B, Broxterman QB, Saviano M, Benedetti E. Biopolymers 2003;68:178-191. [PubMed: 12548622]
53. Casanovas J, Jiménez AI, Cativiela C, Nussinov R, Alemán C. J. Org. Chem 2008;73:644-651. [PubMed: 18081347]
54. Jiménez. AI, Cativiela C, Gómez-Catalán J, Pérez JJ, Aubry A, París M, Marraud M. J. Am. Chem. Soc 2000;122:5811-5821.
55. Gómez-Catalán J, Jiménez AI, Cativiela C, Pérez JJ. J. Pept. Res 2001;57:435-446. [PubMed: 11437947]
56. Lasa M, Jiménez AI, Zurbano MM, Cativiela C. Tetrahedron Lett 2005;46:8377-8380.
57. Bisetty K, Corcho FJ, Canto J, Kruger HG, Pérez JJ. J. Pept. Sci 2006;12:92-105. [PubMed: 15952237]
58. Tanaka M, Demizu Y, Doi M, Kurihara M, Suemune H. Angew. Chem. Int. Ed 2004;43:5360-5363.
59. Royo S, De Borggraeve WM, Peggion C, Formaggio F, Crisma M, Jiménez AI, Cativiela C, Toniolo C. J. Am. Chem. Soc 2005;127:2036-2037. [PubMed: 15713068]
60. Tanaka M, Anan K, Demizu Y, Kurihara M, Doi M, Suemune H. J. Am. Chem. Soc 2005;127:1157011571. [PubMed: 16104711]
61. Grieco P, Lavecchia A, Cai M, Trivedi D, Weinberg D, MacNeil T, Van der Ploeg LHT, Hruby VJ. J. Med. Chem 2002;45:5287-5294. [PubMed: 12431055]
62. Horvat Š, Mlinarić-Majerski K, Glavaš-Obrovac L, Jakas A, Veljković J, Marczi S, Kragol G, Roščić M, Matković M, Milostić-Srb A. J. Med. Chem 2006;49:3136-3142. [PubMed: 16722632]
63. Ruzza P, Cesaro L, Tourwé D, Calderan A, Biondi B, Maes V, Menegazzo I, Osler A, Rubini C, Guiotto A, Pinna LA, Borin G, Donella-Deana A. J. Med. Chem 2006;49:1916-1924. [PubMed: 16539378]
64. Strecker D. Ann. Chem. Pharm 1850;75:27-45.
65. For specific reviews of the Strecker reaction and analogous synthesis, see: (a) Vachal, P.; Jacobsen, EN. In Comprehensive Asymmetric Catalysis. Jacobsen, EN.; Pfaltz, A.; Yamamoto, H., editors. Berlin: Springer; 2004. p. 117 (b) Ohfune Y, Shinada T. Bull. Chem. Soc. Jpn 2003;76:1115-1129. (c) Gröger H. Chem. Rev 2003;103:2795-2828. [PubMed: 12914481] (d) Enders D, Shilvock JP. Chem. Soc. Rev 2000;29:359-373. (e) Mori, A.; Inoue, S. In Comprehensive Asymmetric Catalysis. Jacobsen, EN.; Pfaltz, A.; Yamamoto, H., editors. Vol. vol. II. Berlin: Springer; 1999. p. 983
66. (a) Fadel A, Khesrani A. Tetrahedron: Asymmetry 1998;9:305-320. (b) Fadel A. Synlett 1993:503505. (c) Subramanian PK, Woodard RW. Synth. Commun 1986;16:337-342. (d) Weinges K, Gries K, Stemmle B, Schrank W. Chem. Ber 1977;110:2098-2105.
67. (a) Tang G, Tian H, Ma D. Tetrahedron 2004;60:10547-10552. (b) Ma D, Tian H, Zou G. J. Org. Chem 1999;64:120-125. [PubMed: 11674092] (c) Ma D, Tang G, Tian H, Zou G. Tetrahedron Lett 1999;40:5753-5756. (d) Chakraborty TK, Hussain KA, Reddy GV. Tetrahedron 1995;51:91799190.
68. Boesten WHJ, Seerden J-PG, Lange B, Dielemans HJA, Elsenberg HLM, Kaptein B, Moody HM, Kellogg RM, Broxterman QB. Org. Lett 2001;3:1121-1124. [PubMed: 11348174]
69. (a) Avenoza A, Busto JH, Corzana F, Peregrina JM, Sucunza D, Zurbano MM. Synthesis 2005:575578. (b) Davis FA, Lee S, Zhang H, Fanelli DL. J. Org. Chem 2000;65:8704-8708. [PubMed: 11112592] (c) Davis FA, Portonovo PS, Reddy RE, Chiu Y. J. Org. Chem 1996;61:440-441. [PubMed: 11666956] (d) Bravo P, Capelli S, Meille SV, Seresini P, Volonterio A, Zanda M. Tetrahedron: Asymmetry 1996;7:2321-2332. (e) Davis FA, Reddy RE, Portonovo PS. Tetrahedron Lett 1994;35:9351-9354.
70. (a) Ros A, Díez E, Marqués-López E, Martín-Zamora E, Vázquez J, Iglesias-Sigüenza J, Pappalardo RR, Alvarez E, Lassaletta JM, Fernández R. Tetrahedron: Asymmetry 2008;19:998-1004. (b) Enders D, Moser M. Tetrahedron Lett 2003;44:8479-8481.
71. Choi JY, Kim YH. Tetrahedron Lett 1996;37:7795-7796.
72. (a) Kunz H, Sager W, Pfrengle W, Schanzenbach D. Tetrahedron Lett 1988;29:4397-4400. (b) Kunz H, Sager W. Angew. Chem. Int. Ed 1987;26:557-559.
73. For the synthesis of chiral 2-alkylcyclobutanones of type 6, see: Hazelard D, Fadel A. Tetrahedron: Asymmetry 2005;16:2067-2070.
74. Truong M, Lecornué F, Fadel A. Tetrahedron: Asymmetry 2003;14:1063-1072.
75. Volk F-J, Wagner M, Frahm AW. Tetrahedron: Asymmetry 2003;14:497-502.
76. (a) Hazelard D, Fadel A, Girard C. Tetrahedron: Asymmetry 2006;17:1457-1464. (b) Hazelard D, Fadel A, Guillot R. Tetrahedron: Asymmetry 2008;19:2063-2067.
77. For the synthesis of ketones of type 16, see: (a) Cornubert R, Borrel C. Bull. Soc. Chim. Fr 1930;47:301-322. (b) Wiehl W, Frahm AW. Chem. Ber 1986;119:2668-2677. (c) Reetz MT, Maier WF. Angew. Chem 1978;90:50.
78. (a) Meyer U, Breitling E, Bisel P, Frahm AW. Tetrahedron: Asymmetry 2004;15:2029-2037. (b) Wede J, Volk F-J, Frahm AW. Tetrahedron: Asymmetry 2000;11:3231-3252.
79. Ma D, Tian H, Zou G. J. Org. Chem 1999;64:120-125. [PubMed: 11674092]
80. Schann S, Menet C, Arvault P, Mercier G, Frauli M, Mayer S, Hubert N, Triballeau N, Bertrand HO, Acher F, Neuville P. Bioorg. Med. Chem. Lett 2006;16:4856-4860. [PubMed: 16828551]
81. For the preparation of peptides from $\mathbf{4 1}$ and $\mathbf{4 2}$, see: Levins CG, Schafmeister CE. J. Org. Chem 2005;70:9002-9008. [PubMed: 16238339]
82. (a) Bucherer HT, Brandt W. J. Prakt. Chem 1934;140:129-150. (b) Bucherer HT, Steiner W. J. Prakt. Chem 1934;140:291-316. (c) Ware E. Chem. Rev 1950;46:403-470. (d) Rousset A, Lasperas M, Taillades J, Commeyras A. Tetrahedron 1980;36:2649-2661. (e) Sarges R, Goldstein SW, Welch WM, Swindell AC, Siegel TW, Beyerpp TA. J. Med. Chem 1990;33:1859-1865. [PubMed: 2113948] For recent applications, see: (f) Pesquet A, Daïch A, Van Hijfte L. J. Org. Chem 2006;71:5303-5311.
[PubMed: 16808520] (g) Averina EB, Yashin NV, Grishin YK, Kuznetsova TS, Zefirov NS. Synthesis 2006:880-884.
83. (a) Nguyen Van Nhien A, Ducatel H, Len C, Postel D. Tetrahedron Lett 2002;43:3805-3808. (b) Postel D, Nguyen Van Nhien A, Villa P, Ronco G. Tetrahedron Lett 2001;42:1499-1502.
84. Conti P, Pinto A, Roda G, Tamborini L, Arosio D, De Micheli C. Synthesis 2007:2145-2148.
85. For the synthesis of LY354740, see: Ohfune Y, Demura T, Iwama S, Matsuda H, Namba K, Shimamoto K, Shinada T. Tetrahedron Lett 2003;44:5431-5434. (b) Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL, Writht RA, Johnson BG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD. J. Med. Chem 1999;42:1027-1040. [PubMed: 10090786] (c) Monn JA, Valli MJ, Massey SM, Writht RA, Salhoff CR, Johnson BG, Howe T, Alt CA, Rhodes GA, Robey RL, Griffey KR, Tizzano JP, Kallman MJ, Helton DR, Schoepp DD. J. Med. Chem 1997;40:528-537. [PubMed: 9046344] (d) Ohfune Y, Demura T, Iwama S, Matsuda H, Namba K, Shimamoto K, Shinada T. Tetrahedron Lett 2003;44:5431-5434.
86. Gereau, RW.; Swanson, GT., editors. The Glutamate Receptors. Portland, OR: Humana Press Inc.; 2008.
87. (a) Fennell JW, Semo MJ, Wirth DD, Vaid RK. Synthesis 2006:2659-2664. (b) Bueno AB, Collado I, de Dios A, Domínguez C, Martín JA, Martín LM, Martínez-Grau MA, Montero C, Pedregal C, Catlow J, Coffey DS, Clay MP, Dantzig AH, Lindstrom T, Monn JA, Jiang H, Shoepp DD, Stratford RE, Tabas LB, Tizzano JP, Wright RA, Herin MF. J. Med. Chem 2005;48:5305-5320. [PubMed: 16078848] (c) Coffey DS, Hawk MK, Pedersen SW, Vaid RK. Tetrahedron Lett 2005;46:7299-7302.
88. Dominguez C, Prieto L, Valli MJ, Massey SM, Bures M, Wright RA, Johnson BG, Andis SL, Kingston A, Schoepp DD, Monn JA. J. Med. Chem 2005;48:3605-3612. [PubMed: 15887967]
