Recent Projects of Building Integrated Photovoltaic in Hong Kong

Edward W. C. LO
Department of Electrical Engineering,
The Hong Kong Polytechnic University,
Hung Hom, Hong Kong

Abstract

In Hong Kong, a number of medium-scale Building Integrated Photovoltaic (BIPV) systems were completed in last few years. These BIPV projects included government building, commercial building, schools, institutional building. The power rating the BIPV system for each project is in the order of tens of kilowatts. Most of these BIPV systems are gird-connected type to eliminate the bulky and troublesome battery banks. Some of these projects are retrofitting on existing buildings; while some are parts of a new building. The paper will give details on the design of these PV systems in Hong Kong, including system configurations, design considerations, protections, grid-connection interfacing, power quality issues, their performance, technical difficulties encountered, and experience gained.

Keywords: Renewable energy, solar energy, photovoltaic, BIPV, grid-connection

1. INTRODUCTION

There has been a general public impression that application of solar energy is not relevant to urban areas with high population density. However, "sustainable development" has become the worldwide trend of city development, lowering energy consumption and reducing emission of CO₂ now is a major issue of concern for both engineers as well as the general public.

With a careful design in suitably selected applications, building integrated photovoltaic (BIPV) can achieve this aim; this is especially true for office buildings in tropical and sub-tropical cities. For BIPV systems in Hong Kong situation, it is believed that AC grid-connected is the best choice because of several unique geographical, economical and social characteristics of Hong Kong. A brief schematic diagram on the concept of these grid-connected BIPV systems is illustrated in Figure 1.

In designing an AC grid-connected BIPV system for Hong Kong, engineers have to consider a lot of variable factors such as local climate situation, property location, shadow profile, orientation of PV panels, panel configuration (type of wiring and/or using more than one type of panels), inverter configuration, etc. It is better to make a choice based on a detailed calculation to find the optimized system configuration for a BIPV system.

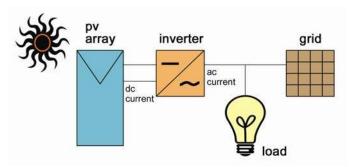


Figure 1: General schematic diagram of Grid-connect BIPV system

2. BENEFITS OF BIPV SYSTEMS

Conventionally, the major obstacles in application of photovoltaic technology are [1]:

- The high capital cost of the PV panels
- The requirements of a large and bulk supporting structure and its associated cost,
- The requirements of a large and bulk battery set to carry the system during night time and bad weather conditions, and
- The high capital, replacement and maintenance cost of the battery set, which needs regular maintenance and be replaced every 3 to 5 years.

However, all these problems are not that critical in the BIPV case. First of all, the high capital cost of PV panels is large

offset by the cost of the otherwise required curtain glass panels or metallic cladding panels, which are also expensive. And this is referred as the "avoided" cost. Secondly, the mounting and supporting requirements of the PV panels in BIPV systems are largely the same as ordinary glass panes. Hence the original supporting structures for the panes can be used, with the exception that some minor modifications for allowing the routing of wires. The two problems related with the battery set can be totally eliminated, if a grid-connection to the BIPV system is established.

In addition to the avoidance of the conventional obstacles in application of PV technology, grid-connected BIPV system has one further merit when it is applied to commercial buildings of tropical or sub-tropical areas. In these buildings, the major portion of the consumed electrical energy is for air-conditioning plant; hence the peak electricity demand will occur at about noon or early afternoon time in summer. This peak time obviously matches with the timing of peak electricity generated from the BIV system [1]. Therefore, the BIPV system does not only cut down the total electricity energy drawn from the grid, but also cuts down the peak KVA demand electrical power.

3. SUMMARY OF BIPV PROJECTS IN HONG KONG AND ITS DIRECTIONS

In Hong Kong, a number of medium-scale BIPV systems were completed in last few years. These BIPV projects included government building, commercial building, schools, institutional building. The power rating the BIPV system for each project is in the order of tens of kilowatts. Most of these BIPV systems are gird-connected type to eliminate the bulky and troublesome battery banks. Some of these projects are retrofitting on existing buildings; while some are parts of new buildings.

Details of these projects will be given in the case studies of the following section

4. CASE STUDIES

4.1 BIPV systems on CYC building of HKU

This is a retrofitting project, in which PV panels of total area 25 m \times 4 m (H \times W) were installed on a south-west facing vertical façade of the CYC building in the University of Hong Kong. The location of the building is by the side of hills in the Western district of Hong Kong Island, the building is an office building and the BIPV system is a grid-connected BIPV system. The system is also act as a thermal buffer to reduce the heat gain of the building from the strong sunrays during the sun setting period. The system was made from two types of

thin-film PV panels; each type of panels occupied 25 m \times 2 m (H \times W) vertical area. Thin film panel has the advantages of low cost and the external appearance is similar to those normal curtain wall glass panes. In fact, the mounting of these panels in the project was exactly the same as those for normal curtain wall glass panes, and modular structure concept is used in the assembly process.

