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Abstract

Introduction: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) has continued
development and standardization of methodologies for biomarkers and has provided an increased
depth and breadth of data available to qualified researchers. This review summarizes the over 400
publications using ADNI data during 2014 and 2015.

Methods: We used standard searches to find publications using ADNI data.

Results: (1) Structural and functional changes, including subtle changes to hippocampal shape
and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are
detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal
b-amyloid deposition (AB+), biomarkers become abnormal in the order predicted by the amyloid
cascade hypothesis; (3) Cognitive decline is more closely linked to tau than AP deposition; (4)
Cerebrovascular risk factors may interact with AP to increase white-matter (WM) abnormalities
which may accelerate Alzheimer’s disease (AD) progression in conjunction with tau
abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and
executive function and may underlie psychiatric symptoms; (6) Structural, functional, and
metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading
of AP pathology along WM tracts predict known patterns of cortical AP deposition and declines in
glucose metabolism; (7) New AD risk and protective gene loci have been identified using
biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI)
subjects are heterogeneous and include groups typified not only by “classic” AD pathology but
also by normal biomarkers, accelerated decline, and suspected non-Alzheimer’s pathology; (9)
Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves
the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in
cognition has been improved and surrogate outcome measures using longitudinal structural
magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in
machine learning techniques such as neural networks have improved diagnostic and prognostic
accuracy especially in challenges involving MCI subjects; and (12) Network connectivity
measures and genetic variants show promise in multimodal classification and some classifiers
using single modalities are rivaling multimodal classifiers.

Discussion: Taken together, these studies fundamentally deepen our understanding of AD
progression and its underlying genetic basis, which in turn informs and improves clinical trial
design.
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1. Introduction

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) began in 2005 as a naturalistic
longitudinal study to develop and validate biomarkers for subject selection and as surrogate
outcome measures in clinical trials of Alzheimer’s disease (AD)-modifying therapies. The
initial 5-year study, known as ADNI-1, enrolled 800 participants from 56 study sites in the
United States and Canada, in the three groups: normal cognitive aging (CN), mild cognitive
impairment (MCI), and early Alzheimer’s disease (AD) [1]. This was extended by a Grand
Opportunities grant (ADNI-GO) in 2009, and a competitive renewal of ADNI-1 (ADNI-2) in
2011 [1] with each successive grant enrolling earlier stage patients and incorporating newly
developed techniques. A further competitive renewal, ADNI-3, extends the study for another
5 years from 2016 to 2021 [2].

ADNI is structured as a public-private partnership overseen by the Private Partner Scientific
Board comprising representatives of private, for-profit entities, and nonprofit organizations
which facilitates precompetitive collaboration [3]. ADNI has been described as an exemplar
of how these partnerships can impact both clinical and basic science research [4]. First, it
has systematically optimized biomarkers for clinical trials through validation, and
reproducibility studies, statistical analysis, and the avoidance of bias [5]. Second, ADNI has
been an unmitigated success from the standpoint of generating new knowledge about the
underlying physiopathology and genetic contributions to AD [6]. These advances have been
largely predicated on the development of standardized protocols for use in multiple centers,
the emphasis of the initiative on studying multiple modalities, and a policy of open data
sharing [7]. ADNI’s approach has proved so successful that its framework has provided
inspiration for similar consortia around the world. These include worldwide studies modeled
on ADNI [8], as well as initiatives focused on biomarker discovery for diseases such as
multiple sclerosis and Parkinson’s disease [1], and Down’s syndrome [9].

The impact of ADNI’s policy of open data sharing cannot be overemphasized [10]. All data
generated by the eight ADNI cores [1] are deposited in the Laboratory of Neuro Imaging
(LONI) at the University of Southern California, an informatics infrastructure which, after
quality-control procedures, disseminates ADNI data to a continually growing number of
investigators in the wider scientific community [11]. LONI has received nearly 1800
applications for data from scientists from multiple disciplines ranging from neuroscience to
radiology to genetics to computer science. These investigators have downloaded over 7
million neuroimages and clinical data sets from the ADNI repository [11] resulting in the
burgeoning number of scientific studies published using ADNI data over the past decade

(Fig. 1).

The purpose of this review was to provide a comprehensive overview of the advances in the
field of dementia from all studies published (to the best of our knowledge) in 2014 and 2015
using ADNI data (approximately 400). We hope that this will allow investigators to
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determine what analyses have already been done on ADNI data to help prevent duplication
and to identify which questions remain to be answered. Previous successive reviews
compiled summaries of publications using ADNI data until the end of 2011 [12], mid-2012
[13], and the end of 2013 [1]. The complete list of ADNI studies may be found at http://
adni-info.org/Scientists/ ADNIScientistsHome/ADNIPublications.html.

The review is structured in a thematic manner in three parts to reflect evolving views of AD
progression. The first part outlines primarily technical advances made by the ADNI Clinical,
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Biomarker,
and Genetics cores that do not pertain directly to disease progression or the improvement of
clinical trials. The second part takes a holistic approach to the discussion of disease
progression, incorporating advances from many ADNI cores. This section addresses in
particular (1) the extension of the disease continuum to include the preclinical stage; (2) the
importance of AP positivity at even preclinical stages; (3) the concept of the disease
disrupting structural, functional, and metabolic connectivity in the brain; and (4) the role of
white-matter (WM) disease in alternative pathways to dementia. The final part of the study
discusses the application of these advances in our knowledge of disease progression to the
improvement of clinical trials for AD preventive or modifying therapies, the ultimate goal of
ADNI.

2. Cognitive and clinical aspects of Alzheimer’s disease

As cognition lies at the heart of AD, so too does cognitive characterization of the ADNI
cohort. This is central to the development of all other biomarkers and to the improvement of
clinical trial efficiency. With the focus of disease intervention shifting to the presymptomatic
phase, there has been substantial effort in adapting cognitive tests to improve their sensitivity
at early disease stages. Recognition that CN and MCI groups selected on the basis of
cognition in fact represent a heterogeneous mix of pathologies has spurred studies to identify
the basis of that heterogeneity and ultimately increase the power of clinical trials by
selecting cohorts with defined pathology. Other studies have identified cognitive measures
capable of predicting future decline. Beyond improving clinical trial efficiency, studies have
investigated the associations between neuropsychiatric symptoms, or clinical risk factors in
AD, and imaging and fluid biomarkers.

During ADNI-2, ADNI’s Clinical Core, led by Dr. Paul Aisen, focused on characterizing the
trajectory of subjects in the early stages of disease. This required the development of
cognitive and functional measures able to detect the first of subtle cognitive changes [14]. A
subjective memory concern (SMC) group with self-reported memory problems was enrolled
in ADNI-2 to facilitate investigation of the very earliest cognitive changes. This group was
selected using a quantitative approach based on 12 episodic memory items from the self-
rating form of the 20 item Cognitive Change Index [15—17]. The Clinical Core then used the
self and informant versions of the Everyday Cognition instrument to study the relationship
to AD biomarker measures [18]. Across all groups, a total of 1182 subjects were enrolled
and followed during ADNI-2 (Table 1), many of whom will be followed in the next phase of
the study which will incorporate computerized cognitive assessments.
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Psychometric analysis of cognitive tests

Psychometric analysis was applied to cognitive tests to improve their reliability, to allow the
comparison of different cognitive tests, and to increase understanding of the cognitive
processes underlying each test. The comparison of studies of cognitive decline is often
hampered by the use of multiple cognitive tests. Gross et al. [19] derived summary factors
based on the strength of association between cognitive change on a particular test and
changes in cortical thickness and hippocampal volume biomarkers. These represented the
average rate of cognitive decline and allowed the direct comparison of longitudinal decline
on different cognitive tests. Trzepacz et al. provided a conversion table permitting translation
of scores between the Montréal Cognitive Assessment and Mini—-Mental State Examination
(MMSE) [20]. Balsis et al. [21] determined the correspondence between scores on the
Alzheimer’s Disease Assessment Scale—cognitive (ADAS-cog), MMSE, and Clinical
Dementia Rating—Sum of Boxes (CDR-SB) measures in the entire ADNI cohort (Fig. 2).
Their analysis suggested that ADAS-cog and CDR-SB were more precise than MMSE at
measuring the severity of cognitive dysfunction. The reliability of ADAS-cog scores for
measuring change in more cognitively intact subjects between baseline and 1 year was
improved by reweighting the scale subtests for AD subjects, but not MCI subjects, although
overall reliability remained low (0.39-0.61 for MCI subjects and 0.53-0.64 for AD subjects)
[22].

Application of a psychometric model to the free recall task of ADAS-cog suggested that
impaired patients have deficits in both long-term memory encoding, and short-term memory
retrieval, in addition to poorer transfer into long-term memory of items successfully
retrieved from short-term memory, and poorer retention of items encoded into long-term
memory after long delays [23]. Their immediate recall of encoded words and long-term
memory were unaffected. Using a psychometric dual retrieval model, Brainerd et al. [24]
found that differences in reconstructive retrieval, rather than recollective retrieval in the
delayed recall component of the Rey Auditory Verbal Learning Test (RAVLT) distinguished
MCI from AD subjects, and predicted conversion of MCI to AD more accurately than APOE
e4 status, supporting the idea that declines in nonrecollective processes characterize memory
loss in AD. A comparison of methods for quantifying how quickly a list of words is learned
in a verbal learning test concluded that simple slope calculations, while less highly
correlated with structural brain changes, offered ease of calculation advantages over
regression-based methods [25]. Finally, psychometric analysis showed that the RALVT 30-
minute delayed recall score was the best predictor of AP pathology with an accuracy equal
to the best imaging biomarker, regional ['8F]-fluorodeoxyglucose (FDG) PET measures
(area under receiver operating curve [AUC] = 0.67 for both) [26] and that the addition of
imaging biomarkers did not significantly improve either predictor. Overall, cognitive tests
were more predictive of AP status in APOE4 — subjects.

2.2. Associations between cognitive measures and AD biomarkers

Several studies investigated the underlying neural correlates of cognitive measures. In early-
stage risk groups (CN to early MCI [EMCI]), AP was highly associated with APOE
genotype, whereas EMCI subjects characterized by subtle memory performance changes
were associated with decreases on structural MRI and metabolism on PET [16]. Episodic
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memory decline in MCI patients was associated with hippocampal atrophy and basal
forebrain degeneration in AB+ subjects [27], and the association was mediated by
hypometabolism in domain-specific cortical networks. Cognitive impairment in MCI
subjects in the absence of hippocampal volume loss was accounted for by changes in
hippocampal texture [28]. In AB— MCI subjects, episodic memory decline was correlated
with hypometabolism in multiple regions outside the temporoparietal areas associated with
memory deficits in AB+ MCI subjects [29]. Attentional control was associated with basal
forebrain degeneration in MCI subjects [27]. Impairment of daily function was associated
with greater hypometabolism in middle frontal and orbitofrontal regions [30] and temporal
atrophy [31]. Worsening impairment of instrumental activities of daily living was associated
with baseline middle frontal and posterior cingulate hypometabolism [30] and predicted by
baseline parietal and temporal atrophy [31].

2.3. Associations between neuropsychiatric symptoms and AD biomarkers

Most patients with dementia suffer from neuropsychiatric symptoms (NPSs) such as anxiety,
depression, apathy, and psychosis. MCI subjects differed in their trajectories of NPSs, with
one group characterized by an initial low NPS burden that remained stable, a second group
by an initial moderate NPS burden that worsened, and a final group with an initial high NPS
burden that decreased over 2 years [32]. The group with worsening symptoms had the most
rapid declines in cognition and function and had a 1.74 fold chance of being diagnosed with
AD than the stable group.

Anxiety and irritability are common NPSs endorsed by cognitively impaired subjects.
Anxiety was correlated with greater AP deposition [33]. Anxiety severity was correlated
with increased rate of progression from MCI to AD above and beyond the effects of
depression, memory loss, or atrophy and predicted greater rate of entorhinal cortex atrophy
[34]. Therefore, anxiety may accelerate cognitive decline by affecting the entorhinal cortex
and influencing AP deposition. Irritability was correlated with AP deposition in parietal
regions in AD subjects [33].

Approximately 40% of AD subjects suffer from depressive symptoms. Depression may
either be a risk factor for developing dementia, a symptom of dementia, or an early reaction
to cognitive loss. MCI converters (MClIc) with depressive symptoms had earlier ages of
progression [35] and those with chronic depressive symptoms had a 60% shorter progression
time to AD than subjects without this history of depression [36]. These symptoms may exert
their effect via modulation of AP load, tau pathology, brain structure, and/or metabolism.
Amnestic MCI patients with a lifetime history of major depression had higher AP deposition
in the frontal cortex than controls [37]. Current depressive symptoms in AR+ MCI subjects
were associated with a higher AP load in the frontal, temporal, and insular cortices and with
hypometabolism in the frontal cortices compared with nondepressed controls [38].
Depressed AD subjects had a greater correlation between levels of total tau (t-tau) and
cortical thickness in the precuneus and parahippocampal cortex [39]. MCI subjects with
depressive symptoms who converted to AD within 2 years had greater left hippocampal
volume loss compared with converters without depressive symptoms [35]. Chronic
depressive symptomatology was associated with accelerated cortical atrophy in the frontal
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lobe and anterior cingulate [36], and AD subjects with depressive symptoms had greater
cortical thinning in the left parietal and temporal regions [39]. Finally, CN, but not MCI or
AD, subjects with subsyndromal depression had greater frontal WM lesion volume and

smaller orbitofrontal cortical volumes than controls [40].

Psychosis in the form of symptoms, such as delusions, physical aggression, and
hallucinations, has long been recognized in AD and is now known to be an independent
predictor of more rapid cognitive decline. Substantial evidence suggests that AD with
psychosis is a distinct variant of AD with neuropathological specificity and localization [41].
Current psychosis in AD subjects was associated with reduced orbitofrontal brain
metabolism, and functional decline, and decline on the MMSE [42], and the onset of
psychosis in MCI or AD subjects was most significantly associated with increased atrophy
in the lateral frontal lobe [43]. Delusional MCI and AD subjects had greater atrophy in the
right frontotemporal regions compared with those without delusions [44]. Hallucinations and
apathy also appear to be associated with both changes in brain structure and in metabolism.
MCI patients with apathy had decreased metabolism in the posterior cingulate cortex, a
landmark region for hypometabolism in AD, compared to subjects without apathy [45].
Greater temporal and parietal atrophy at baseline in CN, MCI, and AD subjects was
associated with worsening apathy and hallucinations over 3 years [46]. These studies support
the idea that psychosis predominantly affects frontal brain regions, with concomitant
reductions in regional glucose metabolism, resulting in an acceleration of cognitive decline.

2.4. Other clinical risk or protective factors

A variety of other clinical factors have been associated with accelerated cognitive decline or
in the preservation of cognition. Sleep breathing abnormalities such as snoring or complete
airway obstruction have a high prevalence in the elderly and may be associated with
cognitive impairment. Subjects with sleep-disordered breathing had an earlier age of
progression from both CN to MCI, and MCI to AD than subjects without sleep-disordered
breathing, but treatment with continuous positive airway pressure almost completely offset
this effect and delayed MCI onset [47]. Epidemiological studies have suggested a link
between dietary supplementation with fish oil, cancer history, and educational attainment,
among other factors, and preservation of cognition. The use of fish oil supplements,
containing omega-3 polyunsaturated fatty acids, in CN APOFE4- subjects, was associated
with preserved cognition, lower cortical gray-matter (GM) and hippocampal atrophy, and
lower ventricular expansion, suggesting that fish oil supplementation may influence
cognition by inhibiting brain morphology changes [48]. A history of cancer was associated
with a later onset age of AD. Across the ADNI cohort, the number of previous cancer
incidences incrementally increased the age of AD onset, from 81.7 to 84.3 to 85.7 years for
subjects with zero, one, and two previous cancer incidences, respectively, and patients with a
history of cancer showed regional atrophy in the frontal gyrus compared to patients with no
cancer history [49]. These results suggest that alternative mechanisms to the metabolic
survival theory (positing the metabolic survival of GM in these patients due to the presence
of cancer cells that do not undergo apoptosis) may account for the delay in the onset of
dementia in cancer survivors. The protective effect of educational attainment on cognition
has led to the concept of cognitive reserve although the mechanisms underlying cognitive
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reserve remain uncertain. Higher education and larger hippocampal volume were
significantly associated in AD but not CN or MCI subjects [50]. However, large intracranial
volume, a measure of brain reserve, increased the risk of progression to AD and increased
the rate of cognitive decline and brain atrophy in male MCI APOE4 noncarriers [51].

Falls are common in cognitively impaired elderly and can have serious consequences—
around 13% of falls on the ADNI cohort are reported to be either serious or severe adverse
events [52]. Alzheimer’s medication use was associated with hazard of fall after adjusting
for age and Beers list medications use, suggesting that clinicians need to be aware of this
additional risk when managing medications for AD patients [52]. In addition, the use of
medications with high anticholinergic activity in CN subjects was associated with decreases
on structural MRI and metabolism on FDG PET, in addition to the known risk of these drugs
for cognitive decline [53].

2.5. Conclusions

Recent publications of predominantly clinical and cognitive analyses have steadily expanded
our knowledge in numerous areas. Psychometric analyses have resulted in methods of
correlating cognitive tests, characterized the nature of memory loss in AD, and even shown
that cognitive measures can predict AP pathology. Neuropsychiatric symptoms in MCI
subjects were associated with more rapid decline and generally found to accelerate atrophy,
increase AP burden, and decrease metabolism. Psychosis symptoms appeared to mainly
affect frontal brain regions. The neuroprotective effects of education, cancer history, and fish
oil suggested by epidemiological approaches were supported by studies investigating their
association with brain morphology and APOE4 status. Finally, changes on neuroimaging
biomarkers in CN subjects were used to demonstrate the adverse effects of anti-cholinergic

medications.

3. Magnetic resonance imaging

The ADNI MRI Core has played a central role in the development of biomarkers for clinical
trials. Jack et al. [54] reviewed the contributions of the MRI Core over the course of
ADNI-1, ADNI-GO, and ADNI-2. Major accomplishments of this Core include the
development of standardized protocols for use across different scanner platforms, quality-
control methodologies, and algorithms to measure longitudinal change for use as potential
outcome measures in clinical trials. The MRI Core has been instrumental in standardizing
imaging approaches for clinical trials in addition to structural MRI that reflect both
technological development and evolving views of disease progression. These include
sequences to image cerebrovascular disease (Fluid Attenuation Inversion Recovery
[FLAIR]) and cerebral microbleeds (T2* gradient echo), and functional measures such as
perfusion MRI (arterial spin labeling), diffusion MRI (diffusion tensor imaging [DTI]), and
task-free functional MRI (TF-MRI, resting-state fMRI). Functional measures were
introduced primarily because of their potential to detect early disease-related changes
occurring before the atrophic changes detected by structural MRI. Jack et al. [54] present an
excellent review of studies pertaining to the MRI Core over the course of ADNI-2.
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In 2008, ADNI entered into collaboration with the European Alzheimer’s Disease
Consortium to develop a harmonized protocol for manual hippocampal segmentation. The
goal of this international endeavor was to create a standard definition for hippocampal
boundaries and standard data sets to facilitate use of hippocampal volumetry in clinical
trials. This project had many phases and succeeded through the concerted effort of many
scientists. A summary of how the harmonized segmentation protocol (HarP) was established

is presented in Fig. 3.

In the preliminary phase, the most reliable standard orientation for hippocampal volumetry
was determined to be perpendicular to the anterior-posterior commissure [56]. Landmark
variability across 12 manual segmentation protocols was reduced to four discrete and
measurable segmentation units: the alveus/fimbria, whole hippocampal tail, and medial
border of the body [57]. An international Delphi panel agreed on the inclusion of these
segmentation units, finding that this definition captured 100% of hippocampal tissue and all
of AD-related atrophy, and had good intrarater and interrater reliability estimates [58]. Two
steps in the implementation of the HarP were the provision of benchmark labels which
produced high intraclass and interclass correlation coefficients and could be used for training
human tracers [59], and the development of a platform for training and qualifying new
tracers to perform manual segmentation using the HarP [60]. Further validation for the
protocol came from comparison of hippocampi segmented by tracers following local
protocols and then segmented following the HarP [55]. Local protocols were in low
agreement compared to the high measurement stability and good reproducibility within and
among human tracers using the HarP. Pathological validation revealed that hippocampal
volume was significantly correlated to Braak and Braak staging, tau, AP burden, and
neuronal count and that hippocampal subfields were associated with A, tau, and neuronal
count [61]. A set of reference hippocampal labels in the HarP is publicly available on the
Web for training and qualification of human tracers and automated algorithms [55,62].

Although manual segmentation is currently considered the gold standard approach to
determining hippocampal morphology, the method is time consuming and dependent on the
experience of tracers. Therefore, there is much interest in developing automated methods
that can successfully segment this highly variable structure in clinical settings as well as for
large brain imaging initiatives such as the Enhancing Neuro Imaging Genetics through Meta
Analysis (ENIGMA) consortium. The subregion segmentation module in the FreeSurfer
software package had high test-retest reliability and trans-platform reliability in 11 of the 12
human hippocampal subregions [63]. FreeSurfer had superior reproducibility of
hippocampal volume change over 1 year to manual segmentation after removal of initially
visible incorrect automated segmentation [64]. A large number of novel methods for robust
and fully automated hippocampal segmentation have been developed and tested on ADNI
data. These are summarized in Table 2.

The ADNI set of MRI images has been instrumental in the development of new
methodologies for improving imaging at multiple stages and in the assessment of existing
methodologies. These run the gamut from image acquisition at different field strengths [81—
85] to brain extraction strategies [86,87] to improvements in registration and segmentation
[88-96] to approaches for measuring longitudinal change [97—-107] to cortical thickness
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estimation [108,109] to better morphometry techniques [110—117]. Many of these studies
have been detailed by Jack et al. [54] and are summarized in Table 3.

Finally, the ADNI MRI data set has been used in investigations of other neurological
conditions. The ADNI control set was used in the comparison of NeuroQuant, an automated
measure of brain volume in patients with traumatic brain injury, with manual interpretation
of scans [119], and in the investigation of systematic differences in corpus callosum for
morphology and periventricular nodular heterotopia [120].

4. Positron emission tomography

The ADNI PET Core, under the leadership of Dr. William J. Jagust, has collected
longitudinal data on glucose metabolism, reflecting changes in neuronal metabolism, from
FDG PET and on AP deposition from the uptake of radiotracers, ! 'C-Pittsburgh compound
(PiB) tracer in ADNI-1, and subsequently the !8F-labeled florbetapir [121].

4.1. FDG PET

The ADNI PET Core has been responsible for the development of standardized procedures
for FDG PET [121]. The importance of standardized procedures for FDG PET was
underscored by a Cochrane systematic review of studies, including three from ADNI, that
used baseline FDG PET measures to predict future MCI to AD progression [122]. The meta-
analysis found considerable variability in specificity values, thought to be due to the lack of
standardization and a lack of a threshold value for abnormality, and the review concluded
that these obstacles precluded the use of FDG PET as a diagnostic modality in clinical
practice. The PET Core has addressed these issues by developing image registration
strategies to improve the consistency of qualitative values extracted from the scans,
improving the quality-control process, and producing standardized sets of preprocessed
images available for download from LONI. The PET Core discontinued conducting FDG
PET scans on ADNI participants in 2014, having amassed a considerable library of
longitudinal scans for future analysis [121].