89. For the synthesis of 52, see: Monn JA, Valli MJ, Massey SM, Wright RA, Salhoff CR, Johnson BG, Howe T, Alt CA, Rhodes GA, Robey RL, Griffey KR, Tizzano JP, Kallan MJ, Helton DR, Schoepp DD. J. Med. Chem 1997;40:528-537. [PubMed: 9046344]
90. Lee W, Miller MJ. J. Org. Chem 2004;69:4516-4519. [PubMed: 15202910]
91. For the cyclopropanation using sulfonium ylides, see: (a) Zhang F, Moher ED, Zhang TY. Tetrahedron Lett 2007;48:3277-3279. (b) Aggarwal VK, Grange E. Chem. Eur. J 2006;12:568-575. (c) Domínguez C, Ezquerra J, Prieto L, Espada M, Pedregal C. Tetrahedron: Asymmetry 1997;8:511514.
92. Bessières B, Schoenfelder A, Verrat C, Mann A, Ornstein P, Pedregal C. Tetrahedron Lett 2002;43:7659-7662.
93. (a) Sibille P, López S, Brabet I, Valenti O, Oueslati N, Gaven F, Goudet C, Bertrand H-O, Neyton J, Marino MJ, Amalric M, Pin J-P, Acher FC. J. Med. Chem 2007;50:3585-3595. [PubMed: 17602546] (b) Reyes-Rangel G, Marañon V, Avila-Ortiz CG, Anaya de Parrodi C, Quintero L, Juaristi E. Tetrahedron 2006;62:8404-8409. (c) Fernández MC, Díaz A, Guillín JJ, Blanco O, Ruiz M, Ojea V. J. Org. Chem 2006;71:6958-6974. [PubMed: 16930050] and references therein.(d) Fernández MC, Quintela JM, Ruiz M, Ojea V. Tetrahedron: Asymmetry 2002;13:233-237. (e) Jiao X, Chen W, Hu B. Synth. Commun 1992;22:1179-1186.
94. Tan L, Yasuda N, Yoshikawa N, Hartner FW, Eng KK, Leonard WR, Tsay F-R, Volante RP, Tillyer RD. J. Org. Chem 2005;70:8027-8034. [PubMed: 16277324]
95. Nakazato A, Sakagami K, Yasuhara A, Ohta H, Yoshikawa R, Itoh M, Nakamura M, Chaki S. J. Med. Chem 2004;47:4570-4587. [PubMed: 15317467]
96. (a) Yasuhara A, Sakagami K, Yoshikawa R, Chaki S, Nakamura M, Nakazato A. Bioorg. Med. Chem 2006;14:3405-3420. [PubMed: 16431115] (b) Yasuhara A, Nakamura M, Sakagami K, Shimazaki T, Yoshikawa R, Chaki S, Ohta H, Nakazato A. Bioorg. Med. Chem 2006;14:4193-4207. [PubMed: 16487713]
97. (a) Gololobov YG, Kasukhin LF. Tetrahedron 1992;48:1353-1406. (b) Tian WQ, Wang YA. J. Org. Chem 2004;69:4299-4308. [PubMed: 15202883] and references therein.
98. Woltering TJ, Adam G, Huguenin P, Wichmann J, Kolczewski S, Gatti S, Bourson A, Kew JNC, Richards G, Kemp JA, Mutel V, Knoflach F. ChemMedChem 2008;3:323-335. [PubMed: 18058780]
99. Martins FJC, Viljoen AM, Kruger HG, Fourie L, Roscher J, Joubert AJ, Wessels PL. Tetrahedron 2001;57:1601-1607.
100. Fondekar KP, Volk F-J, Frahm AW. Tetrahedron: Asymmetry 1999;10:727-735.
101. Fondekar KP, Volk F-J, Khaliq-uz-Zaman SM, Bisel P, Frahm AW. Tetrahedron: Asymmetry 2002;13:2241-2249.
102. Bisel P, Fondekar KP, Volk F-J, Frahm AW. Tetrahedron 2004;60:10541-10545.
103. For the synthesis of 103, see: Pellicciari R, Natalini B, Luneia R, Marinozzi M, Roberti M, Rosato GC, Sadeghpour BM, Synyder JP, Monahan JB, Moroni F. Med. Chem. Res 1992;2:491-496.
104. Warmuth R, Munsch TE, Stalker RA, Li B, Beatty A. Tetrahedron 2001;57:6383-6397.
105. Gupta S, Das BC, Schafmeister CE. Org. Lett 2005;7:2861-2864. [PubMed: 15987155]
106. Stalker RA, Munsch TE, Tran JD, Nie X, Warmuth R, Beatty A, Aakeröy CB. Tetrahedron 2002;58:4837-4849.
107. Ito H, Saito A, Kakuuchi A, Taguchi T. Tetrahedron 1999;55:12741-12750.
108. (a) Shinada T, Kawakami T, Sakai H, Matsuda H, Omezawa T, Kawasaki M, Namba K, Ohfune Y. Bull. Chem. Soc. Jpn 2006;79:768-774. (b) Namba K, Kawasaki M, Takada I, Iwama S, Izumida M, Shinada T, Ohfune Y. Tetrahedron Lett 2001;42:3733-3736.
109. For reviews, see: Ohfune Y, Shinada T. Eur. J. Org. Chem 2005:5127-5143. and references therein. (b) ref. ${ }^{65 b}$.
110. Reviews: (a) Janey JM. Angew. Chem., Int. Ed 2005;44:4292-4300. (b) Erdik E. Tetrahedron 2004;60:8747-8782. (c) Greck C, Drouillat B, Thomassiang C. Eur. J. Org. Chem 2004:1377-1385. (d) Genet, J-P.; Greck, C.; Lavergne, CD. Modern Amination Methods. Ricci, A., editor. Weinheim: Wiley-VCH; 2000. ch. 3 (e) Greck C, Genet J-P. Synlett 1997;7:741-748. (f) Krohn, K. Organic Synthesis Highlights. Weinheim: VCH; 1991. p. 45-53.
111. Felice E, Fioravanti S, Pellacani L, Tardella PA. Tetrahedron Lett 1999;40:4413-4416.
112. Saaby S, Bella M, Jørgensen KA. J. Am. Chem. Soc 2004;126:8120-8121. [PubMed: 15225045]
113. Xu X, Yabuta T, Yuan P, Takemoto Y. Synlett 2006:137-140.
114. Pihko PM, Pohjakallio A. Synlett 2004:2115-2118.
115. Terada M, Nakano M, Ube H. J. Am. Chem. Soc 2006;128:16044-16045. [PubMed: 17165751]
116. Kang YK, Kim DY. Tetrahedron Lett 2006;47:4565-4568.
117. Comelles J, Pericás A, Moreno-Mañas M, Vallribera A, Drudis-Solé G, Lledós A, Parella T, Roglans A, Santiago García-Granda S, Roces-Fernández L. J. Org. Chem 2007;72:2077-2087. [PubMed: 17315933]
118. For recent reviews, see: (a) Chem. Rev 2007;107 special issue on organocatalysis. (b) Enders D, Grondal C, Hüttl MRM. Angew. Chem., Int. Ed 2007;46:1570-1581. (c) Gaunt MJ, Johansson CCC, McNally A, Vo NT. Drug Discovery Today 2007;12:8-27. [PubMed: 17198969] (d) Acc. Chem. Res 2004;37 special issue on organocatalysis. (e) Dalko PI, Moisan L. Angew. Chem., Int. Ed 2004;43:5138-5175. (f) Dalko, PI., editor. Enantioselective Organocatalysis: Reactions and Experimental Procedures. New York: Wiley-VCH; 2007. (g) Berkessel, A.; Gröger, H., editors. Asymmetric Organocatalysis - From Biomimetic Concepts to Applications in Asymmetric Synthesis. New York: Wiley-VCH; 2005.
119. Suri JT, Steiner DD, Barbas CF III. Org. Lett 2005;7:3885-3888. [PubMed: 16119923]
120. Mashiko T, Hara K, Tanaka D, Fujiwara Y, Kumagai N, Shibasaki M. J. Am. Chem. Soc 2007;129:11342-11343. [PubMed: 17722933]
121. Mashiko T, Kumagai N, Shibasaki M. Org. Lett 2008;10:2725-2728. [PubMed: 18522392]
122. (a) Giannoukakis N. Expert Opin. Invest. Drugs 2008;12:575-581. (b) Kurono M, Fujii A, Murata M, Fujitani B, Negoro T. Biochem. Pharmacol 2006;71:338-353. [PubMed: 16324683] (c) Giannoukakis N. Curr. Opin. Invest. Drugs 2006;7:916-923. (d) Negoro T, Murata M, Ueda S, Fujitani B, Ono Y, Kuromiya A, Suzuki K, Matsumoto J-I. J. Med. Chem 1998;41:4118-4129. [PubMed: 9767647] (e) Ishii A, Kotani T, Nagaki Y, Shibayama Y, Toyomaki Y, Okukada N, Ienaga K, Okamoto K. J. Med. Chem 1996;39:1924-1927. [PubMed: 8627616] (f) Lee YS, Pearlstein R, Kador PF. J. Med. Chem 1994;37:787-792. [PubMed: 8145228] (g) Kador PF, Kinoshita JH, Sharpless NE. J. Med. Chem 1985;28:841-849. [PubMed: 3925146]
123. (a) Satoh T, Hirano M, Kuroiwa A, Kaneko Y. Tetrahedron 2006;62:9268-9279. (b) Satoh T, Hirano M, Kuroiwa A. Tetrahedron Lett 2005;46:2659-2662.
124. Katoh M, Hisa C, Honda T. Tetrahedron Lett 2007;48:4691-4694.
125. (a) Domínguez C, Ezquerra J, Baker SR, Borrelly S, Prieto L, Espada M, Pedregal C. Tetrahedron Lett 1998;39:9305-9308. (b) Corey EJ, Link JO. J. Am. Chem. Soc 1992;114:1906-1908.
126. For the transformation of proline derivatives into δ-lactams, see: (a) Katoh M, Inoue H, Suzuki A, Honda T. Synlett 2005:2820-2822. (b) Katoh M, Mizutani H, Honda T. Tetrahedron Lett 2005;46:5161-5163. (c) Honda T, Takahashi R, Namiki H. J. Org. Chem 2005;70:499-504. [PubMed: 15651792] (d) Katoh M, Matsune R, Nagase H, Honda T. Tetrahedron Lett 2004;45:6221-6223.
127. Achatz O, Grandl A, Wanner KT. Eur. J. Org. Chem 1999:1967-1978.
128. Koch C-J, Šimonyiová S, Pabel J, Kärtner A, Polborn K, Wanner KT. Eur. J. Org. Chem 2003:12441263.
129. (a) Mitsunobu O. Synthesis 1981:1-28. (b) Castro BR. Org. React 1983;29:1-162. (c) Hughess DL. Org. React 1992;42:335-356. (d) Hughess DL. Org. Prep. Proced. Int 1996;28:127-164. (e) Dodge JA, Jones SA. Rec. Res. Dev. Org. Chem 1997;1:273-283. (f) Dembinski R. Eur. J. Org. Chem 2004:2763-2772. (g) Dandapani S, Curran DP. Tetrahedron 2002;58:3855-3864. (h) Lipshutz BH, Chung DW, Rich B, Corral R. Org. Lett 2006;8:5069-5072. [PubMed: 17048845]
