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Abstract Satellite observations have shown that the largest and most prolonged Maud Rise open‐ocean

polynya since the 1970s appeared on 14 September 2017 (~9.3 × 103 km2) within the seasonal sea‐ice cover

which expanded maximum on 1 December 2017 (~298.1 × 103 km2) and existed for 79 days. Record

negative anomalies of sea‐ice concentration were observed in and around the polynya. The occurrence of the

polynya was associated with a large cyclonic eddy and negative wind stress curl that facilitated melting of

sea‐ice. Concurrently, a region of positive sea level pressure anomalies extended over the entire northern

Weddell Sea accompanied by record low negative anomalies (deep depressions) over the southwest Weddell

Sea and the Maud Rise. The atmospheric circulation anomalies advected moist‐warm air from the

midlatitudes, resulted a record atmospheric warming (~11.5 °C) in theMaud Rise that favored this rare event

as one of the largest open‐ocean polynyas.

Plain Language Summary The polynya plays an important role in the Earth's climate system by

modulating the albedo, air‐sea exchange of heat, fresh water, carbon, and ocean‐atmospheric circulation.

The occurrence of such feature is critical for assessing the role of high latitude ocean‐atmospheric dynamics

in the global climate and also for the Antarctic marine ecosystem. Satellite observations show that a large

and most prolonged Maud Rise polynya (Lazarev Sea) reappeared on 14 September 2017 for the first time

since its frequent appearance during the 1970s. On 14 September 2017, the areal extent of the polynya

was ~9.3 × 103 km2 which expanded maximum on 1 December 2017 up to ~298.1 × 103 km2, lasting for

79 days. The formation of the polynya was due to the combined influence of the (i) existence of the geological

feature such as a seamount (leads to local upliftment of thermocline), (ii) upwelling of warm water into

the upper ocean from the thermocline (induced by a large cyclonic ocean eddy and negative wind stress

curl), and (iii) the large‐scale anomalous atmospheric warming.

1. Introduction

Open‐ocean polynyas are regions of open water within the seasonal sea‐ice cover, occurring away from the

shore. The occurrence of such polynya is known to have consequence on the Antarctic bottom water proper-

ties (Zanowski et al., 2015), atmospheric circulation (Weijer et al., 2017), Antarctic marine ecosystem

(Labrousse et al., 2018; Stirling, 1997), carbon uptake, and primary production (Arrigo & van Dijken,

2003; Shadwick et al., 2017). Understanding the interaction between the polynyas and overlaying atmo-

sphere is crucial for assessing the role of high‐latitude dynamics in global climate (Maqueda, 2004). The

first‐ever synoptic observations of a polynya was captured after the launching of Nimbus‐5 (Electrically

Scanning Microwave Radiometer) in 11 December 1972, which could provide an unprecedented view of

the large open‐ocean polynya (200–300 × 103 km2) on the Maud Rise (MR) during 1974–1976 (Carsey,

1980; C. De Lavergne et al., 2014). After 1976, polynyas having a similar size and duration have not reap-

peared on the MR except its recent reappearance in 2017 (Figures 1a, 1b, and S1).

In order to understand the formation mechanism of the MR polynya, theoretical and modeling studies has

been linked its occurrence to static instability and open‐ocean convection (Martinson et al., 1981; Motoi

et al., 1987); Taylor column circulation (Alverson & Owens, 1996; Kurtakoti et al., 2018; Muench et al.,

2001); cyclonic ocean eddies and atmospheric processes (de Steur et al., 2007; Holland, 2001); strong wind

stress (Cheon et al., 2015); interaction between tidal flow, ocean current, and winds (Beckmann et al.,

2001); buildup of the oceanic heat reservoir (Dufour et al., 2017); Southern Annular Mode (SAM) and El

Niño‐Southern Oscillation (Gordon et al., 2007). Most of these studies suggested that the subsurface warm

saline water should reach to the upper ocean for the melting of sea‐ice and to form a polynya on the MR.
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The static instability induced through winter cooling and brine rejection due to sea‐ice formation leads to

deep convection. The deep convection leads to upwelling of warm circumpolar deep‐water from the

