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Recent Progress Toward Real-Time Measurement
of Ultrashort Laser Pulses
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_Abstract—Frequency-resolved optical gating (FROG) is a tech- real time, from experimental FROG traces. The paper begins
nique that produces a spectrogram of an ultrashort laser pulse with a brief summary of inversion algorithm development. The
optically. While a great deal of information about the pulse isession continues with the description of a new inversion

can be gleaned from its FROG trace, often it is desirable to . L . .
obtain all of the pulse information immediately, in real time. algorithm, called the Principal Component Generalized Projec-

Quantitative information about the pulse is not readily obtainable tions Algorithm (PCGPA) [17], [18], that is very fast for some
from its spectrogram without the use of a two-dimensional phase common FROG geometries. Later, | combine the PCGPA with

retrieval algorithm. While current algorithms are quite robust,  data acquisition in a multishot second-harmonic generation
retrieval of all the pulse information can be slow. In this paper, | (SHG) FROG [19], [20] device to develop a femtosecond

describe a recently developed FROG trace inversion algorithm il that d trat -ti | i
called Principal Component Generalized Projects that is fast, oscilloscope thal demonstrates real-ime pulse measurement,

robust, and can invert FROG traces in real time. A femtosecond displaying the intensity and phase of the extracted pulse at
oscilloscope based on second-harmonic generation FROG is alsaates up to 2.3 Hz [18].

described that uses this new algorithm to rapidly (up to 2.3 Hz)
and continuously display the intensity and phase of ultrashort

laser pulses. Il. FROG INVERSION ALGORITHMS

Index Terms—Phase retrieval, pulse measurement, ultrafast The first step in all inversion algorithms is to construct
lasers, ultrashort pulses. a spectrogram mathematically that mimics a physical FROG

device (see Fig. 1). An input pulse can be represented by the
equation
I. INTRODUCTION
REQUENCY-RESOLVED optical gating (FROG) is used E(t) = Re [ VI(t) exp (iwot — ip(1))] 1)
to characterize ultrashort laser pulses [1]-[12]. It opticalkyhere I(t) and o(t) are the time-dependent intensity and
obtains a spectrogram of an input pulse by interacting opfiase, respectively, and, is the carrier frequency. Upon
or more pulses in a nonlinear medium to form a gate thahtering the FROG device, the pulse is split into two identical
interacts with the input pulse. The interaction forms a signglyises via a beam splitter. The identical pulses are combined in

pulse which is spectrally resolved and recorded as a functighonlinear material producing a signal with the mathematical
of delay between the input pulse and the gate. The spectrogigim

(FROG trace) is a plot of signal intensity versus frequency and
time. The target information, the temporal and spectral profiles Eig(t,7) = E(QUE(t — 7)] 2
of the input pulse (intensity and phase), can be obtained fr
the FROG trace using two-dimensional (2-D) phase-retrie\(/i%.k
methods [4], [13], [14].

FROG is experimentally simple and data acquisition can
rapid: less than 70 ms using a video camera and frame gr

ber. The resulting spectrogram provides immediate qual'tat'l‘ﬁeceraction commonly used in FROG devices is the optical

information about the pulse. Quantitative pulse characten@err effect in the polarization-gate (PG) geometry [2], [3]. In
tics require up to a few minutes to obtain (depending oh| '

) . ) ) t casel'[E(t — 7)] = |E(t — 7)|%.
the required resolution) because of the iterative nature of’j1 PLEE - )] = |B( = 7)]

: . ., A spectrometer spectrally resolves the signal; that is mim-
the phase-retrieval calculation [4], [15]-[18]. Thus, FROG ked in the algorithm via a Fourier transformation into the

usefulness as a real-time diagnostic for ultrashort laser pu'?tee%‘uency domain. A detector, such as a CCD array, obtains
depends on the speed and robustness of the phase-retn&vg FROG trace by recording spectral intensity of the signal

algorithm .USEd' In thls. Paper, I d|§cuss the developmept OLf each time delay. These data can be represented as the
new algorithm to obtain quantitative pulse characteristics, Ilﬂagnitude squared of the Fourier transformzf, (¢ — 7)
slg
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ere E(t) is referred to as therobe and ' is the gate

nction that converts the pulse into the gate, which depends on

the nonlinear interaction used. For the FROG device depicted
Fig. 1,T'[E(t — )] = E(t — 1), because an SHG crystal is
ed and the second harmonic is collected. Another nonlinear

2
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Fig. 1. Schematic of an SHG FROG device. A beamsplitter splits the input
E(t) into probe and gate beams. The two beams are focused into an SHG Ideally the algorithm altcrnates

crystal. The spectrum of the second harmonic is collected as a function of between the two constraints,
delay. quickly converging to the solution.

Set of pulses satisfying
physical constraint

Fig. 3. Figure showing the ideal operation of a FROG inversion algorithm.

E(t Generate . . .
Generate new > ® > Eqglt, 7) Once the new estimate for th&(t) is obtained, a new spec-
est'"é?t‘f for (Time Domain trogram is constructed. The process is repeated (see Fig. 2)
FROG trace) until the spectrogram errerrr (equivalent to the FROG trace
yy \ 4 error) reaches an acceptable minimum
) 1/2
IFFT to Time Apply Intensi FFT to N N
ooman” |4 et [ €] "o crno6 = | 52 20 D llearclen )~ Irnoalwn, )
FROG = N2 CALC\Wi, Tj FROG\Wi, Tj
i=1 j=1
Fig. 2. All FROG trace inversion algorithms work by iterating between two (5)

constraints related by a transformation with an inverse. Paramount to the

ﬁ(lagr(;;:t()hanIS performance is how it obtains the estimateEgt) for the next where erroc represents the rms error per element of the
spectrogram,fcarc(w;,7;) is the current iteration of the
) ) ) _ spectrogram/rrog(w;. 7;) is the measured spectrogram, and
Irroc(w,7) is areal quantity; therefore, it has no direct phasg, andr; are theith frequency andth delay in the frequency
information. The goal of the FROG inversion algorithm is tqng delay vectors, respectively [4].
determine the phase by solving the equation The various FROG algorithms differ in how(t) is cal-