130. Sibille P, López S, Brabet I, Valenti O, Oueslati N, Gaven F, Goudet C, Bertrand H-O, Neyton J, Marino MJ, Almalric M, Pin J-P, Acher FC. J. Med. Chem 2007;50:3585-3595. [PubMed: 17602546]
131. For the synthesis of $\mathbf{1 8 0}$ and 185, see: (a) Burgess K, Ho K-K. Tetrahedron Lett 1992;33:56775680. (b) Burgess K, Ho K-K. J. Org. Chem 1992;57:5931-5936.
132. For the synthesis of racemic $\mathbf{1 8 4}$ and 186, see: Johnson RL, Rao KSSP. Bioorg. Med. Chem. Lett 2005;15:57-60. [PubMed: 15582410]
133. Bhattacharya AK, Thyagarajan G. Chem. Rev 1981;81:415-430.
134. Debache A, Collet S, Bauchat P, Danion D, Euzenat L, Hercouet A, Carboni B. Tetrahedron: Asymmetry 2001;12:761-764.
135. Fox ME, Lennon IC, Farina V. Tetrahedron Lett 2007;48:945-948.
136. For the epimerization of $(1 R, 2 S)$ - N-Boc-dehydrocoronamic acid methyl ester catalyzed by ruthenium carbenes, see: Zeng X, Wei X, Farina V, Napolitano E, Xu Y, Zhang L, Haddad N, Yee NK, Grinberg N, Shen S, Senanayake CH. J. Org. Chem 2006;71:8864-8875. [PubMed: 17081017]
137. (a) Katagiri T, Irie M, Uneyama K. Org. Lett 2000;2:2423-2425. [PubMed: 10956512] (b) Katagiri T, Uneyama K. Chirality 2003;15:4-9. [PubMed: 12467035]
138. (a) Wallis ES, Lane JF. Org. React 1946:267-306. (b) Gogoi P, Konwar D. Tetrahedron Lett 2007;48:531-533. and references therein.
139. Donkor IO, Zheng X, Han J, Miller DD. Chirality 2000;12:551-557. [PubMed: 10861954]
140. (a) Lebel H, Leogane O. Org. Lett 2006;8:5717-5720. [PubMed: 17134255] (b) Lebel H, Leogane O. Org. Lett 2005;7:4107-4110. [PubMed: 16146363] (c) Marinescu L, Thinggaard J, Thomsen IB, Bols M. J. Org. Chem 2003;68:9453-9455. [PubMed: 14629171] (d) Scriven EF, Turnbull K. Chem. Rev 1988;88:297-368. (e) Smith PAS. Org. React 1946;3:337-449.
141. Frick JA, Klassen JB, Rapoport H. Synthesis 2005:1751-1756.
142. Chang HS, Bergmeier SC, Frick JA, Bathe A, Rapoport H. J. Org. Chem 1994;59:5336-5342.
143. (a) Chinchilla R, Falvello LR, Galindo N, Nájera C. J. Org. Chem 2000;65:3034-3041. [PubMed: 10814194] (b) Abellán T, Chinchilla R, Galindo N, Guillena G, Nájera C, Sansano JM. Eur. J. Org. Chem 2000:2689-2697.
144. (a) Abellán T, Balbino M, Nájera C, Sansano JM. Tetrahedron 2001;57:6627-6640. (b) Abellán T, Nájera C, Sansano JM. Tetrahedron: Asymmetry 2000;11:1051-1055. (c) Abellán T, Chinchilla R, Galindo N, Nájera C, Sansano JM. J. Heterocyclic Chem 2000;37:467-479.
145. Buñuel E, Bull SD, Davies SG, Garner AC, Savory ED, Smith AD, Vickers RJ, Watkin DJ. Org. Biomol. Chem 2003;1:2531-2542. [PubMed: 12956073]
146. Papageorgiou CD, Cubillo de Dios MA, Ley SV, Gaunt MJ. Angew. Chem. Int. Ed 2004;43:46414644.
147. Badorrey R, Cativiela C, Díaz-de-Villegas MD, Gálvez JA. Tetrahedron: Asymmetry 2000;11:1015-1025.
148. Koch C-J, Höfner G, Polborn K, Wanner KT. Eur. J. Org. Chem 2003:2233-2242.
149. Howarth NM, Wakelin LPG, Walker DM. Tetrahedron Lett 2003;44:695-698.
150. Tanaka M, Anan K, Demizu Y, Kurihara M, Doi M, Suemune H. J. Am. Chem. Soc 2005;127:1157011571. [PubMed: 16104711]
151. Ma D, Ding K, Tian H, Wang B, Cheng D. Tetrahedron: Asymmetry 2002;13:961-969.
152. Gabaitsekgosi R, Hayes CJ. Tetrahedron Lett 1999;40:7713-7716.
153. Bradley DM, Mapitse R, Thompson NM, Hayes CJ. J. Org. Chem 2002;67:7613-7617. [PubMed: 12398480]
154. Soengas RG, Estévez JC, Estévez RJ. Tetrahedron: Asymmetry 2003;14:3955-3963.
155. For the synthesis of racemic quaternary tetrahydrofuran α-amino acids derivatives, see: Maity P, Zabel M, König B. J. Org. Chem 2007;72:8046-8053. [PubMed: 17877403]
156. Solladié-Cavallo A, Martín-Cabrejas LM, Caravatti G, Lang M. Tetrahedron: Asymmetry 2001;12:967-969.
157. Saaby S, Nakama K, Lie MA, Hazell RG, Jørgensen KA. Chem. Eur. J 2003;9:6145-6154.
158. Zhuang W, Saaby S, Jørgensen KA. Angew. Chem. Int. Ed 2004;43:4476-4478.
159. For recent reviews, see: Schrodi Y, Pederson RL. Aldrichimca Acta 2007;40:45-52. (b) Adv. Synth. Catal 2007;349:1-268. Olefin Metathesis Special Issue. (c) Chauvin Y. Angew. Chem., Int. Ed 2006;45:3740-3747. (d) Schrock RR. Angew. Chem. Int. Ed 2006;45:3748-3759. (e) Grubbs RH. Angew. Chem. Int. Ed 2006;45:3760-3765. (f) Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed 2005;44:4490-4527. (g) Grubbs RH. Tetrahedron 2004;60:7117-7140.(h) Grubbs, RH., editor. Handbook of Metathesis. Vol. Vols 1-3. Weinheim: Wiley-VCH; 2003. (i) Connon SJ, Bhechert S. Angew. Chem. Int. Ed 2003;42:1900-1923. (j) Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed 2003;42:4592-4633. (k) Trnka TM, Grubbs RH. Acc. Chem. Res 2001;34:18-29. [PubMed: 11170353] (1) Buchmeiser MR. Chem. Rev 2000;100:1565-1604. [PubMed: 11749276] (m) Fürstner A. Angew. Chem. Int. Ed 2000;39:3012-3043.
160. (a) Krikstolaitytè S, Hammer K, Undheim K. Tetrahedron Lett 1998;39:7595-7598. (b) Hammer K, Rømming C, Undheim K. Tetrahedron 1998;54:10837-10850. (c) Hammer K, Undheim K. Tetrahedron: Asymmetry 1998;9:2359-2368.
161. Hammer K, Wang J, Falck-Pedersen ML, Rømming C, Undheim K. J. Chem. Soc., Perkin Trans 1 2000:1691-1695.
162. Jam F, Tullberg M, Luthman K, Grøtli M. Tetrahedron 2007;63:9881-9889.
163. Undheim K, Efskind J. Tetrahedron 2000;56:4847-4857.
164. Efskind J, Römming C, Undheim K. J. Chem. Soc., Perkin Trans 1 2001:2697-2703.
165. Hoven GB, Efskind J, Rømming C, Undheim K. J. Org. Chem 2002;67:2459-2463. [PubMed: 11950288]
166. Efskind J, Undheim K. Tetrahedron Lett 2003;44:2837-2839.
167. Undheim K, Efskind J, Hoven GB. Pure Appl. Chem 2003;75:279-292.
168. Andrei M, Efskind J, Undheim K. Tetrahedron 2007;63:4347-4355.
169. Trost BM, Dogra K. J. Am. Chem. Soc 2002;124:7256-7257. [PubMed: 12071719]
170. (a) Fustero S, Sánchez-Roselló M, Rodrigo V, del Pozo C, Sanz-Cervera JF, Simón-Fuentes A. Org. Lett 2006;8:4129-4132. [PubMed: 16928091] (b) Fustero S, Sánchez-Roselló M, Rodrigo V, SanzCervera JF, Piera J, Simón-Fuentes A, del Pozo C. Chem. Eur. J 2008;14:7019-7029.
171. Krikstolaityté S, Sackus A, Rømming C, Undheim K. Tetrahedron: Asymmetry 2001;12:393-398.
172. (a) Møller B, Undheim K. Eur. J. Org. Chem 2003:332-336. (b) Efskind J, Rømming C, Undheim K. J. Chem. Soc., Perkin Trans. 1 1999:1677-1684.
173. Andrei M, Undheim K. Tetrahedron: Asymmetry 2004;15:53-63.
174. For the non-asymmetric cyclopropanation of α-nitro- α-diazocarbonyl derivatives, see: Wurz RP, Charette AB. J. Org. Chem 2004;69:1262-1269. [PubMed: 14961679] Charette AB, Wurz RP, Ollivier T. Helv. Chim. Acta 2002;85:4468-4484.
175. For review on the chiral catalyst for asymmetric transformations of vinyl- and aryldiazoacetates, see: Davies HML. Eur. J. Org. Chem 1999:2459-2469.
176. (a) Charette AB, Wurz RP. J. Mol. Catal. A: Chem 2003;196:83-91. For cobalt-catalyzed asymmetric cyclopropanation of alkenes with α-nitrodiazoacetates, see: (b) Zhu S, Perman JA, Zhang XP. Angew. Chem. Int. Ed 2008;47:1-5.
177. Moreau B, Charette AB. J. Am. Chem. Soc 2005;127:18014-18015. [PubMed: 16366547]
178. Barluenga J, Aznar F, Gutiérrez I, García-Granda S, Llorca-Baragaño MA. Org. Lett 2002;4:42734276. [PubMed: 12443076]
179. Clerici F, Gelmi ML, Pocar D, Pilati T. Tetrahedron: Asymmetry 2001;12:2663-2669.