Weddell Gyre favors for the formation of polynyas (Martinson et al., 1981; Motoi et al., 1987). Also, the

oceanic diffusion and entrainment heat fluxes maintains the stability, which can have a positive or

negative feedback (Goosse & Zunz, 2014; Hobbs et al., 2016). Cheon et al. (2015) suggested negative wind

stress curl over the Weddell Sea (WS) intensifies the cyclonic Weddell Gyre and causes the upwelling of

warm‐saline deep water to the surface for generating an open‐ocean polynya on the MR. The model

simulations suggested the influence of synoptic atmospheric variability for the formation of a polynya

occurs through transient low‐pressure system and divergence of sea‐ice (Arbetter et al., 2004; Holland,

2001). The meridional wind advects warm‐moist air from the midlatitudes or cold‐dry air from the high‐

Figure 1. (a) High resolution Aqua‐Moderate Resolution Imaging Spectroradiometer image at 859 nm captured an exceptional view of theMaud Rise polynya on 25

September 2017 (1,430 hr UTC). Red circles show the locations of an Argo float from 13 August to 5 December 2017. Yellow lines show the depth contours shallower

than 2,000 m and other white contours are spaced by 500 m. (b) The daily changes in mean (blue) and minimum (red) sea‐ice concentration anomaly for

August–December 2017 relative to the 1979–2016 climatology (green), spatially averaged over the polynya region within the dashed rectangle shown in Figure 1a.

Gray bars show the daily areal extent of the polynya. Argo float profiles indicate (c) potential temperature and (d) vertical density gradient for 2017 polynya.
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latitudes that affects the melting and growth of sea‐ice (Hobbs et al., 2016). Recently, the impact of atmo-

spheric processes resulted in a record decrease in sea‐ice during 2016–2017, through enhanced advection

of midlatitude warm air into the Antarctica (Ionita et al., 2018; Schlosser et al., 2018; Turner et al., 2017).

However, its role for the recent appearance of a large polynya on the MR is not yet examined.

In this article, we show the evidences from satellite data (optical and passive microwave) for the appearance

of a large polynya and record loss of sea‐ice on the MR during the period from September to December 2017.

We reported this rare event with the backdrop of an observed unusual ocean‐atmospheric condition on

the seamount.

2. Materials and Methods

In order to characterize the MR polynya, we used daily and monthly sea‐ice concentration (SIC) data

(1979–2017) from multiple passive microwave sensors, such as the Scanning Multichannel Microwave

Radiometer, the Special Sensor Microwave Imager, and the Special Sensor Microwave Imager Sounder with

spatial resolution of 25 × 25 km acquired from the National Snow and Ice Data Center (Data id‐G02135,

Version‐3). The data were generated using the NASA Team algorithm, which converts satellite‐derived

brightness temperatures to quality‐controlled SIC (Cavalieri et al., 1997; Fetterer et al., 2016). We computed

the areal extent of MR polynya by summing‐up the total number of pixels (where the SIC is less than or equal

to 15%) multiplied with the spatial resolution of a pixel (25 × 25 km; Weijer et al., 2017). The SIC anomalies

(both daily and monthly) were computed for the period of August to December 2017 relative to a 38‐year cli-

matology (1979–2016). The computation of climatology ignored the missing values for the period from 3

December 1987 to 12 January 1988. The data were available only for alternative days prior to 20 August

1987 and therefore we computed the values for a missing day after averaging between previous and follow-

ing day values. We used sea‐ice drift data from the multiple microwave sensors using a continuous maxi-

mum cross correlation method and a multisensor merging strategy (T. Lavergne, 2016). The calibrated

radiance values in the infrared‐channel (859 nm) from Aqua‐Moderate Resolution Imaging

Spectroradiometer acquired with the high spatial resolution of ~250 m; however, only few cloud free scenes

were available. The bathymetry of the seamount was mapped using Earth Topography One‐Arc‐Minute

Global Relief Model, 2009 (www.ngdc.noaa.gov; Jena et al., 2012) and converted to polyline features with

a contour interval of 500 m for showing the seamount extent.