Totally two inverters are used in the system, each for each type of the thin film panels; hence basically it is two electrically independent BIPV systems. The total peak power generated is about 4.3 kWpeak, and the average annual yield of the system is about 3,200 kWh. A comprehensive monitoring system was installed there to measure the local weather conditions, global & in-plane solar irradiance, and DC & AC current, voltage and power. The system was completed in 2001 and it has been satisfactorily operated in the last few years.

4.2 BIPV systems of Hong Kong Science Park

Hong Kong Science Park (HKSP) is an essential state-of-the-art infrastructure that promotes the development of innovation and technology in Hong Kong. It is designed to accommodate companies of all sizes and stages of development and to promote interaction and innovation at both a local and global level. It is located on a 22-hectare site on the Tolo Harbour waterfront, in Pak Shek Kok of Shatin in Hong Kong.

Table 1: Details of the BIPV installed system for Hong Kong Science Park Phase 1.

Phase	Building	Type of Building	BIPV
			System
			Capacity
			(kW)
1a	2	Core Building	18
1b	4a	Photonic Centre	45
1b	4b	Wireless Centre	25
1b	5	Innovation Centre	50
1c	6	Biotechnology	15
		Centre	
1c	7	Corporate Building	15
1c	8	Corporate Building	15
1c	9	Core Building	15
		Total:	198

HKSP phase 1 is to be comprised 10 buildings. Buildings 1, 2 and 3 are well on schedule and officially opened for operation in June 2002. The remaining buildings will be completed by the end of 2004.

The PV systems for HKSP phase 1 with a total capacity about 198kW to grid connection were planned to be installed in eight buildings. Details of BIPV installed capacity are shown in

Table 1.

The design and installation for the BIPV laminates are based on building integrated approach. The laminates shall be parts of the building construction materials and fit for the overall architectural requirements in outlook, protection, and thermal insulation and harmonize with building construction.

The BIPV systems in HKSP can be divided into two types: roof rack BIPV systems and sun shading BIPV systems. For the sun shading BIPV systems, they were designated as the sites for the photovoltaic "skin". BIPV was incorporated into the design after the building's general appearance had already been decided upon, so the installation was made to harmonize with the established design concept. For the roof-top BIPV systems, BIPV modules have been designed as sun shelter proofs to the buildings. They can be harmonized with existing building architecture design.

All BIPV systems were designed together with all other parts of the building and the monitoring of the BIPV systems for the buildings are also part of the energy management system of the respective buildings.

Details of these systems for individual buildings in Phase 1a, 1b and 1c are shown in Table 2a to Table 2c.

Table 2a: Details of the systems for individual buildings for HKSP Phase 1 – Phase 1a

Phase 1a - Sun Shading BIPV Systems for Building 2

Location	Middle section of the building		
Orientation	60 deg to horizontal facing		
	south-west		
Type of panels	Monocrystalline		
No. of panels per	6		
string			
No. of strings	20		
Total no. of panels	120		
Total PV panel area	129.8 m ²		
System rated power	18.48 kW		
No. of inverters	One complete set of grid		
	connected inverter		

Table 2b: Details of the systems for individual buildings for HKSP Phase 1 – Phase 1b

Phase 1b - Roof and facade of BIPV Systems for Buildings 4a, 4b & 5

Building	4a	4b	5	
Application	Façade and roof sun proof shelter and			
	area			
Location	Façade and ro	oofing		
Orientation	Facing SE Facing Facing			
	& NW	SE &	SW and	
		NW	NE	
Type of	Monocrystall	ine Silicon so	olar Cell	
panels				
Rated power	45kW	25kW	50kW	
Total no. of	148+148	92+92 for	36+36 for	
panels	for SE &	SE &	SE & NW	
	NW roof	NW roof	roof	
	80+80 for	120 for	252 for	
	SE & NW	SE	SW façade	
	façade	façade		
Total panel	868 m^2	544 m^2	876 m^2	
area				
No. of	1 set of grid connected inverter for			
inverters	each building			
Type and size >100kW electric load of chil			chiller plant	
of customer's	for each building.			
load				

Table 2c: Details of the systems for individual buildings for HKSP Phase 1 – Phase 1c

Phase 1c-: Roof rack BIPV systems for Buildings 6 to 9

,		, ,	C		
Building	6	7	8	9	
Application	Roof sun proof shelter area				
Location	Roofing	1			
Orientation	Fitting wi	th Roof lay	out		
Type of	Monocrys	stalline Silio	con solar (Cell	
panels					
Total no. of	208	160	160	180	
panels					
Total PV	177	136	136	153	
panel area					
(sq.m)					
Inverter	One com	plete set o	of grid co	nnected	
Number &	inverter,	15 kW 0	output fo	or each	
Size	building				
Type and size	>100kW electric load of chiller plant				
of customer's	for each building.				
load					