180. For the origin of the π-facial diastereoselection of this reaction, see: Muray E, Alvarez-Larena A, Piniella JF, Branchadell V, Ortuño RM. J. Org. Chem 2000;65:388-396. [PubMed: 10813946]
181. Rifé J, Ortuño RM. Tetrahedron: Asymmetry 1999;10:4245-4260.
182. Illescas B, Rifé J, Ortuño RM, Martín N. J. Org. Chem 2000;65:6246-6248. [PubMed: 10987969]
183. Moglioni AG, García-Expósito E, Alvarez-Larena A, Branchadell V, Moltrasio GY, Ortuño RM. Tetrahedron: Asymmetry 2000;11:4903-4914.
184. Avenoza A, Busto JH, Canal N, Peregrina JM, Pérez-Fernández M. Org. Lett 2005;7:3597-3600. [PubMed: 16048351]
185. For the synthesis of non-chiral 1-aminocyclobutanecarboxylic acid 2-substituted via [2+2] cycloaddition of 2-aminoacrylates, see: Avenoza A, Busto JH, Mata L, Peregrina JM, PérezFernández M. Synthesis 2008:743-746. (b) Jiménez-Osés G, Corzana F, Busto JH, Pérez-Fernández M, Peregrina JM, Avenoza A. J. Org. Chem 2006;71:1869-1878. [PubMed: 16496971] (c) Avenoza A, Busto JH, Canal N, Peregrina JM. J. Org. Chem 2005;70:330-333. [PubMed: 15624942] (d) Avenoza A, Busto JH, Peregrina JM, Pérez-Fernández M. Tetrahedron 2005;61:4165-4172. (e) Avenoza A, Busto JH, Canal N, Peregrina JM. Chem. Commun 2003:1376-1377.
186. Tanaka K, Takahashi M, Imase H, Osaka T, Noguchi K, Hirano M. Tetrahedron 2008;64:62896293.
187. Ung AT, Schafer K, Lindsay KB, Pyne SG, Amornraksa K, Wouters R, Van der Linden I, Biesmans I, Lesage ASJ, Skelton BW, White AH. J. Org. Chem 2002;67:227-233. [PubMed: 11777464]
188. Chinchilla R, Falvello LR, Galindo N, Nájera C. Tetrahedron: Asymmetry 1999;10:821-825.
189. Burkett BA, Chai CLL. Tetrahedron Lett 2001;42:2239-2242.
190. Abbiati G, Clerici F, Gelmi ML, Gambini A, Pilati T. J. Org. Chem 2001;66:6299-6304. [PubMed: 11559178]
191. For the Diels-Alder cycloaddition of $\mathbf{4 2 4}$ with cyclopentadiene, see: Clerici F, Gelmi ML, Pellegrino S, Pilati T. J. Org. Chem 2003;68:5286-5291. [PubMed: 12816490] (b) Clerici F, Gelmi ML, Gambini A. J. Org. Chem 2001;66:4941-4944. [PubMed: 11442431] (c) Clerici F, Gelmi ML, Gambini A. J. Org. Chem 2000;65:6138-6141. [PubMed: 10987950]
192. Caputo F, Clerici F, Gelmi ML, Pellegrino S, Pilati T. Tetrahedron: Asymmetry 2006;17:61-67.
193. Caputo F, Clerici F, Gelmi ML, Pellegrino S, Pocar D. Tetrahedron: Asymmetry 2006;17:14301436.
194. Gelmi ML, Caputo F, Clerici F, Pellegrino S, Gianaccini G, Betti L, Fabbrini L, Schmid L, Palego L, Lucacchini A. Bioorg. Med. Chem 2007;15:7581-7589. [PubMed: 17900912]
195. For the application of diol exo-442 in the synthesis of cyclopentylglycine derivatives, see: Pellegrino S, Clerici F, Gelmi ML. Tetrahedron 2008;64:5657-5665.
196. Caputo F, Cattaneo C, Clerici F, Gelmi ML, Pellegrino S. J. Org. Chem 2006;71:8467-8472. [PubMed: 17064021]
197. Gelmi ML, Cattaneo C, Pellegrino S, Clerici F, Montali M, Martini C. J. Org. Chem 2007;72:98119814. [PubMed: 17988151]
198. Williams LJ, Jagadish B, Lansdown MG, Carducci MD, Mash EA. Tetrahedron 1999;55:1430114322.
199. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL Jr, Wright RA, Johnson BG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD. J. Med. Chem 1999;42:1027-1040. [PubMed: 10090786]
200. Monn JA, Massey SM, Valli MJ, Henry SS, Stephenson GA, Bures M, Hérin M, Catlow J, Giera D, Wright RA, Johnson BG, Andis SL, Kingston A, Schoepp DD. J. Med. Chem 2007;50:233-240. [PubMed: 17228865]
201. Oishi S, Kang S-U, Liu H, Zhang M, Yang D, Deschamps JR, Burke TR Jr. Tetrahedron 2004;60:2971-2977.
202. Avenoza A, Barriobero JI, Cativiela C, Fernández-Recio MA, Peregrina JM, Rodríguez F. Tetrahedron 2001;57:2745-2755.
203. Mazaleyrat J-P, Boutboul A, Lebars Y, Gaucher A, Wakselman M. Tetrahedron: Asymmetry 1998;9:2701-2713.
204. Ridvan L, Buděšínsky M, Tichý M, Maloň P, Závada J, Podlaha J, Císařová I. Tetrahedron 1999;55:12331-12348.
205. (a) Mazaleyrat J-P, Wright K, Azzini M-V, Gaucher A, Wakselman M. Tetrahedron Lett 2003;44:1741-1745. (b) Wright K, Lohier J-F, Wakselman M, Mazaleyrat J-P, Formaggio F, Peggion C, De Zotti M, Toniolo C. Tetrahedron 2008;64:2307-2320.
206. For the application of derivatives of (R) - $\mathbf{5 0 2}$ in the assignment of the absolute configuration of β amino acids, see: Dutot L, Wright K, Gaucher A, Wakselman M, Mazaleyrat J-P, De Zotti M, Peggion C, Formaggio F, Toniolo C. J. Am. Chem. Soc 2008;130:5986-5992. [PubMed: 18399631]
207. Hodgson DM, Thompson AJ, Wadman S, Keats CJ. Tetrahedron 1999;55:10815-10834.
208. Varie DL, Beck C, Borders SK, Brady MD, Cronin JS, Ditsworth TK, Hay DA, Hoard DW, Hoying RC, Linder RJ, Miller RD, Moher ED, Remacle JR, Rieck JA III. Org. Proc. Res. Develop 2007;11:546-559.
209. Salgado A, Huybrechts T, Eeckhaut A, Van der Eycken J, Szakonyi Z, Fülöp F, Tkachev A, De Kimpe N. Tetrahedron 2001;57:2781-2786.
210. Beaulieu PL, Gillard J, Bailey MD, Boucher C, Duceppe J-S, Simoneau B, Wang X-J, Zhang L, Grozinger K, Houpis I, Farina V, Heimroth H, Krueger T, Schnaubelt J. J. Org. Chem 2005;70:5869-5879. [PubMed: 16018680]
211. For the epimerization of 515, see: Zeng X, Wei X, Farina V, Napolitano E, Xu Y, Zhang L, Haddad N, Yee NK, Grinberg N, Shen S, Senanayake CH. J. Org. Chem 2006;71:8864-8875. [PubMed: 17081017]
212. For selected examples, see: Shu C, Zeng X, Hao M-H, Wei X, Yee NK, Busacca CA, Han Z, Farina V, Senanayake CH. Org. Lett 2008;10:1303-1306. [PubMed: 18293994] (b) Liverton NJ, Holloway MK, McCauley JA, Rudd MT, Butcher JW, Carroll SS, DiMuzio J, Fandozzi C, Gilbert KF, Mao S-S, McIntyre CJ, Nguyen KT, Romano JJ, Sthlhut M, Wan B-L, Olsen DB, Vacca JP. J. Am. Chem. Soc 2008;130:4607-4609. [PubMed: 18338894] (c) Randolph JT, Zhang X, Huang PP, Klein LL, Kurtz KA, Konstantinidis AK, He W, Kati WM, Kempf DJ. Bioorg. Med. Chem. Lett 2008;18:2745-2750. [PubMed: 18375121] (d) Naud J, Lemke C, Goudreau N, Beualieu E, White PD, Llinàs-Brunet M, Forgione P. Bioorg. Med. Chem. Lett 2008;18:3400-3404. [PubMed: 18448339] (e) Poirier M, Aubry N, Boucher C, Ferland J-M, LaPlante S, Tsantrizos YS. J. Org. Chem 2005;70:10765-10773. [PubMed: 16355998]
213. Kirihara M, Kawasaki M, Takuwa T, Kakuda H, Wakikawa T, Takeuchi Y, Kirk KL. Tetrahedron: Asymmetry 2003;14:1753-1761.
214. Roda G, Conti P, De Amici M, He J, Polavarapu PL, De Micheli C. Tetrahedron: Asymmetry 2004;15:3079-3090.
215. For the aplication of quaternary α-amino acids $\mathbf{5 2 5}$ and $\mathbf{5 2 8}$ as ionotropic and metabotropic glutamate receptor subtypes, see: Conti P, De Amici M, Grazioso G, Roda G, Pinto A, Hansen KB, Nielsen B, Madsen U, Bräuner-Osborne H, Egebjerg J, Vestri V, Pellegrini-Giampietro DE, Sibille P, Acher FC, De Micheli C. J. Med. Chem 2005;48:6315-6325. [PubMed: 16190758]
216. (a) Lane JW, Halcomb RL. J. Org. Chem 2003;68:1348-1357. [PubMed: 12585874] (b) Lane JW, Halcomb RL. Tetrahedron 2001;57:6531-6538.
217. Tanaka M, Demizu Y, Nagano M, Hama M, Yoshida Y, Kurihara M, Suemune H. J. Org. Chem 2007;72:7750-7756. [PubMed: 17713957]
218. Jiménez AI, López P, Oliveros L, Cativiela C. Tetrahedron 2001;57:6019-6026.
219. Jiménez AI, López P, Cativiela C. Chirality 2005;17:22-29. [PubMed: 15515045]
220. Lasa M, López P, Cativiela C. Tetrahedron: Asymmetry 2005;16:4022-4033.
221. Cativiela C, Lasa M, López P. Tetrahedron: Asymmetry 2005;16:2613-2623.
222. Natalini B, Marinozzi M, Bade K, Sardella R, Thomsen C, Pellicciari R. Chirality 2004;16:314317. [PubMed: 15069662]