In order to examine the role of ocean processes for the formation of the polynya, we used satellite observa-

tions and hydrographic profiles from an Argo float (ID‐5904468; Figures 1 and 2). Multimission merged

satellite altimeter‐derived sea surface height anomalies and geostrophic currents were obtained from

AVISO (https://las.aviso.altimetry.fr/) at a resolution of 0.25° × 0.25° (Armitage et al., 2018; Figures 2a–

2d). We used Metop‐Advanced Scatterometer wind stress curl and Ekman upwelling data distributed by

the National Oceanic and Atmospheric Administration (https://coastwatch.pfeg.noaa.gov) at a spatial reso-

lution of 0.25° × 0.25° (Anderson et al., 2011; Pond & Pickard, 1983; Verhoef et al., 2017; Figures 2e–2l). The

optimal interpolated sea surface temperature (SST) data (9 × 9 km) obtained from Remote Sensing Systems

(www.remss.com), which was produced after merging of the microwave and infrared SSTs using an optimal

interpolated scheme (Reynolds & Smith, 1994; Figures 2m–2p). We used profiles from an Argo float that had

remained in the polynya from August to December 2017 (http://www.argo.ucsd.edu/). To bring out the per-

sistent features, we have averaged the spatial profiles corresponding to the periods before (13 August to 3

September 2017) and after (24 September to 5 December 2017) the polynya formation (Figures 1c and 1d

and S2a and S2b). The profile available on 13 September was considered as the reference day of its formation

even though the event had occurred just after 1 day. We calculated vertical density gradient (dρ/dz) to inter-

pret the static stability. The mixed layer was calculated as the uppermost layer of uniform potential density

with the depth at which the value in the upper layer varies by 0.01 kg/m3 reference to the surface (Figure

S2b; Kaufman et al., 2014). The quality‐controlled monthly potential temperature (1979–2017) data were

examined using the European Centre for Medium‐Range Weather Forecast (ECMWF)'s advanced opera-

tional ocean reanalysis system (ORAS4; Figures S2c–S2f and S3a; Balmaseda et al., 2013) and the

Copernicus Marine Environment Monitoring Service (Figure S3b–S3e).

The role of atmospheric circulation anomalies for the formation of MR polynya was examined using the

ECMWF's Interim (ERA‐Interim) daily and monthly reanalysis fields, available at 0.25° × 0.25° grid
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(www.ecmwf.int). We used SAM index (Marshall, 2003) available online (at https://legacy.bas.ac.uk/met/

gjma/sam.html). Although this article has focused mainly on the event during 2017, we additionally

analyzed the ocean‐atmospheric data for the polynya occurred in 2016 for comparing the mechanism

of formation.

Figure 2. Monthly mean of (a–d) sea surface height anomaly and geostrophic current velocity (white arrows), (e–h) wind stress curl, (i–l) upwelling index, (m–p)

sea surface temperature, and (q–t) sea‐ice concentration during the period of polynya occurrence from September to December 2017.
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3. Results and Discussion

3.1. Satellite Observation of Polynya Formation

Analysis of Special Sensor Microwave Imager Sounder daily maps show that a region of low SIC (~48%)

developed within the seasonal sea‐ice cover on the north‐east flank of MR seamount on 2 September 2017

(Figure not shown). It further reduced up to ~36% until 13 September (Figure S1p). Subsequently, a polynya

with areal extent of ~9.3 × 103 km2 developed on 14 September 2017, approximately at 4.7°E and 64.4°S

(Figure S1q). High‐resolution Aqua‐Moderate Resolution Imaging Spectroradiometer radiance data on 25

September 2017 captured an exceptional view of the polynya and its surrounding features of broken sea‐

ice (Figure 1a). The polynya expanded maximum to a large opening of ~298.1 × 103 km2 on 1 December

2017 and lasted for 79 days (Figures 1b and S1r). The areal coverage was nearly static during September–

October 2017, however it rapidly enlarged and shifted 169 km southeastward during November 2017

(Figures 1b and 2q–2t). On 2 December 2017, a very low SIC (~12%) developed at the north‐eastern edge