4.2. Amyloid PET

The importance of AP status is underscored by its inclusion in the revised diagnostic criteria
for AD [123] and by its use in the selection of asymptomatic subjects likely to progress for
therapeutic clinical trials. The ADNI PET Core has worked on methodological quality
assurance and control, as well as the standardization of AB PET images [121]. Collection of
longitudinal data has enabled the examination of rates of AP accumulation and its effect on
cognitive decline [121]. Longitudinal changes in cortical florbetapir standardized uptake
value ratios (SUVRs) were more accurately measured by the use of subcortical WM
reference regions compared with the cerebellum or pons [124]. These reference regions also
increased the power to detect longitudinal increases in fibrillar AP and significant
associations between AP increases and clinical decline over 24 months and improved the
evaluation of ApB-modifying treatment effects in AP+ subjects and CN APOE4 carriers
[125].
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Are the different AP ligands themselves equivalent in terms of detecting Ap? Chiotis et al.
[126] compared !1C PiB and florbetapir PET imaging and found similar mean regional
uptake patterns and strong correlations between regions of interest across patient groups.
Landau et al. [127] found that cortical retention between three radiotracers, !1C PiB,
florbetapir, and 18F-flutemetamol were highly correlated. Although flutemetamol had higher
WM retention and florbetapir had lower WM retention compared with PiB, the threshold
values for AP positivity were consistent when the values were converted using PiB values as
an intermediary. Thus, comparison of results obtained using different radiotracers appears to
be valid, a conclusion supported by the comparable results using all three measures obtained
by Nosheny et al. [128] in their investigation of the effect of AP positivity on hippocampal
atrophy. A focus of the next phase of ADNI will be the development of the Centiloid scale
for the direct comparison of amyloid tracers [2].

4.3. Tau PET imaging

The accumulation of AP plaques is only minimally associated with cognitive decline, which
appears to be more closely associated with neurofibrillary tangles (NFTs) formed by tau
amyloid fibrils [129]. Insoluble fibrillar species of tau assemble into intraneuronal inclusions
known as NFTs as well as neuropil threads in neuronal processes, which represent >80% of
tau pathology in AD compared with NFTs [130]. Notably, NFTs and neuropil threads in AD
brains display all the features of amyloids [131]. Soluble tau detected in cerebrospinal fluid
(CSF) is a putative indicator of neuronal damage as indicated by increases in CSF tau after
traumatic brain injury [132]. New developments in tracer technology have led to the
development of PET ligands that track tau fibrillary amyloid accumulation. The inclusion of
this imaging in ADNI-3 [2] will likely help to unfold the contribution of this pathological
event to the disease process [133].

5. CSF and blood biomarkers

The study of CSF and blood biomarkers in ADNI is led by the Penn Biomarker Core and
overseen by Drs. Leslie M. Shaw and John Q. Trojanowski. A detailed account of progress
throughout ADNI-2 and future plans is given by Kang et al. [129]. The primary goals of the
Biomarker Core have been to develop CSF and plasma biomarkers signatures to identify AD
subjects, CN to MCI progressors, and MCI to AD progressors, and to establish the
longitudinal trajectories of CSF and plasma biomarkers. Multimodal data analyses in
collaboration with other ADNI Cores have established the temporal order of changes in
clinical measures, imaging data, and CSF biomarkers and allowed a greater understanding of
AD pathophysiology. A secondary goal has been to develop biomarkers to detect common
copathologies such as Lewy bodies, vascular disease, TDP-43 inclusions, and hippocampal
sclerosis. Potential novel biomarkers have been identified from genome-wide association
studies (GWAS) in collaboration with the Genetics Core and using proteomics approaches.
These biomarkers may be able to not only detect AD pathology but also indicate the
presence of mixed pathology. Through January 2016, the Biomarker Core received and
processed a total of 10,279 biofluids (CSF, plasma, and serum) and prepared and stored
161,301 aliquots for use by qualified investigators. They provided a total of 2635 plasma,
1051 serum, and 3622 CSF blinded aliquot samples to 15 investigators whose request for
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samples was reviewed and approved during ADNI-2 by the Resource Allocation Review
Committee. To track the longitudinal progression of all biomarkers, 265 ADNI subjects have
provided series of three or more CSF samples over as much as 8 years. A total of 1248
subjects have provided at least three longitudinal samples of serum and plasma. These have
proven invaluable for the study of CSF AP, t-tau, and p-tau;g; trajectories in individual
subjects [129] and will help establish the trajectories of new biomarkers such as YKL-40,
Vilip-1, total and phosphorylated a-SYN (Ser129-a-SYN), as well as neurogranin.

5.1. Established CSF biomarkers

5.1.1. Methodological improvements—The Biomarker Core has improved standard
methodologies that allow the accurate comparison of CSF biomarker results across multiple
centers. They have developed fully automated analyses of APy, t-tau, and p-tau;g; using the
accuracy- and precision-based Roche Elecsys immunoassay platform, which improves on
the AlzBio3 immunoassay platform. To circumvent difficulties associated with standardizing
immunoassays across multiple centers (differences in antibodies, matrix problems, the lack
of a CSF-based standard reference material), they have validated a mass spectrometry (MS)
assay for APyp, AP4o, and ABsg using a 2D-UPLC/MS-MS platform [129,134], calibrated
with a surrogate calibrator matrix prepared from artificial CSF plus 4 mg/mL bovine serum
albumin. This assay had equivalent diagnostic utility to the AlzBio3 immunoassay in
quantifying CSF APy, differences between controls and AD subjects (sensitivity = 92.7%,
specificity = 84.5%) [134]. This reference method was developed as part of an international
effort to develop reference methodology for APy, [135]. It is expected that this will strongly
support ongoing efforts to obtain harmonization across methods and platforms used
worldwide for this essential CSF AD biomarker [136].

Another methodological improvement was described by Vidoni et al. [137] who
demonstrated that the use of 24 bore atraumatic needles reduced the incidence of postlumbar

puncture headache.

5.1.2. Comparison of CSF and PET measures of AB—CSF A4, and amyloid
PET measures are often assumed to be equivalent, but this may not be a valid assumption
because the structure and biophysical properties of AP fibrils (measured by amyloid PET)
and soluble AB (measured by CSF ABy4;) differ [138]. Some CN and stable MCI subjects
have abnormally low CSF AP measures but no evidence of AP amyloid deposits by PET
measures, suggesting that low CSF AB4, may not always be indicative of the accumulation
of PET-detectable fibrillary AP deposits or alternatively that CSF A4, becomes abnormal
before amyloid PET [139]. However, pathologically low CSF levels of AB4, were strongly
associated with AD diagnosis and cortical Af accumulation independent of APOE
genotype, suggesting that abnormally low CSF levels of ABy4; reflect cortical AB deposition
and not the APOE genotype [140].

However, the two measures appeared comparable in the classification of MCI converters or
AD subjects [139] compared to CN subjects, although florbetapir PET had a greater
specificity than CSF AP, for the latter classification. These measures provided partly
different and independent information according to a further study by the same group [141].
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CSF A4 was more strongly related to APOE4 genotype, whereas PET A was more
strongly associated with levels of CSF tau and ADAS-cog scores. Furthermore, discordance
between the two measures was most common in CN and SMC subjects (Fig. 4) and
concordance between the two was more common in late-stage AD. The results suggest that
CSF APy, is a more sensitive marker of very early emergence of AP pathologies and that
PET AP may better reflect later stage AD progression.

5.1.3. Amyloid pathway—Ap is generated by the sequential action of b-site amyloid
precursor protein (APP) cleaving enzyme 1 (BACE1), the target of y-secretase inhibitors,
and B-secretase on the trans-membrane AP precursor protein. This process also generates a
soluble N-terminal fragment, s-APP, reported to be correlated with BACE-1 activity [142].
Independent studies found no differences in either activity of BACE1 [142-144] or
concentrations of s-APPB [142,143] in CSF across all patient groups. Although these
measures cannot be used to differentiate between healthy elderly and AD individuals, the
results suggest that CSF levels of s-APPP may be used as a surrogate for BACE-1 activity in
clinical trials of B-secretase inhibitors.

5.2. Other CSF and blood analytes

Beyond established CSF biomarkers, AP, and p-tau;g;, there has been much interest in
alternative CSF and blood analytes that are in some way associated with the disease process.
Some have been already identified as AD risk factors or as being linked to common
copathologies. Other novel analytes have been identified using Rules Based Medicine
immunoassay technology and may have diagnostic or prognostic utility.

5.2.1. Associations between known AD risk factors in CSF and blood and AD
pathology—Abnormally high blood homocysteine is a major cardiovascular risk factor as
well as a risk factor for AD and was previously shown to be associated with lower regional
WM and GM volumes in ADNI [145]. High levels of plasma homocysteine were associated
with a cortical signature of reduced GM thicknesses, volumes, and surface areas in memory
networks and the default mode network (DMN) [146], both of which are susceptible to AP
deposition, metabolic disruption, and atrophy, and consistently implicated in AD. As
elevated homocysteine is easily treatable, this cortical biomarker signature may have utility
in assessing interventions for lowering homocysteine.

Low plasma levels of the obesity-related hormone leptin have been linked to AD
pathogenesis. Conversely, high levels of leptin may function in a protective manner by
regulating levels of AP in neurons through the inhibition of B-secretase activity and by
modulating tau kinases to reduce tau phosphorylation [147]. Johnston et al. [148] reported
that leptin levels in plasma reflected those in CSF, and that women had two-fold higher
plasma levels of leptin than men in all groups. In women but not men, leptin levels were
associated with body mass index. Seventy percent of MCI subjects, of whom half were
APOE €4 allele carriers, had lower plasma leptin than CN subjects. Given that reduced
plasma leptin levels have been established in MCI and AD subjects, Maioli et al. [147]
examined brain leptin levels across AD progression, including cellular localization of leptin
and leptin receptors in the hippocampus and frontal cortex. Although they found no
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differences in CSF leptin levels across all diagnostic groups, they found that leptin
localization in the brain was altered. In AD subjects, distribution shifted to the hippocampus
where leptin translocated to become more abundant in reactive astrocytes and less so in
neurons. A similar translocation was observed in AB+ and APOE e4+ mice, suggesting an
impairment of leptin signaling in AD in the presence of constant levels of the hormone.
Animal models of AP accumulation indicated that changes in leptin signaling occurred
before a downregulation of leptin receptors. The authors suggest a mechanism in which
APOE €4 allele, in conjunction with AP accumulation, transiently enhances leptin signaling
leading to a leptinresistant state over time and subsequent decrease in cognition. Changes in
leptin signaling are likely behind the observation that increased body mass index in the
middle age is a risk factor for AD [149].

How do the gene products of major AD risk alleles exert their effect on the brain? Several
groups have used multi-modal ADNI data to gain insight into this critical question, bridging
the gap between genetics and pathophysiology. Three isoforms of the APOE gene product,
apolipoprotein E (ApoE), corresponding to the 2, 3, and &4 alleles, are found in CSF and
blood. Plasma ApoE was mildly correlated with CSF ApoE, but not with longitudinal
changes in cognition or atrophy [150], and was associated with left hippocampal volume in
APOE4+ MCI subjects [151]. The APOE &4 allele may increase neurodegeneration via a
mechanism involving brain iron levels. CSF ferritin levels, reflecting cortical iron levels,
were strongly associated with CSF ApoE levels in AD subjects and were elevated by the
APOE €4 allele [152]. They were also associated with ADAS-cog scores and greater rates of
hippocampal atrophy and ventricular expansion (Fig. 5) and predicted MCI to AD
progression [152]. Interestingly, ferritin affected cognitive performance to a similar degree
as ApoE and p-tau/Ap4;. However, the analytes differed in the level of their effect over time;
the effect of ferritin was constant, whereas the effect of both ApoE and p-tau/AB; increased
with disease severity resulting in a greater decrease in cognitive performance over time.
ApoE may raise the baseline iron load of the brain and so lower the threshold for iron-
mediated neuronal loss.

Although Apo E4 appears to underlie neurodegeneration, Apo E2 or Apo E3 may exert a
neuroprotective effect. In carriers of the APOE €2 and &3 alleles but not the e4 allele,
increased levels of CSF ApoE were associated with higher p-tau, an indicator of neuronal
damage, whereas decreased baseline levels of ApoE were associated with worse longitudinal
cognitive decline, MCI progression, and atrophy rate independent of CSF p-tau/Ap4; ratio
[150]. Therefore, Apo E2 or Apo E3 may be increased in CSF in response to neuronal injury
and protect against neurodegeneration by decreasing neuronal damage independent of tau
and AP deposition.

CLU, the gene for clusterin, has been identified and confirmed as an AD genetic risk factor
[153-155]. Deming et al. [156] searched for additional SNPs associated with clusterin levels
and used gene ontology analyses to identify molecular mechanisms by which CLUmay
exert its action. They found that CSF, but not plasma, levels of clusterin were significantly
higher in AD subjects and were correlated with both p-tau/A,4, ratio and CSF ApoE,
suggesting that clusterin and ApoE may interact to influence AP deposition. Clusterin may

Alzheimers Dement. Author manuscript; available in PMC 2019 October 29.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

Weiner et al.

Page 15

contribute to immune system changes observed in AD or disrupt healing after
neurodegeneration [156].

5.2.2. Associations between novel CSF and blood analytes and AD
pathology—Mattsson et al. [157] selected a panel of 70 CSF proteins involved in
biological functions such as AP metabolism, microglia activity, and synaptic/neuronal
function that may be altered in the early stages of AD. At baseline, several proteins in
addition to AP and tau were mildly associated with atrophy over 4 years in specific regions:
apolipoprotein D, a—1-micro-globulin, apolipoprotein CIII, apolipoprotein H, and
interleukin 6 with the middle temporal cortex; apolipoprotein CIII, apolipoprotein D, a—1-
microglobulin, apolipoprotein H, and interleukin 16 with the inferior temporal cortex.
Several proteins (ferritin, S100b, apolipoprotein CIII, apolipoprotein H, and hepatocyte
growth factor) were associated with atrophy rates that interacted with AP, suggesting that
they act via an APB-dependent mechanism, but others appear to act via an Ap-independent
mechanism. The proteins identified, if replicated, may represent novel prognostic
biomarkers of AD-related atrophy in CN subjects.

Synaptic dysfunction occurs in the early stages of AD and is followed by neurodegeneration.
Several studies have concentrated on finding novel CSF analytes as potential biomarkers for
this process. Levels of a postsynaptic protein neurogranin appear to reflect synaptic
degeneration. CSF neurogranin levels were significantly higher in AD subjects and MCI
converters than in CN subjects [158]. Moreover, neurogranin levels predicted decreased
MMSE and increased ADAS-cog scores and were correlated with longitudinal reductions in
cortical glucose metabolism and hippocampal volume. Neurogranin levels were significantly
increased in AP+ subjects, and elevated levels were detected even in non-symptomatic
subjects, suggesting that it may be an independent novel biomarker for synaptic pathology.
Paterson et al. [159] identified several analytes using a CSF multiplex analyte panel that
influence the rate of neurodegeneration in AP+ subjects. Low trefoil factor 3 was strongly
associated with higher rates of whole-brain atrophy, ventricular expansion, and hippocampal
atrophy. High cystatin predicted higher whole-brain atrophy and hippocampal atrophy rates,
and low vascular endothelial growth factor (VEGF) and chromogranin Awere associated
with higher whole-brain atrophy rate. After adjustment for baseline volume, p-tau, age, sex,
APOEFA4 status, and diagnosis, trefoil factor 3 was still associated with increased
hippocampal atrophy rate and may be a valuable biomarker for decline in AD.

AD is characterized by degradation of WM tracts which progressively disconnect cortical
and subcortical regions. Neurofilaments (NFs) are structural components of the neural
cytoskeleton and are abundant in large caliber myelinated axons of the WM tracts.
Zetterberg et al. [160] investigated the associations of its low molecular weight subunit,
NFL, in CSF with diagnostic status, cognitive decline, and WM change. CSF NFL was
elevated in AD subjects compared to stable MCI and CN subjects, and correlated with
accelerated cognitive decline (MMSE and ADAS-cog), WM change, and increased whole-
brain atrophy, ventricular expansion, and hippocampal atrophy in MCI subjects. These
results suggest that NFL may be a useful biomarker for tracking axonal degeneration, where
NFs are most abundant, and this is associated with the degradation of WM tracts in cognitive
decline.
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VEGF has been implicated as a neuroprotective factor in AD, possibly neutralizing the
damaging effects of the AD pathological cascade through improvements in vascular survival.
Hohman et al. [161] found that higher levels of VEGF were associated with larger baseline
hippocampal volume, lower hippocampal atrophy over time, lower episodic memory decline,
and lower executive function decline over time. The neuroprotective effect of VEGF, which
was greatest in MCI subjects, appeared to be enhanced in the presence of AD CSF
biomarkers. In AR+ subjects, higher VEGF levels were associated with better memory
performance, and in taul subjects, higher VEGF levels were associated with lower
hippocampal atrophy, and decline in memory and executive function. These results suggest
that angiogenic factors may be important in individuals with biomarker abnormalities
consistent with early AD. The mechanism by which VEGF reduces risk of
neurodegeneration is unknown. Leung et al. [162] searched for CSF analytes associated with
AP positivity and also identified fatty acid binding protein and VEGF, along with less
strongly associated analytes including resistin, CD40 antigen, prolactin, lipoprotein A, and
hepatocyte growth factor. These analytes are involved in different aspects of AD
pathophysiology, including inflammatory response, lipid metabolism, atherosclerosis, and
insulin resistance, and are potential biomarkers that require future validation in independent
cohorts.

Another factor reported to be protective against AD, possibly through its modulation of AB
accumulation, is brain-derived neurotrophic factor (BDNF), a widely distributed
neurotrophin with multiple functions including neuronal differentiation, regulation of
synaptic function, and modulation of hippocampal long-term potentiation, learning, and
memory formation. Hwang et al. [163] found a significant negative association between
BDNF protein levels in plasma and brain AB burden, measured by PiB PET, in the lateral
temporal, inferior parietal, and inferior frontal, anterior and posterior cingulate, and orbital
frontal regions. In a separate study [164], the Val66Met polymorphism which is associated
with lower BDNF secretion in vitro was not associated with hippocampal volume or
memory. Therefore, plasma BDNF levels may act as a biomarker of AP pathology but not of
volumetric or cognitive changes in the brain. Analytes identified in these studies are
summarized in Table 4.

5.2.3. CSF and plasma analytes for the detection of copathologies—There is a
growing awareness that copathologies such as Lewy bodies, vascular disease, TDP43
inclusions, and hippocampal sclerosis are common and may explain the variability in AD
progression [169]. The development of biomarkers to predict coincident pathologies that are
frequently observed in clinically diagnosed AD patients would be of great clinical utility and
may improve the diagnostic and prognostic abilities of established CSF biomarkers alone
[129]. One of the most common comorbidities in AD, present in 10%—-40% of AD patients,
is the presence of Lewy bodies, composed of a-synuclein (a-syn). Symptoms of dementia
with Lewy bodies include hallucinations, visual spatial impairment, and executive
dysfunction but it is not known how reduced CSF a-syn relates to AD symptoms. Mackin et
al. [170] reported that 20% of AD, 13% of MCI, and 8% of CN subjects reported
hallucinations and that CSF a-syn was reduced in these AD subjects. Lower CSF a-syn was
associated with decreases in memory and language, as well as executive function, suggesting
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that Lewy bodies may be related to overall cognitive decline in addition to the characteristic
hallucinations of dementia with Lewy bodies.

A non-AD pathway to dementia was outlined by Alcolea et al. [144]. They reported that
preclinical subjects as well as subjects with suspected non-Alzheimer’s pathology (SNAP)
had higher levels of YKL40, a marker of neuroinflammation, than AB+ subjects early in
disease progression. This suggests that neuroinflammation can emerge through a non—Ap-
related pathway and that it is also detectable in CSF in preclinical stages in non-Ap
degenerative disorders. The correlation between YLK40 levels and age regardless of APOE
status suggests that low-grade inflammatory processes are present in the brain even in the
absence of AP. These findings suggested that CSF YKLA40 levels increase with aging,
preclinical AD, and SNAP and correlate closely with markers of neurodegeneration.

5.3. Conclusions

Considerable progress has been made in 2014 and 2015 by the ADNI Biomarker Core in
improving methodologies for measuring established CSF biomarkers and establishing
relationships between different measures of Ap. The ADNI Biomarker Core has also
emphasized the need to detect copathologies, such as a-syn amyloid deposits in Lewy
bodies which were associated with symptoms specific to AD in addition to those
characterizing dementia with Lewy bodies. SNAP may be associated with YLK40, a marker
of neuroinflammation. Cerebrovascular risk factors homocysteine and body mass index, as
reflected in CSF leptin levels, have been linked to aspects of AD pathology. A number of
studies have addressed the mechanism of action of the APOE e4 allele via its CSF and blood
ApoE protein. ApoE may modulate iron levels leading to oxidative damage—induced
neurodegeneration or act in conjunction with AP to enhance leptin signaling. Confirmed AD
genetic risk factor, CLU, may exert its effect via immune response. Another focus has been
the use of proteomic approaches to identify primarily CSF analytes associated with atrophy,
and cortical AP load, WM degradation, and cognitive decline that capture distinct
information from those identified by traditional CSF biomarkers. These include fatty acid
binding protein, apolipoproteins All, CIII, D, and H, interleukins 6 and 16, ferritin, and
chromogranin A. Conversely, several studies point to VEGF and BDNF as being

neuroprotective.

6. Studies of genetic associations

Studies of ADNI genetics data have been instrumental in deepening our understanding of
AD pathophysiology by bridging the gap between the genetic underpinnings and
biochemical mechanisms of the disease. The Genetics Core, under the aegis of Dr. Andrew
Saykin, has collected blood samples at every patient visit, extracted both DNA and RNA,
and performed APOE, TOMM40, and genome-wide array genotyping, whole-exome
sequencing, and whole-genome sequencing (the latter generously supported by the Brin-
Woijcicki Foundation and the Alzheimer’s Association [171]). The rich ADNI longitudinal
data set contains many biomarkers that can serve as quantitative endophenotypes for genetic
association studies, increasing the power to detect biologically meaningful associations. In
accordance with ADNI policy, all genetics data, like other data, have been made available to

Alzheimers Dement. Author manuscript; available in PMC 2019 October 29.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

‘Weiner et al.

Page 18

the wider scientific community, resulting in well over 300 publications by 2014 that
analyzed ADNI data sets. This section describes the work of the Genetics Core and the
approximately 80 publications arising from ADNI genetics data in 2014 and 2015.

6.1. Reviews

Saykin et al. [171] outlined the progress and plans of the ADNI Genetics Core and
systematically reviewed 106 articles published between 2009 and 2012. These investigations
ran the gamut from large meta-analytic case-control GWAS to GWAS of quantitative
endophenotypes, to studies which select genes from a particular pathway thought to be
involved in AD, to those pinpointing the effects of a particular polymorphism or gene.
GWAS conducted by a multistudy consortia have identified and replicated approximately 20
genes in addition to APOE that confer risk or have protective roles in AD [172]. A number
of these (APOE, BIN1, CLU, ABCA7, CRI1, PICALM, MS4A6A, CD33, MS4A4E, and
CDZ2AP) have been identified or confirmed using ADNI data. In addition, many novel
candidate risk and protective loci cut have been identified using ADNI genetics data and
quantitative imaging, cognitive, and fluid phenotypes (Fig. 6) [172]. Howeyver, these loci
account for only a portion of disease heritability. As AD is a multigenic disorder influenced
by environmental factors and epistasis, the Genetics Core has emphasized a Systems
Biology perspective in which candidate genes identified in GWAS or from likely
mechanistic biological pathways are studied for their associations with mRNA and other
phenotypes. It is hoped that this integrative functional genomics approach will capture the
biological complexity at multiple levels including genomic, transcriptomic, proteomic, and
metabolomic (Fig. 7).

ADNI genetic studies also hold promise for improving clinical trial design and identifying
therapeutic targets. Stratification and subject selection, currently limited to APOE, could
likely be improved by the incorporation of combinatorial sets of genes that have a
biologically relevant underpinning such as a target pathway. In a similar way, an improved
understanding of pathways and mechanisms of association between AD risk genes in disease
will provide therapeutic targets [171]. In the future, the ADNI Genetics Core will collect
samples for the production of induced pluripotent stem cells. This will allow development of
in vitro models that can bridge the gap between animal models and clinical development and
that can improve phenotypic characterization of disease heterogeneity.

ADNI genetics data have contributed to a number of meta-analytic studies, most notably the
ENIGMA consortium, a global collaborative network of over 500 scientists involved in
neuroimaging genetics [173,174]. Using neuroimaging data from nearly 13,000 subjects,
ENIGMA is studying 12 major brain diseases including schizophrenia, bipolar illness, and
major depression and has identified a number of genetic loci that affect brain volumes, and
how they may act to increase the risk of these diseases.