. culated fromy/Irroc(w, 7)¢ca(w, ) [4], [15]-18], [21].
\/md)(wﬁ) :/ E()I[E(t—7)]exp(—iwt)dt If convergence time was of no concern, the first try at an
—oo algorithm might be a simulated annealing algorithm where the
(4)  next guess forE(¢) is obtained randomly from the previous
guess forE(t). If only we had forever! A better approach

for ¢(w, ) which is a complex function of unity magnitude. js to produce the next guess from the previous guess in a

Thus, (2) and (3) define the two constraints common to &} stematic way, but how?
FROG algorithms that must be satisfied [4], [21]. Equation |deally, after each iteration of the algorithm, a slightly
(2) is called the physical constraint and is used in the FROgtter estimate for the phase of the spectrogram is obtained
algorithms both to obtain the next guess fBi(¢) and to until convergence (Fig. 3). The original FROG inversion al-
construct the new signal field. It is applied in the time domaigorithm integrated théime domainFROG trace,Eiq (¢, 7),
The result from (3), the FROG trace, is the intensity constraiffith respect tor, the time delay, to obtain subsequent guesses
which is applied in the frequency domain (4). The goal of thier E(¢) (so-called “vanilla” or “basic” algorithm) [4], [15],
algorithm is to minimize the difference between the measurgzll]. The integration effectively reduces the gate function
FROG trace and the FROG trace calculated from the curragta constant, yielding3E(t), where 3 is the integration
pulse E(t) [see (5)] [4]. constant andE(t) is the next guess for the electric field.

Fig. 2 shows the general form of FROG trace inversiowhile fast, this algorithm stagnates easily and fails to invert
algorithms. An initial guess is provided fo(t) to spectrograms of double pulses [4], [15], [21]. In an attempt
get the algorithm started [4].E...(t.7), @ guess for to overcome stagnation problems and increase robustness, the
Egg(t,7), is calculated and Fourier transformed intaanilla algorithm was used to provide an initial guess to a brute
Vdcate(w, T)pearc(w, 7). y/Ieat(w,7) is replaced by the force minimization of the rms difference between the retrieved
square root of the measured FROG traQélFROG(w,r). FROG trace and the experimental FROG trace [15]. While this
The next guess for F(t) is then calculated from method is robust, converging in most cases, it is very slow.
VIrroc(w, T)dearc(w, 7). Consequently, the phase-retrieval A major advance in the FROG inversion algorithm came
problem looks much like a recursive equation wifi2 with the development of the generalized projections algorithm
variables (whereN is the number of time points and[16], [19], [22]-[24]. First, it virtually guarantees that the error
frequency points). always decreases for each iteration [16], [24]. Second, the
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generalized projections algorithm is very robust [16], [17R minimization step, ultimately speeding algorithm execution
[21]. Third, it is reasonably fast, being much faster thaand simplifying programming. (This becomes important later
brute force minimization [16]. Last, it converges well evemvhen the inversion algorithm is placed entirely on a digital
in the presence of noise. A complete discussion, along witignal processing board.)
derivatives used in the minimization, appears in a review Thus, the blind-FROG spectrogradiroc(w,7), is
article by Trebinoet al. [21]. - 5

Like the previous algorithms, generalized projections works 7. (. 7) = ‘/ E)G(t — 1) exp (—iwt) dt 7)
by alternating between two (or more) seff, and S [21]. -
(For FROG trace inversion$; is the set of allEg,(t,7)'s
satisfying the nonlinear material response, &ads the set of
all complex functions with a magnitudg roc (w, 7).) Unlike
the previous algorithms, generalized projects finds the n
guess by insuring that the distance betwegnand S, is
minimized for each iteration of the algorithm. DelLoeg al.
developed a generalized projections algorithm for FROG
using a minimization algorithm to find th8(¢) that minimizes

the Euclidian distance between the signal field constructed " . productE(#)G(t — ) with respect tar. Virtually

from tE( ZE:':md the S|g?al field that satlsﬂesT':]het |nttehn3|t¥” practical data collection methods rely on discretizingnd
constraintEiy (7, 7) = /Irro (@, 7)eate(w, 7). Thatis t. SupposeE(t) and G(t) are sampled at given values bf

following equation: with a constant spacing aft. Then E(¢) and G(¢) can be
thought of as vectors of lengtly whose elements samplg

where the gate is represented @$t — ) and the probe

as E(t). The function that produce&(t — 7),I'[ ], is not
requwed A single time slice of the blind-FROG trace is the
m%ensny spectrum of the product of these two functions where
the gate is delayed relative to the probe-tyThe complete
bpectrogram is obtained when the gate is scanned in time
Atross the probef(t).

Equation (1) is the magnitude squared of the Fourier trans-

Z= Z | Eig( EMTER - 1)) (6) and G at discrete times
t,r=1
is minimized with respect t&(¢) to obtain the next estimate Eprobe = [E <__At>’E<_ <_ - 1) At)
of E(t), and['[ ] is the function that convert&(¢) into the
gate function [16], [19], [21]. <— <— — 2) At), <<— — 1) At)}

The algorithm developed by DeLorg al. directly follows

the definition of generalized projections [22]-[24]. The im- g _[ <——At>,G< <E — ) )
plementation is very powerful; it can be used for any FROG 2

geometry and can include material response [25], but it is too (N 2} At YAt
slow for real-time inversion of FROG traces [18]. For common 2 ’ )
FROG geometries, such as SHG and PG, a new generalized (8)

projections algorithm, called Principal Component Generalized

Projections (PCGP) [17], has recently been developed tir simplicity, the vectors are written as
does not require a minimization step, increasing the iteration E _[E\, By, Bs, -, Ex]
rate by nearly a factor of two [18]. Because the PCGPA Probe A
code is compact, it easily fits into inexpensive digital signal Egate =[G1, G2, G, -+, Gn]- (9)
processing boards, allowing simultaneous data acquisiti

and FROG trace inversion. Using such a scheme, this n[|1He outer product oBrrobe aNd Egate IS (Fig. 4)

algorithm has been used to invert FROG traces in real time[ £1:G7 E\Ga EGs  EGy -+ E Gy

and has been demonstrated in a femtosecond oscilloscope thatEoG1 ExGe ExGs  ExGy -+ E.Gy

can continuously and indefinitely characterize ultrashort laser| E3G1  E3Gy  E3Gs  Es3Gy -+ E3Gy

pulses in real time [18]. Sections Ill-V discuss the derivation E4G1 EsGy EGs EGy -+ EyGy (10)

of this new algorithm.