Tetrahedron Asymmetry. Author manuscript; available in PMC 2010 March 16.
223. Alías M, Cativiela C, Jiménez AI, López P, Oliveros L, Marraud M. Chirality 2001;13:48-55. [PubMed: 11135415]
224. Avenoza A, París M, Peregrina JM, Alías M, López MP, García JI, Cativiela C. Tetrahedron 2002;58:4899-4905.
225. Cativiela C, López P, Lasa M. Eur. J. Org. Chem 2004:3898-3908.
226. Alías M, Lasa M, López MP, García JI, Cativiela C. Tetrahedron 2005;61:2913-2919.
227. Patwardhan AP, Pulgam VR, Zhang Y, Wulff WD. Angew. Chem. Int. Ed 2005;44:6169-6172.
228. For the synthesis of aziridine-2-carboxylic acids alkyl esters, see: (a) Hansen KB, Finney NS, Jacobsen EN. Angew. Chem., Int. Ed. Engl 1995;34:676-678. (b) Osborn H, Sweeney MIJ. Tetrahedron: Asymmetry 1997;8:1693-1715. (c) Muller P, Fruit C. Chem. Rev 2003;103:29052919. [PubMed: 12914485] (d) Bew SP, Hughes DL, Savic V, Soapi KM, Wilson MA. Chem. Commun 2006:3513-3515.
229. Lu Z, Zhang Y, Wulff WD. J. Am. Chem. Soc 2007;129:7185-7194. [PubMed: 17497860]
230. Calaza MI, Cativiela C. Eur. J. Org. Chem 2008:3427-3448.
231. Sommer K, Williams RM. Tetrahedron 2008;64:7106-7111.
232. Chandan N, Moloney MG. Org. Biomol. Chem 2008;6:3664-3666. [PubMed: 18843394]
233. Kazmaier U, Mues H, Krebs A. Chem. Eur. J 2002;8:1850-1855.
234. Elliott MC, Wood JL, Wordinghan SV. Trends Heterocycl. Chem 2005;10:7395.
235. (a) Seebach D, Naef R. Helv. Chim. Acta 1981;64:2704-2708. (b) Seebach D, Boes M, Naef R, Schweizer WJ. J. Am. Chem. Soc 1983;105:5390-5398. (c) Beck AK, Blank S, Job K, Seebach D. Sommerfeld. Org. Synth 1995;72:62-73.
236. Seebach D, Sting AR, Hoffmann M. Angew. Chem., Int. Ed. Engl 1996;35:2708-2748.
237. For the preparation of α-alkyl prolines from alkylation of $(3 S, 7 \mathrm{a} R)-\mathbf{5 8 6}$, see: (a) Bittermann H , Gmeiner P. J. Org. Chem 2006;71:97-102. [PubMed: 16388623] (b) Bittermann H, Böckler F, Einsiedel J, Gmeiner P. Chem. Eur. J 2006;12:6315-6322. (c) See also ref. 230
238. Pisaneschi F, Cordero FM, Lumini M, Brandi A. Synlett 2007:2882-2884.
239. (a) Garner P, Park J-M. J. Org. Chem 1987;52:2361-2364. (b) Garner P, Park J-M. Org. Synth 1992;70:18-28. (c) Marshall JA, Beaudoin S. J. Org. Chem 1996;61:581-586. [PubMed: 11666978]
240. Okue M, Kobayashi H, Shin-ya K, Furihata K, Hayakawa Y, Seto H, Watanabe H, Kitahara T. Tetrahedron Lett 2002;43:857-860.
241. Watanabe H, Okue M, Kobayashi H, Kitahara T. Tetrahedron Lett 2002;43:861-864.
242. Dondoni A, Perrone D. Org. Synth 2000;77:64-77. (b) Ref. 216
243. Vaswani RG, Chamberlin AR. J. Org. Chem 2008;73:1661-1681. [PubMed: 18225916]
244. Sayago FJ, Calaza MI, Jiménez AI, Cativiela C. Tetrahedron 2008;64:84-91.
245. Alonso DA, Nordin SJM, Andersson PG. Org. Lett 1999;1:1595-1597.
246. Goldspink NJ, Simpkins NS, Beckmann M. Synlett 1999:1292-1294.
247. Hou D-R, Hung S-Y, Hu C-C. Tetrahedron: Asymmetry 2005;16:3858-3864.
248. Balducci D, Grandi A, Porzi G, Sandri S. Tetrahedron: Asymmetry 2005;16:1453-1462.
249. Palomo C, Aizpurua JM, Balentová E, Jiménez A, Oyarbide J, Fratila RM, Miranda JI. Org. Lett 2007;9:101-104. [PubMed: 17192095]
250. Balducci D, Porzi G, Sandri S. Tetrahedron: Asymmetry 2004;15:1085-1093.
251. Ooi T, Takeuchi M, Maruoka K. Synthesis 2001:1716-1718.
252. Andrei M, Efskind J, Viljugrein T, Römming C, Undheim K. Tetrahedron: Asymmetry 2004;15:1301-1313.
253. Andrei M, Römming C, Undheim K. Tetrahedron: Asymmetry 2004;15:1359-1370.
254. Buñuel E, Cativiela C, Díaz-de-Villegas MD. Tetrahedron: Asymmetry 1996;7:1431-1436.
255. Buñuel E, Gil AM, Díaz-de-Villegas MD, Cativiela C. Tetrahedron 2001;57:6417-6427.
256. (a) Corey EJ, Winter RAE. J. Am. Chem. Soc 1963;85:2677-2678. (b) Corey EJ, Carey FA, Winter RAE. J. Am. Chem. Soc 1965;87:934-935. (c) Corey EJ, Hopkins PB. Tetrahedron Lett 1982;23:1979-1982.
257. Gil AM, Buñuel E, Díaz-de-Villegas MD, Cativiela C. Tetrahedron: Asymmetry 2003;14:14791488.
258. (a) Gil AM, Orús E, López-Carrillo V, Buñuel E, Cativiela C. Tetrahedron: Asymmetry 2005;16:3115-3123.(b) Gil, AM.; Buñuel, E.; Cativiela, C.; Attanasi, OA.; Spinelli, D. Targets in Heterocyclic Systems. Chemistry and Properties (Volume 8). Cambridge: Royal Society of Chemistry; 2005. p. 56-86.
259. (a) Zhao H, Hsu DC, Carlier PR. Synthesis 2005:1-16. (b) Kawabata T, Fuji K. Top. Stereochem 2003;23:175-205. (c) Kawabata T, Chen J, Suzuki H, Nagae Y, Kinoshita T, Chancharunee S, Fuji K. Org. Lett 2000;2:3883-3885. [PubMed: 11101444] (d) Fuji K, Kawabata T. Chem. Eur. J 1998;4:373-376. (e) Kawabata T, Wirth T, Yahiro K, Suzuki H, Fuji K. J. Am. Chem. Soc 1994;116:10809-10810.
260. Kawabata T, Kawakami S, Majumdar S. J. Am. Chem. Soc 2003;125:13012-13013. [PubMed: 14570459]
261. Kawabata T, Matsuda S, Kawakami S, Monguchi D, Moriyama K. J. Am. Chem. Soc 2006;128:15394-15395. [PubMed: 17132004]
262. Kawabata T, Moriyama K, Kawakami S, Tsubaki K. J. Am. Chem. Soc 2008;130:4153-4157. [PubMed: 18303890]
263. Moriyama K, Sakai H, Kawabata T. Org. Lett 2008;10:3883-3886. [PubMed: 18698782]
264. Kawabata T, Majundar S, Tsubaki K, Monguchi D. Org. Biomol. Chem 2005;3:1609-1611. [PubMed: 15858636]
265. Gardiner J, Abell AD. Tetrahedron Lett 2003;44:4227-4230.
266. Gardiner J, Abell AD. Org. Biomol. Chem 2004;2:2365-2370. [PubMed: 15305220]
267. For the one-pot aza-Darzens reaction of sulfinimines with lithium α-bromoenolates, see: (a) Davis FA, Liang C-H, Liu H. J. Org. Chem 1997;62:3796-3797. (b) Davis FA, Liu H, Zhou P, Fang T, Reddy GV, Zhang Y. J. Org. Chem 1999;64:7559-7567.
268. Davis FA, Deng J, Zhang Y, Haltiwanger RC. Tetrahedron 2002;58:7135-7143.
269. Anelli PL, Beltrami A, Lolli M, Uggeri F. Synth. Commun 1993;23:2639-2645.
270. Davis FA, Zhang Y, Rao A, Zhang Z. Tetrahedron 2001;58:6345-6352.
271. Agbodjan AA, Cooley BE, Copley RCB, Corfield JA, Flanagan RC, Glover BN, Guidetti R, Haigh D, Howes PD, Jackson MM. Matsuoka RT, Medhurst KJ, Millar A, Sharp MJ, Slater MJ, Toczko JF, Xie S. J. Org. Chem 2008;73:3094-3102. [PubMed: 18358046]
272. Tsubogo T, Saito S, Seki K, Yamashita Y, Kobayashi S. J. Am. Chem. Soc 2008;130:13321-13332. [PubMed: 18783222]
273. Nájera C, Retamosa MG, Sansano JM, Cozar A, Cossío FP. Eur. J. Org. Chem 2007:5038-5049.
274. Nájera C, Retamosa MG, Sansano JM. Angew. Chem. Int. Ed 2008;47:6055-6058.
275. For the synthesis of highly substituted conformationally constrained and spiro nitroprolines via Ag (I) catalyzed 1,3-cycloadditions, see: Grigg R, Kilner C, Sarker MAB, Orgaz de la Cierva C, Dondas HA. Tetrahedron 2008;64:8974-8991.
276. Fukuzawa S-I, Oki H. Org. Lett 2008;10:1747-1750. [PubMed: 18373347]
277. López-Pérez A, Adrio J, Carretero JC. J. Am. Chem. Soc 2008;130:10084-10085. [PubMed: 18613686]
278. Matsumura Y, Inoue M, Nakamura Y, Talib IL, Maki T, Onomura O. Tetrahedron Lett 2000;41:4619-4622.
279. Avenoza A, Cativiela C, Busto JH, Fernández-Recio MA, Peregrina JM, Rodríguez F. Tetrahedron 2001;57:545-548.
280. Avenoza A, Barriobero JI, Busto JH, Cativiela C, Peregrina JM. Tetrahedron: Asymmetry 2002;13:625-632.
281. Gerona-Navarro G, Bonache MA, Alías M, Pérez-de-Vega MJ, García-López MT, López P, Cativiela C, Gonzalez-Muñiz R. Tetrahedron Lett 2004;45:2193-2196.
282. (a) Gil AM, Buñuel E, López P, Cativiela C. Tetrahedron: Asymmetry 2004;15:811-819. (b) (a) Gil AM, Buñuel E, Cativiela C. Arkivoc 2007;iv:157-159.
283. Silveira CC, Bernardi CR, Braga AL, Kaufman TS. Tetrahedron Lett 1999;40:4969-4972.
284. Alezra V, Bonin M, Micouin L, Husson H-P. Tetrahedron Lett 2001;42:2111-2113.
285. Kawabata T, Oztürk O, Suzuki H, Fuji K. Synthesis 2003:505-508.
286. Rutjes FPJT, Veerman JJN, Meester WJN, Hiemstra H, Schoemaker HE. Eur. J. Org. Chem 1999:1127-1135.
287. Clayden J, Knowles FE, Menet CJ. Tetrahedron Lett 2003;44:3397-3400.
288. Makosza M, Sulikowski D, Maltsev O. Synlett 2008:1711-1713.