6.2. Genetic association studies

Two fundamentally different approaches have been used to characterize associations
between genetic loci and phenotypes using ADNI data. Genotype approaches select
candidate SNPs, genes, or pathways from a priori knowledge of biological function and test
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for their association with selected imaging or fluid biomarkers. Although this approach
cannot discover new genes, it can examine the effect of interactions between loci and
phenotypic variation. The main alternative approach is to begin with a phenotype and search
the genome for significantly associated loci. This approach can discover new genes but is
often hampered by problems of ultrahigh dimensionality and multiple comparisons and
ignores spatial information in imaging data and correlations between genetic markers due to
linkage disequilibrium and epistatic effects. A popular hybrid approach is to select candidate
loci and then apply further biologically informed enrichment methodologies. Genetic
association studies from 2014 and 2015 are summarized in Table 5; confirmed and novel risk
or protective loci identified from ADNI studies during this period are detailed in Table 6.

6.2.1. Genotype

6.2.1.1. APOE: The APOE &4 allele is the single locus that confers the greatest risk for
sporadic late-onset AD. Carriers of this allele have greater hippocampal atrophy rates than
noncarriers [175,176], significant morphological deformation of the left hippocampus [177],
accelerated rates of atrophy in limbic and cortical areas, particularly the amygdala [176],
faster ventricular expansion, and regional patterns of ventricle morphology [178]. Although
a family history of AD was associated with greater regional longitudinal atrophy rates in
MCI participants, these were accounted for by APOE+4 genotype [232]. These studies
suggest that there is a genotype-specific network of brain regions associated with the APOE
e4 allele that undergoes faster atrophy and morphological changes. The effect of this allele is
stronger in women than in men. Sampedro et al. [179] found that female APOE4 carriers
had widespread brain hypometabolism and cortical thinning in several regional clusters
compared to female noncarriers, whereas male APOE4 carriers differed only slightly from
male noncarriers (Fig. 8). However, male APOE4 carriers had a higher risk of cerebral
cortex microbleeds then the male noncarriers, suggesting that there is a differential sex bias
of the APOE4 allele on diverse aspects of disease pathology.

6.2.1.2. Candidate SNPs and genes

6.2.1.2.1. SNPs in confirmed risk alleles: Candidate SNPs for association studies are
chosen because of their location in confirmed AD risk alleles or in genes of suspected
importance on the basis of biological function. SNPs in BIN/ (rs744373), CD2AP
(rs9349407), and CR/ (rs3818361) (AD risk variants implicated in AP deposition)
modulated the association between plasma ApoE levels and cortical AP load in different
directions (Fig. 9), independent of APOE4 carrier status, suggesting that these genes interact
with APOE to modulate AP accumulation and clearance [181]. Genetic variants in the
recently confirmed AD risk factor, UNC5C, were associated with the atrophy rate of the left
hippocampus and right precuneus [182]. The protective A allele of rs11771145 in EPHA
prevented hippocampal atrophy in MCI subjects and was associated with lower atrophy and
greater metabolism in the temporal gyri in AD subjects [183]. Whole-exome sequencing
identified a coding missense variant, p.S144G, in TREMLZ2 responsible for the previously
noted protective effect against AD [184]. This functional variant was associated with a
reduced risk of AD, whereas a missense variant in 7TREM?Z, p.R47H had the opposite effect,
independent of p.S144G. Cell-based analyses implicated the involvement of these variants in
the modulation of microglial activation, possibly influencing AP clearance. Minor allele G
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carriers of rs2718058 in a recently confirmed preventive locus adjacent to NMES had higher
CDR-SB scores, lower occipital gyrus atrophy, greater metabolic rate and ventricular
expansion, and a lower rate of hippocampal atrophy than carriers of the major A allele,
suggesting that the minor allele may confer its protective effect by inhibiting
neurodegeneration [185]. The G allele in rs2070045 within SORL [ was associated with
increased CSF tau and hippocampal atrophy, and a haplotype in this region was associated
with higher tau and p-tau;g;, suggesting that SORL / may increase AD risk by increasing
neurodegeneration [186]. Finally, top risk allele, CFH, but not risk alleles CRI, CD33, CLU,
and TREML 2, were strongly associated with AD in a Chinese cohort [187], suggesting that
the genetics of AD may differ among diverse populations.

The gene-gene interaction between CLU and MS4A4E was associated with APOE4- status
and may have a possible dominant effect [188]. Lack of these risk alleles was estimated to
decrease AD incidence by 8%. CR/ and EPHA [ interacted with cardiovascular disease risk
factors to reduce hippocampal volume [189]. Cardiovascular risk dominated the genetic risk
of these loci in terms of interaction effect such that at low genetic risk, high cardiovascular
risk factors had a more detrimental effect (Fig. 10). These findings indicate that CR/ and
EPHA [ may contribute to the etiology of late-onset neurodegeneration in the presence of
cardiovascular disease.

6.2.1.2.2. SNPs in genes targeted for biological function: Several studies have targeted
genes with biological functions implicated in AD. Rare variants of PLD3 are confirmed AD
susceptibility loci; phospholipase D3 modulates APP processing. However, a common
variant in the same gene, rs10407447, was associated with regional metabolism and lateral
ventricular volume in CN and MCI subjects [190]. A study of SNPs found in genes
preferentially expressed in the hippocampus identified a novel locus, NAVZ (neuron
navigator 2), associated with episodic memory scores [191]. Neuron navigator 2 is involved
in neurite outgrowth and cell migration.

Abnormal cholesterol levels increase the risk of AD and are influenced by several common
genetic variants. Increased G allele dosage of rs5882 (p.1405V) in CETP (cholesterylester
transfer protein) was associated with measures of WM integrity (lower fractional anisotropy
and higher radial and mean diffusivities) in older individuals, suggesting that high
cholesterol may increase AD risk through the degradation of WM integrity [192]. 3-
hydroxy-3-methylglutaryl-CoA reductase plays a central role in the production of
cholesterol and is the target of statins which reduce the risk of sporadic AD by as much as
70% in midlife. AD carriers of the G allele of rs3846662 in HMGCR had both a delayed age
of onset and a reduced risk of AD [193]. The effect was greatest in women. In MCI subjects,
the G allele reduced progression to AD over 3 years, even in APOE4+ subjects, providing
further support for the protective role of this allele.

Altered dopamine transmission affects many aspects of brain function, including the
formation of AP, and contributes to cognitive impairment. Dopamine transporter protein,
encoded by the DAT gene, regulates neurotransmission by modulating dopamine receptors.
The minor C allele of rs6347 in DAT was associated with poorer cognitive performance,
greater ventricular expansion, and greater dementia risk, independent of APOE genotype
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[194]. Although the mechanism of action of this polymorphism is unknown, dopamine
neurotransmission may be a useful target for anti-dementia drugs. Delta opioid receptors
promote the processing of APP and are implicated in various psychiatric and neurological
disorders. A common variant (rs678849) in the OPRD1 gene was associated with regional
brain volume differences in healthy elderly and may predict levels of CSF biomarkers [231].

6.2.1.3. Candidate pathways and epistatic interactions: The top 10 AD susceptibility
genes explain only 35% of the variability in disease risk [233]. It has become apparent that

studies of single loci are not sufficient to unravel the complex genetic etiology of the
disease. It is thought that the “missing heritability” may come from the association of
multiple variants in genes interacting in functional pathways. Variation in genes involved in
oxidative phosphorylation (OXPHOS), summarized by an OXPHOS genetic risk score, is
associated with an increased risk of stroke. Stroke increases the risk of AD, and the
OXPHOS genetic risk score was associated with AD clinical status, CN to MCI progression,
and volumes of hippocampus and entorhinal cortex in CN and MCI, but not AD subjects
[196]. This suggests that the genetic structure of AD and stroke overlap and that OXPHOS
variants exert an early influence on disease trajectory.

Epistatic interactions may also account for some of the risk variability of AD. Koran et al.
[197] investigated genes from AD pathways, including AR processing, apoptosis, calcium
homoeostasis, free radical production, and mitochondrial dysfunction, defined by the Kyoto
Encyclopedia of Genes and Genomes database. An interaction between minor alleles in
RYR3 (ryanodine receptor 3) and CACNA IC (a.C subunit of voltage-dependent L-type
calcium channels) was associated with a higher AP load and explained 6% of AP load
variance. Both genes encode proteins involved in the regulation of intracellular calcium
homoeostasis. As ryanodine receptor—driven calcium release has been associated with
increased AP levels, and AP modulates the function of L-type calcium channels, the authors
suggest that interaction between these two variants may increase intracellular calcium levels
by disrupting calcium homoeostasis and lead to increased AP production and deposition. AP
accumulation was also associated with two SNP-SNP interactions between C9 (complement
9) and ILRG6 (interleukin 6r), suggesting that neuroinflammation may exert its effect on AD
by enhancing AP deposition [198].

According to the amyloid hypothesis, AP deposition precedes tau pathology. However, it is
possible that the two pathologies arise independently due to upstream genetic interactions
and that genes that confer risk for tau pathology also confer risk for AP pathology via
complex epistatic relationships. Hohman et al. [199] searched for epistatic interactions
between genes for tau kinases and genes involved in AP deposition associated with AP load.
They found three interactions between rs334543 in GSK3P and different AP genes. A minor
allele that interacted with APP was related to high levels of AP deposition. The combined
interactions explained between 1.2% and 1.5% of the AP deposition variance, suggesting
that AP burden may be increased by a combination of GSK3B and APP-related genes.

In a genome-wide search of all possible SNP-SNP interactions that affect regional brain
volumes, one interaction between an SNP in a region encoding two transcription factors
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(rs1345203) and an intergenic SNP (rs1213205) explained 1.9% of the variance in temporal
lobe volume [195]. The biological relevance of this interaction has yet to be determined.

6.2.2. Phenotype—A great strength of ADNI is its wealth of quantitative phenotypes
that can be leveraged to identify novel susceptibility loci in GWAS, and more recently, gene-
based GWAS.

6.2.2.1. Case-control studies. Complex patterns of the association may not be reflected
solely in single SNPs. A mega meta-analysis of genome-wide data sets, including ADNI’s,

as part of the International Genomics of Alzheimer’s Disease Consortium, identified two
novel loci, TP53INPI and IGHV1[200]. The first locus encodes a proapoptotic tumor
suppressor of interest due to the inverse association between cancer and AD, whereas the
function of the latter locus is unknown. A similar analysis evaluated single gene associations
in a network context, then use gene ontology and pathway enrichment methods to identify
biologically plausible interactions [201]. Genes involved in the glutamatergic synapse,
including GRINZB, appeared to be overrepresented in AD subjects. Glutamate signaling
regulates many biological processes such as learning, memory, and synaptic plasticity, and
glutaminergic neurons located in the hippocampus and other brain areas are affected by Ap
plaques and tau tangles. Top genes identified by the computation of a multimarker genetic
score associated with disease status (AEN, ADAMTS12, PSMAS5, FXN, NTM, LARPI,
WDTC1, SEMA7A, VKORCILI, and COL5A3) were integrated into a hypothetical
signaling network incorporating a priori protein-protein interaction data, which highlighted
their function in cholesterol metabolism [202].

Genetic subtypes of AD may have specific molecular mechanisms of pathogenesis. A
GWAS in APOE4 noncarriers identified three novel loci located in three haplotype blocks,
ZNF827 (zinc finger protein 827), KDM2B (lysinespecific demethylase 2B), and NANP (V-
acetylneuraminic acid phosphatase), which were associated with CSF AP42, p-tau;g;, and
brain atrophy, respectively [203].

Some of the missing heritability of complex diseases may be accounted for by rare variants;
low-frequency allele variants have a higher probability of functional significance. A gene-
based analysis of alleles with frequencies lower than 3% identified one novel association
between ZNF628 (zinc finger protein 628) and AD that reached genome-wide significance
after adjustment for APOE4[204]. The study also identified minor alleles in APOE,
TOMMA40, MMPI, TREM?2, CBLB, and NAPRT that may contribute to AD heritability.
The zinc finger proteins identified in these studies suggest that transcriptional regulation
may play an important role in pathogenesis.

6.2.2.2. Structural imaging phenotypes. The use of structural MRI quantitative
phenotypes in identifying genetic variants associated with AD has continued to be a

powerful strategy. The development of machine learning approaches has facilitated
previously challenging tasks such as the selection of imaging features with power to detect
genetic associations. A polygenic approach using a penalized regression method to select
109 brain wide regional measures identified a novel marker, HOMER?, associated with right
thalamus volume and with AD clinical status [212]. Homer?2 is a transcription factor which
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may be linked to APP processing or the trafficking of APP to the cell surface. A GWAS of
GM density data [205] jointly considered the effects of all polymorphisms, how they fit into
biologically defined pathways, and the functional relationships of 20 genes involved in SNP-
SNP interactions. Enrichment analysis identified visual perception, DNA repair and
replication, and olfactory pathways. A statistically significant synergistic interaction
between two SNPs in an olfactory gene cluster suggested that this pathway may be involved
in AD. Using a subset of imaging features able to discriminate between CN and AD subjects
as quantitative phenotypes, genetic variation in a relatively small number of genes (ESR/,
BINI, LDLR, SORCS1, APP, LRAT, and TF) was found to be associated with ventricular
enlargement, hippocampal atrophy, and cortical atrophy, suggesting that these loci could
have potential in diagnostic classification [213]. Another study selected neuroimaging
biomarkers associated with disease state on the basis of global shape analysis and found
differential associations between SNPs and regional volumes at different disease stages
[214]. Notably, in MCI subjects, SNPs in PML (promyelocytic leukemia) and STOML /
(stomatin-like 1) were associated with shapes of the hippocampi and insular cortices.

Although most GWAS analyses focus only on baseline phenotypes, two studies used
ADNT’s longitudinal neuroimaging data that, by capturing rates of change, have greater
statistical power to detect genetic associations. Longitudinal structural MRI data identified a
much larger number of SNP-phenotype associations than cross-sectional data [215]. A
second study used longitudinal change in ventricular volume as a quantitative phenotype for
a pathway-based gene-gene interaction analysis [216] and identified a novel interaction
between SYNJ2 (synaptojanin 2) and PI4KA (phosphatidylinositol-4 kinase) that was
associated with inferior lateral ventricle atrophy. Both proteins are involved the synthesis of
phosphatidylinositol, and the authors suggest that these genes might modulate its synthesis
leading to deficits in neuroprotective mechanisms.

A whole-exome sequencing study by Nho et al. [217] using DNA from ADNI-1 and an
extreme phenotype approach identified a functional exonic single nucleotide variant that was
associated with a slower rate of hippocampal atrophy in MCI subjects. The minor T allele of
the missense variant rs3796529 in REST, a negative transcriptional regulator of adult
hippocampal neurogenesis [206], conferred a protective effect on hippocampal loss in MCI
and AD subjects. A subsequent study showed that carriers of this minor allele had greater
medial temporal lobe metabolism compared to noncarriers, independent of APOE4 status
[207] and that it was associated with reduced AD risk and did not confer susceptibility to
AD [208]. However, a meta-analytic study using the ENIGMA cohort did not find that the
variant conferred a significant effect on six subcortical regions including the hippocampus
[209]. Further investigation is required to determine the relative enrichment of the variant in
diagnostic groups and whether it protects against hippocampal atrophy in CN subjects.

Most ADNI studies are concerned with late-onset AD. However, the cohort contains a small
number of subjects aged 55 to 65 years who have a relatively early onset form of the disease
and who are characterized by much lower frequencies of amnestic MCI [234]. Early onset
AD is most commonly autosomal dominant, caused by mutations in the APP, PS1, and PS2
genes [235], but some subjects lack these risk alleles. Moon et al. [210] used the LONI
pipeline [211] to identify 20 neuroimaging shape and atrophy changes specific to MCI
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subjects aged 55 to 65 years, for use as GWAS quantitative phenotypes. These included not
only hippocampal volumes but precuneus atrophy and shape changes, consistent with
previous studies of early onset AD. A set of 15 SNPs best able to discriminate between
early-onset MCI and early-onset AD subjects was associated with the volumetric and shape
changes. The most significant loci, located in the genes for Janus kinase and microtubule
interacting protein-1 and neuropilin 1, differed from those identified in the late onset form of

the disease.

6.2.2.3. Measures of A deposition: GWAS using either amyloid imaging data or fluid
levels of AP have furthered our understanding of the genetic basis of AP deposition. Using

florbetapir data, the minor G allele of rs509208 located upstream of butyrylcholinesterase
(BCHE) and the APOE oci together accounted for 15% of the variance in baseline cortical
AP load (Fig. 11) [218]. BCHE is a biologically plausible gene; decreased activity of
butyrylcholinesterase, which is enriched in AP plaques and the target of cholinesterase
inhibitors, increases acetylcholine levels and disrupt synaptic functioning eventually leading
to neurodegeneration. A gene-set enrichment analysis performed on top SNPs identified in a
GWAS of CSF levels of ABy,, including those located in TOMM4(0 and near APOC1,
revealed two clusters associated with synaptic transmission, transmission of nerve impulses,
and trait class, and identified eight novel polymorphisms [219]. A subsequent gene-gene
interaction network analysis identified GRIN2A as interacting with the most AD genes,
followed by APOCI and TOMMA40 (Fig. 12). A GWAS of plasma concentrations of AB4q
and APy, identified 18 suggestive loci, the most strongly associated of which was CTXN3
(cortexin 3) [220]. Pathway enrichment analysis identified a variety of canonical pathways
including some directly associated with AP peptide properties. Cortexin was found to
modulate ARy, secretion.

Although AP deposition is strongly linked to APOE4 and nearby genes in linkage
disequilibrium (7OMM40, APOCI), AP deposition is still observed in APOE4 noncarriers.
A GWAS of longitudinal AP accumulation in these subjects [221] reported that the minor G
allele of an intronic SNP (rs12053868) in interleukin 1 receptor accessory protein (/L /RAP)
accounted for 7.1% of the phenotypic variance (Fig. 13). Deep sequencing of /L/RAP
identified additional rare variants associated with the rate of change in AP burden. Gene-
and pathway-based GWAS identified pathways related to cell adhesion and immune
response, consistent with the role of /L /RAP as a proinflammatory cytokine involved in the
activation of microglia. The minor G allele was associated with higher rates of atrophy in the
temporal cortex, a higher rate of MCI to AD progression, and faster cognitive decline. Other
novel loci identified in GWAS of CSFAB4; levels in APOE4- subjects are SULGZ2 (GTP-
specific B-subunit, succinyl-CoA ligase), which accounted for 10.7% of the variance in AB4»
levels in these subjects [222], and variants in the FRA /0AC] fragile site and in the
intergenic 1521 locus [223]. FRA I0AC! encodes a nuclear phosphoprotein of unknown
function.

6.2.2.4. Other CSF and blood phenotypes. A GWAS of CSF tau levels identified
rs4728029 in protection of telomeres 1 (POT7), which modified the relationship between p-

taul81 and ventricular expansion [224]. This novel locus explained 2.6% of the variance in
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p-taul81 and modified the relationship between p-taul81 and both ventricular dilation and
memory performance. As this SNP was related to levels of interleukin 6 receptor, it may
exert its effect via a neuroinflammatory mechanism. This GWAS also enriched targeted
genes mediated by miR-33, which regulates lipid metabolism genes and disrupts cellular
cholesterol homoeostasis.

A complementary approach to GWAS of CSF Ay, and tau [225] instead used CSF analytes
involved in the processes such as endocytosis, cholesterol metabolism, and inflammatory
and immune responses that are recognized to play important roles in AD pathogenesis
beyond AP and tau pathology. This study identified five genetic associations between CSF
proteins and angiotensin-converting enzyme, chemokine (C-C motif) ligands 2 and 4,
interleukin 6 receptor, and matrix metalloproteinase 3. All identified proteins are involved in
AP processing or proinflammatory signaling.

6.2.2.5. Neuropsychological assessments: In addition to neuroimaging and fluid
biomarker measures, neuropsychological assessments offer another route to understanding

AD genetics. Variants in the spondin 1 (SPONT) gene whose minor alleles were associated
with more rapid progression were identified using longitudinal changes in ADAS-cog as a
phenotype for a GWAS [226]. Spondin 1 inhibits cleavage of APP by BACE. Other
significant associations were reported in genes involved in neuronal maintenance and
neurotransmission, and calcium signaling (EXOC4, GABRGS3, VATIL), and homoeostasis
(CAMKH4, CYCS, NCS1, CACNA1G). Mukherjee et al. [236] investigated the genetic basis
of cognitive resilience, observed in patients whose cognitive function is better than predicted
by neuroimaging and fluid biomarkers. The top hit in their gene-based GWAS was
RNASE]13, and subsequent pathway analysis identified pathways involved in neuron loss,
presynaptic membrane, and postsynaptic density. These included genes associated with AD
such as PTK2B, PICALM, MS4A2, and APP.

6.2.3. Other association studies—Imaging genetic studies using ADNI data have not
only focused on AD. Two meta-analytic GWAS identified variants influencing human
subcortical structures [228] and cortical surface area [229]. Polymorphisms in the dopamine
D2 receptor gene, which increases genetic risk for addictive disorders, altered regional brain
volumes in areas implicated in addiction [230].

6.3. Methods

The biological insights that we have gained from these genetic association studies,
particularly those using neuroimaging data, would not have been possible without a
foundation of statistical methodologies. These have progressed from univariate analysis in
standard GWAS to a variety of multivariate regression approaches, as well as ways to detect
epistatic interactions or to discover associations at the gene or pathway level. Univariate
analysis comparing single SNPs with single traits suffers from problems of high
dimensionality and type-I errors and may not reveal significant associations without meta-
analytic approaches. ADNI studies have assessed the extent of these problems [237,238],
improved the computational efficiency of mass univariate analyses [239-242], and
developed methods for the selection of the most informative SNPs or quantitative features to
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improve power to detect associations [243-247]. Two studies have developed summary
measures representing associations between selected SNPs and traits of interest [202,248].
Nho et al. [249] developed specific methodologies for the analysis of whole-genome
sequencing data, and several groups have developed methodologies for identifying and
visualizing genetic interactions [189,205,250-253]. Finally, two groups described methods
to select discriminative SNPs to improve diagnostic classification or prediction of future
decline [254,255]. The studies are summarized in Table 7.

6.4. Conclusions

Much of the heritability of AD remains elusive, reflecting both the polygenic nature of the
disease and the influence of environmental factors. The ADNI Genetics Core adopted a
Systems Biology perspective and approaches that integrate multiple “omics” to characterize
biological complexity on multiple levels [171]. ADNI genetics studies from 2014 and 2015
were notable for moving beyond simple GWAS using one-SNP-simple phenotype univariate
analyses to an expanded array of increasingly sophisticated biologically informed
approaches, such as pathway enrichment, network analysis, and gene set enrichment, aimed
at bridging the gap between genetic information and biochemical disease mechanisms. The
concomitant development of a wide range of statistical methodologies supported these
efforts (Table 7). An excellent example of the power of these integrative approaches to place
genetic results in biologically plausible context can be seen in the hypothetical signaling
network constructed by Wang et al. [202] from their application of a Rasch genetic
multimarker model to ADNI case-control GWAS data (Fig. 14).