I1l. PRINCIPAL COMPONENT GENERALIZED ; ; : ; :
PROJECTIONSALGORITHM EnGy EnGy EnGs EnGy -+ EnGn

In FROG, there is always an assumed relationship b€his matrix will be referred to as theuter product form

tween the probe and the gate. However, there is another, les§he outer product contains all of the points required to

common, but more general case where the gate is entirefnstruct the time domain FROG trace because it contains
independent of the probe. This has been called TREEFR®@( of the interactions between the pulse and gate for the
(Twin Retrieval of Excitation Electric fields FROG) by thediscrete delay times. Consequently, a one-to-one mapping of
more acronymous among us [26]. | shall refer to this genetthle elements of the outer product can transform the outer
case as blind-FROG because it makesamiori assumptions product into the time domain of the FROG trace. This is the

about the relationships between the probe and the gate [kdy to the PCGP algorithm. Because the mapping is one-to-
At first, this may seem obtuse, but it allows the developmeane, it is invertible; transformations can be made from the

of a generalized projections algorithm that does not requiogiter product form to the time domain FROG trace atuk
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Thus, (11) is thetime domain of the spectrogram formed by
the multiplication of the probe and gate functiorss;discrete
T version of the producFp,ope(t) Fgate(t — 7). The columns

_| Outer product _|Outer product

(]

E 0 . are constant inm (delay) while the rows are constant in
25+ § (time). This gives exactly the same result as calculating the
50 i time-domain FROG trace directly by shifting the gate in time

and multiplying the shifted gate by the probe. All | am doing
is insuring is that there is a reversible way to move between
- the outer product form and the time-domain FROG trace. By
1\ & Fourier transforming each column, the Fourier transform of

Eprobe(t) Egate(t — 7) is obtained as a function of The final
step of taking the magnitude of the complex result produces
the FROG trace.

_| After row shifting _|After row shifting

Time

50 | Esiglti®) | Egglt0)

IV. PCGPA INVERSION

It is easy to imagine an infinite number of complexages
that have the same magnitude as the spectrogram we wish to
invert; however, there is only one image that can be formed by
the outer product of aingle pair of nontrivial vectorshat has
50 -| FROG trace ~|FROG trace the same magnitude as the spectrogram to be inverted. In order
25 i to find the proper vector pair, the phase of the spectrogram
i Jape—— must be determined using a 2-D phase-retrieval algorithm.
Like all FROG trace inversion algorithms, the PCGPA is
started using Gaussian pulses with random phase for the initial
guess forE(¢). The initial gate pulse is derived fromk(¢)

25+ —

Time
°
1

.25 —

-50 o -

Frequency
T

60 40 20 0 20 40 60 60 40 20 0 20 40 60 according to the FROG geometry used. A spectrogram is
Time Delay Time Delay constructed and its magnitude is replaced by the square root
() (b) of the magnitude of the experimentally obtained spectrogram.

Fig. 4. The different steps in the PCGPA. (a) SHG and (b) PG are showh€ result is converted to the time-domain spectrogram (11)
The top image plots show the outer product. The next image results franging an inverse Fourier transform by column (see Fig. 4).

the row rotation depicted in (11). By rearranging the columns, the correcwext the time-domain spectrogram is converted to the outer
oriented time-domain FROG trace can be constructed. Fourier transformin !

the columns produces the FROG traces shown in the bottom image pIotsFl)rgOdUCt form (10) by reversing the.steps_ used to construct the
time domain spectrogram. If the intensity and phase of the

) ) ) ) spectrogram are correct, this matrix (the outer product form
versa This transformation can be accomplished by rotating thgarix) is a true outer product and has a rank of one. That s, it

elements of the rows in the outer product to the left by the royy, 19 have one andnly onenonzero eigenvalue and oright
number minus one. Applying this transformation, we Obta@igenvector and onteft eigenvector. Theight eigenvector,
(11), shown at the bottom of the page. The= 0 column is the probe, spans the range of the outer product matrix. The
the first column, where is the time delay in increments &¢, complex conjugate of the eigenvector of the transpose of the
a point-by-point multiplication of the probe by the gate witthuter product matrixIéft eigenvector) is the gate [24].

no time shift between them. The next column is the- —1 The outer product form matrix produced by the initial guess,
column where the gate is delayed relative to the probe by onéwever, is not rank one and has several eigenvectors. It
resolution elementt. The gate appears to be shifted “up” bywill probably have (for anN x N FROG trace)N right

one resolution element with the first element wrapped arousitjenvectors andV left eigenvectors (eigenvectors of the
to the other end of the vector. Column manipulation places thranspose): instead of describing of a single lineNirspace,
most negativer on the left and the most positive on the rightthe matrix represents an ellipsoid iV space. The best

rEGy EGy EGz oo E\Gy_o E1Gn E Gy
ExGy  ExGs  ExGy -+ ExGnoy ERGy E,Gy
FE3sGs  EsGy Es3G5; - EsG N EsGy E3Gy
EGy EG; EGg - FEsGy E,Gs E.G3

LEnGNy EnGy EnGe -+ EnGy_3 EnGy_o EnGy_1l

T=0 T=—-At T==-2At --- T=3At T=2At T=A%t (11)
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next guess may actually be a superposition of two or more
different but linearly independent eigenvectors, requiring an SVD Generate Outer
L . y . .p. . 9 d 9 (Power Method)) P(t) and G(t) ) Product
optimization such as minimization of the FROG trace error to
find the correct s_u_pe_rpo_smo_n. _ A Principal \ 4
Fortunately, minimization is not required. Suppose we de- Convert to Component Convert to
; ; Outer Product Generalized ) -
compose the outer product form matdxinto three matrices Form Projections Time Domain
such that A Algorithm v
O=UxWxVT 12 IFFT to Time | | Apply Intensit FFT to
(12) Domain [ pCF:)oynstraint V1€ Frggrt:;?:y

where I/ and VT are orthogonal square matrices aid
is a square diagonal matrix. Thus, the maté¥ the outer Fig.5. Schematic of the PCGP algorithm. Transformation from the outer
product form, is decomposed into a superposition of out%rloductto the time domain FROG trace (ance versamay be accomplished