(~10.51°E, 62.28°S) with a length of 25 km (East–West) and 52 km (North–South) that had separated the

polynya from the open‐ocean (Figure S1s). On 3 December 2017, the SIC reduced (~9%) in this edge with

an enhanced length of 145 km (East–West) and 52 km (North–South). Its northern boundary was completely

disappeared by 10 December 2017, in the proximity of a warmer sea surface to the north. Spatially averaged

daily SIC within the MR (3.28°W to 8.32°E and 66.7 to 63.14°S) indicated a climatological value of 90% per-

sisted during 1 August to 8 October, however, a gradual decline follows in the start of the melt season

(Figure 1b). The daily mean and minimum values of the SIC anomaly indicated a consistent negative anom-

aly that started on 14 September and continued till 31 December 2017. Satellite observations shown that the

event observed in September–December 2017 was the largest and most prolonged open‐ocean polynya on

the MR since its appearance during 1974–76, except occasional opening during September 1994, August

2016, November–December 2016, and June 2017. We describe the role of both ocean and atmospheric pro-

cesses to explain the occurrence of MR polynya in September through December 2017.

3.2. Oceanic Influence

Analysis of bathymetry showed that the top of theMR seamount is located at 2.63°E and 65.23°S, which rises

from the abyssal plain of ∼5,200 m to the shallowest depth of ∼968 m (Figure S4a). Local upliftment of ther-

mocline occurs in presence of a seamount (Muench et al., 2001; Roden, 2013). The climatological profiles of

potential temperature in September (1979–2016) shows the thermocline is uplifted about 22 m due to the

presence of seamount (Figure S3a). The water column on the seamount is characterized by the presence

of a cold‐fresh layer in the upper ocean separated from a lower warm‐saline layer by a weak pycnocline

(de Steur et al., 2007; Figures 1c, S2a, and S2b). The water column has a low static stability (Figure 1d) that

favors convection andmixing in turn that brings warm‐saline water from the thermocline to the upper ocean

(Goosse & Zunz, 2014; Gordon & Comiso, 1988; Lefebvre et al., 2004; Martinson et al., 1981; Muench et al.,

2001), leading to usual low SIC on the MR seamount (Figure S5). Therefore, the oceanic processes that can

bring warm water into the upper ocean from the thermocline have an important role for melting of sea‐ice

and formation of polynya. In order to identify the oceanic process that can cause the appearance of a poly-

nya, we examined oceanographic data during September–December 2017 and the results are shown in

Figure 2.

Analysis of monthly sea surface height anomalies and corresponding geostrophic currents indicated the pre-

sence of a large cyclonic eddy having a diameter of ∼220 km in the vicinity of MR seamount during

September 2017 (Figure 2a). The center of the cyclonic eddy was approximately located at 3.84°E and

64.47°S, closely matching with the center of the polynya having warm SST (−1.35 °C) compared to its per-

ipheral cold SST of −1.79 °C (Figures 2a and 2m). The influence of this cyclonic eddy to form a polynya

on the MR has two different roles. Primarily, the eddy brings the warm thermocline water into the sea sur-

face through Ekman upwelling that results in a pool of warm SST at its center and facilitated the melting of

sea‐ice for the opening of polynya in September (Figure 2). Additionally, the eddy transmits divergence on

the sea‐ice cover that can enhance the open water fraction and gains access to the atmosphere (Holland,

2001). A cyclonic flow pattern of sea‐ice was observed (indicating a divergence) with an overall south‐

westerly strong drift during September (Figure S4b). The polynya extent was nearly static from September

to October, and shifted southward during November in conjunction with the southward movement of cyclo-

nic eddy accompanied by a pool of warm SST (Figure 2). Although a dipole structure of cyclonic and
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anticyclonic eddies was observed on the MR, a large cyclonic eddy dominated the flow pattern (Figures 2a–

2d). The shape and movement of the cyclonic eddy matching well with the movement of the annular pattern

of the polynya and annular halo of warm SST (Figure 2). The transient nature and appearance of such events

are theoretically attributed to the transient nature of ocean current interaction with the MR that spawns a

large cyclonic eddy off the northeast flank of the seamount (Holland, 2001).