Genetic association studies begin either with a genotype, such as an SNP, gene, or a sets of
genes in a pathway of interest, or with a phenotype (Table 5). Several GWAS notably
capitalized on longitudinal phenotypes from ADNI’s rich data set to increase the power to
capture significant associations [215,216,221]. Strategies for finding the “missing
heritability” of the disease included searching for epistatic interactions, examining the
associations of low-frequency variants, and extending analysis from a target gene to genes in
the same biological pathway. The APOE &4 allele was associated with atrophy and shape
changes in the hippocampus and other regions [176—178] and was found to have differential
effects in males and females [179]. Studies of APOE e4 noncarriers identified loci
responsible for disease phenotypes such as AP deposition in these subjects [188,222,223]
(Table 6). Novel protective and risk loci associated with atrophy, metabolism, AP load, CSF
biomarkers, and cognitive decline and with early onset AD in the absence of established
autosomal-dominant genes were identified (Table 6). Risk genes lay in pathways involved in
APP processing and AP clearance, apoptosis, cholesterol metabolism, neurotransmission,
immune and inflammatory responses, microglial activation, and other cellular processes.
Interestingly, stroke and AD risk genes appeared to overlap, implicating WM disease in AD
pathology. Identified protective genes were involved in the inhibition of neurodegeneration
and cholesterol metabolism, and cancer. Finally, ADNI genetics data have contributed to
understanding other diseases with the inclusion of the cohort in various meta-analyses [228—
230] and in the ENIGMA consortium [173].
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7. Disease progression

A better understanding of the AD pathological pathway is central to ADNI’s goal of
developing biomarkers for the improvement of clinical trials. AD is pathologically
characterized by amyloid plaques composed largely of fibrillar forms of AP, and
neurofibrillary tangles, composed of hyperphosphorylated tau (p-tau;g;) that is associated
with synapse loss and neurodegeneration. The amyloid cascade hypothesis [256] has
dominated research over the last two decades, to the point that diagnostic criteria for AD
now include AP abnormalities. The amyloid hypothesis states that incorrect processing of
the APP to form AP, together with an imbalance in the clearance of AB accumulation,
triggers a cascade of events: the formation of AP plaques, the accumulation of fibrillar tau in
cells as NFTs and neuropil threads, neuronal death and synaptic dysfunction, disruption of
glucose metabolism, atrophy, and eventual cognitive decline. However, although cortical
hypometabolism is largely linked to global amyloid burden, regional amyloid plaque
deposition has little or no association with regional hypometabolism [257]. Jack et al. [258]
proposed a hypothetical model describing the order in which biomarkers become abnormal
during disease progression which largely follows this cascade of events (Fig. 15). The
Biostatistics Core has been instrumental characterizing longitudinal trajectories of
biomarkers through their biostatistical analyses that integrate data across the breadth of
ADNI studies [259]. Numerous studies of ADNI data have supported this model and have
been described in a previous review [1].

However, mounting evidence suggests that AD progression is a far more complicated tale.
At autopsy, a substantial number of subjects have copathologies such as Lewy bodies,
hippocampal sclerosis, and transactive response DNA binding protein 43 kDa (TDP-43)
inclusions [260] (Fig. 15). The ADNI Biostatistics Core concluded that although AR
positivity accelerates the progression from MCI to AD and subsequent cognitive decline,
there is substantial evidence for alternative pathways to this end point [259]. The purpose of
this section, therefore, is to outline evidence for the amyloid cascade hypothesis, primarily
gained from studies of AB+ subjects, and for other possible pathways to dementia.

7.1. Disease progression in Ap-positive subjects

In an increasingly complex view of AD progression, the pathway from presymptomatic CN
AB- to CN AB+ to predementia MCI AP+ to AD AP+ remains the backbone of the process.
Moreover, a patient may transition from a negative to a positive AP status at any time (Fig.
16). In dissecting out different pathways of disease progression, a number of studies have
dichotomized subjects on the basis of AP positivity, defined either on the basis of a CSF
ABy4; levels, or from cortical AP load determined by amyloid PET. In this way, investigators
have begun to tease out, even in those with normal cognition, the associations between A3
deposition, and other factors in the disease such as metabolism, atrophy, APOE4 status,
cerebral blood flow, and WM architecture. These studies have profound implications for our
understanding of AD progression.

7.1.1. Ap and the ordering of biomarkers—Ap status clearly affects disease
progression. A cross-sectional study [261] found that levels of CSF t-tau and p-tau;g; only
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became abnormal in AB+ subjects and that trajectories of the CSF biomarkers across disease
stages were distinct in the dichotomized groups (Fig. 17). Young et al. [262] developed an
event-based model which used distributions of biomarker values rather than predetermined
biomarker cut points to determine the sequence in which AD biomarkers become abnormal.
In AB+ or APOEA4 participants, the first CSF biomarker to become abnormal was APy,
followed by t-tau and p-tau;g;, the order predicted by the Jack model. In AP+ subjects,
several studies [261-264] reported an ordering of biomarkers consistent with the Jack
model: levels of CSF AB4, becoming abnormal in the preclinical stage, tau reaching
maximum abnormality in the MCI stage, and imaging and cognitive markers beginning to
decline in the asymptomatic stage but accelerating with advanced clinical stage [261,264].
These studies favor the concept of abnormal AP deposition as a prequel for tauopathy in
AD.

7.1.2. Ap and brain atrophy—Several studies support a link between AP positivity and
increased regional atrophy in the brains of CN subjects. Hippocampal atrophy, a nonspecific
characteristic of AD, accelerates throughout the disease process but also occurs in normal
aging. Nosheny et al. [128] found that AP positivity contributed to, but did not entirely
account for, hippocampal atrophy rate in CN participants (Fig. 18). Furthermore, atrophy
preceding that in medial temporal regions has been detected by several groups, specifically
in the precuneus [265]; the right supramarginal/inferior parietal gyrus [261]; and the
posterior cingulate, amygdala, putamen, precuneus, and brainstem (before the AB4; cut
point of 192 ng/mL insula) [266] (Fig. 19).

Cholinergic neurons in the basal forebrain regulate the supply of acetylcholine to areas of
the temporal cortex and to the amygdala thereby influencing memory and attention, and
their degeneration is regarded as a key event in AD pathogenesis. AP burden has been
associated with basal fore-brain degeneration independent of APOE4 status in emergent A
+ asymptomatic subjects [267-269]. Moreover, basal forebrain volume classified preclinical
patients as AP+ or AP— more accurately than hippocampal volume [269]. In MCI subjects,
basal forebrain degeneration was more associated with impaired memory and attentional
control, whereas hippocampal atrophy was more associated with memory deficits. This
association was mediated by hypometabolism in domain-specific cortical networks and was
not affected by AP status [27]. These studies support cholinergic basal forebrain
neurodegeneration and the concomitant deposition of AP as early events in AD.

Two studies place glucose hypometabolism as an intermediary event between AP positivity
and atrophy in accordance with the Jack model for the temporal ordering of biomarkers
[258]. Kljajevic et al. [133] examined baseline FDG PET and structural MRI scans of AB+
CN, EMCI, and late MCI (LMCI) subjects compared with AB— CN elderly subjects.
Glucose hypometabolism originated in the posterior parietotemporal regions before atrophy
which originated in medial temporal regions (Fig. 20). Araque Caballero et al. [265] also
reported that atrophy originated in the medial temporal lobe in MCI AR+ subjects and,
furthermore, that this pattern of atrophy correlated with patterns of hypometabolism,
suggesting that by the time the first cognitive symptoms arise, both these kinds of
neurodegeneration are spatially associated. Although Kljajevic et al. [133] posit that
abnormal AP deposition may affect synaptic activity leading to subsequent neuronal loss and
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hypometabolism, the results from Dowling et al. [270] suggest that this is an earlier event in
pathogenesis and therefore more weakly related to changes in hypometabolism and
subsequent changes than intraneuronal neurofibrillary degeneration.

7.1.3. A and cognitive deficits—The relationship between AP positivity and
cognition may be more complex than the causal sequence of pathological events implied by
the Jack model in which altered levels of CSF peptides exert a neurotoxic effect which
impairs cell function and leads to decreased glucose metabolism, ultimately resulting in
cognitive decline. First, AP positivity may affect cognition at a far earlier stage than
previously thought. Susanto et al. [261] reported that CN AP+ subjects had impairments in
executive functioning/processing speed which was accompanied by atrophy at the right
supra marginal/inferior parietal gyrus. Mattsson et al. [271] reported that CN AP+ subjects
had lower memory scores and smaller GM volumes in several regions including the
hippocampus. Both studies reported that MCI AP+ subjects had widespread atrophy and
impairments to multiple cognitive domains.

Second, AP positivity may exert its effect on cognition via multiple pathways. Mattsson et
al. [271] used a mediation analysis to investigate the role of atrophy and hypometabolism in
mediating the effect of AP on episodic memory in MCI patients. Hippocampal atrophy
mediated approximately 25% of this association, and approximately 40% was mediated by a
combination of hippocampal atrophy and hypometabolism (Fig. 21). Interestingly, the fact
that 60% of the association between AP and memory was not mediated by hypometabolism
and/or atrophy suggests that other mechanisms must exist. A study by Byun et al. [272]
supports this idea. In subjects with significantly lower CSF Ay, levels compared to
controls, they identified four subtypes of AD characterized by different patterns of regional
brain atrophy and rates of progression: primarily hippocampal atrophy (19%), primarily
cortical atrophy (17.7%), both hippocampal and cortical atrophy (41.1%), and neither region
(10.4%). They found that subtypes characterized by primarily hippocampal atrophy
exhibited more severe impairment of the memory domain (ADNI-Mem), whereas executive
function (ADNI-EF) was more impaired in subtypes with predominantly cortical atrophy
(Fig. 22). The finding that heterogeneous atrophy patterns exist with different rates of
progression in the presence of AP neuropathology was also reported by Mattsson et al. [273]
who found that a subset of CN participants with normal baseline levels of CSF Ap42 that
decreased over time, or with reduced baseline levels of CSF AB42, had increased frontal and
parietal cortical atrophy but no accelerated temporal atrophy longitudinally. Byun et al.
[272] postulated that these subtypes correlate with distribution of neurofibrillary tangles,
suggesting a closer relationship between tau neuropathology and cognition than A
neuropathology and cognition, a hypothesis supported by two further studies. First, Fortea et
al. [274] used correlation analysis to determine that p-tau-dependent cortical thinning was
found only in AP+ subjects and not in AR— subjects. In the absence of abnormal p-tau,
abnormal CSF A4, was related to cortical thickening. The authors posited a two-phase
phenomenon in which there is initial cortical thickening as AP levels become abnormal
followed by cortical thinning as p-tau reaches pathological levels. Second, Dowling et al.
[270] used a mediation analysis to examine changes in brain glucose metabolism,
longitudinal changes in global cognition, their association over time, and the impact of
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baseline CSF measures on these associations. Glucose hypometabolism in all AD-associated
brain regions mediated the relationship between CSF indicators of neuronal damage (t-tau,
p-tau;gq, and their ratios), and cognitive decline. In contrast, only hypometabolism in the
middle inferior temporal gyrus mediated the effect of baseline levels of AB4, on cognition.
Overall, there is general (but not universal) agreement that initial development of AB
plaques accelerates development of tau tangles which leads to synapse loss and
neurodegeneration. However, TF-fMRI activity is disrupted in CN elders who are Ap

+ [275], suggesting that AP plaques alone may affect brain function before significant
accumulation of tau tangles. Hopefully, the use of both amyloid and tau PET in future
studies including ADNI-3 will shed more light on this matter.

Disease progression in subjects dichotomized by APOE4 status appears to be similar to that
in subjects dichotomized by AP status: the two groups have the same defined sequence of
CSF biomarkers [262] as well as faster trajectories of CSF t-tau, and p-tau [276], and faster
hippocampal atrophy [128]. But the APOE4 allele may actually modulate disease
progression in AP+ subjects. Susanto et al. [261] reported that MCI and AD carriers of this
allele had more severe atrophy of the medial temporal lobe and worse memory impairment
but higher executive functioning/processing speed than noncarriers, suggesting that APOE4
modulates trajectories of both cognition and atrophy.

7.1.4. Ap and cerebral blood flow—Mattsson et al. [277] determined the association
of AP with variations in cerebral blood flow, a measurement of brain activity, across the
cognitive spectrum. With all subjects, brain AP was associated with reduced cerebral blood
flow in temporoparietal regions, but with increased cerebral flow in the posterior cingulate
suggesting a compensatory mechanism for AP neurotoxicity in the latter region.
Dichotomization of subjects by AP status revealed reduced cerebral blood flow is in several
regions in AR+ compared to AP— participants. AP load was more associated with reduced
cerebral blood flow than atrophy in CN subjects but the opposite was true in LMCI or AD
patients. In keeping with the Jack model of disease progression [258], these results suggest
AP is more associated with functional and synaptic loss leading to reduced cerebral blood
flow early in disease progression and more associated with GM loss leading to atrophy later
in disease progression.

7.2. Alternative pathways to dementia?

Beckett et al. [259] concluded that although AP positivity accelerates the progression from
MCI to AD and subsequent cognitive decline, there is substantial evidence for alternative
pathways to this end point. In their data-driven model of biomarker changes in AD, Young et
al. [262] observed that in the pooled samples, t-tau was the first biomarker to become
abnormal, followed by p-tau;g; and AP4y; only in AR+ or APOE4+ subjects was APy first
biomarker to become abnormal, as predicted by the Jack et al. model [258]. Furthermore,
trajectories of CSF biomarkers across disease stages in AB— subjects were distinct from AR+
subjects and did not feature the stereotypical decreased AB4, and increased p-tau;g; and t-
tau [261]. These results imply that a substantial proportion of ADNI subjects have atypical
disease progression.
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7.2.1. Heterogeneity of diagnostic groups

7.2.1.1. Subtle cognitiveimpairment: The appearance of subtle cognitive impairment
(SCI), defined using Sth percentile cutoffs of composite memory and/or executive function

scores, follows stereotypical sequential changes in AP and neurodegeneration biomarkers. A
newly identified group, accounting for 5% of CN subjects, had SCI without neuronal injury
in the presence or absence of abnormal AP [278]. Toledo et al. [279] reported that 27.6% of
ADNI healthy controls had SCI and further defined three categories within this group—
memory, executive, and multidomain—that differed in biomarker profiles and in the rate of
progression to MCI and AD. The multidomain group, characterized by having the fastest
progression to MCI, the most abnormal levels of ARy, atrophy, and greatest posterior
cingulate FDG PET hypometabolism, was most related to AD. The memory group,
characterized by slightly abnormal AB4; and increased atrophy, had a slower progression to
MCI and the executive group had the slowest progression to MCI.

7.2.1.2. MCI: Several studies identified MCI subtypes using cluster analysis of
neuropsychological data [280-282]. An amnestic subtype characterized by isolated memory
impairment and abnormal CSF biomarkers, representing “typical” AD, was identified in all
studies (summarized in Table 8). However, this cluster comprised only 25.7% to 58.6% of
MCT subjects. The remaining MCI subjects were clustered into a number of different groups,
most commonly a dysexecutive/mixed group typically characterized by significant deficits
predominantly in executive function, elevated p-tau;g;, and the fastest progression to AD
(12.4%-33%, identified in 4/5 studies), and a normal group, comparable to CN controls
(31.3% to 41.3%, identified in 3/5 studies). The normal group had the lowest rate of
progression to AD (10.7% at follow-up), and a significant rate of regression to normalcy
(9.2% at follow-up), suggesting that ADNI MCI criteria may have a high rate of false-
positive diagnostic errors leading to misclassification of subjects [280]. These criteria
include a subjective memory concern reported by either the subject or a study partner, a
single memory score (delayed recall of Story A from the Wechsler Logical Memory II test),
and a global CDR score of 0.5 that may not capture variability in cognitive phenotype.
Subjective memory impairment was overestimated by MCI subjects in the normal cluster but
underestimated by MCI subjects in the amnestic group, suggesting that subjective memory
concerns are not reliable in making an MCI diagnosis [282]. The false-positive diagnostic
errors are also consistent with reports of high reversion rates of MCI subjects to cognitively
normal [281].

The observation that MCI reverters differed little from CN subjects in levels of CSF
biomarkers, APOE4 status, hippocampal volume, hypometabolism, and other measures but
differed substantially from other MCI subjects supports this idea [284]. Bondi et al. [280]
reported that MCI subjects classified using an alternative actuarial method (which diagnosed
fewer ADNI subjects with MCI) did not contain the cluster-derived normal group.
Interestingly, 3/5 studies identified a group with language or naming impairments (17%—
21%), and one study identified a large cluster (42%) characterized by visuospatial
impairments and a small cluster (9%) characterized by a focal intrusions (recalled items
which were not part of the list) [283]. The language impairment group was characterized by
fast progression to AD and a high frequency of APOE4[281,283]. Language deficits may
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reflect neuronal loss in the left hemisphere. Pravata et al. [285] found greater atrophy in the
Brodmann area 20 of the left fusiform gyrus 12 months before progression, and in the left
hemisphere GM 12 months after progression in MCI converters with language impairment
compared to those without.

Cluster analysis of MCI subjects on the basis of baseline MRI, CSF, and serum biomarkers
identified four clusters with distinct biomarker patterns [286]. Like studies based on
neuropsychological data, one group (44%) appeared to have “typical AD” characteristics
(and a small group appeared to be pre-AD), and another was similar to normal controls
(14%). However, the latter group also had pronounced memory deficits and smaller
hippocampal volume, although they rarely converted to AD, and the authors suggest that the
stable group may be undergoing a non-AD process such as hippocampal sclerosis. The final
group (37%), characterized by severe ventricular expansion, hippocampal atrophy, and
progression to AD but near normal levels of tau and AP, also appeared to be on a different
path to dementia. Although further investigation is required to refine MCI subtypes, these
studies imply that multiple pathological pathways underlie the substantial heterogeneity of
this group.

7.2.1.3. Cortical atrophy: Patterns of atrophy differ in subjects stratified by AP status
(Section 7.2.2) but also differ across patient groups. Ventricular expansion reflects cortical

atrophy in regions associated with early AD. Madsen et al. [287] reported that 2-year
ventricular expansion was associated with baseline cortical volume and thickness in
combined patient groups and with thinning in areas of temporal, frontal, and parietal cortices
affected by AD in MCI participants. Distinct patterns of cortical atrophy were present in
three neuropathologically defined subtypes of AD [163]. Compared with AD subjects with a
diffuse pattern of cortical thinning, AD subjects with a pattern of medial temporal thinning
had more glucose hypometabolism in hippocampus and bilateral frontal cortices, and worse
memory performance, and AD subjects with thinning in predominantly parietal regions were
younger, had more glucose hypometabolism in parietal and occipital cortices, and showed
AP accumulation in most regions [163]. No differences in CSF Ay, or tau levels were seen
in any groups. Cortical atrophy patterns may reflect differing underlying pathologies.

7.2.1.4. Significant memory concerns. Current MCI diagnostic criteria include a
significant memory concern (SMC) from either the patient, clinician, or someone close to

the patient in addition to quantitative evidence of cognitive impairment with relative
preservation of functional abilities [288]. ADNI-2 enrolled an additional cohort of subjects
who were clinically evaluated as CN but who had SMC:s in the interest of capturing the
earliest cognitive decline. By most measures—cognitive performance, hippocampal volume,
AP deposition, and metabolism—these subjects were indistinguishable from normal controls
[259]. However, one study reported increased frontal atrophy in this group [279], and a
cluster analysis of both SMC and CN subjects revealed three distinct groups (Fig. 23) [259].
The first cluster had normal levels of AP, normal metabolism, a low frequency of the APOE
e4 allele, but evidence of hippocampal atrophy. The second cluster appeared normal by all
measures, and the third cluster aligned with biomarkers of “typical AD,” having abnormal
AP, a high-frequency of the APOE &4 allele, and slight hippocampal atrophy. Two studies
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examined SMCs in MCI subjects, one reporting that these concerns were only related to
verbal episodic learning performance and not to neuroimaging biomarkers, executive
functioning, language, or other cognitive domains [289], and the other suggesting that these
concerns were only weakly associated with objective functioning [282].

7.2.2. SNAP—Cluster analyses consistently identify a group characterized by signs of
neuronal injury such as elevated p-tau;g; or atrophy and accelerated progression to AD. This
cluster is consistent with a group, comprising around a quarter of CN and MCI subjects, that
typically has neurodegeneration in the absence of AP pathology and low frequencies of the
APOE e4 allele, recently been termed suspected non-Alzheimer’s pathology (SNAP)
[290,291] (Fig. 24, Table 3). Over 7 years, more than half (12/19) of MCI progressors with
SNAP developed AD; 5/19 progressed to a frontotemporal dementia, and 2 to Lewy body
dementia [291]. It is possible that SNAP subjects who progressed to AD were misdiagnosed
initially as being AP— due to limitations in the CSF ARy, assay or to AP levels being close
to the cut point for amyloid positivity used (Amyloid positivity is defined either on the basis
of a CSF Ay, level of greater than 192 pg/mL [292] or from cortical AP load determined
by amyloid PET using the radiotracers Pittsburgh compound B or florbetapir [293]. Ap+
subjects have levels of amyloid above either or both of these threshold values, and Ap-
subjects have levels of amyloid below the threshold values).

Cognitive deterioration in SNAP subjects appeared more related to neuronal damage than to
AP pathology. Medial temporal tau pathology may underlie SNAP and is referred to as
primary age-related tauopathy (PART). It is possible that SNAP represents an aging process
separate from AD [290]. The inclusion of tau PET imaging in ADNI-3 may help to resolve
the involvement of PART in SNAP subjects. SNAP subjects also had higher levels of
YKLA40, a marker of neuroinflammation, than AR+ presymptomatic subjects [144],
supporting the idea. Although the pathophysiology of this group is not yet known, it may
involve AP unrelated pathologies such as hippocampal sclerosis, argyrophilic grain disease,
Lewy body disease, or frontotemporal degeneration, with a variety of different pathologies
found at autopsy. Caroli et al. [291] proposed a further subdivision of SNAP subjects into a
subgroup with severe cortical damage and no hippocampal atrophy with underlying
frontotemporal degeneration, and a second subgroup with preserved cortical metabolism but
hippocampal atrophy with underlying hippocampal sclerosis or argyrophilic grain disease.

7.2.3. The role of WM disease—One source of biological heterogeneity in AD may be
small-vessel cerebrovascular disease [1,54]. WM lesions are highly prevalent in AD and
may represent microvascular ischemic and/or demyelinating changes linked to
cerebrovascular disease [294]. Recognition of the contribution of cerebrovascular disease to
AD is reflected in NIA-AA criteria for AD that include a diagnosis of possible AD dementia
in circumstances where patients have an etiologically mixed presentation including a severe
burden of white-matter hyperintensities (WMHs), a widely accepted measure of small-vessel
cerebrovascular disease [294]. However, as WM microstructural and cerebrovascular
disruptions are observed in both elderly and demented subjects, the threshold separating
WM lesion burden in these two patient groups has yet to be determined and the specific WM
disease contribution to AD remains unclear. Is WM disease a factor that increases AD risk
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and clinical severity independent of the prevailing pathogenic models, or does it promote
AD neurodegenerative changes? ADNI publications over the last 2 years have begun to
address these issues and to integrate the role of WM disease in AD into current models of

disease progression.

Although subjects with hemispheric infarctions at baseline are excluded from ADNI, subject
assessment includes several neuroimaging biomarkers for small-vessel pathology. T2-
weighted or FLAIR MRI sequences are used to detect WMHs, and cerebral microbleeds are
visualized using a T2* gradient echo MRI sequence [54]. The extent of cerebrovascular
disease in the ADNI cohort was investigated by Ramirez et al. [295] who reported that the
ADNI-1 sample had a significantly lower WMH burden relative to other elderly and
dementia cohort studies. Despite their conclusion that ADNI-1 sample can be considered a
relatively pure cohort with little to no vascular burden compared with community
populations, ADNI studies investigating the role of WM disease suggest that a low burden
may still have a significant impact on disease progression.