’ . ) . ., Vvia simple permutations (rotations) of each row.
products between “probe” vectors (columnsléf and “gate
vectors (rows ofVVT). The diagonal values iV (the only o _ _ _
nonzero elements &%) determine the relative weights of eactihe principal eigenvectors. Suppose we multiply an arbitrary
outer product and, therefore, how much each outer prodii§inzero vectot:, by OOT. Then
contributes to matrixO. If we keep the outer product pair N
with the I'argegt weighting fac_tor, qo’rincip.al' cgmponentfor_ 00Tz = Z ki P (16)
the next iteration of the algorithm, we minimize the function im1

) N o ) P where P; is the eigenvector o007, )\; the eigenvalues, and
€= 3" |EGhier — EbrobeLatel (13) x; aset of constant€©O7 can be thought of as an operator that
i,5=1 mapszy onto a superposition of eigenvectors. The process can

be repeated resulting IO k;\; P, = ;A2 P;. Multiplying

here Eouter IS the outer product form matridip.op,e is the )
w Outer | uter procu D Drobe | by (OOT)P—1 gives

probe vector,Eq,i. is the gate vector, and is the error

[27]. (This is the definition of a projection and is similar N
to, although not identical to, the projection found in the (00", IZM)\?Pi- (17)
generalized projections algorithm developed by DelLengl i=1
[16], [19], [21].) As p becomes large, the largest eigenvalyedominates the

How can all this be accomplished? One elegant, but cogym so that(OOT Pxy ~ xAPP. This method is called

putationally intensive, means to find the principal vectahe power method28]. After a few iterations, a very close
pair is to use a singular value decomposition (SVD) tgpproximation to the principal eigenvector (the eigenvector
decomposeO into U,W, and V' directly [24], [27]. This with the greatest eigenvalue) is obtained. Consequently, the
approach is convenient because many commercially availahigct guess for the pulse can be obtained by multiplying the
mathematical libraries contain routines to compute SVD'grevious guess for the pulse IBJOT. The next guess for the
Another way to find the principal vector pair with muchgate can be obtained by multiplying the previous guess for the
less computation than an SVD is to reduce the SVD step gate byO” O. (For polarization-gate FROG, the absolute value
simple low-overhead and fast matrix-vector multiples [28]. F&§f the result for the gate is taken.) While better approximations
real-time applications, this is the best approach [18]. for the eigenvectors may be obtained by using these operators
Rather than finding the eigenvectors@fthe outer product several times per iteration, once per iteration is adequate in
form matrix, and constructing an orthonormal basis from theggactice [18].
vectors, an SVD finds the eigenvectors@©* (columns of ~ practically, the power method implementation of the PCGP
U) and OO (columns of V) which are orthonormal [24], algorithm (Fig. 5) is very fast and quite robust. Indeed, the
[27]. If the columns ofl/ are written asP; and the columns power method implementation can loop at nearly 20 itera-
of V' are written as#;, then they satisfy the equations tions/s on a 60 MFLOPS digital signal processor or greater
00T P, = \.P, than 30 iterations/s on a 233-MHz Pentium Il. Good approx-

imations for the pulse usually occur in about 40 iterations
0T0G; =\G; (14) |18

where \;'s are the eigenvalues, or “weights,” and the su-
perscript? is the transpose operatad. may be constructed

by

V. CONVERSION OFPCGPATO A FROG
INVERSION ALGORITHM

N The PCGPA, as discussed above, is a blind-FROG al-
_ N . AT gorithm. That is, the probe and the gate are completely
0= Z ABi G (15) independent. The only nonlinear interaction assumed is the
=1 T . .
multiplication of the probe by a gate. How the gate is con-
where A;, P;, and G; are provided by the SVD, but we onlystructed is of no concern. As a result, some ambiguities
need theP; and G, corresponding to the larges$;|, or can occur. Even though these ambiguities are usually minor,
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TABLE | from the gate. Thus, the gate I'~!(probe) and the probe
CompaRISON OF SHG FROG KVERSION ALGORITHM = I'"!(gate). Rather than using only the outer product of
Random Noise Random Chirp Multipulse Test:  Ep,qhe and Eg,. t0 produce the next time-domain FROG
Algorithm Type Test: Percent  Test: Percent Percent i J
Convergence  Convergence  Convergence trace, the sum of the outer products ﬁr;)robeEgate and

D7 Egate) I'(Eprone)? is used so that the outer product on

SHG Vanilla 15 (4) 45 (32) 64 (3) )~ \probe)”
Femtosoft SHG the next iteration is given by
tosor 56 (48) 80 (52) 92 (0) . P i ;
Fast SHG PCGPA 78 (77) 79 (70) 95 (10) O,/ = probejgate + I'""(gatey ) T'(probey) (19)

Results of a test designed to determine robustness of FROG inversighere Oy, is the sum of the two outer pI’OdUCtS for théh
algorithms. All of the test groups are synthetic. Models for the test grou

S .
are discussed in Kane [18[. The percentages given are for a percent of puﬁ%ga“on: .
retrieved with an rms FROG trace error of less tharl2~2 in 100 iterations. Equation (19) allows PCGPA to be used with any FROG

This was deemed to be the lowest experimental error that can, in practiced@)metries wher& 1 exists. In the PG FROG, however, the
achieved and more aptly defines the usefulness of the algorithm. Percental

es . .
given in parentheses are for strict convergence with an rms error of less ﬂlﬁxefse _Of the gate function does not exist. As a result, a
10— in 100 iterations. The ultimate convergence rates (allowing the algorithpseudo-inverse must be constructed from the square root of the
to continue past 100 iterations until stagnation) for the Femtosoft SHG FR}ﬁ\te intensity and the phase of the pulse. Because the square
inversion algorithm were 60%, 80%, and 32% for the random noise te . . .

the random chirp test, and the multipulse test, respectively. The ultim éOt an cau_se Sma” fluctuations in the wings O_f the _g_a_te’
convergence rates of the SHG FROG PCPG algorithm was not determing@roducing artifacts in the next guess for the pulse, instabilities

may occur in the algorithm. This can be remedied by applying

s the square root to only well-defined portions of the gate. Where
they can produce erroneous results if ignored (see AppendiX . : : . o
. . ; . e gate is not well defined (i.e., the intensity is near zero),
A) [17], [26]. Spectral constraints can facilitate inversion of_ ~ . ; . .
. . the intensity (and phase) of the pulse is used. To increase the
FROG spectrograms using the PCGPA [17], [26]. This methg . . .
. : . robustness of the PG algorithm, the pseudo-inverse constraint
has been used extensively to invert experimental FROG tracl:sesé lied on alternate iterations. The pseudo-inverse method
and blind-FROG traces [29], [30]. Often, however, a spectrum bp . P