4.3 BIPV systems of Wan Chai Tower

It is a retrofitting project; three BIPV systems were added onto a government office building known as Wan Chai Tower in the Wan Chai area on Hong Kong Island. The three systems are Roof Rack BIPV system, Sun Shading BIPV system and Skylight BIPV system. A comprehensive monitoring system was installed there to measure the local weather conditions, global & in-plane solar irradiance, UV irradiance, and DC & AC current, voltage and power, current and voltage harmonic contents. The system was completed early this year and then immediately a one-year of close monitoring period was started. From the collected data, the performance of BIPV systems at different part of a building in Hong Kong situation will be analyzed. Details of these three systems are shown in Table 3, while a photo of the Roof Rack BIPV system is shown in Figure 2.

Table 3: Details of the systems for Wan Chai Tower System 1: Roof Rack BIPV System

System 1: Rooj Rack BIF v System			
Location	Roof		
Orientation	10 degree to horizontal,		
	facing south		
Type of panels	Polycrystalline		
No. of panels per string	18		
No. of strings	7 string per group, 2		
	groups		
Total no. of panels	252		
Total PV panel area	164.70 m ²		
System rated power	20.16 kW		
No. of inverters	1 inverter per group		

System 2: Sun Shading BIPV System			
Location	Middle section of the		
	building		
Orientation	Vertically facing south		
Type of panels	Monocrystalline		
No. of panels per string	21		
No. of strings	8 string per group, 2		
	groups		
Total no. of panels	336		
Total PV panel area	231.84 m ²		
System rated power	20.16 kW		
No. of inverters 1 inverter per group			
System 3: Skylight RIPV System			

System 3: Skylight BIPV System		
Location	Ground floor lobby	
Orientation	Vertically facing south	
Type of panels	Monocrystalline	
No. of panels per string	5	
No. of strings	7 string	
Total no. of panels	35	
Total PV panel area	95.98 m ²	
System rated power	10.08 kW	
No of inverters	1 inverter per group	

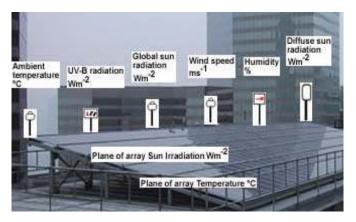


Figure 2: Photo of the Roof Rack BIPV system on roof of the Wan Chai Tower in Hong Kong (locations of some of the monitoring sensors are indicated)

4.4 BIPV system on a building at Peking Road

It is a commercial project, a BIPV system was installed into a 29-storey commercial building including shopping arcade, restaurant and office located at Peking Road in Tsim Sha Tsui. The PV panels of total area 200 m² were installed on a south-east facing vertical top of this building. The BIPV system is standalone system with batteries to drive motors for the blind.

The BIPV system was made from 144 numbers of double laminated 8+8mm heat-strengthen glass PV module; each of module occupied 72 numbers of 100x100mm silver colour polycrystalline silicon cell.

One inverter is used in the system. The total peak power generated is about 7.2 kWpeak. The system was completed in Dec 2002.

4.5 BIPV Systems of Ma Wan School

In 2003, fours BIPV systems are being installed on to a new primary school in the Ma Wan Island of Hong Kong. It is a completely integrated system, all the BIPV subsystems were designed together with all other parts of the building, and the monitoring of the BIPV subsystems is also part of the energy management system of the building. Two of the BIPV systems are used deck shadings, one is used as roof-light and the fourth one is used on canopy. These systems will also be used for educational purposes for teaching students on the passive and active uses of solar energy. Details of these four systems are shown in Table 4, while a computer simulated image of the completed school is shown in Figure 3. The whole project will be completed by the end of this year.

Table 4: Details of the systems for the Ma Wan School

System 1

Application	Deck shading	
Type of panels	CIS (Copper Indium Diselenide) thin film	
No. of panels per string	5	
String VDC	83	
No. of strings	24	
Total no. of panels	120	
System rated power	2.4kW	
No. of sub-system	6	

System 2

Application	Deck shading
Type of panels	CIS (Copper Indium Diselenide)
No. of panels per string	15
String VDC	249
No. of strings	24
Total no. of panels	360
System rated power	14.4kW
No. of sub-system	1

System 3

bysichi 5		
Application	Roof Light	
Type of panels	Polycrystalline	
No. of panels per system	24-28	
System VDC	294-319	
No. of inverters	2	
Total no. of panels	52	
System rated power	2.0kW	
No. of sub-system	2	
Total Annual yield	4,855kWh	

System 4

Application	Canopy	
Type of panels	Amorphous Silicon	
No. of panels per string	3	
String VDC	136	
No. of strings	7	
Total no. of panels	21	
System rated power	2.4kW	
No. of sub-system	3	

Figure 3: The completed Ma Wan Primary School with 3 BIPV

4.6 Others

Apart from the above-mentioned projects, some BIPV systems in different types of building under construction are summarized in Table 5.