7.2.3.1. Vascular disease and risk factors are associated with cognitive decline and
wor sening clinical outlook: Numerous measures reflecting vascular disease have been

associated with worsening clinical outlook. Greater baseline WMH volume was associated
with lower processing speed [296] and rapid cognitive decline (.6 points/year MMSE) [297].
A vascular index score (summarizing past or present hypertension, hyperlipidemia, diabetes,
myocardial infarction, atrial fibrillation, smoking, and stroke) was associated with greater
memory impairment [296], and metabolic syndrome (obesity, hyperglycemia,
hyperlipidemia, and hypertension) increased the risk of AD and was associated with a faster
decline in WM volume [298]. Higher homocysteine levels were associated with lower
processing speed [296]; higher cholesterol was associated with a greater rate of increase in
global cognition and memory impairment [296]; hyperglycemia was associated with
cognitive decline, whole-brain volume decline, and rate of progression to AD [299]; past or
present hypertension predicted WMH volumes in CN subjects [300]; and a history of
cigarette smoking (associated with oxidative stress and small hippocampal volume [301])
was associated with lower performance on cognitive tests [302]. An alternative marker of
cerebrovascular dysfunction, physiological fluctuations in white matter (PFWM), was
associated with glucose metabolism and composite memory but not ventricular or
hippocampal volume, executive function, or CSF biomarkers [303]. Peripheral insulin
resistance was differentially associated with either hypometabolism or hypermetabolism in
different areas depending on whether subjects progressed to AD or not, suggesting that it
may increase AD risk by affecting glucose metabolism [304]. Vascular burden may be
evident at very early stages of cognitive decline as several associations were found in CN as
well as MCI subjects [296,298,300,305].

Considerable evidence suggests that cardiovascular risk factors may accelerate
neurodegeneration and subsequent cognitive decline via AP independent pathways. In CN
subjects, AP deposition was more associated with APOE4 positivity than with a history of
cigarette smoking, although APOE4+ smokers had the lowest glucose metabolism and
poorest learning and memory scores of all groups, suggesting that cerebrovascular disease
may worsen the effects of the APOE e4 allele (Fig. 25) [302]. Similarly, stroke risk,
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comprising cardiovascular factors such as hypertension and cigarette smoking, was most
related to hippocampal volume and memory performance in the absence of AP pathology
(Fig. 26) [306]. Finally, the association between type-II diabetes mellitus and regional-
reduced cortical thickness was modulated by levels of p-tau;g;, but not by cortical AP load
[307].

Vascular disease may act synergistically with neurodegeneration to accelerate cognitive
decline. Tosto et al. [297] reported that low baseline entorhinal cortex volume, a marker of
neurodegeneration due to AD, and high baseline WMH volume independently predicted
rapid cognitive decline of a similar magnitude. Moreover, individuals with high entorhinal
cortex volume and low WMH burden had a significantly lowered risk of rapid cognitive
decline (Fig. 27).

7.2.3.2. WM disease and morphological changesin disease progression: Two distinct
factors in AD subjects were identified in a factor analysis study of hippocampal volume, AD

signature cortical thickness, ventricular volume, total WM volume, and volume of WM
changes [308]. The first was associated with diffusivity, total volume of WM changes, and
ventricular expansion. A second factor was more strongly related to MMSE and cortical
thickness changes typical of AD and was associated with worse parahippocampal WM
microstructure. These results imply that there are two sets of independently covarying
degenerative changes: age-related vascular changes that are associated with ventricular
expansion and volume of WM lesions, and WM changes in the parahippocampal gyrus that
are associated with hippocampal atrophy and the classical patterns of AD
neurodegeneration. WM burden may be more than a simple comorbidity due to vascular
disease and may play a specific role in the latter pathway that is not considered in traditional
models. Further evidence to support this comes from a study of changes in the quality of
WM signal abnormalities. Accelerated before and after MCI progression to AD and echoed
the acceleration of hippocampal atrophy at this time [309].

7.2.3.3. How doWM abnormalitiesinteract with AP and tau deposition?: Clearly,
cerebral WM disease influences disease trajectory. Do WMHs act independently of or

interactively with CSF biomarkers? WM changes in the elderly have been linked to
cognitive deficits but the relationship between the cerebral AP deposition and WM
microstructure is not well understood. Wolf et al. [310] investigated the relationship between
AP deposition and WM microstructure in CN subjects using DTI. They found that the
relationship between AP deposition and DTI metrics of WM integrity (fractional anisotropy,
mean diffusivity, radial diffusivity, and axial diffusivity) was not linear. In fact, at lower
levels of AP burden, increasing AP load was associated with increases in fractional
anisotropy and decreases in mean diffusivity and radial diffusivity, suggesting an
improvement in WM integrity. At higher AP burden, increases in AP load were associated
with DTI measures indicating the opposite. At low AB burden, compensatory mechanisms
may act to preserve cognitive functioning, but these may be overcome by higher A burden
leading to damage to WM structure, which may, in turn, initiate cognitive decline.

In some instances, AP load may be correlated with WM lesions. Past or present hypertensive
CN subjects had greater WMH volumes at a given burden of AP (Fig. 28) [300]. Although
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the extracellular AP deposition measured by FLAIR MRI in this instance is not directly
correlated with cerebral AP angiopathy, these results support the idea that AP accumulation
within blood vessels could exacerbate cerebrovascular injury processes that contribute to
WDMHs. AP load in the medial prefrontal cortex and posterior cingulate cortex was
correlated with WM lesion load in CN subjects in periventricular and frontal regions,
suggesting a link between microvascular damage and AP pathology at the early stages of
disease [311]. The location of cerebral microbleeds was differentially associated with CSF
AP and p-tau;g; levels. Lobar microbleeds at the cortico-subcortical junction, which reflect
AP angiopathy, and not microbleeds in deep GM, which reflect subject hypertension, were
associated with abnormal levels of CSF AP and p-tau;g; [312]. Furthermore, subjects with
cortical microbleeds were more likely to carry the APOE4 allele, suggesting that WM
damage at this location is associated with typical AD pathology.

Do WMH levels modify the effect of tau in neurodegeneration? Subjects with low baseline t-
tau and higher frontal and parietal WMH volumes had greater entorhinal cortex atrophy than
subjects with lower baseline t-tau and lower regional WMH volumes [313]. In addition,
elevated WMH, particularly in the parietal lobes, predicted MCI to AD progression, and risk
of progression increased in subjects with high levels of tau [313]. Thus, WMH burden may
act as the “second hit” that is required, in addition to abnormal levels of CSF biomarkers, to
produce neurodegenerative and cognitive changes associated with AD (Fig. 29).

Taken together, these studies offer an intriguing glimpse into how the effect of WM disease
may be integrated into the traditional model for AD progression. Vascular risk factors may
enhance cognitive decline by interacting with AP in the early disease stages to increase WM
abnormalities. Regional WM abnormalities may then act as a “second hit” to augment the
effects of tau abnormalities and neurodegeneration, thus accelerating the remaining disease
process. The fact that these findings are from the ADNI cohort which has been characterized
as having far lower burden of WM disease than other community samples [295] suggests
that the contribution of WM abnormalities to dementia in the wider population may be even
more profound.

7.3. AD as a disconnection syndrome

Several investigators have suggested that AD is a disconnection syndrome, based on the
progressive synaptic and neural degeneration across the continuum of the disease [314,315].
Considerable evidence exists that specific structural and functional brain networks are
increasingly disturbed, hypothetically due to neuronal injury caused by the abnormal
deposition of AP and/or tau [275,316,317]. The different underlying biological substrates of
these structural and functional networks, namely WM fiber tract networks, cortical thickness
networks, and resting-state functional networks, can be mapped by applying graph
theoretical analyses to different imaging modalities in the burgeoning field of
“connectomics” [318]. Graph theory uses “nodes” to designate brain regions thought of as
hubs, and “edges” to represent the connections between them to construct a topological map
of the connectome and to generate measures (strength, weighted local efficiency, weighted
clustering coefficient, and characteristic path length) that describe the organization of the
network [319,320]. The inclusion of diffusion MRI for studying WM tract geometry, and
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TF-fMRI for mapping functional networks, in the ADNI-2 protocol has produced a set of
longitudinal data across the disease spectrum that is central to number of studies targeted at
understanding the role of brain network disruptions in AD.

7.3.1. Structural connectivity—Diffusion MRI can be used to study WM fiber
integrity and microstructure based on measures of local water diffusion such as fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR)
which respectively reflect the degree of myelination, cell death and edema, axonal injury and
demyelination, and loss of oligodendrocytes and reactive astrocytosis [321]. The trajectory
and structural connectivity of axonal fibers can be inferred using tractography based on DTI
data. Studies of the ADNI cohort have found both global and local changes to WM tracts
during disease progression. Sun et al. [322] found increased global DA and increased DR in
prodromal patients, and a further increase in these measures, along with decreased global
FA, in demented subjects, consistent with widespread WM damage. Reduced WM fiber
integrity may be associated with GM atrophy. Deterioration in WM integrity may decrease
GM volume, particularly in the hippocampus. Simultaneous changes in GM volume and FA
values were reported in AD subjects compared to CN subjects primarily in the temporal
lobe/hippocampuscingulum, frontal/cingulate gyrus—corpus callosum, and temporal/
occipital/parietal lobe—corpus callosum/corona radiata [323]. However, there was no
correlation between MMSE score and diffusion indices in regions known to affect memory
[324] implying that memory loss is an event considerably downstream of network
deterioration. Changes in WM structure have been observed in regions of the brain involved
in known mechanisms of disease pathology—WM tracts known to be connected to areas of
AD pathology appear most prone to deterioration. MCI subjects had increased DR and DA
in the external capsules of the lateral cholinergic pathway, a finding consistent with the
degeneration of cholinergic neurons of the basal forebrain as a distinct neuropathological
feature of AD [322]. AD and MCI subjects had increased total diffusivity and DR and
decreased FA in the optic nerves and optic tract, consistent with common visual deficits
observed in AD despite relative lack of damage to the visual cortex, and suggesting that the
visual pathway from eye to brain may be damaged [325]. The number of nerves fibers of
limbic system touching the hippocampus, thalamus, and amygdala decreased from CN to
EMCI to LMCI, and this metric was able to distinguish between EMCI and LMCI subjects
(Fig. 30) [326]. The cingulum angular WM bundles, connected to the hippocampus, showed
progressive deterioration in MCI and AD subjects, and their integrity was associated with
hippocampal volume [321]. However, controlling for hippocampal volume did not remove
all group differences, suggesting that WM damage additionally contributes to AD through an

alternative mechanism.

AD also appears to affect the topology of the structural connectome. This is characterized by
small-world properties such as a high mean clustering coefficient reflecting the
concentration of highly connected brain regions (“hubs”) and low characteristic path length
representing the WM fibers connecting them [320]. Significant group differences in these
metrics were reported by Prescott et al. [327] indicating that the AD structural connectome
undergoes progressive deterioration with disease progression. Another attribute of the
structural connectome, described by the rich club coefficient, is that its hubs are more
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interconnected than predicted by chance and play a central role in network communications
[320]. Daianu et al. [328] used whole-brain tractography to reconstruct structural brain
connectivity networks and to map connections between cortical regions. In MCI and AD
subjects, there was a progressive disruption of global measures of network integrity (nodal
degree, clustering coefficient, characteristic path length, and efficiency) but a relative
preservation of the rich club coefficient. Thus, network disruptions were primarily in
peripheral areas of low connectivity and left the highly connected rich club core, consisting
of hubs in the superior frontal, insular, posterior cingulate, precuneus, and superior parietal
region, relatively undisturbed (Fig. 31). Higher baseline characteristic path length and lower
baseline mean clustering coefficient values were correlated with greater volumetric changes
over 6 months in a preliminary study of MCI subjects [329]. Decreased clustering in the
right pars opercularis, left superior parietal node, and left pericalcarine node was
significantly associated with patterns of volumetric changes. Lower betweenness centrality
(a measure of the number of short communication paths a node participates in) in the right
temporal lobe was associated with greater atrophy, suggesting that this hub facilitates
integration between anatomically unconnected regions. These studies suggest that the degree
of integration across distributed brain regions and locally within regions decreases with
disease progression as the small-world architecture of the brain is disturbed.

Both APOE4 and AP positivity appear to influence the structure of the connectome. The
number of APOE &4 alleles was negatively correlated with the number of WM fibers
touching the hippocampus, thalamus, and amygdala [326]. The shortest path length was
increased and global efficiency decreased in preclinical AP+ compared to Ap— participants,
with no concomitant differences in either hippocampal volume or metabolism [330]. These
WM changes were specific to network structure and were not explained by changes in global
WM integrity. The degree of AP burden was more strongly associated with changes in graph
theoretical measures than with diagnostic group and affected large-scale structural networks
more severely in CN subjects than in MCI or AD subjects [327]. The decreasing effect of
accumulating AP burden with time may be because there are fewer viable connections to
degenerate [327]. Both studies suggest that damage to the structural connectome may occur
very early in pathophysiological development of AD, perhaps closely following A
deposition.

7.3.2. Functional connectivity—In addition to structural connectivity, the human brain
possesses functional connectivity which reflects signaling and communication events that
unfold within the underlying structural network [320]. Functional networks are derived from
statistical descriptions of time series data reflecting changes in blood flow measured as a
blood-oxygen-level dependent (BOLD) signal on TF-fMRI. They differ from structural
networks in that they are transitory, modulated by task, and link many structurally
unconnected node pairs. Major functional hubs with high connectivity to other regions are
located in the ventral and dorsal precuneus, posterior and anterior cingulate gyrus,
ventromedial frontal cortex, and inferior parietal regions, and these have significant overlap
with the DMN, which consists of an anatomically defined set of hubs and subsystems
located in the cingulate cortex [320]. As the DMN is implicated in the process of encoding
new memories, and AD impairs memory function, AD pathology may specifically target this
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functional network [331]. Increased WM lesion load was correlated with decreased
functional connectivity of the DMN, and reduced neuronal activity in the temporal cortex
[311].

Changes in functional connectivity appear to occur early in the disease process and can
distinguish between EMCI and LMCI subjects. The magnitude of these changes in the
posterior cingulate cortex, precuneus, right lingual gyrus, thalamus, and right
parahippocampal gyrus increased across patient groups and was related to cognitive
performance (MMSE) and the Geriatric Depression Scale [332]. Decreased functional
connectivity in the thalamo-hippocampus, thalamo—temporal, thalamo—visual, and thalamo—
DMN networks was observed between EMCI and LMCI subjects [333], highlighting the
importance of the thalamus, a crucial brain area believed to coordinate communication (e.g.,
memory, attention, and perception). Interestingly, there were areas of increased functional
connectivity between the thalamus and left fusiform gyrus, right middle occipital gyrus, left
and right precuneus, right middle temporal gyrus, and left inferior temporal gyrus in
amnestic MCI subjects, suggesting that they may be able to use additional brain resources to
compensate for loss of cognitive function.

APOE4 may modulate brain functional connectivity in early stages of the disease. APOE4
noncarriers had the strongest functional connectivity, whereas EMCI subjects who were
APOEA carriers had the greatest dysfunction [334]. The pattern of functional connectivity
disruptions in EMCI subjects overlapped to a large degree with that of APOE4 subjects.
However, only the EMCI group, and not the APOE4 group, had decreased connectivity in
the prefrontal cortex areas, suggesting a more multidimensional pathology in EMCI than is
accounted for by the presence of an APOE e4 allele alone [334].

Grothe et al. [335] used multimodal imaging data to assess the relationships between seven
previously defined major functional connectivity networks (the DMN, frontoparietal-control
network, dorsal- and ventral attention networks, limbic network, visual network, and
somatomotor networks [Fig. 32]) and AP deposition, hypometabolism, and GM atrophy. AP
deposition was widely distributed across the cerebral cortex, with the highest deposition in
the DMN and frontoparietal-control network. This pattern did not change significantly
across subject groups, consistent with AP deposition being an early event in AD
progression. Atrophy occurred primarily in the anterior limbic network, followed by the
DMN. The pattern of hypometabolism was a mixture of both AB- and atrophy-related
profiles. The distribution of atrophy and hypometabolism increased with disease progression
(Fig. 33). These results suggest that despite the high vulnerability of the DMN for changes
in imaging abnormalities, distinct pathologic markers of AD have differential network
specificities targeting different neuronal networks.

A study by Jones et al. [336] replicated many of the aforementioned results and offered a
model describing how microscale proteinopathy affects macroscale brain networks to
ultimately result in clinical symptomatology. Their multi-modal study tracked the evolution
of connectivity changes within and between the ventral, posterior, anterior ventral, and
anterior dorsal subsystems of the DMN (Fig. 34) across the course of the disease. They
found both increased and decreased connectivity in different regions, consistent with a
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previous study [332]. Connections within the posterior and ventral subsystems decreased
linearly, whereas connections between posterior and ventral, and posterior and anterior
dorsal subsystems, increased linearly across disease course. Decreasing posterior subsystem
connectivity was marginally associated with elevated A levels but not with hippocampal
volume, whereas increased connectivity between the posterior and ventral DMN subsystems
was associated with elevated AP levels and decreased hippocampal volume. Like McKenna
et al. [334], they found that APOE4 positivity had specific effects on network connectivity.
In CN AB- subjects, APOE4 was associated with lower posterior DMN connectivity only,
suggesting that failure of this network may be the earliest critical event in pathophysiology,
preceding AP deposition. Finally, the decrease in connectivity in the medial temporal lobe—
ventral DMN was associated with decreased memory performance.

The results support a model (Fig. 35) in which pathophysiology, possibly instigated by the
APOE e4 allele, originates in the posterior subsystem of the DMN. This results in a transient
increase in connectivity between the posterior DMN networks and other systems that are
associated with AP deposition and hippocampal atrophy. The increased connectivity may
indicate high processing burden or inefficient synaptic communications and requires high
metabolism which may trigger a cascade of downstream of molecular events associated with
AD. The processing burden may then proliferate to downstream networks. Highly connected
regions in the brain may be particularly vulnerable to AP deposition because of their
increased synaptic activity, according to the “nodal stress” hypothesis [335,337]. Indeed, the
authors postulated that the shifting of processing burden may lead to APP processing
changes and AP deposition. Overloading of specific networks may also exacerbate
preexisting primary age-related tauopathy in the medial temporal lobe and thereby accelerate
tau-mediated neurodegeneration.

7.3.3. Structural covariance networks—A complementary approach to diffusion-
based and TF-fMRI studies compares patterns of structural covariance of GM volume within
selected structural correlative networks. AB+ AD subjects had decreased structural
association in the medial temporal lobe subsystem of the DMN (Fig. 35), with specific
decreases between the entorhinal cortex and the medial prefrontal and dorsolateral prefrontal
cortices, and in the midline core DMN subsystem [338]. The results suggest that these early
structural disruptions between the heteromodal association cortices and the entorhinal cortex
may isolate the hippocampus leading to memory loss. Concomitant increased connectivity
was observed in other areas such as the salience and executive control networks [338],
consistent with the Jones et al. model [336]. Both the salience and executive control
networks affect frontal regions of the brain and are likely affected in AD rather than in
earlier stages of the disease. The results support the concept of AD as a disconnection
syndrome targeting specific large-scale brain networks.

7.3.4. Metabolic connectivity—Metabolic connectivity and the topological
organization of metabolic brain networks can be surmised by the analysis of metabolic
covariance between node regions, using FDG PET, which, like TF-fMRI BOLD
measurements, reflects the brain’s metabolism. APOE4+ CN, MCI, and AD subjects had
decreased metabolism in the parahippocampal gyrus and increased metabolism in the medial
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frontal gyrus and inferior frontal gyrus compared to APOE4- subjects [339]. The metabolic
networks of both groups had small-world properties, but APOE4+ subjects had lower
clustering coefficients and significant decreases in nodal centrality, a measure of the number
of connections maintained by each hub, in six hub brain regions. APOE4+ subjects also had
abnormally increased local short distance and decreased long-distance interregional
correlations. The results suggest that APOE e4 allele carriers have a less optimal metabolic
network than noncarriers. A second study reported that the MCI group had higher clustering
coefficients, shorter characteristic path length, and lower betweenness centrality than control
subjects, supporting the idea that the small-world characteristics of hub nodes are affected
during disease progression [340]. Hub nodes targeted by AD progression were identified in
the left anterior cingulum, right superior parietal, left fusiform, right inferior temporal gyrus,
and right cuneus.

Hypometabolism in the posterior cingulate cortex is an early marker of AD. Teipel et al.
[341] hypothesized that decreased metabolism in the posterior cingulate cortex is related to
disrupted input from connected regions, such as the hippocampus, that undergo early
atrophy. In CN and EMCI subjects, they found that posterior cingulate cortex
hypometabolism was exclusively associated with remote hippocampal atrophy. In LMCI
subjects, it was associated with both hippocampal atrophy and local atrophy within the
posterior cingulate cortex, as well as with AP load. In AD subjects, posterior cingulate
cortex hypometabolism was solely associated with local atrophy. These results may result
from a diaschisis-like mechanism in which loss of function of the posterior cingulate cortex
is caused by connection to the damaged hippocampus and are consistent with a progressive
disconnection of the posterior cingulate cortex from subcortical brain regions.

7.3.5. Models for the spread and propagation of Ap and tau along brain
networks—Recent neuropathological evidence supports a “prion-like” spreading
mechanism for AD pathology in which misfolded pathological proteins trigger the
misfolding of adjacent same species proteins and cascade along neuronal pathways via
trans-synaptic or trans-neuronal spread [342,343]. The initial misfolding of these proteins
and their subsequent propagation along structural brain networks is postulated to result in
hypometabolism, atrophy, and ultimately cognitive decline. Two ADNI studies have
developed or tested models based on this idea. Raj et al. [344] found that their earlier model
describing a prion-like diffusive progression along the fiber pathways defined by the brain
connectivity network [345] accurately predicted future patterns of atrophy and
hypometabolism based on baseline volume and metabolism. These patterns were in
agreement with the stereotypical progression of atrophy from temporal to parietal to frontal
regions. They also found that AP positivity predicted a faster rate of progression. Iturria et
al. [346] developed a model based on similar assumptions for the spread of AP pathology,
namely that the spread of AP as an infectious agent is constrained by the brain’s
connectional architecture. Their stochastic epidemic spreading model also incorporated the
brain’s clearance response to misfolded proteins and reproduced the characteristic patterns
of Ab deposition across the disease process (Fig. 36). They found that the AP clearance rate
was inversely correlated both with worsening clinical diagnosis and increasing number of
APOE €4 alleles and that it partially accounted for variance in CSF t-tau and p-tau;g; levels,
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supporting the idea of an interrelated pathway between AP pathophysiology and tauopathy.
In addition, the model identified the posterior and anterior cingulate cortices as the most
likely starting seed regions for the propagation process. The negative relationship between
regional AP deposition patterns and effective anatomical distances from these regions
suggested that the propagation of misfolded proteins from outbreak regions is modulated by
the topology of the WM tracts in the brain.

7.4. Conclusions

ADNI studies in 2014 and 2015 have provided ample evidence to support not only the
traditional view of an AP deposition-instigated cascade of events leading to dementia but
also the complexity of disease progression which may involve copathologies or alternative
pathways with as yet unidentified underlying pathology.

Cluster analysis of both MCI and CN subjects consistently identify a subtype with attributes
of “typical” AD: abnormal levels of CSF biomarkers, hippocampal atrophy, regional
hypometabolism, and impaired memory [279,281,283,305]. This group appears to largely
overlap with AB-positive subjects, who have been identified in ADNI-2 by amyloid imaging
and extensively characterized and who appear to follow “typical” AD progression in which
biomarkers become abnormal in the sequence defined by Jack et al. [258]. The APOE e4
allele may act to modulate this trajectory [128,261,262,276]. Novel findings indicated that
atrophy may begin in the presymptomatic phase in areas outside the hippocampus such as
the basal forebrain [267,268], precuneus [265,266], parietal gyrus [261], and posterior
cingulate [266]. This is an agreement with observations from connectomics experiments
which view AD as a disconnection syndrome with the earliest disruptions to metabolic
connectivity occurring in the posterior cingulate cortex [328,332]. The model of Jones et al.
[336] of a cascading network failure which begins in the posterior subsystem of the DMN,
and which propagates connectivity changes along the WM tracts of the structural
connectome, provides a provocative framework for functionally linking the many
observations of “typical” AD progression. The observation that the APOE e4 allele may
instigate the process or modulate in some way the structural and functional connectome
[310,326,327,334,336] also is consistent with studies of AP+ subjects. Models of a prion-
like mechanism [344,346] by which misfolded AP induces further pathological misfolding
along structural brain networks predict patterns of AB deposition, hypometabolism, and
atrophy and provide a mechanistic basis for network failure. The association of WM changes
caused by cerebrovascular disease with abnormal AP and with markers of neurodegeneration
may also be viewed in the light of these models. The association of AP positivity with
increased cerebral blood flow in the posterior cingulate [277], and with improvements in
global measures of WM integrity at low AP burden [310], may be evidence of the initial
compensatory changes in connectivity predicted by the model of Jones et al. [336]. AR
pathology and microvascular damage may be linked at the early stages of disease [311], and
WM changes in the parahippocampal gyrus were associated with hallmarks of AD decline
[308]. Degradation of specific, disease-related regions of the structural connectome by
cerebrovascular disease may exacerbate disconnection, consistent with the theory that WM
damage causes a “second hit” in disease progression. However, WM changes do not always
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lead to AD; the total volume of WM changes was found to be more related to age-related
vascular changes [308].