Scheme 1.

Scheme 2.

Scheme 3.

Scheme 4.

Scheme 5.

Scheme 6.

Scheme 7.

1. 2 M NaOH
2. $\mathrm{SOCl}_{2}, \mathrm{MeOH}$
3. separation

$(2 S, 4 S)-41$

(2S,4R)-40

Scheme 8.

Scheme 9.

Scheme 10.

52
(+)-53
$28 \% \left\lvert\, \begin{aligned} & \text { 1. }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}, \mathrm{KCN} \\ & \text { 2. crystallization }\end{aligned}\right.$

(+)-54

Scheme 11.

Scheme 12.

Scheme 13.

Scheme 14.

(-)-69
(+)-70a; R = Et
(+)-70b; R = Bn

1. $\mathrm{NaN}_{3}, \mathrm{DMF}-\mathrm{H}_{2} \mathrm{O}$

(1R,2R,3R,5R,6R)-71a; R = Et, 91\%
$(1 R, 2 R, 3 R, 5 R, 6 R)-71 \mathrm{~b} ; \mathrm{R}=\mathrm{Bn}, 89 \%$

Scheme 15.

Scheme 16.

Scheme 17.

Scheme 18.

Scheme 19.

Scheme 20.

Scheme 21.

Scheme 22.

$97 \% \left\lvert\, \begin{aligned} & \text { 1. } \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} \\ & \text { 2. } 12 \mathrm{M} \mathrm{HCl}, \Delta \\ & \text { 3. Dowex 50W }\end{aligned}\right.$

(1S,2S)-99b

Scheme 23.

Scheme 24.

Scheme 25.

Scheme 26.

Scheme 27.

1. (R)-phenylglycinol

TsOH, xylenes, Δ
2. $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{THF}$

Scheme 28.

Scheme 29.

(1S,6S)-132d
$\mathrm{R}=\mathrm{Bn}$

(1R,2S)-100a

90\%

(1R,2R)-99a
(1S,6R)-133g

$$
\mathrm{R}=t-\mathrm{Bu}
$$

Scheme 30.

Scheme 31.

Scheme 32.

(S)-APICA, 36

Scheme 33.

(R)-151
cond. A: 99\% yield, 92\% ee
cond. B: 99% yield, 93% ee

condition $\mathrm{A}: \mathrm{La}(\mathrm{Oi}-\mathrm{Pr})_{3} 2 \mathrm{~mol} \%$, DMA $20 \mathrm{~mol} \%, \mathrm{CHCl}_{3}, 0^{\circ} \mathrm{C}$, air condition $\mathrm{B}: \mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathrm{xH}_{2} \mathrm{O} 1 \mathrm{~mol} \%, \mathrm{H}-\mathrm{D}-\mathrm{Val}-\mathrm{Ot}$-Bu $3 \mathrm{~mol} \%$,

AcOEt, $0^{\circ} \mathrm{C}$, air

$\left(2 S, 3 R, R_{\mathrm{S}}\right)-154$
3:1

1. $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
2. $\mathrm{I}_{2}, \mathrm{KOH}, \mathrm{MeOH}$

(S)-156; 87\%
$\downarrow \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$

(S)-157; 99\%

Scheme 35.

Scheme 36.

Scheme 37.

Scheme 38.

Scheme 39.

Scheme 40.

Scheme 41.

Scheme 42.

Scheme 43.

Scheme 44.

Scheme 45.

Scheme 46.

Scheme 47.

Scheme 48.

Scheme 49.

229a; $R=M e, 52 \%$
(S)-228a; $R=M e$
229b; R = Et, 63\%
(S)-228b; R = Et

(1S,2R)-5a; $\mathrm{R}=\mathrm{Me}, 60 \%$
(1S,2R)-5b; R = Et, 67\%

Scheme 50.

Scheme 51.

Scheme 52.

Scheme 53.

(R)-242
$75 \% \left\lvert\, \begin{aligned} & \text { 1. } \mathrm{BnNH}_{2} \\ & \text { 2. TMSCN }\end{aligned}\right.$

(1R,2S)-245
246a; $\mathrm{X}=\mathrm{Cl}$ 246b; $\mathrm{X}=\mathrm{Br}$ 82\% $\left.\right|^{\mathrm{KOH} \text { or }} \begin{aligned} & \text {-BuOK }\end{aligned}$

(1S,2R)-248
$(1 S, 2 R)-247$

Scheme 54.

Scheme 55.

Scheme 56.

262; 25\% overall yield

264

Scheme 57.

Scheme 58.

Scheme 59.

Scheme 60.

Scheme 61.

Scheme 62.

Scheme 63.

Scheme 64.

Scheme 65.

a; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=i-\mathrm{Pr}, 99 \%,>20: 1$
b; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Me}, \mathrm{R}_{4}=i-\mathrm{Pr}, 98 \%, 6: 1$

c; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OMe}, \mathrm{R}_{4}=i-\mathrm{Pr}, 95 \%, 9: 1$
d; $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{F}, \mathrm{R}_{4}=i-\mathrm{Pr}, 97 \%, 19: 1$
e; $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=i-\mathrm{Pr}, 90 \%,>20: 1$
f; $\mathrm{R}_{1}=\mathrm{R}_{2}=-\mathrm{C}_{4} \mathrm{H}_{4}-, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=i-\mathrm{Pr}, 93 \%,>20: 1$
g; $R_{1}=R_{2}=R_{3}=H, R_{4}=M e, 72 \%, 5: 1$
h; $R_{1}=R_{2}=R_{3}=H, R_{4}=$ allyl, $82 \%, 4: 1$

Scheme 66.

Scheme 67.

313a; $n=1, m=1$
314a; $n=1, m=1,63 \%$
313b; $\mathrm{n}=2$, $\mathrm{m}=1$
313c; $n=1, m=2$
313d; $\mathrm{n}=2$, $\mathrm{m}=2$
314b; $n=2, m=1,85 \%$
314c; $n=1, m=2,80 \%$
314d; $n=2, m=2,99 \%$

1. TFA, rt or $\mu \mathrm{w}$
. $(\mathrm{Boc})_{2} \mathrm{O}$

320a; $n=1, m=1,80 \%$
320b; $n=2, m=1,93 \%$
320c; $n=1, m=2,90 \%$
320d; $n=2, m=2,76 \%$

319a; $n=1, m=1,83 \%$
319b; $n=2, m=1,80 \%$
319c; $n=1, m=2,82 \%$
319d; $n=2, m=2,81 \%$

Scheme 68.

321c; $n=2, m=1$
| $\mathrm{Ru}(\mathrm{II})=\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$

323a; $\mathrm{n}=1, \mathrm{~m}=1$
323b; $\mathrm{n}=1, \mathrm{~m}=2$
323c; $n=2, m=1$

324a; $n=1, m=1,86 \%$
324b; $n=1, m=2,97 \%$
324c; $n=2, m=1,85 \%$

Scheme 69.

Scheme 70.

$\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$
toluene, $85^{\circ} \mathrm{C}, 14 \mathrm{~h}, 90 \%$
$\mu \mathrm{w}$, toluene, $160^{\circ} \mathrm{C}, 20 \mathrm{~min}, 100 \%$
$\left.\mathrm{PhCH}=\mathrm{RuCl}_{2}(\mathrm{IMes}) \mathrm{PCy}_{3}\right)_{2}$
toluene, $85^{\circ} \mathrm{C}, 92 \%$
$\mu \mathrm{w}$, toluene, $160^{\circ} \mathrm{C}, 10 \mathrm{~min}, 100 \%$

$(2 R, 7 R)-330$

Scheme 71.

Scheme 72.

Scheme 73.

338

339
TMSE $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$
$\mathrm{Ru}(\mathrm{II})=\mathrm{PhCH}=\mathrm{RuCl}_{2}\left(\mathrm{PCy}_{3}\right)_{2}$

341

342

Scheme 74.

347

Scheme 75.

347

1. $\mathrm{NaBH}_{4}, \mathrm{MeOH},-10^{\circ} \mathrm{C}$
2. separation

350; 38\%

349; 57\%
$\downarrow 0.1$ M TFA, MeCN

351; 77\%

Scheme 76.

Scheme 77.

(S)-360d

(S)-360e

(S)-360f

Scheme 78.

Scheme 79.

Scheme 80.

Scheme 81.

Scheme 82.

385
Scheme 83.

Scheme 84.

400a; $R=R^{\prime}=H, 17 \%$
400b; $R=M e, R^{\prime}=H, 38 \%$
400c; $R=H, R^{\prime}=P h, 78 \%$
$72-91 \% \left\lvert\, \begin{aligned} & \text { 1. } 6 \mathrm{~N} \mathrm{HCl}, \Delta \\ & \text { 2. ion-exchange } \\ & \text { 3. } \mathrm{HCl}\end{aligned}\right.$

(R)-402a; $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{H}$
(1S,5R)-402b; $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$, $(1 S, 5 R)-402 c ; R=H, R^{\prime}=P h$

(S)-403

Scheme 85.