: : ) . w&:rks well for polarization-gate (PG) FROG on the synthetic
is not available; consequently, we would rather not be requir X :
est sets, converging to experimental error for 90% of the test

to obtain a spectrum of the pulse in addition to its spectrogram. . . .
The conversion of PCGPA to a FROG algorithm may b qlses, but it has not been tested with experimental data. At

) . time, the pseudo-inverse method does not appear to work
accomplished by summing the outer product of the probe an : .
. well for self-diffraction (SD) FROG, however.
the gate with the outer product of the probe constructed from

the gate and the gate constructed from the probe [18]. How the
gate is constructed from the probe arick versas determined ~ VI- EXPERIMENTAL—THE FEMTOSECOND OSCILLOSCOPE
from the nonlinear interaction. In the case of SHG FROG, for The development of the PCGPA can facilitate the inversion
example, the probe is equal to the gate; thus, the outer prodotFROG spectrograms in real time [18]. However, building
becomes a femtosecond oscilloscope requires more than just a fast
inversion algorithm. The data acquisition must be completely
integrated with the inversion algorithm. This is accomplished
forming the FROG trace from the sum of two outer products the demonstration described here by integrating the data ac-
Because only the principal outer product pair is used for tlygiisition and the inversion engine with a home-built multishot
next estimate of the electric field, the two outer products aBHG FROG device. The data acquisition and inversion engine
forced to be equal. The only way the outer products can bélizes two commercially available digital signal processing
equal is if probe= gate. (DSP) boards (Fig. 6). This device successfully demonstrates
This type of FROG algorithm works very well for SHGthe inversion of experimental FROG traces in real time and
FROG (see Appendix B). Table | compares the PCGP-basesh display the inverted pulses (from a 8464 FROG trace)
SHG FROG algorithm to the commercially available Femat a rate of 1.25 Hz, or one every 0.8 s, and 2.3-Hz inversion
tosoft SHG FROG program [19], [21], and to the “Basicates were possible for a 32 32 array.
FROG” or “Vanilla” algorithm [4], [21]. The three algorithms Using a zero-dispersion pulse stretcher-compressor [31] to
were tested to failure using three synthetically constructedry the pulse dispersion independent from the Ti:sapphire
test sets. From the test results, it can be determined that tiseillator allows extensive testing of the femtosecond oscil-
generalized projections-based algorithms are clearly supetimscope. By translating the lens, dispersion in the beam can
to the “Vanilla” algorithm. In the first test, the random noisée changed enough to more than triple the pulsewidth. The
test, which determines the overall robustness of the algorithrfemtosecond oscilloscope can easily track these changes. Also,
the SHG PCGP algorithm performed best. In the other twmrtions of the spectrum can be blocked to shape the pulse
tests, the PCGP SHG algorithm compares favorably to thefore being sent to the FROG device (Figs. 7 and 8).
Femtosoft algorithm [18]. Example data obtained using the femtosecond oscilloscope
SHG FROG is a special case, however; (18) is valid only fare shown in Fig. 7. The FROG trace shown in Fig. 7(a) was
SHG FROG and must be modified for other FROG geometriggoduced by blocking a portion of the pulse spectrum at the
As defined in (2)[" is the function that produces the gate fronfrourier plane of the stretcher-compressor. Also show in Fig. 7
the probeE(t); its inverse, denotetf—!, produces the probe are the retrieved pulse, the retrieved phase, and an example of

O;f = probeigatei + gateiprobeg (18)
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A the performance of the DSP/PCGPA combination. After only
> . . .
W - > one second of computational time, the algorithm ran for 20
Wl rapid soanning | - 16 Sigra Spectrometer iterations on the 64 64 FROG trace, converging to a FROG
delay line trace error of less than 0.5%.
A 24 Spectra Diode The SHG FROG device splits the input beam into two
: 83 identical beams by a beam splitter . One beam is sent into
: 3 {"ayJ dentical b by ab litter [18]. One b tint
A Data FROG Trace a manual delay line used to fine tune the delay between the
<: 2 Collection Inversion two beams so that the FROG trace is centered along the time
pE DSP DSP wiPCGPA . . .
. axis for proper operation of the PCGP algorithm. The other
: Spectrogram spemgmm‘ \ > Retrieved beam is sent into a fast scanning delay line based on a General
h 4 h 4 Scanning LT 1000 Z (linear) scanner [18[ allowing the delay
Host Computer/Display to be controlled by a voltage~2-mm delay/V). The resulting
beams are about 8 mm apart and focused by a 250-mm focal

Fig. 6. Schematic of the femtosecond oscilloscope. A multishot SHG FRd@ngth lens into a ZQW'thiCk BBO (_:ryStaI' The spectrum of
device with a rapid scanning delay line acts as the front end. The detedie second harmonic is measured via a 1/4 m spectrograph and
is an EG&G 512 element diode array. The array is read by the data DgP512—_alement EG&G Reticon diode array controlled by the
which also controls the delay line. After each spectrum is read, the de‘lﬁyG&G d . b d. Th Iti | L li
line is incremented byAt until a complete spectrogram is obtained. The- emonstration board. ) e I‘?SU t'”g e ectrop_lc signal'is
spectrogram is then resampled, filtered, and sent to the host computer. fik€red by a SRS 560 low-noise differential amplifier before
host displays the spectrogram and sends it to the inversion DSP. After abgéqng digitized at 100 kHz (5 ms exposure) by the 16-bit A/D
15 iterations, the pulse and gate are read by the host and displayed. This t the dat llecti DSP board. After the diod
device could fully characterize pulses at a rate of 1.25 Hz fox84 FROG Conve_r ers on the data C(_) ection : oard. er the dio e
traces and 2.3 Hz for 3% 32 FROG traces. array is read, the translation stage is set to the next delay via
a D/A on the DSP board. Sixty-four spectra are obtained for
the 64 x 64 FROG trace and 32 for the 3232 FROG trace.
In addition to digitizing the diode array readout, the data
10 ’ collection DSP board also prepares the raw data for input
into the algorithm by resampling the signal vector from the
\ 512-element diode array down to 64 pixels using a 15-
element finite impulse response digital filter. The coefficients
are chosen to remove all frequencies higher than Nyquist for
the resampled vector. After filtering, the background from
electronics offset and scattered light is subtracted.