Most MCI and CN subjects were not identified by cluster analysis as following “typical” AD
progression. In fact, a substantial proportion were normal by most measures [280-282,286],
suggesting that there is a high rate of false diagnostic positives in MCI subjects. Various
other subtypes were identified, chief among them a group typified by deficits in executive
function and abnormal tau, but having normal AP [280,281]. These subjects may be related
to AP—, neurodegeneration positive SNAP subjects, who were found to progress to
frontotemporal dementia and Lewy body disease in addition to AD [291]. Conversely, a
subtype of AP+ patients had primarily cortical atrophy and deficits in executive function
which correlated with the distribution of neurofibrillary tangles [157,272]. These individuals
likely had atypical forms of AD characterized by predominantly isocortical tau pathology.
Finally, most of the associations between AP and memory were mediated by neither
hypometabolism nor atrophy, further implicating p-tau in the process. The tale of tau has yet
to be told; the inclusion of tau PET imaging in ADNI-3 promises to shed light on this
conundrum.

The studies have had a profound impact on how we consider the disease process, which, in
turn, has many implications for the development of AD preventive treatments and clinical
trial design. Many questions remain to be answered: what is the underlying pathology of the
AP-— subtypes? How does abnormal AP mechanistically prompt tau propagation? How does
tau propagate in the absence of AB? How does WM damage in different regions affect
structural, functional, and metabolic connectivity? What is a genetic contribution to these
different pathways? The answers will undoubtedly lie in the consideration and integration of
results from multiple approaches. The breadth and depth of ADNI positions it ideally at the
cusp of discovery.

8. Improvement of clinical trials

The overall goal of ADNI is to validate biomarkers for AD clinical trials. A large body of
recent ADNI publications describes improved approaches for diagnostic classification, the
prediction of future decline and the selection of trial participants likely to decline, and
development of outcome measures sensitive to early changes wrought by the disease. To
some extent, progress in this area dovetails with advances in our understanding of disease
progression; recognition of the heterogeneity and pathophysiology underlying MCI and now
even CN participants, and of the wide variety of clinical trajectories, informs many aspects
of clinical trial design. As trials move to presymptomatic cohorts, biomarkers will be crucial
in identifying those with preclinical AD. Furthermore, biomarkers may provide more
sensitive and specific markers of progression. Certainly, this is one of the major hopes for
tau PET [347]. Knowledge of how sources of disease heterogeneity influence biomarker
changes will enable the selection and monitoring of subjects most likely to benefit from a
targeted therapy. These advances improve statistical power to detect a slowing of clinical
decline in predementia populations, a major challenge which has plagued AD clinical trials
to date.
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Diagnosis and prediction

8.1.1. Use of established modalities

8.1.1.1. Multimodal classifiers: Clinical trial design fundamentally depends on the ability
to accurately diagnose the clinical group to which a subject belongs and to predict their

likelihood of measurable progression within the time frame of the trial. As no single
modality has been shown to be effective in all classification or prediction challenges,
researchers have continued to focus on the use of multiple modalities. Optimum
combinations of modalities differ between challenges. Although MRI and PET (FDG and
florbetapir) were roughly equivalent in their ability to discriminate between AD and CN
subjects and between AD and MCI subjects, changes in cortical thickness outperformed
other measures for EMCI and CN subjects and may be an early indicator of
neurodegeneration [348]. A systematic appraisal of the diagnostic and prognostic abilities of
hippocampal volume and CSF biomarkers, alone and in combination, in both APOE4
carriers and non-carriers found that their multimodal classifier outperformed either single
modality [349]. APy, levels contributed to discriminating between CN and MCI or AD
subjects but not between MCI and AD subjects. Conversely, p-tau;g|, a marker of
neurodegeneration, played a role in discriminating between AD and MCI or CN subjects but
not between MCI and CN subjects [349].

8.1.1.2. Prediction of CN to MCI progression: Biomarkers that predict cognitive decline
in CN subjects also reflect disease progression. Based on the hypothetical AD model [258],
successive preclinical AD stages have been proposed comprising firstly AP deposition (stage

1), followed by evidence of neuronal injury biomarkers (stage 2), and finally subtle cognitive
impairment (stage 3) [278]. Consistent with the stages, AB4;, but not p-tau;g;, predicted CN
to MCI, but not MCI to AD progression [350]. A cut point of <220 pg/mL AB4;, well above
the established cut point for AP positivity of 192 pg/mL [292], was the best CSF predictor of
decline on ADAS-cog in CN subjects, although t-tau and p-tau;g; alone and their ratios with
APB4; at modified cut points were also good predictors [350]. A combination of all CSF
biomarkers using the modified cut points predicted progression to MCI with an accuracy of
65% [350]. In another study, volumetric changes and t-tau/AB4, were associated with a
higher risk of progression in CN subjects, and lower baseline memory measures were the
strongest predictors of progression [278]. It is important to note that although neuronal
injury is included as a diagnostic criterion in AD, different markers of neuronal injury
(hippocampal volume, regional glucose metabolism, levels of CSF p-tau;g;) were not found
to be equivalent [278,351].

8.1.1.3. Prediction of MCI to AD progression: Predictors of MCI progression to AD also
reflect the biomarker changes occurring at that stage of disease progression. Combinations

of regional volumetric, glucose metabolism, and cortical deposition measures predicted
progression with accuracies of 72% [352] and 76% [353]. Neuropsychological measures
alone (clock drawing + AVLT) [354], or in combination with hippocampal volume [355],
reached similar accuracies. A point-based tool with a range of 0 to 9 which included scores
from the Functional Activities Questionnaire (FAQ), ADAS-cog and Clock-drawing tests,
middle temporal cortical thinning, and hippocampal atrophy also had good predictive
accuracy: 91% of MCI subjects with 7 to 9 points converted to AD within 3 years [356]. The
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primary drivers of prediction in the Disease State Index [357] were MRI features; additional
neuropsychological and CSF markers improved accuracy only slightly [358]. A comparison
of effect sizes of neuropsychological, MRI, FDG PET, and CSF measures for cognitive
decline over 4 years in MCI nonconverters and converters (Fig. 37) [354] illustrates the
relative importance of these measures, particularly atrophy in temporal regions, functional
and memory impairment, and changes in glucose metabolism compared to CSF biomarkers
in this transition.

8.1.1.4. Theeffect of APOEA4 status on the prediction of progression: Inclusion of
APOEA4 status substantially improved the prediction of MCI progression. In APOE4+
subjects, a hippocampal volume classifier had an accuracy of 76% [349], and a classifier
based on FDG PETand volumetric MRI measures had an accuracy of 86.8% [359]. In
APOE4 subjects, the best predictor of progression was a CSF classifier including p-tau;g;

that achieved 78% accuracy [349], suggesting that APOE4 plays a role in modulating
disease trajectory, and may account for a portion of the observed disease heterogeneity.

8.1.1.5. Cognitive and clinical factorsin prediction and diagnosis: Although
multimodal classifiers currently predict future decline with the best overall accuracy, the use

of cognitive or clinical factors that can be determined at a clinical visit can reduce cost,
avoid invasive lumbar puncture procedures, and save time. A brief clinical index which
included being female, several neuropsychiatric symptoms, and measures of cognition and
functional dependence classified subjects into low (14% converted over 3 years), moderate
(51% converted), and high-risk groups (91% converted) and had a Harrell’s c-statistic of
0.71, a predictive power similar to other commonly used prediction indexes such as the
Framingham cardiovascular risk indicator (Fig. 38) [360]. Specific cognitive tests may be
effective predictors. Clock drawing and RAVLT trial 5 were equally predictive of MCI to
AD progression (AUC 0.78) as other single cognitive, FDG PET, structural MRI, and CSF
biomarkers [354]. Two items on the FAQ (paying attention and understanding TV program,
paying bills/balancing checkbook) predicted greater hazard of progression from CN to MCI.
Similarly, the Everyday Cognition scale item “keeping mail and papers organized” predicted
CN to MCI progression with hazard ratio of 2.27 [361]. These studies support the idea that
simple questions regarding function can predict progression to MCI in CN elderly.

8.1.1.6. MRI biomarkersin prediction and diagnosis. MRI, although more costly than
cognitive tests, is noninvasive and accessible in most settings. Automatic MR imaging

analysis may assist a clinician in making an initial diagnosis. An automatic medial temporal
lobe atrophy measurement predicted progression from SMC to MCI, and from MCI to AD
with sufficient accuracy for clinical utility (AUCs of 0.904 and 0.810, respectively) [362].
Two studies have investigated use of the established Visual Rating Scale which obviates the
need for research-oriented volumetric segmentation methods such as FreeSurfer. The
entorhinal cortex visual rating system outperformed other visual rating systems against
FreeSurfer for the AD versus CN classification (AUCs of 0.87 and 0.86, for entorhinal
cortex and Free-Surfer, respectively) and for the MCI versus CN classification (AUCs of
0.73 and 0.75, for entorhinal cortex and FreeSurfer, respectively) [363]. Both visual rating
systems and volumetric measures were good predictors of MCI to AD progression, with the
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entorhinal cortex visual rating system outperforming both the hippocampal visual rating
system and volumetric analysis of the entorhinal cortex [363]. The visual rating scale for
medial temporal atrophy outperformed equivalent visual rating scales of global cortical
atrophy and posterior atrophy, achieving AUCs of 0.838 and 0.624 for the classification of
AD versus CN, and MClIc versus MClnc, respectively, when optimized cutoffs for specific
age ranges were used [364]. Visual rating scales may also have clinical utility in detecting
sources of disease heterogeneity. A visual rating scale, the frontal subscale of the global
cortical atrophy scale, reliably detected frontal atrophy and reductions in cortical volume
and thickness that characterize the executive subtype of AD [365].

Further gains in the predictive ability of MRI, particularly in CN subjects, have come from
new approaches which can identify changes in subtle structural features that occur before
hippocampal atrophy. For example, hippocampal texture in the absence of hippocampal
volume loss accounted for cognitive impairment in MCI subjects [28]. A hippocampal
grading score which detected subtle patterns of neurodegeneration predicted progression to
AD with an accuracy of 72.5% 7 years in advance of this transition [366]. Other features
with prognostic potential include changes in the hippocampal subfield and presubiculum
volumes [367], shape changes and atrophy rate of the corpus callosum [368], greater WM
signal intensity ratio [369], and signal and texture-related features [370]. Data-driven feature
selection outperformed region of interest (ROI)-based approaches in the prediction of MCI
progression [371], suggesting that the subtle relationships between different brain areas
detected by methods such as recursive feature elimination are highly effective predictors
(Table 9).

8.1.2. Novel CSF and blood biomarkers

8.1.2.1. Novel CSF biomarkers: Proteomic approaches have identified numerous
potential novel AD biomarkers in both CSF and blood. Potential AD biomarkers can be

identified using a multiplex panel of selected CSF analytes that reflect the brain proteome.
The p-tau;gi/APy ratio, a strong predictor of progression from CN to MCI over a 3- to 4-
year period, was used as a continuous variable and endophenotype for AD to identify novel
CSF analytes from a proteomic panel [168]. The most significantly associated analyte was
heart fatty acid binding protein (FABP), which was comparable to p-tau;gi/APy4; in its
ability to predict progression from CN to impaired cognition over 4 years. Other significant
predictors were macrophage migration inhibitory factor and VEGF. A panel of 24 CSF
analytes outperformed a combination of MRI and CSF measures in predicting MCI
progression to AD (accuracy 94.1% vs. 76.5%) and included FABP, chromogranin A, matrix
metalloproteinase 2, and pancreatic polypeptide as the strongest predictors [166]. The panel
also discriminated between MCI and CN subjects with an accuracy of 91.5%, a sensitivity of
87.7%, and a specificity of 94.3%. Markers of inflammation, complement 3 and factor H,
were associated with increasing ADAS-cog scores and lateral ventricular volume over time,
suggesting they may have prognostic, but not diagnostic, utility [167].

MS is an alternative proteomics technology to multiplex immunoassay panels that can
increase the speed, sensitivity, and quantitative precision of biomolecule analysis limited to a
subset of analytes. The Foundation for the National Institutes of Health Biomarkers
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Consortium identified CSF-based AD biomarkers using a Multiple Reaction Monitoring MS
panel of analytes selected for their relevance to AD and from previous multiplex
immunoassay findings. The most significant peptides able to differentiate between MClc
and MClnc subjects were the blood proteins, hemoglobin A, hemoglobin B, and superoxide
dismutase, consistent with the hypothesis that the blood brain barrier is leaky in AD. FABP
was the top peptide for discriminating between MCI or AD and CN subjects, consistent with
findings from immunoassay approaches. The top peptides predicting MCI to AD progression
were putative markers of synaptic loss and neuronal injury/degeneration, neuronal pentraxin
2, VEGEF, and secretogranin-2 (AUC 0.79).

8.1.2.2. Blood-based biomarkers: Because a blood-based test for AD is less costly and
less invasive than a CSF-based test, there has been considerable effort in identifying blood-

based diagnostic and prognostic AD biomarkers. Although CSF proteins are generally
thought to reflect the brain proteome, the relationship between proteins in plasma and CSF is
not clear. The cell bound fraction of AB4, was associated with left hippocampal and left
entorhinal cortex volumes, suggesting that blood APy at least partially reflects AP
production and/or clearance in the brain [421]. A blood biomarker—based signature
comprising chemokine ligand 13, immunoglobulin M-1, interleukin 17, pancreatic
polypeptide, and vascular cell adhesion protein-1 predicted neocortical AP burden with a
sensitivity of 79% and a specificity of 76% [422]. These two studies suggest that A3
accumulation in the blood is associated with neocortical AP burden and characteristic AD
atrophy and that blood-based assessment of AP burden could have clinical utility.

Changes in plasma levels of bone morphogenetic protein 6, selectin, matrix
metalloproteinase 10, and neuronal cell adhesion molecule were correlated with atrophy in
temporal lobe structures, the posterior cingulate cortex, and thalamus, and diagnosed AD
with a sensitivity of 93% and a specificity of 92% [423]. A panel of plasma proteins
including interleukin 16, thyroxine-binding globulin, and peptide YY were predictive of
MCI progression (accuracy 62.5%) [423]. Redox-reactive antiphospholipid autoantibodies
may be increased early in disease due to neurodegenerative changes in cell membranes, and
APOE4 may act by increasing redox-reactive Fe during disease progression [152]. Elevated
levels of redox-reactive autoantibodies against phosphatidylserine,
phosphatidylethanolamine, and phosphatidylcholine were elevated in MCI compared to CN
subjects, and a panel of these autoantibodies discriminated between MCI and CN with a
sensitivity of 80% and a specificity of 83.3% [424].

In conclusion, at the time of this review, no established validated blood test for AD exists.
However, there is a pressing need for a test with relatively good sensitivity (even if lacking
some specificity) to identify subjects at high risk for AD, who would then undergo further
testing such as AP PET for diagnosis. There is a great deal of work going on in this field,
and the availability of ADNI plasma samples hopefully will provide material for further

investigation.

8.1.2.3. Combinations of CSF and blood biomarkers: A combination of both CSF and
blood analytes may have even greater predictive power than either fluid alone. Lehallier et

al. [425] examined multiple groups of variables—clinical, genetic, volumetric, cognitive,
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and CSF and plasma analytes—to identify a biomarker signature that could predict the time
to progression from MCI to AD 1 to 6 years before clinical diagnosis. Variables from
different categories were differentially associated and appeared to carry complementary
information about the disease (Fig. 39). For example, CSF and plasma “communicomes”
containing proteins involved in intracellular communication were highly associated with
each other but not with established CSF biomarkers, whereas genetic factors (APOE4,
TOMMA0) were predominantly associated with AD CSF biomarkers. Predictive models for
each progression time point in 6- or 12-month intervals identified six variables as top
predictors in most models: CDR-SB, CSF tumor necrosis factor-related apoptosis-inducing
ligand receptor 3 (TRAIL-R3), plasma apolipoprotein A-II (ApoAll), and CSF fibroblast
growth factor 4 (FGF-4). Most analytes had the highest accuracies in predicting progression
within 2 to 3 years. A final model consisting of two plasma (ApoAll, cortisol), and four CSF
(FGF-4, FABP-H, calcitonin, and TRAIL-R3) analytes predicted MCI progression within 3
years with a sensitivity of 88% and a specificity of 70%. A comparison of this model with
other groups of variables is shown in Fig. 40 and supports the idea that novel plasma and
CSF biomarkers may outperform modalities traditionally used for prediction such as MRI
volumes, cognitive scores, or AD CSF biomarkers and APOE status.

8.1.3. Arterial spin labeling—Hypoperfusion of brain tissue, detected by arterial spin
labeling MRI, precedes atrophy and may therefore be a useful biomarker for early changes
in the disease process. Cerebral blood flow was marginally outperformed by structural MRI
(AUC:s of 0.87 compared to 0.89) in the classification of AD versus CN subjects [426], but
the technique may have more utility in classifications such as MCI versus CN or in
predicting cognitive decline in subjects with normal cognition.

8.1.4. Network connectivity measures—The concept of AD as a disconnection
syndrome posits that some of the earliest changes in disease progression are disruptions to
network connectivity. Network connectivity measures, which have been shown to differ
between patient groups [321-323,329,333], may therefore have prognostic and diagnostic
utility.

8.1.4.1. Structural connectivity measures. A variety of structural connectivity measures
have been tested for their diagnostic or prognostic abilities. These include connectivity

measures of WM fiber pathways [427], the tensor—based Fiber Assignment by Continuous
Tracking algorithm [428], a new tractographic feature, average tract length [429], and a
novel flow-based measure of brain connectivity [430]. The results were variable with
accuracies ranging from 71.25% [428] to 97% [429] for the AD versus CN challenge, and
from 57.3% [428] to 59.2% [430] for the MCI versus CN challenge. One difficulty in using
structural connectivity measures is the high dimensionality of WM tracts. Nir et al. [431]
used a novel maximum density pathway algorithm to find the shortest path between
probabilistic ROIs and made a compact representation of WM tracts from whole-brain
tractography. They used their low-dimensionality representation for classification, achieving
accuracies of 84.9% and 79% for the AD versus CN, and MCI versus CN challenges,
respectively.
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8.1.4.2. Functional connectivity measures: Progressive deterioration of functional
connectivity appears to be characteristic in AD and is reflected in changes to the network

small-world properties and other measures. MCI subjects had lower clustering coefficients
and longer characteristic path length than CN subjects in one study, and alterations in these
properties in the DMN discriminated between EMCI and CN with an accuracy of 79.7%
[432]. A topological metric, compression flow, derived from network centrality criteria,
outperformed individual small-world metrics alone. It monotonically followed impairment
progression in each patient group, and discriminated between all patient groups (CN, EMCI,
LMCI, and AD) [433]. Other studies developed a novel multifractal feature [434] and
created a compact representation of the brain network [395] for classification purposes.
Machine learning techniques were used for dimensionality reduction and the selection of the
most discriminative regions.

8.1.4.3. Cortical atrophy networks: Cortical atrophy networks which capture the spread
of at rophy have been used for classification in several studies. Surface connectivity maps

describing the center of each cortical region affected, the individual volume loss of these
regions, and how they move apart were used to define functional regions of the brain [435].
This approach outperformed whole-brain or hippocampal volume in predicting the
progression of MCI subjects and achieved AUCs of 0.88, 0.78, and 0.77 for AD versus CN,
MCI versus CN, and MCI versus AD classifications, respectively. Instead of solely finding
connectivity between areas of cortical atrophy, Friedman [436] developed a new approach,
Directed Progression Networks (DPNets), based on the idea of a prionlike spread of the AD
pathology along axonal tracts in a characteristic and systematic pattern. DPNets found the
direction of connections between network hubs to capture the temporal progression of brain
disease and outperformed undirected networks in the classification of AD versus CN
subjects, achieving an AUC of 0.87. Interestingly, the network generated by this method did
not have the small-world properties observed in almost all other brain networks probably
because this network reflects the spread of disorder in the brain, and not computation.

8.1.4.4. Futuredirections: The use of connectivity measures in classification and
prediction is still in its infancy. A study which combined metabolic and structural

connectivity patterns by constructing networks from both FDG PET and structural MRI data
was able to discriminate between AD and CN, MCI and CN, and MCI and AD subjects with
AUC:s of 0.96, 0.91, and 0.88, respectively [437]. The results for classifications involving
MCI compare favorably with other state-of-the-art multimodal approaches, hinting at the
potential power of multimodal network connectivity approaches. Methodological
improvements will aid in the development of this exciting new area. Technical issues were
found to influence interpretation of graph theory measures [438] and may be overcome by
the standardization of connectomics methods. One study improved classification sensitivity
and specificity by including a more modern group-wise DTI registration step [439] and
likely represents just the initial phase of improvements in this area.

8.1.5. Single nucleotide polymorphisms—For the first time, ADNI studies
demonstrated that diagnostic classification and the prediction of future clinical decline could
be improved by the addition of selected SNPs to other modalities. One hundred eighty-nine
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SNPs selected for their discriminative ability improved classification accuracy by 5% and
3% for the MCI versus CN, and AD versus MCI classifications, respectively [254]. Top hits
included CTNNA3 and PONZ, but not APOE. SNPs did not improve the AD versus CN
classification in combination with any other modality. The addition of 101 top SNPs from a
GWAS to MRI features such as hippocampal volumetric and surface morphology data
improved prediction of MCI to AD progression over 48 months, achieving an AUC of 0.95
[255]. The SNP markers selected for prognosis differed from those associated with increased
disease risk, suggesting that genes underlying the MCI to AD progression differ from those
that increase disease risk. This is an exciting advance and holds much promise for the
incorporation of similar data to improve stratification and subject selection.

8.2. Diagnosis and prediction methods

A plethora of novel machine learning approaches to diagnosis and prediction have been
developed and tested using ADNI data in 2014 and 2015, leading to an overall improvement
in classification and prediction accuracy. The use of standardized ADNI data sets has, in
some cases, facilitated comparison of results. Deep learning algorithms that use multiple
processing layers to model high-level data abstractions have proved exceptionally successful
in selecting and combining optimal features from multiple modalities. In combination with
some form of dimensionality reduction and a classifier such as a support vector machine or
treebased algorithm, either as sequential steps or as an embedded wrapper algorithm, deep
learning has improved the effectiveness of MRI as a single modality to the point where it
rivals multimodal approaches for classification accuracy. Several studies reported MRI-
based methods that could discriminate between AD and CN subjects with accuracies
between 92% and 97% [374,387,388,394] or predict MCI progression to AD with accuracies
exceeding 80% [374]. Notably, Gorji et al. [394] used pseudo-Zernike moments, powerful
shape descriptors used in image recognition, to characterize global and local pattern shapes
and select discriminative features that were used by a supervised neural network for
classification. Their results were comparable with other state-of-theart methods for the AD
versus CN classification but substantially outperformed other methods, including
multimodal approaches, for the more challenging problems of MCI versus CN (sensitivity
95.9%, specificity 95.3%, and accuracy of 95.6%), and AD versus MCI (sensitivity 94.2%,
specificity 95.6%, and accuracy 94.9%) classification. This publication illustrates the vast
potential of neural networks in tackling these classification problems, and further rapid
improvement in this area is likely concomitant with the burgeoning development of this area

of machine learning.