The interaction between the ocean current and the MR seamount is known to trigger various dynamic fea-

tures which have an important role for the formation of a polynya. An isolated water column (Taylor col-

umn) trapped over the MR seamount hinders the horizontal flow over the rise and intensifies the flow

around its periphery (Alverson & Owens, 1996; Ou, 1991). This causes a ring‐shaped closed circulation

and a warm pool over the MR which has been considered as the dynamical necessary region of cyclonic vor-

ticity associated with a Taylor column (Muench et al., 2001). Various warm cores and sharp fronts were asso-

ciated with this closed circulation pattern (Bersch et al., 1992; Gordon & Huber, 1990), along with an eddy

dipole on the MR (Muench et al., 2001). Also, the sea‐ice‐ocean model simulations demonstrated the inter-

action between ocean current and the MR seamount spawns a cyclonic eddy that enhances the open water

fraction within the sea‐ice cover (de Steur et al., 2007; Holland, 2001; Ou & Gordon, 1986), and the phenom-

enon confirms the validity of our observations (Figures 2a–2d). We also find that the sea surface on the MR

seamount was forced by negative wind stress curl (Figures 2e–2h), favorable for the upwelling of subsurface

warm water to the surface (Figures 2i–2l). Wind stress supports for the opening of polynya through Ekman

upwelling and triggering the formation of convection cells (Gordon & Huber, 1990). The resulted upwelling

of deep warm water plays an important precondition for the occurrence of a long‐lived and large‐scale open‐

ocean polynya on the MR (Cheon et al., 2015).

In addition to satellite observations, we have analyzed profiles from an Argo float (ID‐5904468). Before the

formation of polynya (13 August to 3 September 2017), the hydrographic profile up to 300 m depth indicate

an average mixed layer of ~60 m having relatively cold (−1.69 °C) and low saline (34.52 psu) water mass

separated from a lower warm (up to 0.89 °C) and saline (up to 34.76 psu) water mass (Figures 1c, S2a, and

S2b). During the formation of the polynya, the mixed layer deepened to ~73 m on 13 September with average

temperature (salinity) of −1.34 °C (34.50 psu). The observed mixed layer increase of ∼13 m and warming of

0.35 °C as shown in Argo data, also evident in SSTs derived from satellite measurements (Figures 2m–2p).

Depth‐Latitude cross section of ORAS4 potential temperature data at 4.7°E and 64.5°S suggested that anom-

alously deep warm water was ventilated and brought closer to the upper ocean from the thermocline

(upward doming of isotherms) that could facilitate for melting of sea‐ice during September–December

2017 (Figures S2c–S2f). A high‐resolution (1/12°) eddy‐resolving model data from the Copernicus Marine

Environment Monitoring Service indicated that subsurface warm water is uplifted from the thermocline

along 4.7°E (Figures S3b–S3e). The presence of the polynya was consistent with the areas of anomalously

warm sea surface and subsurface temperature (Figures 2m–2t and S2c–S2f).

While favorable oceanic circulation (cyclonic eddies) and wind stress curl had important roles for the open-

ing of the polynya through upwelling processes, it has been suggested that both oceanic and atmospheric

processes should take place concurrently on different scales in order to provide the conducive environment

for a large polynya to form (Arbetter et al., 2004; de Steur et al., 2007).

3.3. Atmospheric Influence

In order to study the influence of synoptic atmospheric variability on the MR sea‐ice, we examined ECMWF

reanalysis data (1979–2017) and the results are shown in Figure 3. During August 2017, a center of positive

mean sea level pressure (SLP) anomaly occurred in the central WS and south‐west WS, accompanied by

negative anomalies over the MR and zone of 60–65°S (Figure 3a). This SLP pattern directed south‐easterly

wind into the southern region of the MR and westerly wind into the northern region of the MR. No anom-

alous features of SIC observed in the vicinity of MR during August.