-

o
[

Frequency Deviation (THz)
(=]
Intensity (Arb. Units)
(=]
[=2]

5 o4 The host computer (166 MHZ Pentium) controlled both DSP
| 0.2 boards which are each based on a single Texas Instruments
ol i TMS320C32 floating point DSP (Fig. 6) via a host program
05 025 0 025 05 e oo, that polls the data acquisition DSP board for a new spectro-
Time Delay (ps) Time Delay (ps) gram. When ready, the host reads the spectrogram, frees the
@) (b) data DSP board to read another spectrogram, and displays the

spectrogram (Fig. 8). The host then reads the new pulse and
gate from the inversion engine DSP board running the SHG

. FROG PCGPA. The new spectrogram is sent to the inversion

~—1 second - engine board. The initial guess used by the algorithm in the
2 » inversion DSP for the new spectrogram is the pulse retrieved
2 seconds 5, from the previous spectrogram. The reason behind this step is
- 3seconds % o " the assumption that the average pulse will not change too much
% ‘ over one second, allowing real-time updates to occur. This is

- 4 seconds s an important part of the femtosecond oscilloscope. For small

E pulse changes, the algorithm will track continuously, which
X 1.25 hours . ) is usually the case when adjusting a stretcher-compressor, for
N i example. However, for a step function change in the pulse,

05 025 0 025 05 such as blocking the input beam momentarily, the algorithm

Time Delay (ps) can require 2 s to track the change (for 2664 FROG trace).
© @

Fig. 7. Data taken using the femtosecond oscilloscope depicted in Fig. 5. (a)

The FROG trace: this pulse was retrieved using the PCGPA as the inversion VIl. CONCLUSIONS

engine implemented on the DSP card. In only one second (20 iterations), the

algorithm converged to a FROG trace error of less than 0.5% for 2 64 While the PCGPA is naturally a blind-FROG algorithm,

FROG trace. Also important to the operation of the femtosecond oscilloscopenas been successfully adapted to the inversion of FROG
is the stability of the algorithm; results did not change significantly even after

thousands of iterations. (b) Pulse. (c) Algorithm/DPS processing time. (%PeCtrOQram$ by averaging the outer prOdUCt of the DUIse
Pulse phase. and gate with the outer product of the pulse constructed
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Fig. 8. Femtosecond oscilloscope display. (a) The FROG trace resulting from a wire blocking out portions of the pulse spectrum at the Fourier plane
of a stretcher-compressor. (b) Both the pulse intensity and spectrum (spectral intensity of the retrieved pulse). Notice that the center pertion of t
spectrum is missing and ringing of the pulse is clearly visible. To prevent the variable offset in the retrieved phase from changing the plot scaling
between updates, the derivative of the phase is displayed.

from the gate with the gate constructed from the pulse. Best APPENDIX A
suited for SHG FROG, this algorithm is the most robust BLIND-FROG PITFALLS, EFFECTIVE AMBIGUITIES

algorithm available for the inversion of SHG FROG traces. \ypije ambiguities are not a problem when inverting FROG

By using a pseudo-inverse, PCGP can also be used 1o in PAtes, blind-FROG inversions can have ambiguities [17], [26
PG FROG spectrograms. While not quite as robust as other& ’ g [17], [26].

FROG alaorith it is sl able alt i h ﬁ;e first set of ambiguities is the order of the vector pair.
algonthms, 1t 1s SUil a viable afternalive when Speeg,, example, one ambiguity in polarization-gate blind-FROG

simplicity, or compactness is of concern. occurs when there are no phase distortions present in the probe;

The main hindrance to real-time pulse measurement has , .
been the iterative algorithm required to invert the FROG tracte}g.e blind-FROG trace does not change when the probe and

Even with the fast processors available today, the compu%ﬁte are interchqnged. As aresult, any innd-FROG.aIgorithm
tional requirements for obtaining the FROG trace, preprocegn‘-"ly converge with the probe and gatg reversed. 'V“T“” phase
ing the FROG trace, and inverting the FROG trace in real tmﬁjistortlons in the probe can preven'F th|s frqm occurring.
are too great for most desktop computers. By the addition fOf greater concern are small v_ananons in the sp.ectro_gram
an inexpensive but separate DSP, independent of the opera{ can sometimes produpe relatively large fluctuations in the
system, real-time pulse measurement can be a reality. Becaf&€ and gate vectors; this usually only occurs when the probe
of the limited memory space on these DSP boards, the comp®efl 9ate are similar in shape and duration. This results in
vector-based fast PCGPA is ideal for this application. an effective ambiguityn polarization-gate blind-FROG. I call
When on a DSP board, the PCGPA using the power methibtis an effective ambiguity because it is not an ambiguity of
can run at nearly 20 iterations/s which is more than enouHF\e techniqgue, but rather manifests itself only when there are
to track small changes in the input pulse. For SHG FRO@OIse and/or distortions on the spectrogram. Ideally, the set
the PCGPA operates about two times faster than the curréfftaining all the spectrograms that have the same intensity
generalized projections algorithm while being as robust as tAé the measured spectrogram and the set containing all of
commercially available compound algorithm [21]. The corfhe spectrograms that can be formed from the outer product
structed femtosecond oscilloscope obtains SHG FROG tracek two vectors intersect at only one point (Fig. 1). When
updates a spectrogram display, and provides the intensity dhig occurs, we say the solution is unique. However, when
phase of the pulse in real time with an update of 0.8 s opise and distortions are present on the spectrogram, the two
1.25 Hz for a 64x 64 array (0.43 s or 2.3 Hz for a 32 32 sets no longer intersect at a point, but rather they intersect
array). Currently under development is a real time femtosecowithin a region or, more likely, do not intersect at all. The
oscilloscope based on a single-shot FROG device, a vidapology of the two sets indicates how successful the search
CCD camera, and a frame grabber. for a solution will be. If one or both of the sets are pointed
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near the intersection point, ambiguities will not pose any / End Initializations

concern. However, if the region near the intersection, or closest/

approach, is broad and flat on both sets, small changes in théor x = 1:1:iterations

error can result in relatively large changes in the probe and”0 Because the transpose of a complex quantity
gate. One example is when a blind-FROG trace is produced% involves a complex conjugate,

by a Gaussian probe pulse with a FWHM of 100 fs and a 7 gpulse = conjugate(ggate) for SHG FROG.
Gaussian gate (the actual gate, not the gate pulse) with the
same FWHM. Such a trace will differ from a blind-FROG
trace produced by a Gaussian probe pulse with a FWHM ofg,
105 fs and a Gaussian gate with a FWHM of 95 fs by an ¢
err Of only 0.000 38. Subtle differences that are present cang;
be obscured by noise. On the other hand, if the probe andy
gate have different shapes and very different widths, effectiveq,
ambiguities do not appear to be a problem.