However, the best classifiers generally still incorporated multimodal information; deep
learning approaches improved feature selection, in part by preserving intermodal
relationships. The best multimodal classifiers for the AD versus CN, and MCI versus CN
challenges reached accuracies of >95% [405,408,410,411,416—418] and >82%
[304,405,417,420], respectively. An approach which incorporated longitudinal multimodal
data, and which notably included PICALM status, predicted progression of MCI subjects to
AD with an accuracy of 91% [413]. It is beyond the purview of this review to detail all of
these efforts; they are instead summarized in Table 10. Instead of binary classification, one
study used machine learning of structural MR images of a normative population to define a
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brain abnormality index [386], and others tackled multi-class classifications such as AD
versus MCI versus CN (Table 11). Finally, a number of publications focused on addressing
technical problems such as incomplete or imbalanced data in multimodal classification or
problems with imperfect reference tests (Table 12).

8.3. Subject selection and outcome measures

With the transition of AD preventive and treatment clinical trials to preclinical and
presymptomatic populations, the selection of subjects likely to decline in the near future, and
the selection of clinical end points able to detect a treatment effect, are of paramount
importance. Inclusion criteria include AP positivity, tau pathology, hippocampal atrophy, or
combinations of these and genetic markers and are fundamentally guided by the need to
decrease heterogeneity in the trial population. Both prognostic enrichment (selecting patients
likely to progress) and predictive enrichment (selecting patients likely to respond to the
therapy being trialed) need to be considered. Cognitive end points must be sensitive to early
cognitive changes such as delayed recall, function, and attention, and imaging end points
must also detect early changes. Once again, selection of inclusion criteria and outcome
measures are informed by knowledge of disease progression. Understanding how covariates
influence disease progression, even in an enriched MCI population, aids in selecting
populations likely to progress.

A model predicting cognitive decline on the CDR-SB in MCI subjects found that the rate of
disease progression was influenced by current CDR-SB score, baseline levels of CSF
biomarkers, and baseline Delayed Logical Memory and Trails A scores [459]. Subjects
selected for either low or high p-tau;g;/AP4; progressed at different rates, and the model
identified a subpopulation with low likelihood of disease progression based on this ratio
(Fig. 41). A different model found that baseline severity measured by CDR-SB, baseline
hippocampal volume, and APOE4 predicted shorter times the clinical worsening [460] and
estimated N80s of around 550 CN subjects using either low hippocampal volume or APOE4
positivity as an enrichment strategy for a 2-year trial. However, baseline values of
biomarkers may not be sufficiently informative to predict clinical decline. Longitudinal
biomarker progressions predicted substantially more variability in cognitive decline than
baseline measures; ventricular expansion explained 40% of variability compared to a mere
8.7% of variability explained by baseline ventricular volume in MCI subjects [461].
Therefore, the use of longitudinal biomarker progressions for enrichment could improve the
statistical power of clinical trials.

8.3.1. Enrichment biomarkers—Agp positivity is currently used as an inclusion
criterion for CN participants in the anti-Ap A4 secondary prevention trial which aims to
slow cognitive decline in CN elders using solanezumab [462]. Improvement of quantitative
accuracy of amyloid PET scans by refinement of acquisition protocols and tracer
administration, subject management, and image quality control and processing could reduce
sample sizes for trials of intervention effects [463]. Prediction of AP positivity by florbetapir
PETwas improved by the determination of a cutoff value of 1.24 based on three regions of
interest (posterior cingulate cortex, precuneus, medial frontal cortex) which achieved an
accuracy of 98.5% [464]. Visual inspection of florbetapir PET images was as effective as
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SUVR in determining AP positivity [465]. Alternative automated methods such as Syngo-
PET AP Plaque [466], and a method based on a two-point correlation metric, wS2 [467],
were comparable to SUVR and offered some advantages such as the ability to detect subtle
changes in patterns of AP deposition [468].

Hippocampal volume is the first imaging biomarker to be qualified by the European
Medicines Agency to select amnestic MCI subjects at risk of imminent rapid clinical
deterioration for clinical trials [469]. As hippocampal volume is an established biomarker of
AD, it can help to differentiate between the approximately two thirds of subjects who have
MCI attributable to AD and the approximately one third of MCI subjects on a different
disease pathways not necessarily attributable to AP pathology. Yu et al. [470] describes the
systematic operationalization of hippocampal volume as an enrichment biomarker by
defining specific cut points of hippocampal volume, comparing different commonly used
algorithms for hippocampal volume quantification (FreeSurfer, HMAPS, LEAP,
NeuroQuant), and considering three cognitive end points, MMSE, ADAS-cog, and CDR-SB.
Hippocampal volume, calculated by any of the quantification methods, reduced sample sizes
for all cognitive outcomes by 40% to 60%, with the greatest reduction in sample sizes at a
cut point of 10% of normal volume. Trial costs were estimated to be reduced by 30% to 40%
over a range of hippocampal volume cut points, although little effect on trial duration was
predicted, regardless of cognitive end point (Fig. 42). Designed to guide clinical trial design,
this analysis illustrates the trade-off between statistical and practical considerations.

Deep learning algorithms may also have great potential for selecting inclusion criteria that
increase statistical power and reduce sample sizes in clinical trials. Ithapu et al. [471]
described a new method of enrichment using inclusion criteria derived from FDG PET,
florbetapir PET, and structural MRI features learned using their novel randomized denoising
auto-encoder marker. Using CDR-SB scores as an outcome measure, this method reduced
MCI sample sizes at least fivefold compared with no enrichment (N80s: 281 vs. 1586) and
improved on enrichment with hippocampal volume alone (N80: 389) for a 2-year trial,
suggesting that the learning algorithm can capture data from different modalities most
representative of changes during disease progression.

8.3.2. Outcome measures—A:s clinical trials move to presymptomatic subjects, the
development of outcome measures which can detect a subtle treatment effect is vital. Some
investigations have focused on developing a clinical measure sensitive to very early
cognitive changes; others have developed candidate biomarkers as potential surrogate
outcome measures. A composite score developed from existing clinical end points and
consisting of Word Recall, Delayed Word Recall, Orientation, 13-item CDR-SB, and FAQ
had greater sensitivity to detect change in MCI subjects enriched with APOE4, hippocampal
volume, and CSF Ay, than either CDR-SB alone or ADAS-cog [472]. The primary
outcome measure in the A4 study is the Alzheimer’s Disease Cooperative Study Preclinical
Alzheimer’s Cognitive Composite, comprising Total Recall, Delayed Recall, Digit Symbol
Substitution, and MMSE [473]. AB+ CN participants had greater decline in this measure
than AP— participants on this measure across different cohorts. With a cohort size of 500, it
was predicted that the A4 study would be able to detect treatment benefit of about 0.5 units
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of the measure at 80% power over 3 years [473], suggesting that the measure is sufficiently
sensitive and specific to detect AB-related decline in this trial population.

The quest for a surrogate outcome measure with greater power to detect decline than
cognitive measures has progressed with several systematic studies comparing the efficacy of
various biomarkers. Imaging biomarkers, especially MRI, have been of particular interest as
longitudinal changes in them can be precise and reproducible. Caroli et al. [474] compared
the power and performance of MRI and FDG PET biomarkers, and ADAS-cog, and found
that for a 2-year trial with yearly biomarker assessment, a measure of the longitudinal
whole-brain atrophy, KN-BSI [475], had the greatest power, with N80s of 48 and 85 for
MCI subjects selected for AP positivity, or hippocampal atrophy, respectively. In
comparison, they calculated N80s of approximately 1000 using ADAS-cog as an outcome
measure with either enrichment strategy. Longer trials, but not more frequent biomarker
assessments, increased power. Although measures of atrophy such as KN-BSI are well
established, they may be outperformed by machine learning algorithms that are optimized
for power to detect brain change. Gutman et al. [476] extended a previous data-driven
feature selection approach [477] to maps of whole-brain volume change derived from TBM
measures and combined this with ventricular surface measures to generate one summary
atrophy score. This outperformed either measure alone and statistically defined ROIs in 1- or
2-year trials in both AD and MCI subjects, with calculated N80s of 31 for AD, and 56 for
MCI subjects for a 2-year trial.

A systematic comparison of selection criteria and cognitive end points in CN elderly [478]
found that a combination of the composite measure comprising the 11-point ADAS-cog,
Delayed Recall on AVLT, and Trails B, and subject selection with three or four abnormal
biomarkers (from APOE4, AP+, tau+, or hippocampal atrophy+) reached 79% power with N
= 1500 participants per arm over a 3-year trial, assuming a 25% effect size of treatment (Fig.
43). Trial durations of longer than 4 years were required to achieve greater than 80% power
using this combination of enrichment criteria and cognitive outcome measure. Recruiting
subjects with multiple pathologies increased the power to detect change by 15% to 20%, but
this strategy would also increase costs and limit the pool of eligible participants. A structural
MRI surrogate outcome measure may improve the feasibility of clinical trials in CN subjects
by lowering costs and increasing the power to detect disease progression and may be
especially suited to trials of therapies that aim to repair brain tissue rather than clear Ap.
Hua et al. [479] investigated the utility of longitudinal TBM biomarkers for tracking brain
changes, comparing the power of single numerical summary of brain atrophy scores
reflecting disease-related change in the temporal lobe (temporal-ROI) [480], statistically
defined ROISs, or over the whole brain over different trial lengths, and with different subject
groups, enrichment biomarkers, and scan intervals. The whole-brain measure and
statistically defined ROI measure produced N80Os of 127 and 241, respectively, for CN
subjects, 141 and 314, respectively, for EMCI subjects, and 72 and 162, respectively for
LMCT subjects for a 2-year trial using a 12-month scan interval. Both measures are
trainingbased approaches which select regions with the most consistent and detectable
change. Enrichment using APOE4 or AP further reduced sample sizes to around 100
subjects regardless of diagnostic group (Fig. 44). Of 10 AD risk alleles tested as enrichment
criteria, only APOE4 produced any gains in statistical power. Both statistically defined ROIs
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and the whole-brain measure based on linear discriminant analysis are training approaches
which differ in training sample size and region selected; statistically defined ROI requires a
small training set and selects regions such as the temporal lobe which are likely to be
affected in AD but has low statistical power, whereas the whole-brain approach requires a
larger training set and may not select patterns of brain change germane to the treatment but
has higher performance and statistical power. Trade-offs between end-point measures and
selection biomarkers will ultimately represent a balance of cost and power and will reflect
the drug mechanism.

8.4. Other improvements to clinical trials

The use of a placebo arm in addition to the treatment arm in clinical trials raises ethical
issues. The Placebo Group Simulation Approach [481] models the placebo group based on
baseline data of the treatment group and forecasts the distribution of quantified outcomes in
MCI subjects. A comparison of empirically observed and simulated data suggested that the
model approximated placebo data well. Of the baseline variables, cognitive performance
predicted the trajectory of cognitive decline most accurately.

8.5. Conclusions

The overarching theme of publications focused on improving clinical trials from 2014 and
2015 has been a shift to optimizing enrichment strategies and developing outcome measures
suited to trials in CN cohorts. Knowledge of disease progression has guided this
development; the effectiveness of established biomarkers at diagnostic and prognostic
challenges reflects their position in the temporal ordering of biomarkers as described by the
first model of the pathological cascade [482]. The prediction of imminent decline in CN
participants may require adjustment of established cut points of CSF biomarkers, the use of
subtle changes to MRI features instead of atrophy measures, or measures of cognitive
domains first affected in the disease. Multimodal approaches remain the most effective at
prediction and classification, and the addition of novel modalities such as selected SNPs or
network connectivity measures may improve accuracy even further. Panels of CSF and/or
blood biomarkers now rival established multimodal biomarkers for diagnostic and
prognostic utility. A substantial number of machine learning approaches have been tested
using ADNI data and illustrate the potential power of neural networks in selecting highly
discriminative features in single modalities, and in detecting optimum intermodal
relationships using multiple modalities. The greatest gains in accuracy have been made in
the more difficult classification (MCI vs. CN, AD vs. MCI) and prediction (CN to MCI,
MCI to AD) challenges. Systematic studies of enrichment biomarkers, outcome measures,
and combinations of the two have provided critical guidance to inform clinical trial design.
Enrichment strategies aim to reduce the heterogeneity of trial cohorts and select populations
both at risk of imminent decline and likely to respond to the trial treatment. Some studies
refined cognitive measures as outcome measures, whereas others developed surrogate
outcome measures using MRI approaches. Combinations of subject selection using multiple
inclusion criteria and MRI longitudinal measures as surrogate outcomes had the greatest
power to detect treatment effect and the most feasible sample sizes for early intervention
trials in CN subjects.
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9. Summary

Studies using ADNI data have produced an unprecedented body of research in 2014 and
2015. What then are the fundamental conclusions from this work? If you have read this
entire review, hearty congratulations on your perseverance; if not we offer the following
summary. ADNI studies have been supported by the continued development and
standardization of methodologies, sample collection and distribution, and curating and
sharing of data by the various ADNI Cores. The longitudinal data extending now over a
decade and the breadth of modalities represent a unique resource to the scientific community
that has been used in a myriad of ways to expand and deepen our knowledge of AD
progression and to inform AD clinical trial design.

Studies of subjects selected for A positivity have largely confirmed the order in which
biomarkers become abnormal during disease progression and have suggested that APOE
modulates disease progression through AP clearance mechanisms. However, there appears to
be variability in this relatively well-defined process. For example, AR+ subjects with
predominantly cortical atrophy had impaired executive function, whereas those with
predominantly hippocampal atrophy had impaired memory function. Cluster analysis studies
of CN and MCI subjects also consistently identified an executive function-impaired subtype,
in addition to the more typical memory—impaired amnestic subtype, and differences in
underlying atrophy patterns may result in to diverse neuropsychiatric symptoms observed in
AD. These subtypes may correspond to differing distributions of neurofibrillary tangles.
Multiple lines of evidence suggest that deposition of abnormal AP alone does not result in
memory impairments typical of AD. Instead, AP deposition may be a prequel for the
development of neurofibrillary tangles which may be more strongly associated with
cognition. The precise role of tau fibrillar A is unknown, and the introduction of tau PET
imaging in ADNI-3 is expected to shed light on the issue. Regional WM abnormalities,
increased by vascular risk factors acting in conjunction with A, may additionally augment
the effects of tau abnormalities, accelerating the AD disease process.

Two diverse approaches attempted to integrate knowledge from disparate facets of AD
research. The concept of AD as a disconnection syndrome was enabled by the inclusion of
diffusion imaging and TF-fMRI in the ADNI-2 protocol to track perturbations to structural,
functional, and metabolic, and cortical atrophy networks during AD progression. Network
changes were observed in presymptom atic subjects and support the earliest pathological
changes occurring in the posterior cingulate cortex, consistent with MRI studies of CN
subjects in which initial atrophy was observed in areas outside the hippocampus, such as the
precuneus. Models for the spread of pathology based on a prionlike misfolding of AP along
WM tracts predicted patterns of cortical AP deposition, glucose hypometabolism, and
atrophy. Likewise, a Systems Biology approach integrating genomics, transcriptomics,
proteomics, and metabolomics has begun to capture the biological complexity of AD
engendered in part by its polygenic nature. Biologically informed strategies have allowed
insights into how genetic underpinnings of AD are associated with biochemical mechanisms.
The search for the “missing heritability”” of AD has identified novel risk alleles and
highlighted the involvement of processes such as inflammation, synaptic function, cell

migration, cholesterol metabolism, and calcium signaling.
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CN and MCI groups have proven to be highly heterogeneous; a sizeable portion of MCI
subjects was virtually indistinguishable from CN subjects in all regards, and conversely,
many CN subjects harbored pathology predictive of future clinical decline and were more
aligned with the MCI group. This likely reflects the fact that MCI, even amnestic MCI, can
be associated with a variety of pathologies, one of which is AD. It also implies that
pathological events have already occurred in a portion of presymptomatic subjects. A group
of MCI subjects with neurodegeneration in the absence of abnormal AP deposition appeared
to be on a different pathway to dementia. The development of biomarkers of common
comorbidities observed at autopsy such as Lewy bodies (a-SYN) and hippocampal sclerosis
(TDP-43) will help future researchers to untangle the complex and seemingly intertwined
trajectories to dementia.

Technological advances in machine learning such as the use of neural networks for feature
selection have substantially improved the ability to discriminate between CN and MCI
subjects, and MCI and AD subjects, and the ability to predict cognitive deterioration in CN
and MCI subjects. Multimodal approaches to classification and prediction of future decline
remain powerful, especially with the addition of new network connectivity measures or SNP
data. However, the application of improved machine learning approaches to single
modalities such as structural MRI has achieved accuracies rivaling state-of-the-art
multimodal methods, and a cost-effective, widely available, and noninvasive approaches
such as this may ultimately prove preferable for diagnosis.

Improvement of clinical trials of AD therapies, the overarching goal of the ADNI study, has
been guided by a deeper understanding of AD progression and subject group heterogeneity.
As AD therapies began to target presymptomatic patients, the choice of inclusion criteria
that select subjects at risk of imminent decline, and outcome measures that are sufficiently
sensitive to detect treatment effect within a feasible time frame is critical. Systematic studies
have examined combinations of subject selection criteria such as APOE4 status, AP
positivity, and hippocampal volume, together with cognitive and imaging outcome measures.
Subject selection on the basis of a single pathology improves trial power; selection on the
basis of multiple pathologies results in further gains in power. The sensitivity of cognitive
end points to detect a subtle treatment effect in early phases of the disease has improved.
However, surrogate outcome biomarkers such as longitudinal imaging have been predicted
to significantly reduce sample sizes, trial duration, and trial cost and thus improve the

feasibility of trials in presymptomatic subjects.

The remarkable advances described in ADNI papers over the course of 2 years have
fundamentally altered our view of AD progression and offered significant guidance for
clinical trial design. As the pace of discovery accelerates with the accumulation and sharing
of an increasingly diverse longitudinal data set, ADNI will undoubtedly make even greater
contributions to the field in the coming years.
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RESEARCH IN CONTEXT

Systematic review: The authors identified publications using data from the
Alzheimer’s Disease Neuroimaging Initiative from their submission to the
Data and Publications Committee, by traditional sources (PubMed and
Google Scholar) and by personal communication with authors.

Interpretation: Substantial progress was made in 2014 and 2015 in improving
biomarkers for clinical trials of Alzheimer’s disease (AD) therapies and the
understanding of AD progression. Subtle structural and functional changes
occur in presymptomatic subjects. Subjects positive for abnormal B-amyloid
deposition progress according to the amyloid cascade hypothesis; other
groups of mixed pathology may have different trajectories. Models of prion-
like spreading B-amyloid pathology along white-matter tracts predict aspects
of disease progression and emphasize the importance of structural, functional,
and metabolic connectivity in AD. A Systems Biology approach identified
novel risk gene loci. Diagnostic and prognostic accuracies improved using
deep learning strategies.

Future directions: This knowledge will inform and improve clinical trial

design.
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Fig. 1.

Applications for use of ADNI data, download activity, and the number of ADNI publications

per year, 2006-2015. Abbreviation: ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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Fig. 2.
The correspondence among three measures of cognitive dysfunction in Alzheimer’s disease.

Latent AD-related cognitive dysfunction was calculated using Item Response Theory
methodologies estimated from ADAS-cog, MMSE, and CDR-SOB. Abbreviations: AD,
Alzheimer’s disease; ADAS-cog, Alzheimer’s Disease Assessment Scale—cognitive
subscale; CDR-SOB, Clinical Dementia Rating—Sum of Boxes; MMSE, Mini—-Mental State
Examination. Reproduced with permission from [21].
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A. Survey of segmentation protocols: differences in image treatment procedures and anatomical

B. Harmonization and operationalization of landmarks: the “Lego blocks™ exercise. Quantitative
characterization of “Lego blocks”

F. Concurrent validity of HarP versus local
protocols and estimation of sources of

0. gorchmarkivos | )

Fig. 3.
Steps followed to develop the European Alzheimer’s Disease Consortium—ADNI

harmonized protocol for manual hippocampal segmentation (HarP). Reproduced with
permission from [55].
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Fig. 4.
Frequencies of different CSF and PET AP profiles in different diagnostic groups. Subjects

were dichotomized by CSF APy or florbetapir PET and classified as concordant negative
(CSF- PET-), discordant (CSF+ PET- and CSF- PET+), and concordant positive (CSF+
PET-). Abbreviations: AD, Alzheimer’s disease; CN, cognitively normal; CSF,

cerebrospinal fluid; EMCI, early MCI; LMCI, late MCI; MCI, mild cognitive impairment;
PET, positron emission tomography; SMC, subjective memory concern. Reproduced with

permission from [141].
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hippocampal volumetric changes based on tertiles of CSF: (A) ferritin, (B) ApoE, (C) tau/
AB4;. (D-F) Longitudinal volumetric ventricular changes based on tertiles of CSF: (D)
ferritin, (E) ApoE, (F) tau/AB4;. Abbreviations: CN, cognitively normal; CSF, cerebrospinal
fluid; H, highest tertile; M, middle tertile; MCI, mild cognitive impairment. Reproduced

with permission from [152].
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Fig. 6.
Word cloud of genes names reported in articles using ADNI genetic data. The color and size

of the gene name corresponds to the number of abstracts mentioning the gene. Abbreviation:
ADNI, Alzheimer’s Disease Neuroimaging Initiative. Reproduced with permission from
[172].
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Converging “multi-omics” in ADNI. This figure illustrates the landscape of multiple “-

omics” domains relevant to AD and how they contribute to an integrated Systems Biology

approach to discovering the underlying genetic architecture of AD. *Data from ADNI-1.
**Data from ADNI-GO/2. Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s
Disease Neuroimaging Initiative. Reproduced with permission from [171].
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p-value

Fig. 8.
Sex-stratified FDG analyses. Analysis between APOE4 carriers and APOE4 noncarriers (P

<.005 uncorrected) in (A) females and (B) males, covaried for age and years of education
across the lateral and medial views of the cerebral cortex. As shown, female APOFE4 carriers
showed widespread clusters of decreased metabolism with respect to female APOE4
noncarriers (A), whereas male APOE4 carriers only showed an isolated cluster of decreased
metabolism (P <.005) in the precuneus with respect male noncarriers (B). Abbreviations:
FDG, [!8F]-fluorodeoxyglucose; APOE4, apolipoprotein E e4 allele. Reproduced with
permission from [179].
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Fig. 9.
Significance maps displaying the associations between cortical AP binding (Pittsburgh

compound B) and plasma ApoE protein. Plasma apoE levels were associated with Pittsburgh
compound B SUVR in the pooled sample in all brain regions apart from the sensorimotor
and entorhinal cortex (top panel). Plasma apoE levels were associated with Pittsburgh
compound B SUVR in BIN1 rs 744373 minor allele carriers (second panel) and in CD2AP
s 9349407 and CR1 rs 38118361 minor allele noncarriers (third and fourth panel,
respectively). Abbreviation: SUVR, standardized uptake value ratio. Reproduced with

permission from [181].
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Fig. 10.
Effect of interactions between CR/ or EPHA I and cardiovascular disease risk factors on

hippocampal volume. The estimated interaction effect on hippocampal volume for both risk
genes is dominated by high cardiovascular disease risk. High genetic risk appears to reduce
the interaction effect in the presence of high cardiovascular disease risk, suggesting that
cardiovascular disease risk factors are more detrimental under low genetic risk.
Abbreviations: CVD, cardiovascular risk; G, genetic risk. Reproduced with permission from
[189].
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Fig. 11.
The effects of APOE e4 and rs509208 (BCHE) on cortical AP levels. The APOE 4 allele

and the minor allele (G) of rs509208 of BCHE exerted independent and additive effects on
cortical AP burden. Bars represent mean cortical AP levels + standard errors. Abbreviations:
BCHE, butyrylcholinesterase; SUVR, standardized uptake value ratio. Reproduced with
permission from [218].
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Genome-wide CSF APy, associations. GeneMANIA networks showing the interaction
results of (A) associated genes and (B) highly associated genes. (C) Novel polymorphisms
identified in study. Abbreviation: CSF, cerebrospinal fluid. Reproduced with permission

from [219].
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Fig. 13.