During September 2017, the atmospheric circulation indeed changed dramatically. A region of positive SLP

anomalies extended over the entire northern WS, accompanied by a record low negative anomaly (a deep

depression) over the southwest WS and the MR (Figure 3b). The SLP over the southwest WS in September

2017 was the lowest recorded value relative to September 1979–2016 (968 hPa compared to climatological

mean of 986 hPa). The areas within thick polyline shown the record level anomalies in September 2017

10.1029/2018GL081482Geophysical Research Letters

JENA ET AL. 6



relative to September 1979–2016. The observed depression directed strong north‐westerly flow of

anomalously warm and moist air from the midlatitudes into the MR through the marginal ice zone

(MIZ), with a marked meridional pattern (Figures 3b, S6a, and S7a). Correspondingly, anomalous high air

temperature (AT; ~6 °C) and vertical integrated water vapor (~2 kg/m2) was observed on the MR and also

along the flow direction (Figures S6a and S7a). Analysis of daily maps indicated large negative SIC

anomalies occurred corresponding to repetitive episodes of deep depressions over the southwest WS, that

advected warm and moist air into the MR, with strong episodes occurred during 11–18, September 2017

(Figure not shown). Spatially averaged (3.28°W to 8.32°E and 66.7 to 63.14°S) daily net heat flux over the

Figure 3. Monthly anomalies of mean sea level pressure (SLP, gray contours) and 10‐m wind vector overlaid on anoma-

lous sea‐ice concentration (SIC) for 2017 (a) August, (b) September, (c) October, (d) November, and (e) December. The

regions within red (gray) thick polylines shows the record level SIC (SLP) in 2017 that lies outside of SIC (SLP) values from

1979 to 2016. Purple polylines showing the depth contours of Maud Rise seamount. (f) Daily changes in 2‐m air tem-

perature (red), integrated water vapor (dashed), and SLP (blue) anomalies for September–December 2017 relative to a 38‐

year climatology (1979–2016), spatially averaged over the polynya region within the dashed rectangle shown in Figure 1a.
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MR indicated a positive anomaly up to ~57 W/m2 before the formation of polynya (Figure S8). A large posi-

tive anomaly of AT (~11.5 °C), integrated water vapor (~3.9 kg/m2), and SLP (25.5 hPa) were observed in

prior to the formation of polynya during 12 September (Figure 3f). The peaks in AT associated with drop

in SLP are, respectively, the signature of the fronts and the passage of cyclones (Francis et al., 2018). The

strong north‐westerly flow of anomalously warm and moist air into the MR contributed to the observed

record low SIC and likely to the formation of the polynya (Figure 3b). Such anomalous atmospheric circula-

tions have been noticed to have significant impacts on Antarctic sea‐ice loss (Doddridge & Marshall, 2017;

Ionita et al., 2018; Schlosser et al., 2018; Turner et al., 2017), however, are more pronounced on the MR

and the MIZ (Figure 3b) due to its climatological low SIC (Figure S5). The appearance of the polynya and

anomalously negative SIC was associated with the SLP pattern similar to a positive phase of SAM (index

of 0.42). However, the SLP pattern was not annular due to the presence of deep depressions in the southwest

WS (Figure 3b). Lefebvre et al. (2004) noted that the nonannular component of the SLP pattern associated

with a positive SAM leads to enhanced meridional flow of warm air from the midlatitudes into the WS that

contributes to the melting of sea‐ice, in addition to the contribution from strong upwelling of warm water.

During the negative SAM, sea‐ice cover was increased over the WS with colder air brought in with the

enhanced northward wind (Gupta & England, 2006).