406
$60: 40$
407

1. $1 \mathrm{~N} \mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 95 \%$
2. $\mathrm{BnOCOCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}, 70 \%$
3. HPLC separation
4. $6 \mathrm{~N} \mathrm{HCl}, \Delta, 90-98 \%$

(R)-402a

(S)-402a

Scheme 86.

Scheme 87.

Scheme 88.

Scheme 89.
 $\left.79 \%\right|_{\mathrm{NHAc}} ^{\text {1. } \mathrm{KOH}, \mathrm{E}} \mathrm{V}_{\mathrm{O}}^{2 . \mathrm{H}_{3} \mathrm{O}^{+}}$
exo-437

Scheme 90.

(1S,2R,4S)-440

(1R,2S,4R)-endo-436

(1S,2S,4R)-441

Scheme 91.

Scheme 92.

$(\pm)-447 a$

(\pm)-447b

1. $(R)-\alpha-\mathrm{MBA}, \mathrm{NaBH}(\mathrm{OAC})_{3}$
2. chromatographic separation

(1S,5S,6R,1'R)-449b (10\%)

($1 R, 5 R, 6 R, 1^{\prime} R$)-448a
(25\%)
(1S,5S,6S,1'R)-448b
(28\%)

(1R,5R,6S,1'R)-449a (12\%)

$70-100 \% \left\lvert\, \begin{aligned} & 1 . \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} \\ & 2.6 \mathrm{~N} \mathrm{HCl}, \Delta\end{aligned}\right.$

(1S,5S,6R)-451

Scheme 93.

Scheme 94.

(S,S)-458

Scheme 95.

Scheme 96.

Scheme 97.

Scheme 98.

Scheme 99.

Scheme 100.

$(R, S)-489 \mathrm{a} ; \mathrm{R}=\mathrm{Me}$ $(R, S)-489 b ; R=P h$

$(S, S)-490 a ; R=M e$ $(S, S)-490 b ; R=P h$

1. 10 M HCl , dioxane
2. $\mathrm{MeOH}, 98 \% \mathrm{HCl}$ (cat)
3. $\mathrm{NaHCO}_{3} / \mathrm{Et}_{2} \mathrm{O}$

(R)-491; 78\%

(S)-491; 73\%

Scheme 101.

Scheme 102.

$(\pm)-498$

(R)-499

1. $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 60^{\circ} \mathrm{C}$
2. preparative TLC

(R,S)-501; 26\%

(R,R)-500; 25\%
$\left\lvert\, \begin{aligned} & \text { 1. } \mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{SOCl}_{2}, \mathrm{MeOH}\end{aligned}\right.$

(R)-binaphthol; 85\% ee

(R)-502; 68\% ee Scheme 103.

Scheme 104.

Scheme 105.

Scheme 106.

Scheme 107.

Scheme 108.

Scheme 109.

(3aS,5S,6aS)-524; >99\% ee

Scheme 110.

Scheme 111.

Scheme 112.

Scheme 113.

($2 R, 3 R$)-546

$(2 S, 3 S)-546$

1. $\mathrm{KOH}, \mathrm{MeOH}$
2. 3 M HCl , EtOAc

(2R,3R)-547; 97\%

(2S,3S)-547; 96\%

Scheme 114.

546b

(\pm)-549

1. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$
2. $\mathrm{KOH}, \mathrm{MeOH}$
3. 3 M HCl , EtOAc

(R)-514; 92\%

(S)-514; 86\%

Scheme 115.

(1S,2S)-552

(1R,2R)-553; 90\%
2. HCl

Scheme 116.

Scheme 117.
(1S,2R)-558; 92\%
(1S,2R)-559; 48\%

Scheme 118.

Scheme 119.

(1S,2S)-561 $>90 \% \left\lvert\, \begin{aligned} & \text { 1. } \mathrm{SOCl}_{2}, \mathrm{MeOH} \\ & \text { 2. }(\mathrm{S})-\mathrm{N} \text {-Cbz-Asp(Ot-Bu) }-\mathrm{OH} \\ & i-\mathrm{BuOCOCl}, \mathrm{NMM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{aligned}\right.$

$(S, 1 R, 2 R)-563$

(S,1S,2S)-564

(S,1R,2R)-565; 96\% (sweet)

(S,1S,2S)-566; 98\% (bitter)

Scheme 120.

(1R,2S)-569; 50\%

(1S,2R)-569; 46\%

Scheme 121.

Scheme 122.

Scheme 123.

Scheme 124.

Scheme 125.

$24 \% \left\lvert\, \begin{aligned} & \text { 1. LDA/THF, }-78^{\circ} \mathrm{C} \\ & \text { 2. } \mathrm{CH} \equiv \mathrm{CCH}_{2} \mathrm{Br}\end{aligned}\right.$

(R)-589a-d

589a; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}, 64 \%$
589b; $\mathrm{R}=\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CH}=\mathrm{CH}_{2}, 79 \%$
589c; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 65 \%$
589d; R = sugar, 62\%

Scheme 126.

Scheme 127.

Scheme 128.

Scheme 129.

Scheme 130.

612a; $R=B n, 78 \%$
612b; $\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 73 \%$
612c; $R=M e, 75 \%$
612d; R = Allyl, 61\%
612e; $\mathrm{R}=\mathrm{PhCH}=\mathrm{CHCH}_{2}, 67 \%$ 612f; $\mathrm{R}=\mathrm{HC} \equiv \mathrm{CCH}_{2}$, 67\%

612a-f; >98\% ee

Scheme 131.

Scheme 132.

Scheme 133.

(R)-624a; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{Bn}$
(R)-624b; $\mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{Me}$
(R)-624c; $\mathrm{R}=\mathrm{NHCH}_{2} \mathrm{CO}_{2} \mathrm{Bn}, \mathrm{R}^{\prime}=\mathrm{Bn}$

(R)-625a; 89\%
(R)-625b; 85\%
(R)-625c; 86\%

$(R, R)-626 a ; \mathrm{R}=\mathrm{Me}, 79 \%$
(R, R)-626b; $\mathrm{R}=\mathrm{Et}, 77 \%$
$(R, R)-626 \mathbf{c} ; \mathrm{R}=n-\mathrm{Pr}, 79 \%$
(R, R)-626d; $\mathrm{R}=$ Allyl, 65\%
$(R, R)-626 e ; \mathrm{R}=\mathrm{Bn}, 53 \%$
(R, R)-626f; $\mathrm{R}=i$ - $\mathrm{Pr}, 49 \%$

1. KHMDS, HMPA/ THF
2. $1\left(\mathrm{CH}_{2}\right) 4,-78{ }^{\circ} \mathrm{C}$
3. TFA
4. $i-\mathrm{Pr}_{2} \mathrm{NEt}, \Delta$

(R)-617a; $\mathrm{R}=\mathrm{Me}$
(R)-617b; $\mathrm{R}=\mathrm{Et}$
(R)-617c; $\mathrm{R}=n-\mathrm{Pr}$
$(R, R)-627 \mathrm{a} ; \mathrm{R}=\mathrm{Me}, 67 \%$
(R, R)-627b; $\mathrm{R}=\mathrm{Et}, 64 \%$
$(R, R)-627 \mathrm{c} ; \mathrm{R}=n-\mathrm{Pr}, 65 \%$
(R, R)-627d; $\mathrm{R}=$ Allyl, 56%

Scheme 135.

Scheme 136.

632a; $R=M e$
632b; $\mathrm{R}=i$ - Bu
632c; $\mathrm{R}=\mathrm{Bn}$

$\left\lvert\, \begin{aligned} & \text { 1. } 0.5 \mathrm{M} \text {, citric acid/THF } \\ & \text { 2. excess } \mathrm{NaHCO}_{3}\end{aligned}\right.$

(R)-634a; $\mathrm{R}=\mathrm{Me}, 64 \%, 88 \%$ ee
(R)-634b; $\mathrm{R}=i$ - $\mathrm{Bu}, 56 \%, 84 \%$ ee
$(R)-634 \mathrm{c} ; \mathrm{R}=\mathrm{Bn}, 60 \%, 84 \%$ ee

Scheme 137.

Scheme 138.

$(2 R, 5 R)-646 \mathrm{a} ; \mathrm{R}=\mathrm{Me}$
(2R,2'S)-645a; $\mathrm{R}=\mathrm{Me}, 58 \%$
$(2 R, 5 R)-646 \mathbf{b} ; \mathrm{R}=n-\mathrm{Pr}$
(2R,2'S)-645b; R = $n-\operatorname{Pr}, 55 \%$

Scheme 139.

Scheme 140.

Scheme 141.

660a; R = H
660b; R = SMe
659a; $\mathrm{Nu}=\mathrm{H}$
659b; $\mathrm{Nu}=\mathrm{SMe}$
660d; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
659c; $\mathrm{Nu}=\mathrm{SBn}$
659d; $\mathrm{Nu}=\mathrm{CN}$
659e; $\mathrm{Nu}=\mathrm{N}_{3}$

661d

Scheme 142.

Scheme 143.

Scheme 144.

671

Scheme 145.

678a; $\mathrm{Ar}=\mathrm{Ph}, \mathrm{n}=3$
678b; $\mathrm{Ar}=4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, \mathrm{n}=3$
678c; $\mathrm{Ar}=\mathrm{Ph}, \mathrm{n}=4$
KHMDS, DMF
THF, $-78^{\circ} \mathrm{C}$

679a; 66\% yield, 97% ee 679b; 74% yield, 98% ee

Scheme 146.

Scheme 147.

Scheme 148.

Scheme 149.

Scheme 150.

Scheme 151.

Scheme 152.

Scheme 153.

Scheme 154.

711a; $R=\mathrm{Me}, 78 \%, 97: 3 \mathrm{er}$ 711b; R = Bn, 77\%, 99:1 er

712c; $\mathrm{R}=\mathrm{Me}, 77 \%, 96: 4$ er 712d; $\mathrm{R}=i$-Bu, 70\%, 91:9 er

Scheme 155.

Scheme 156.

Scheme 157.

Scheme 158.