Association and the effect of JLRAP1s12053868-G on longitudinal change in cortical AR
PET burden. The minor G allele of rs12053868 in /LRAP was associated with higher rates
of amyloid accumulation compared to the major A allele. Mean annualized percent change
and global cortical 18F-florbetapir SUVR =+ standard error. Abbreviation: SUVR,
standardized uptake value ratio. Reproduced with permission from [221].
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Fig. 14.
Hypothetical signaling network integrating top genes identified through Rasch analysis. A

Rasch model was applied to the genes of ADNI GWAS data and supports APOE as a major
susceptibility gene for AD, and functionally links other top genes (AEN, ADANTS12,
PSMAS5, FXN, NTRN, LARPI1, WDTC1, SEMA7A, VKORCILI, COL5A3) to AD. A
hypothetical signaling network was generated from a pathway analysis of these genes based
on known proteinprotein, functional, and phenomenological interactions. Abbreviations:
AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ARC,
activity-regulated cytoskeleton-associated protein; EEFZK, eukaryotic elongation factor-2
kinase, activated by GRMS5 receptor, regulates global protein synthesis; HDAC3, histone
deacetylase; MDAM?, negative modulator of 7P53 tumor suppression gene; PLXNCI, plexin
C1 receptor for semaphorins; PTK2: FAK, kinase implicated in integrin signaling; FYMN, src
family tyrosine kinase, downstream target of GRMJ5 receptor; RPTOR, regulatory protein
associated with MTORC1 complex. Reproduced with permission from [202].
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Schematic outlining of the current understanding of the hypothetical timeline for the onset
and progression of AD neurodegeneration and cognitive impairments. Age is indicated at the
bottom, whereas the green, blue, and red bars indicate the time at which preventive, disease-
modifying, and symptomatic interventions, respectively, are likely to be most effective.
Within the aqua bar, milestones are shown in the pathobiology of AD that culminate in death
and autopsy confirmation of AD. The proposed ADNI model of the temporal ordering of
biomarkers of AD pathology relative to stages in the clinical onset and progression of AD is
shown in the insert at the upper right based on Jack et al. [258], whereas the insert at the left
illustrates the defining plaque and tangle pathologies of AD and common comorbid
pathologies including Lewy body pathology (SYN), TDP-43, and hippocampal sclerosis. In
the insert on the right, clinical disease is on the horizontal axis and it is divided into three
stages: CN, MCI, and dementia. The vertical axis indicates the range from normal to
abnormal for each of the biomarkers and the measures of memory and functional
impairments. Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; CN, cognitively normal; CSF, cerebrospinal fluid; FDG, ['8F]-
fluorodeoxyglucose; MCI, mild cognitive impairment; MRI, magnetic resonance imaging;
PET, positron emission tomography. Reproduced with permission from [129].
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Fig. 16.
Model for AP status in disease progression. Illustrating the view of progression from

presymptomatic AP negative to presymptomatic AP positive to MCI A positive to AD AP
positive as the primary pathway to AD, with the switch to AP positivity also occurring
anywhere in the progression. A small percentage of clinically diagnosed AD patients lack
AP pathology at autopsy. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive

impairment.
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Fig. 17.
Differential trajectories of CSF biomarkers in AB+ and AB— subjects across disease

progression. The means (+2 standard error of the mean) in ng/mL of (A) CSFAB4,; (B) CSF
p-tau; (C) CSF p-tau;g; are shown. In Ap— groups, the levels of all three CSF biomarkers
did not significantly increase across disease stage, whereas in AP+ subjects, CSF p-tau and
t-tau, but not AP, increased across disease stages. Abbreviations: a-MCI, (advanced) mild
cognitive impairment; AP+, subjects with abnormal brain AB; Ap—, subjects without
abnormal brain AB; CN, cognitively normal; CSF, cerebrospinal fluid; i-Dem, (incipient)
dementia; iMCI, (incipient) mild cognitive impairment; m-Dem, (mild) dementia.
Reproduced with permission from [261].
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NC MCI NC+
MCI

Hippocampal atrophy rate in AP+ and AP— CN and MCI subjects. The percentage of
hippocampal atrophy rate attributable to A status was calculated from the difference in

hippocampal atrophy rate between AP+ and AB— subgroups. Ap was measured using
florbetapir PET. *P< .01, **P < .001, and ***P < .0001. Abbreviations: NC, normal
cognition; MCI, mild cognitive impairment; PET, positron emission tomography.

Reproduced with permission from [128].
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Regions of AB-related atrophy ordered by acceleration and stabilization points. Regions,

including the insula, posterior cingulate, amygdala, putamen, and precuneus, show early

signs of atrophy before the hippocampus and entorhinal cortex. Parietal regions appear to

have a shorter transition compared to temporal lobe regions with respect to AB. Red, yellow,

and black dots represent significant (P <.05), marginally significant (.10 > P <.05), and

nonsignificant (P >.10) acceleration or deceleration, respectively. Scale is pg/mL CSF ABy4,.

Abbreviation: CSF, cerebrospinal fluid. Reproduced with permission from [266].
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Fig. 20.
Hypometabolism originates earlier than atrophy in A+ subjects. CN AP+ subjects

displayed significant hypometabolism in medial parietal and bilateral parietal temporal

regions compared to AP— subjects, whereas there was no difference in GM volume between
these two groups, indicating that hypometabolism precedes atrophy in AR+ subjects (A)
hypometabolism (red) and (B) atrophy (blue). Abbreviations: AR+, subjects with abnormal
brain AP deposition; AB—, subjects without abnormal brain AP deposition; CN, cognitively
normal; EMCI, early mild cognitive impairment; GM, gray matter; LMCI, late mild
cognitive impairment. Reproduced with permission from [133].
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Fig. 21.
Hippocampal volume and hypometabolism mediate the effect of AP on longitudinal change

in Logical Memory Delayed Recall. Path analysis showing how hippocampal volume and
angular FDG PET mediate the effect AP of on longitudinal change in Logical Memory
delayed recall. (A) The direct effects of AP on memory; (B) hippocampal volume mediating
the effects of AP on memory; (C) angular FDG PET mediating the effects of AP on
memory; and (D) the combination of hippocampal volume and FDG PET mediating effects
of AP on memory. The figure includes the following standardized regression coefficients: a,
the effects of AP on hippocampal volume or FDG PET; b, the effects of hippocampal
volume or FDG PET on the memory when adjusting for AB; c, the direct association
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between AP and memory (without adjusting for hippocampal volume or FDG PET); ¢’, the
association between AP and memory when adjusting for hippocampal volume and/or FDG
PET; and c-c’, the mediated effect on memory (with % mediation). *P < .05. Abbreviations:
FDG, [!8F]-fluorodeoxyglucose; PET, positron emission tomography. Reproduced with
permission from [271].
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Fig. 22.
Longitudinal changes in cognition in subtypes of AP+ cognitively normal subjects.

Identified subtypes of cognitively normal subjects consisted of those with predominantly
hippocampal atrophy, predominantly cortical atrophy, hippocampal and cortical atrophy
combined, or neither type of atrophy. Baseline, 1-year, and 2-year follow-up data on (A)
MMSE indicating global cognition, (B) ADNI-Mem indicating memory function, and (C)
ADNI-EF indicating executive function are plotted, with means and standard errors.
Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; BI, both impaired; BS,
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both spared; CA, cortical atrophy only; EF, executive function; HA, hippocampal atrophy
only; Mem, memory domain; MMSE, Mini—-Mental State Examination. Reproduced with

permission from [272].
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Heterogeneity of the subjective memory concern cohort. Cluster analysis identified three

distinct subgroups in both the normal cognition (NC) and subjective memory concern
(SMC) groups. The first subgroup (1) had elevated brain amyloid, decreased CSF A, and
substantially reduced hippocampal volume; the second subgroup (2) was similar to group 1

but with less hippocampal atrophy and was thought to correspond to the Jack sequence for

early signs of AD, and the third group (3) was normal by all measures. Abbreviations: AD,

Alzheimer’s disease; CSF, cerebrospinal fluid; ICV, intracranial volume; SUVR,

standardized uptake value ratio. Reproduced with permission from [259].
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disaggregated by progressive cognitive deterioration. MCI subjects were grouped on the

basis of absence or presence of abnormal levels of amyloid and neurodegeneration. SNAP

subjects were neurodegeneration positive but amyloid negative. All four groups significantly
differed in CSF A4, concentrations, hypometabolism on FDG PET, and hippocampal
volume. SNAP subjects were characterized by more severe hippocampal atrophy than other

groups in the absence of abnormal amyloid. Triangles denote progressors, whereas circles
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denote nonprogressors. Abbreviations: AD, Alzheimer’s disease; A— N—, amyloid negative
neurodegeneration negative; A+ N—, amyloid positive neurodegeneration negative; A+ N+,
amyloid positive neurodegeneration positive; CSF, cerebrospinal fluid; FDG, ['8F]-
fluorodeoxyglucose; MCI, mild cognitive impairment; PET, positron emission tomography;
SNAP, suspected non-Alzheimer’s pathology. Reproduced with permission from [291].
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Fig. 25.
Effect of interaction of smoking history and APOE 4 genotype on amyloid level and

hypometabolism. ADNI participants were grouped on the basis of smoking history and
APOE4 status. Smoking status interacted with APOE e4 carrier status such that APOE4
smokers had higher levels of amyloid and worse hypometabolism than other groups. (A)
Florbetapir retention level across groups. Higher values indicate greater AP level. Levels
above the horizontal line indicate A positivity. Mean + standard error of the mean. (B)
Composite glucose uptake level across groups. Higher values indicate greater glucose
metabolism. Mean # standard error of the mean. Abbreviations: ADNI, Alzheimer’s Disease
Neuroimaging Initiative; FDG, ['8F]-fluorodeoxyglucose; SUVR, standardized uptake value
ratio. Reproduced with permission from [302].
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CSF Ap-42 Group

The effect of stroke risk on hippocampal volume and memory performance in Ap-positive
and APB-negative subjects. Stroke risk, assessed by the Framingham Stroke Risk Profile, was
associated with decreased baseline hippocampal volume and decreased memory
performance in both AR+ and AP— subjects. Worst performance on both measurements was
observed in subjects with both abnormal amyloid and high stroke risk. Error bars represent
95% confidence intervals. Abbreviations: ADNI-MEM, Alzheimer’s Disease Neuroimaging
Initiative—memory domain; CSF, cerebrospinal fluid; ICV, intracranial volume. Reproduced

with permission from [306].
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Fig. 27.
Cumulative survival of individuals based on their high entorhinal cortex volume (ECV) and

level of white-matter hyperintensities (WMHs). ADNI MCI subjects were dichotomized
according to the median split of their ECV and levels of WMH. Individuals with high ECV
and low WMH had low likelihood of rapid decline, whereas subjects with low ECV and low
WMH or low ECV and high WMH appear to progress most rapidly. Solid line indicates high
ECV, low WMH; dashed line indicates high ECV, high WMH; dotted line indicates low
ECV, low WMH; dash-dotted line indicates low ECV, high WMH. Abbreviations: ADNI,
Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive impairment. Reproduced
with permission from [297].
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Fig. 28.
The effect of hypertension and A status on estimated trends of white-matter

hyperintensities (WMHs) volume as a function of age. WMH volumes were predicted for
the population average intracranial volume by age, exposure to elevated blood pressure, and
CSF A4, burden. High blood pressure increases WMH over time in both AP+ and AB—
subjects, but the greatest effect in AR+ subjects. Abbreviation: CSF, cerebrospinal fluid.
Reproduced with permission from [300].
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Fig. 29.
Conceptual model linking white-matter hyperintensities to clinical progression of AD.

Regional white-matter hyperintensities (WMHs) affect tau directly (a), affect regional
atrophy and clinical progression directly (b), and modify the effect of tau on disease
progression (c). The interaction between regional WMHs and AP has yet to be elucidated.
Abbreviation: AD, Alzheimer’s disease. Reproduced with permission from [313].
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Early MCI Late MCI

Fig. 30.
Visualization of neuronal fibers touching limbic system ROIs in typical early MCI (left) and

late MCI (right) patients. Abbreviation: MCI, mild cognitive impairment. Reproduced with

permission from [326].
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Fig. 31.
Average brain networks showing common connections at 90% of healthy controls (CN),

MCI, and AD participants at k= 20 nodal degree threshold. Although individual connections
(red edges) erode with disease progression, centrally positioned hubs (light blue nodes) are
preserved in diagnostic groups. These hubs are in the superior frontal (SF), insula (I),

posterior cingulate (PC), precuneus (P), and superior parietal cingulate regions (SP).
Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment. Reproduced with
permission from [328].
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Fig. 32.
Overview of intrinsic connectivity networks. The figure shows standardized maps of seven

intrinsic conductivity networks projected on the cortical surface and a midsagittal section of
the reference template. This map estimates the functional conductivity architecture of the
human cerebral cortex based on resting state functional conductivity projected on the
cortical surface and a midsagittal section of the reference template. Abbreviations: blue,
limbic network; cyan, somatomotor network; green, dorsal attention network; pink, ventral
attention network; purple, visual network; red, default mode network; yellow, frontoparietal-
control network. Reproduced with permission from [335].
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Fig. 33.
Severity of AD-related imaging abnormalities within intrinsic connectivity networks. Plots

depict means and 95% confidence intervals of averaged Z scores of AP deposition (top),
hypometabolism (middle), and gray-matter atrophy (bottom) within the distinct intrinsic
connectivity networks for each AD stage. The widespread distribution of amyloid deposition
across the cerebral cortex appeared similar in all patient groups with highest amyloid load in
the DMN and FPN. Hypometabolism was most pronounced in the AD group and occurred
across most ICNs except the VIS and SMN. Likewise, atrophy was most pronounced in the
AD group, which displayed a different relative pattern of atrophy severity across ICNs with
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atrophy most pronounced in the LIN followed by the DMN and relative sparing of the FPN.
Abbreviations: blue, limbic network (LIN); cyan, somatomotor network (SMN); green,
dorsal attention network (DAN); pink, ventral attention network (VAN); purple, visual
network (VIS); red, default mode network (DMN); yellow, frontal parietal control network
(FTN); AD, Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive
impairment; LMCI, late mild cognitive impairment. Reproduced with permission from
[335].
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Fig. 34.
Subsystems of the default mode network. Nodes within the default mode network segregate

into distinct subsystems. Abbreviations: aMPFC, anterior or medial prefrontal cortex; blue:
dorsal medial prefrontal cortex system; dMPFC, dorsal medial prefrontal cortex; green,

medial temporal lobe memory system; yellow, midline core regions; PCC, posterior
cingulate cortex; Rsp, retrosplenial cingulate. Reproduced with permission from [336].
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Fig. 35.
Schematic of the proposed cascading network failure model of Alzheimer’s disease. Phase

0: The posterior DMN (pDMN) serves as the central hub processing and integrating
association cortices and is highly metabolically active. Independently, the medial temporal
lobe (MTL) has accumulated age-related damage from neocortical processing of a different
kind contributing to primary age-related tauopathy (PART) in these regions. Phase 1:
Declining posterior DMN transfers information-processing duties to the neocortical regions
including the ventral DMN and/or the anterior dorsal DMN. Aberrant betweenneocortical
network synaptic activity leads to dysregulated amyloid precursor protein (APP) processing
promoting AP plaque formation in neocortical layers. Phase 2: Given that the hippocampus
is continually processing information from the same regions, noise in these cortical systems
is propagated down to the hippocampus. This increased burden on the hippocampus
accelerates the preexisting PART. Phase 3: Neurodegeneration expands to adjacent systems.
This creates a detrimental positive feedback loop because degeneration lowers the noise-
handling capacity of the system leading to further degeneration. MCI phase: Posterior brain
regions supporting memory succumb to the degenerative feedback loop as hippocampal
regions increases processing. Later, the frontal brain regions begin to bear the high
connectivity burden. Early Alzheimer’s disease phase: The high frontal connectivity firmly
establishes the neurodegenerative feedback loop in these systems before declining as
Alzheimer’s disease progresses. Abbreviations: DMN, default mode network; MCI, mild
cognitive impairment. Reproduced with permission from [336].
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Fig. 36.
Characteristic regional AP deposition patterns in healthy and pathological brains. An

epidemic spreading model that predicts propagation/deposition of AP reproduces the
characteristic AP deposition patterns in the ADNI cohort. (A) PET-based mean regional AP
deposition probabilities in cognitively normal healthy controls (HC), early MCI (EMCI),
late MCI (LMCI), and AD groups. Nodes correspond to 78 regions covering all the brains
gray matter, with node sizes proportional to the associated AP burden. The progressive
expansion of AP deposition starts mainly from the DMN regions and expands to the rest of
the brain. (B) Correspondence between the estimated and PET-based mean regional AR
deposition probabilities for the different clinical groups. Abbreviations: AD, Alzheimer’s
disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; DMN, default mode network;
MCI, mild cognitive impairment; PET, positron emission tomography. Reproduced with
permission from [346].
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Patterns of decline of the different classes of markers. The greatest effect sizes for MCI
converters were for functional measures (Functional Activities Questionnaire [FAQ]) and for
cognitive measures such as the ADAS-cog. Effect sizes for volumetric and CSF biomarker
measures were much smaller. Panel 1: effect sizes for the difference in cognitive and
functional measures between baseline and each one of the follow-ups from months 12—48:
(A) MCI converters, (B) stable MCI. Panel 2: effect sizes in MRI morphometry, FDG PET
HCI, and CSF biomarkers between baseline and months 12-36 follow-ups: (C) MCI
converters, (D) stable MCI. Abbreviations: ADAS-cog, Alzheimer’s Disease Assessment

Alzheimers Dement. Author manuscript; available in PMC 2019 October 29.



1duosnuepy Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

1duosnuepy Joyiny

‘Weiner et al.

Page 127
Scale—cognitive; CSF, cerebrospinal fluid; FDG, [18F]—ﬂuorodeoxyglucose; HCI, hyperbolic

convergence index; MCI, mild cognitive impairment; MRI, magnetic resonance imaging;
PET, positron emission tomography. Reproduced with permission from [354].
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Fig. 38.
Observed versus predicted progression from amnestic MCI to AD over 3 years by Brief

Clinical Index point score. The solid line shows the proportion of subjects predicted to
progress from amnestic MCI to AD over 3 years as a function of the Brief Clinical Index
point score. The dotted line shows the actual proportions that progressed at each point score
value based on 3-year Kaplan-Meier estimates. The vertical bars showed the number of
individuals at each point score value (right vertical axis). Abbreviations: AD, Alzheimer’s
disease; MCI, mild cognitive impairment. Reproduced with permission from [360].
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Clinical and demographic characteristics
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Fig. 39.
Associations between 249 variables shown by a circular visualization of correlation plot.

Data from 928 patients with mild cognitive impairment were used to produce a network
visualization of the complex relationships between and within variables in ADNI. Lines
represent the Spearman rank correlation coefficient |(7)| = .3 between two variables. 1—sex,
2—years education, 3—age, 4—MMSE, 5—ADAS total score, 6—ADAS modified, 7—
CDR composite score, —CDR-SOB composite score, 9—FAQ, 10—GDS, 11—Hachinski
Ischemic Scale score, 12—NIQ total score, 13—brain volume, 14—intracranial volume, 15
—ventricular volume, 16—hippocampal volume, 17—inferior lateral ventricular volume, 18
—middle temporal volume, 19—inferior temporal volume, 20—fusiform cortical volume,
21—entorhinal cortex volume, 22— APOE4 carrier, 23—no. of APOE4 alleles, 24—
TOMMA40 polyT allele one, 25— TOMMA40 polyT allele 2, 26—8-1so-PGF, 27—8,12-iso-
IPFa, 28—CSF white blood cell count, 29—CSF red blood cell count, 30—CSF total
protein concentration, 31—CSF glucose level, 32—total plasma homocysteine level, 33—
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plasma APB40 level, 34—plasma AP42 level, 35—plasma AB40:AB42 ratio, 36—CSF Ap42
level, 37—CSF t-tau level, 39—CSF AB42:t-tau ratio, 40—CSF AB42-p-tau ratio, 41—CSF
p-tau:t-tau ratio, 42 to 115—74 CSF analytes measured by multiplex assay, 116 to 249—
hundred and 34 plasma analytes measured by multiplex assay. Abbreviations: ADAS,
Alzheimer’s Disease Assessment Scale; ADNI, Alzheimer’s Disease Neuroimaging
Initiative; CDR-SOB, Clinical Dementia Rating—Sum of Boxes; CSF, cerebrospinal fluid;
FAQ, Functional Activities Questionnaire; MMSE, Mini—Mental State Examination.
Reproduced with permission from [425].
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Fig. 40.
Prediction of progression from mild cognitive impairment to Alzheimer’s disease within 3

years. Markers in plasma or CSF predicted progression with a relatively high sensitivity
compared to standard AD CSF biomarkers, regional MRI volumes, or cognitive scores.
Prediction includes seven models combining different subsets of variables. Correct
classification rate of the top 20 variables was estimated on the test data set after 1000-fold
resampling of the learning and test data sets. Sex and age were included in all models.
APOE4 indicates apolipoprotein e4. Abbreviations: AD, Alzheimer’s disease; CSF,
cerebrospinal fluid; MRI, magnetic resonance imaging. Reproduced with permission from
[425].
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Fig. 41.

Nonlinear disease progression model capturing longitudinal Clinical Dementia Rating—Sum
of Boxes (CDR-SB) scores. Visual predictive check simulations suggest that the model
describes longitudinal progression of CDR-SB scores in both late MCI and mild AD
subjects. Stratification using p-tau;gi/APy4p ratio reveals a lack of disease progression in
biomarker negative subgroups. The upper, middle, and lower profiles indicated by the open
circles represent the 95th, 50th, and Sth percentiles of the observed data, respectively. The
upper, middle, and lower curves indicated by the lines are the median model-based
predictions for the 95th, 50th, and 5th percentiles, respectively. The shaded areas are the
90% confidence intervals of the corresponding percentiles of the simulations based on the
model. Abbreviations: AD, Alzheimer’s disease; LMCI, late MCI; MCI, mild cognitive
impairment. Reproduced with permission from [459].
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=== Unenriched scenario

Implications of hippocampal volume—based enrichment for clinical trials of amnestic MCI

subjects. Estimates of trial costs and total duration for scenarios in which patients are

enriched or not enriched with hippocampal volume are given for different outcome

measures. (A—C) Trial cost and (D-F) trial execution time, as a function of cut point for (A
and D) MMSE, (B and E) ADAS-cog, and (C and F) CDR-SB. Results are expressed as
fractions of the unenriched scenario and are shown for four different hippocampal volume

computational algorithms. Variance due to test-retest variability is shown as the shaded area
for one of the four algorithms (LEAP). Abbreviations: ADAS-cog, Alzheimer’s Disease
Assessment Scale—cognitive; CDR-SB, Clinical Dementia Rating—Sum of Boxes; MCI, mild
cognitive impairment; MMSE, Mini—-Mental State Examination. Reproduced with

permission from [470].
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Fig. 43.

Ability of cognitive end points to detect change in cognitively normal subjects selected for

multiple pathologies. Composite cognitive tests were more able to capture decline in

cognitively normal (CN) subjects over 7 years than any measure of a single cognitive

domain or ADAS-cog alone. Enrichment with three or more pathologies optimally enhanced
this effect. Groups with 0, 1, 2, or 3+ pathologies (APOE4, AP+, tau+, or hippocampal
atrophy1) plotted for each standardized cognitive measure with 7 years of follow-up.
Composite #1: ADAS-11, Trails B, and Logical Memory II. Composite #2: ADAS-11, Trails
B, and dALVT. Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; ADAS-cog,
Alzheimer’s Disease Assessment Scale—cognitive; dAVLT, delayed Rey Auditory Verbal

Learning Test. Reproduced with permission from [478].
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Fig. 44.
The effect of clinical trial enrichment using APOE4 status or brain AP load. After screening

participants for APOE4 status or brain A load, sample size requirements are around 100
subjects for a 2-year trial. Sample size estimates (n80s) after trial enrichment using APOE4
status (A), brain AP load at screening (B), or both combined (C). Abbreviations: AD,
Alzheimer’s disease; CN, cognitively normal; EMCI, early mild cognitive impairment;
LMCI, late mild cognitive impairment. Reproduced with permission from [479].
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