During October, the polynya extent did not change a great deal (Figures 1b, 2q, and 2r) corresponding to a

negative SAM pattern (−0.64) accompanied by anomalously high SLP over the MR and coastal Antarctica

and low SLP to its north, that drove cold easterly flow into theMR (Figure 3c). The polynya expanded rapidly

in November (Figures 1b and 2s) associated with anomalously low SLP (a couple of depressions at 20°W,

67.5°S and 35°W, 44°S) in the western WS and high SLP in the Lazarev Sea (Figure 3d) corresponding to

a strong positive phase of SAM (index of 3.18). The east‐to‐west SLP anomaly directed meridional flow of

north‐westerly warm and moist air from the midlatitudes into the MR that contributed for rapid expansion

of the polynya. Persistent positive anomalies of NHF reached up to ~140W/m2 during the rapid expansion in

November (Figure S8). During December, the polynya completely disappeared and the entire WS and

Lazarev Sea experienced anomalously negative SIC except in the part of southwest WS (Figure 3e). The

SLP variability followed a positive SAM pattern in December (index of 1.44) and there was a deep depression

(at 32°W, 65°S) with a negative SLP anomalies (976 hPa compared to climatological mean of 987 hPa)

observed over the southwest WS. The anomalous northwesterly flow of warm and moist air into the MR

facilitated for the anomalous negative SIC in December 2017.

We have also analyzed the events in 2016 (Figures S9 and S10). The small polynya occurred during August

2016 was associated with an anomalous pattern of negative SLP (up to ~8 hPa) with a cyclonic wind pattern

on the MR (Figure S10a) that directed strong north‐westerly flow of anomalously warm air from the midla-

titudes. Anomalously high AT up to ~6 °C was observed on the MR accompanied with the negative SIC

anomalies (Figure S10b). The presence of mobile depressions that moved from the Bellingshausen and

Amundsen Seas into the southern WS was responsible for such changes in SIC (Turner et al., 2017).

Although the atmospheric condition was favorable for the formation of polynya; however, the oceanic influ-

ence should have a major role for the initiation. Analysis of an event during November 2016 revealed the

presence of two cyclonic ocean eddies (located at 6.0°E, 66.77°S and 0.10°E, 67.72°S) and favorable pattern

of negative wind stress curl leads to upwelling of subsurface warm water to the upper ocean; in turn could

facilitate for the melting of sea‐ice (Figure S9).

4. Summary and Conclusion

We have shown that the largest and most prolonged MR open‐ocean polynya since the 1970s reappeared on

14 September 2017 and lasted for 79 days. Record negative anomalies of SIC were observed on the MR from

September to December 2017. We described anomalous ocean‐atmospheric conditions which facilitated the

formation of this rare event. The occurrence was primarily associated with a large cyclonic eddy and upward

doming of isotherms over the MR seamount in September 2017. The center of the polynya shifted southward

in conjunction with a cyclonic eddy movement and pools of anomalously warm SST. The eddy brought rela-

tively warm subsurface water from the thermocline to the upper ocean that facilitated melting of sea‐ice.

Also, the MR sea surface was forced by favorable wind stress curl for upwelling of subsurface warm water.

Concurrently, the atmospheric circulation anomalies associated with depressions in the southwest WS
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ensued enhanced advection of warm‐moist air from midlatitudes into the MR with a marked meridional

pattern, giving rise to a record high atmospheric temperature and decrease in SIC. The decrease in SIC

was pronounced only on the MR and the MIZ of the WS, due to its climatologically low SIC.

The past occurrence of polynyas on the MR was attributed to the presence of ocean eddies formed from the

interaction between the ocean current and the MR seamount (de Steur et al., 2007; Holland, 2001; Ou &

Gordon, 1986). The recent episodic events of record loss in Antarctic sea‐ice during 2016 and 2017 was linked

to the anomalous atmospheric circulations (Doddridge & Marshall, 2017; Ionita et al., 2018; Schlosser et al.,

2018; Turner et al., 2017). With support from earlier findings, we suggest that the polynya was formed due to

the combined influence of the MR seamount (leads to local upliftment of thermocline), upwelling of warm

water into the upper ocean from the thermocline (induced by a large cyclonic eddy and negative wind stress

curl), and the large‐scale atmospheric circulation anomalies associated with depressions that advected

warm‐moist air from the midlatitudes to the MR region. The mechanism of polynya formation in 2016

was similar to that of 2017. Regional atmosphere‐ocean‐ice modeling is required to quantify the contribution

of ocean and atmospheric influences. Also, this will help to understand the impact of such open‐ocean poly-

nya on the Southern Ocean and atmospheric circulation using various sensitivity studies.
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