In FROG, as opposed to blind-FROG, because ofatipei-
ori knowledge of the relationship between the probe and gate,
the width ambiguity is not a problem. These ambiguities may
be resolved when using a blind-FROG inversion algorithm
such as PCGPA by the addition of a spectral constraint on

efrog = gpulse’ * ggate + conj(ggate’)
xconj(gpulse); %" '’ means

transpose.

Convert from outer product to frog domain

First, rotate each row to the left by it’ s

row number minus 1

First index is the row number, second is

% the column

for j=2:1:N
temp(j,1:j — 1) = efrog(j,1:j — 1);
% save the left-most part
efrog(j,1:N+1— j) = efrog(j, j:N);

either the probe or the gate [17], [26].

APPENDIX B
SAMPLE MATLAB P ROGRAM LISTING

function [gpulse, ggate| = ispecshg(spectrogram,
gpulse, ggate, iterations)

% function [gpulse, ggate] = ispecshg(spectrogram,

% gpulse, ggate, iterations)

% ispecshg inverts a spectrogram using the fast

% version. It assumes SHG FROG.

%

% Principal Component Generalized Projections

% (PCGPA). The

% input parameters are:

% spectrogram The spectrogram to be inverted

%

% gpulse Vector containing the initial guess

% for the pulse

%

% ggate Vector containing the initial guess

% for the gate

%

% iterations

%

% The function returns as soon as the number of

Number of iterations

% iterations has been completed.
%

% Make the check for iterations
%

% Initializations

N = max(size(gpulse)); %N = length of gpulse
halfN = N/2;

efrog = zeros(N,N);

% efrog = N x Nmatrix filled with zeros

temp = zeros(N,N); % temporary matrix

%

% shift the vector

efrog(j,N+2— j:N) = temp(j,1:j — 1);

% place the left-most part on the right
end

% switch left and right halves,“:” is an implied

% “for” loop
temp(:, 1:halfN) = efrog(:, 1:halfN);
efrog(:,1:halfN) = efrog(:,halfN + 1:N);
efrog(:,halfN + 1:N) = temp(:, 1: halfN);

% Now efrog is in the time domain

% Perform “FFT Shift” on each column
temp(1: halfN,:) = efrog(1l:halfN,: );
efrog(1:halfN,:) = efrog(halfN + 1:N,:);
efrog(halfN + 1:N,:) = temp(1:halfN,:);

% FFT columns (MATLAB is column major,
% C is rowmajor)
efrog = fft(efrog);

% Perform “FFT Shift” on each column
temp(1:halfN,:) = efrog(1:halfN,: );
efrog(1:halfN,:) = efrog(halfN + 1:N,:);
efrog(halfN + 1:N,:) = temp(1:halfN,: );

% This loop is slow running under MATLAB, for

% faster running under

% MELAB, vectorize.
fo rj=1:1:N

fork=1:1:N
temps = abs(efrog(j,k));
if temps ~=0
efrog(j,k) = spectrogram(j, k)
* (efrog(j,k)/temps);
else
efrog(j,k) = spectrogram(j,k);
end
end
end
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% Column “FFT Shift” again

3
temp(1:halfl,:) = efrog(1l:halfl,:); e
efrog(1:halfN,:) = efrog(halfN + 1:N,:);
efrog (halfN 4 1:N,:) = temp(1:halfN,:); [4]
% IFFT columns
efrog = ifft(efrog); s
% “FFT Shift” °
temp(1:halfN,:) = efrog(1l:halfN,:);
efrog(1:halfN,:) = efrog(halfN + 1:N,:); (6]
efrog(halfN + 1:N,:) = temp(1: halfN,: );
% Convert from the frog time domain to the
% outer product (71
temp(:,1:halfN) = efrog(:, 1:halfN);
efrog(:,1:halfN) = efrog(:,halfN + 1:N); 8]
efrog(:,halfN + 1:N) = temp(:, 1: halfN);
for j=2:1:N
temp(j,N+ 2 — j:N) = efrog(j,N+ 2 — j:N); (]
efrog(j,j:N) = efrog(j, 1:N+ 1 —j);
efrog(j,1:j — 1) = temp(j,N+2 — j:N);
end [10]
% Now the frog trace is in the outer product
% domain 1]
% Find the next estimate for the pulse and gate
npulse = ((efrog’ * gpulse’)); [12]
npulse = (efrog x npulse)’;
9
% _ . (23]
ggate = (efrog * ggate’);
ggate = (efrog’ * ggate)’;
% N . [14]
o Normalize gpulse and ggate so the peak
% height is one [15]
gpulse = npulse/max(abs(npulse));
ggate = ggate/max(abs(ggate)); [16]
end
return
[17]

MATLAB code for the inversion of SHG FROG traces.
This program will run without modifications under MATLAB (18]
running on any platform. It returns the time reversed pulse. For
SHG FROG, this does not matter because of the ambiguity [i9]
the direction of time. If this program is to be converted to PG

FROG, then this must be kept in mind.

[20]

ACKNOWLEDGMENT
[21]

The author would like to thank D. Bomse for his helpful
suggestions.

[22]

REFERENCES
[23]

[1] D.J. Kane and R. Trebino, “Characterization of arbitrary femtosecond

(2]

pulses using frequency-resolved optical gatinFEE J. Quanttum
Electron, vol. 29, pp. 571-579, 1993.

, “Single-shot measurement of the intensity and phase of [24]
femtosecond laser pulse,” presented at Generation and Measurement
of Ultrashort Laser Pulses, Los Angeles, CA, 1993.

D. J. Kane, A. J. Taylor, R. Trebino, and K. W. DeLong, “Single-shot
measurement of the intensity and phase of a femtosecond UV laser
pulse using frequency-resolved optical gatin@pt. Lett, vol. 19, pp.
1061-1063, 1994.