(\pm)-725

(1S,2S,4R,2'R)-727
(1R,2R,4S,2'R)-728
$87 \% \left\lvert\, \begin{aligned} & \text { 1. } \mathrm{NaOMe} / \mathrm{MeOH} \\ & \text { 2. } 6 \mathrm{~N} \mathrm{HCl}, 60^{\circ} \mathrm{C}\end{aligned}\right.$

(1S,2S,4R)-729
(1R,2R,4S)-729

Scheme 159.

Scheme 160.

Scheme 161.

Scheme 162.

$\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}$
$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$
744a; $R=O M e, R^{\prime}=R^{\prime \prime}=H, 30 \%$
744b; $R=R^{\prime}=O M e, R^{\prime \prime}=H, 70 \%$
744c; R = R' = R' = OMe, 96\%
744b; R and $R^{\prime}=\mathrm{OCH}_{2} \mathrm{O}, \mathrm{R}^{\prime \prime}=\mathrm{H}, 78 \%$

744a-d

Scheme 163.

Scheme 164.

Scheme 165.

Scheme 166.

757

(R)-759a; Z = H, 77\%
(R)-759b; Z = 3-F, 85\%
(R)-759c; Z = 2-MeO, 55\%

758a; $\mathrm{Z}=\mathrm{H}, 72 \%$
758b; $Z=3-F, 29 \%$
758c; $Z=2-\mathrm{MeO}, 43 \%$

Scheme 167.

Table 1

Preparation of α-amino nitriles from the ketones $(\pm)-\mathbf{6 a - c}$.

Asymmetric Strecker reaction of ketones $\mathbf{6 d}, \mathbf{e}$.
(

Table 3

Asymmetric Strecker reaction of the ketones (\pm)-16a-e.

			Diastereoisomeric ratio				
Entry	R	Conditions	Yield (\%)	17	18	19	20
1	$\mathrm{a}=\mathrm{OMe}$	$\mathrm{MeOH}, 20^{\circ} \mathrm{C}, 12 \mathrm{~h}$	98	41	22	29	8
2	$\mathrm{a}=\mathrm{OMe}$	Hexane, $-10^{\circ} \mathrm{C}, 18 \mathrm{~h}$	98	10	0	61	29
3	b $=\mathrm{Me}$	$\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	100	55	24	16	5
4	b $=\mathrm{Me}$	$\mathrm{MeOH},-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	100	45	30	21	4
5	b $=\mathrm{Me}$	Hexane, $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	100	43	5	47	5
6	$\mathbf{c}=\mathrm{Et}$	$\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	98	57	23	14	6
7	$\mathbf{c}=\mathrm{Et}$	$\mathrm{MeOH},-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	98	45	21	28	6
8	$\mathbf{c}=\mathrm{Et}$	Hexane, $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	82	39	5	45	11
9	$\mathrm{d}=i-\mathrm{Pr}$	$\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	86	44	23	28	5
10	$\mathbf{d}=i-\operatorname{Pr}$	$\mathrm{MeOH},-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	92	37	4	47	12
11	$\mathbf{d}=i-\mathrm{Pr}$	Hexane, $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	84	12	4	57	27
12	$\mathrm{e}=t-\mathrm{Bu}$	$\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$	74	61	23	14	2
13	$\mathrm{e}=t$-Bu	$\mathrm{MeOH},-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	36	26	0	59	15
14	$\mathrm{e}=t-\mathrm{Bu}$	Hexane, $-10^{\circ} \mathrm{C}, 3 \mathrm{~h}$	37	5	1	66	28

Table 4
Formation of α-amino nitriles $(1 S, 6 S)$-132d-g and ($1 S, 6 R$)-133d-g from $\mathbf{9 5 d} \mathbf{- g}$.

[^2]

Tetrahedron Asymmetry. Author manuscript; available in PMC 2010 March 16.

Table 6
Asymmetric cyclopropanation of styrene with α-nitro- α-diazocarbonyl compounds 361a-d.

Substrate	Catalyst	Aditive	Yield (\%)	$\underset{\text { (trans:cis) }}{\text { Ratio }}$	$\begin{gathered} \text { \% ее } \\ \text { (trans) } \end{gathered}$	\% ee (cis)
361a; $\mathrm{R}=\mathrm{OMe}$	362	--	75	86:14	28	13
361b; R = OEt	362	--	72	83: 17	30	0
361c; $\mathrm{R}=\mathrm{O} t-\mathrm{Bu}$	362	--	68	68:32	41	6
361d; $\mathrm{R}=\mathrm{Ph}$	362	--	64	39:61	31	13
361b; $\mathrm{R}=\mathrm{OEt}$	363	--	71	75: 25	13	16
361b; $\mathrm{R}=\mathrm{OEt}$	364	--	76	86:14	33	0
361b; $\mathrm{R}=\mathrm{OEt}$	365a	--	89	89:11	2	17
361b; $\mathrm{R}=\mathrm{OEt}$	365b	--	74	$79: 21$	8	10
361a; $\mathrm{R}=\mathrm{OMe}^{a}$	366a	$(\mathrm{BzO})_{2}$	27	90: 10	nd	nd
361a; $\mathrm{R}=\mathrm{OMe}^{a}$	366a	EDA (20\%)	55	90: 10	72	51
361a; $\mathrm{R}=\mathrm{OMe}^{a}$	366a	EDA (10\%)	52	90: 10	66	49
361a; $\mathrm{R}=\mathrm{OMe}^{b}$	366a	PhNHNH_{2}	39	90: 10	70	49
361a; $\mathrm{R}=\mathrm{OMe}^{a}$	366b	EDA (10\%)	16	95:05	68	nd
361a; $\mathrm{R}=\mathrm{OMe}^{a}$	366c	EDA (10\%)	7	95:05	63	nd

(1R.2R)-393a-A1

Table 8
$\mathrm{Rh}(\mathrm{I}) /(R)$-BINAP-catalyzed enantioselective $[2+2+2]$ cycloaddtion of $\mathbf{3 9 5 a} \mathbf{- g}$ with 391c.

Tetrahedron Asymmetry. Author manuscript; available in PMC 2010 March 16.

Diels-Alder cycloaddition of 414a-g with cyclopentadiene.

dienophile	\mathbf{R}	\mathbf{R}^{\prime}	$\mathbf{R "}$	Yield (\%)	$\mathbf{4 1 5 : \mathbf { 4 1 6 : 4 1 7 : 4 1 8 }}$
414a	Me	Ac	H	60	$10: 17: 1: 1$
414b	Me	Ac	Ac	50	trace $: 1.2:$ trace $: 1$
414c	Me	Me	H	not determined	
414d	$i-\mathrm{Pr}$	Ac	H	$12: 1.4: 1: 0$	
414e	$i-\mathrm{Pr}$	Ac	Ac	not determined	
414f	$4-\mathrm{AcOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Ac	H	$7: 1: 1: 0$	
414g	$4-\mathrm{AcOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$	Ac	Ac	trace	

Table 11

Enantioselective Diels-Alder cycloaddition of $\mathbf{4 2 4}$ with cyclopentadiene.

Conditions	$\boldsymbol{t}(\mathbf{h})$	exo: endo	endo ratio	exo ratio
$\mathbf{3 6 6 a}-\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$	48	$75: 25$	$43: 57$	$50: 50$
$\mathbf{3 6 6 a}-\mathrm{Ce}(\mathrm{OTf})_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{a}$	75	$70: 30$	$50: 50$	$50: 50$
$\mathbf{4 2 5 - M g (\mathrm { ClO } _ { 4 }) _ { 2 }}$	100	$70: 30$	$50: 50$	$50: 50$
$\mathbf{4 2 5 - C e}(\mathrm{OTf})_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{a}$	150	$75: 25$	$50: 50$	$50: 50$
$\mathbf{4 2 6 - M g}\left(\mathrm{ClO}_{4}\right)_{2}$	24	$80: 20$	$47: 53$	$43: 57$
$\mathbf{4 2 7 - M g}\left(\mathrm{ClO}_{4}\right)_{2}$	24	$75: 25$	$56: 44$	$66: 34$
$\mathbf{4 2 7 - C e}(\mathrm{OTf})_{4} \cdot \mathrm{H}_{2} \mathrm{O}^{a}$	200	$75: 25$	$50: 50$	$50: 50$

$a_{\text {In the presence of molecular sieves. }}$

Table 13
Asymmetric cyclization of serine derivatives.

entry	substrate	product	Yield $(\%)$	ee $(\%)$
1	$\mathbf{6 7 2 a} ; \mathrm{R}=t$ - Bu	$\mathbf{6 7 5 a} ; \mathrm{n}=2$	74	$92 a$
2	$\mathbf{6 7 3 a} ; \mathrm{R}=\mathrm{Bn}$	$\mathbf{6 7 6 a} ; \mathrm{n}=3$	84	$86(S)$
3	$\mathbf{6 7 3 b} ; \mathrm{R}=\mathrm{Me}$	$\mathbf{6 7 6 b} ; \mathrm{n}=3$	75	$82(S)$
4	$\mathbf{6 7 3 c} ; \mathrm{R}=\mathrm{MOM}$	$\mathbf{6 7 6 c} ; \mathrm{n}=3$	72	$82(S)$
5	673d; $\mathrm{R}=\mathrm{TBDPS}$	$\mathbf{6 7 6 d} ; \mathrm{n}=3$	13	$88(S)$
6	$\mathbf{6 7 3 e} ; \mathrm{R}=\mathrm{PMB}$	$\mathbf{6 7 6 e} ; \mathrm{n}=3$	88	$92(S)$
7	$\mathbf{6 7 3 f} ; \mathrm{R}=t$-Bu	$\mathbf{6 7 6 f} ; \mathrm{n}=3$	89	$93(S)$
8	$\mathbf{6 7 4 a} ; \mathrm{R}=t$-Bu	$\mathbf{6 7 7 a} ; \mathrm{n}=4$	77	$94 a$

[^3]
[^0]: *aCorresponding author. Tel. and Fax: +(34)976761210; cativiela@unizar.es. *bCorresponding author. Tel. and Fax: +(52)7773297997; palacios@ciq.uaem.mx.

[^1]: This work was carried out with the financial support of CONACYT-MEXICO (Projects 62271 and 44126) and financial support from the Ministerio de Educación y Ciencia-FEDER (project CTQ2007-62245) and Gobierno de Aragón (group E40 and project MI041/2007) is gratefully acknowledged. This project has been funded as whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number N01-CO-12400. The content of this publication does not necessarily reflect the view or the policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

[^2]: ${ }^{a}$ Indm $=2$-indolylmethyl fragment. ND $=(1 R)$-isomers were not detected by ${ }^{1} \mathrm{H}$ NMR.

[^3]: ${ }^{a}$ The configuration was not reported.