Table 5: Summary of other BIPV systems in Hong Kong

Table 5: S	ummary of otl	ier BIPV systems in	Hong Kong
Project	Project	PV size	Completion
	type		date
NTS Police	Standalone	15.84kWp	Mar 2005
headquarters	BIPV	polycrystalline	
at Tsuen	system	PV modules	
Wan			
Police and	Integrated	80kWp	Jul 2004
Fire stations	PV	polycrystalline	
at Chok Ko	Roofing	PV modules	
Wan	grid		
	connected		
	system		
Police Dog	Standalone	5kWp	Oct 2003
School at	BIPV	monocrystalline	
Sha Leng	Skylight	PV modules	
	system		
Fire Station	Standalone	5kWp	Oct 2003
at Sha Tau	BIPV	monocrystalline	
Kok	Skylight	PV modules	
	system		
Grandeur	Integrated	14kWp	May 2003
Terrace	PV	single-crystalline	
(PSPS)	Roofing	PV modules	
Residential	grid		
Building at	connected		
Tin Shui	system		
Wai			
Kadoories	Integrated	4kWp 60 m ²	Feb 2002
Farm	PV	EFG crystalline	
Reception	Roofing	PV modules	
Building			

5.0 TYPICAL RESULTS

Typical monthly energy yields for grid-connected BIPV systems are shown in Chart 1. One of the system is a roof-top mounted BIPV system with PV panel laid almost horizontally, while in the other system the PV panels are laid vertically and facing south. Both of them are grid-connected systems, hence the energy yields are the net AC energy generated into the grid after deducting the AC energy consumption of the systems.

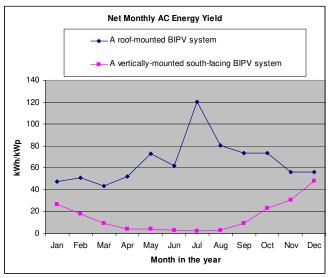


Chart 1: Typical monthly energy yield of BIPV systems

6.0 THE WAY FORWARD

In early 2003, the Electrical Mechanical Services Department (EMSD) of Hong Kong Special Administrative Region (HKSAR) Government released a consultancy report — The Stage 1 Report of the "Study on the Potential Applications of Renewable Energy in Hong Kong". The study in the report identified that photovoltaic, wind energy, energy from waste and building integrated fuel cell are four potential sources of renewable energy for wide scale applications in Hong Kong. Furthermore, the study also suggested that the initial targets of local renewable energy contribution to annual power demand should be set at: 1% by 2012; 2% by 2017; and 3% by 2022.

At the same time, the Buildings Department of the HKSAR Government is also giving incentive to building developers to incorporate "green features" in to buildings. Therefore integrating BIPV system into green features of building should be the way forward for Hong Kong in the aspect of applications of solar energy. This approach will enable PV panels to serve multiple purposes, and also reduce the *marginal* cost of the BIPV system per kW of installed capacity, or per kWh of expected annual yield. The authors are expecting that after a few demonstration projects from the Government and the public sector, private building developers

will join into this wave of applications of BIPV systems.

Surely, grid-connected BIPV systems should be the main stream of BIPV systems in Hong Kong situation, instead of stead alone system. This will take away the high initial cost, bulky space requirements and troublesome maintenance issues associated with the battery storage system. However, this needs some change of the local regulations of electricity supply.

7.0 CONCLUSIONS

In this paper, the concepts and benefits of BIPV system were presented. Several major cases of completed or ongoing BIPV systems in Hong Kong were detailed. The development directions in the near further for Hong Kong were also discussed. Renewable energy is surely becoming a more significant part in our daily life in order to achieve a sustainable development, and we will see more and more BIPV systems will be incorporated into existing and new buildings.

REFERENCE

- [1] E.W.C. Lo, J. Close & K.H. Lam, "Building Integrated Photovoltaic Technology Technical Issues and Local Experience", Symposium on Energy and Environment in the New Era, Hong Kong, June 2001.
- [2] E.W.C. Lo, K.H. Lam & J. Close, "Construction of Two 25m Tall Vertical Arrays with 2nd Generation Amorphous Silicon Photovoltaic Technologies", 17th European Photovoltaic Solar Energy Conference, Munich, October 2001.
- [3] Camp Dresser & McKee International Inc.; Stage 1 Report of the "Study on the Potential Applications of Renewable Energy in Hong Kong", available for downloading from: http://www.emsd.gov.hk/emsd/e_download/wnew/stage1report.pdf