R. Trebino and D. J. Kane, “Using phase retrieval to measure the
intensity and phase of ultrashort laser pulses: Frequency-resolved optical
gating,” J. Opt. Soc. Amer. Avol. 10, pp. 1101-1111, 1993.

S. Backus, J. Peatross, Z. Zeek, A. Rundquist, G. Taft, M. M. Mur-
nane, and H. C. Kapteyn, “16-fs, /43 ultraviolet pulses generated by
third-harmonic conversion in air,Opt. Lett, vol. 21, pp. 665-667,
1996.

P. R. Bolton, A. B. Bullock, C. D. Decker, M. D. Feit, A. J. P. Megofna,
P. E. Young, and D. N. Fittinghoff, “Propagation of intense, ultraviolet
laser pulses through metal vapor: Refraction-limited behavior for single
pulses,”J. Opt. Soc. Amer. Brol. 13, pp. 336-346, 1996.

T. S. Clement, A. J. Taylor, and D. J. Kane, “Single-shot measurement
of the amplitude and phase of ultrashort laser pulses in the vidgt”
Lett, vol. 20, pp. 70-72, 1995.

B. Kohler, V. V. Yakovlev, K. R. Wilson, J. Squier, K. W. DeLong, and
R. Trebino, “Phase and intensity characterization of femtosecond pulses
from a chirped-pulse amplifier by frequency-resolved optical gating,”
Opt. Lett, vol. 20, pp. 483-485, 1995.

A. Kwok, L. Jusinski, M. A. Krumbugel, J. N. Sweetser, D. N.
Fittinghoff, and R. Trebino, “Frequency-resolved optical gating using
cascaded second-order nonlinearitid&EE J. Select. Topics Quantum
Electron, vol. 4, pp. 271-277, 1998.

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating
frequency-resolved optical gating@pt. Lett, vol. 22, pp. 519-521,
1997.

A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2
by direct measurement of the optical phas@gt. Lett, vol. 21, pp.
1812-1814, 1996.

V. Wong and I. A. Walmsley, “Linear filter analysis of methods for
ultrashort-pulse-shape measuremenisOpt. Soc. Amer. Avol. 12, pp.
1491-1499, 1995.

J. R. Fienup, “Reconstruction of a complex-valued object from the
modulus of its Fourier transform using a support constraidt,Opt.
Soc. Amer. Avol. 4, pp. 118-123, 1987.

R. P. Milane, “Multidimensional phase problems)” Opt. Soc. Amer.

A, vol. 13, pp. 725-734, 1996.

K. W. DeLong and R. Trebino, “Improved ultrashort phase-retrieval
algorithm for frequency- resolved optical gatind,”Opt. Soc. Amer. A
vol. 11, pp. 2429-2437, 1994.

K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K.
R. Wilson, “Pulse retrieval in frequency-resolved optical gating based
on the method of generalized projection€pt. Lett, vol. 19, pp.
2152-2154, 1994.

D. J. Kane, “New algorithm for the measurement of two ultrashort
laser pulses from a single spectrogram,” presented at the Conference
on Lasers and Electro-Optics, Baltimore, MD, 1997.

, “Real time measurement of ultrashort laser pulses using principal
component generalized projectiondEEE J. Select. Topics Quantum
Electron, vol. 4, pp. 278-284, 1998.

K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-
resolved optical gating with the use of second-harmonic generation,”
Opt. Soc. Amer. Bvol. 11, pp. 2206-2215, 1994.

J. Paye, M. Ramaswamy, J. G. Fujimoto, and E. P. Ippen, “Mea-
surement of the amplitude and phase of ultrashort light pulses from
spectrally resolved autocorrelatiorQpt. Lett, vol. 18, pp. 1946-1948,
1993.

R. Trebino, K. W. DelLong, D. N. Fittinghoff, J. N. Sweetser, M. A.
Krumbugel, and D. J. Kane, “Measuring ultrashort laser pulses in the
time-frequency domain using frequency-resolved optical gatiRgV.

Sci. Instrum,. 1997.

Y. Yang, N. P. Galatsanos, and H. Stark, “Projection-based blind
deconvolution,” J. Opt. Soc. Amer. Avol. 11, pp. 2401-2409,
1994.

E. Yudilevich, A. Levi, G. J. Habetler, and H. Stark, “Restoration of
signals from their signed Fourier-transform magnitude by the method
of generalized projectionsJ. Opt. Soc. Amer. Avol. 4, pp. 236-246,
1987.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computirgnd ed.
Cambridge, U.K.: Cambridge Univ., 1995.




KANE: RECENT PROGRESS TOWARD REAL-TIME MEASUREMENT OF ULTRASHORT LASER PULSES 431

[25] K. W. DelLong, C. L. Ledera, R. Trebino, B. Kohler, and K. R. Wilson,[30] C. W. Siders, J. L. W. Siders, and A. J. Taylor, “Femtosecond coherent
“Ultrashort-pulse measurement using noninstantaneous nonlinearities: spectroscopy at 800 nm: MI-FROG measures high-field ionization rates
Raman effects in frequency-resolved optical gatin@pt. Lett, vol. in gases,” presented at the Ultrafast Phenomena XI, 1998.

[26] iO,V\rl)pb4fG—48EF1, :_Lr99t5)‘. 4 W. E. White. “Simult [31] J. L. A. Chilla and O. E. Martinez, “Direct determination of the

. W. DeLong, R. Trebino, an . E. ite, “Simultaneous recovery moli nd bh f femn nd liaht pul L L1
of two ultrashort laser pulses from a single spectrograinOpt. Soc. a p;;ﬁelalggpl ase of femtosecond light pulsept. Lett, vol. 16,
Amer. B vol. 12, pp. 2463-2466, 1995. pp- ' :

[27] A. K. Jain, Fundamentals of Digital Image Processjrst ed. Engle-
wood Cliffs: Prentice Hall, 1989.

[28] H. Anton, Elementary Linear Algebra2nd ed. New York: Wiley,
1977.

[29] C.W. Siders, A. J. Taylor, and M. C. Downer, “Multi-pulse interferomet-
ric frequency-resolved optical gating: Real time phase-sensitive imaging
of ultrafast dynamics,” vol. 22, pp. 624-626, 1997. Daniel J. Kane, for photograph and biography, see this issue, p. 420.



