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Abstract: The intestinal tract is an essential digestive organ of the human body, and damage to the
intestinal barrier will lead to various diseases. Functional oligosaccharides are carbohydrates with
a low degree of polymerization and exhibit beneficial effects on human intestinal health. Labora-
tory experiments and clinical studies indicate that functional oligosaccharides repair the damaged
intestinal tract and maintain intestinal homeostasis by regulating intestinal barrier function, immune
response, and intestinal microbial composition. Functional oligosaccharides treat intestinal disease
such as inflammatory bowel disease (IBD) and colorectal cancer (CRC) and have excellent prospects
for therapeutic application. Here, we present an overview of the recent research into the effects of
functional oligosaccharides on intestinal health.

Keywords: functional oligosaccharides; gut microbiota; intestinal barriers; intestinal diseases

1. Introduction

With the continuous improvement of people’s quality of life in recent years, the diet
structure has changed from simple to complex. Today, the global nutrition situation is
complicated. On the one hand, hunger and malnutrition are the dominant concerns in low-
and middle-income countries. On the other hand, millions of people are at increased risk
of developing diet-related chronic diseases, for example, intestinal disease, heart disease,
and diabetes. Taking inflammatory bowel disease (IBD) as an example, the incidence of
IBD has increased year by year worldwide over the past decade [1,2], with the highest
incidence of IBD in developed countries [3]. More than 2 million people in North America
and 3.2 million people in Europe are afflicted with IBD [4]. With the development trend of
globalization, IBD is becoming more and more common in developing countries such as
Brazil and China [5]. In Brazil, Crohn’s disease (CD) and ulcerative colitis (UC) increased
by 11.1% and 14.9%, respectively, from 1988 to 2012 [4]. In China, there were 350,000 IBD
patients in 2014, which is expected to increase by 4.2 times by 2025 and an approximate
70% increase in UC and 30% in CD (data from CCDC). IBD is also a risk factor for colitis-
associated colorectal cancer (CA-CRC), which causes death in about 15% of patients with
IBD [6]. In 2020, the global number of CRC cases was close to 2,000,000 and accounted for
9.7% of the global cancer population (data from IARC). There are 1.5 million CRC patients
in the United States. In recent years, the incidence and mortality of CRC have decreased,
but there are still about 150,000 new patients each year [7]. In contrast, the number of CRC
cases in China has been progressively higher than in the United States in recent years, with
2.6 times the patients of the United States. Chinese CRC patients account for 31% of the
patients worldwide. From 1990 to 2019, the number of CRC cases in China increased by
700% (data from World Bank IHME-GBD). In addition, irritable bowel syndrome (IBS) is
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one of the most common intestinal disorders in clinical practice. The prevalence of IBS in
Western countries is 10% to 20%, and the prevalence of IBS in China is 5.7%. In 2016, there
were approximately 754 million people with IBS worldwide, and it is expected to reach
830 million by 2025 (data from Data monitor). In summary, with the increasing number
of intestinal diseases represented by IBD, IBS, and CRC, their prevention and treatment is
gradually becoming an important issue for domestic and international research.

The intestine is a vital digestive organ responsible for the digestion and absorption of
nutrients, and the intestinal barrier prevents pathogenic bacteria, toxins, and other harmful
substances from entering the intestine’s circulatory system [8–10]. The intestinal barrier
is comprised of the epithelial and mucus barrier, immune barrier, and biological barrier,
which together maintain the health and homeostasis of the intestinal tract. The intestinal
epithelial and mucus barrier is mainly composed of single-layer cells connecting proteins
and chemical substances in the intestinal epithelium. A variety of transmembrane proteins
further constitute a complex protein network between adjacent cells. The integrity of the
intestinal epithelial barrier depends on the link complexes in the protein network, includ-
ing the tight junction, adhesion junction, and bridge and gap junction [11]. The chemical
substances are composed of mucus, digestive fluid, antibacterial components, and other
compounds secreted by the intestinal mucosa and microorganisms. The epithelial and
mucus barrier prevents the penetration of harmful bacteria and toxins [12]. The intestinal
tract is also the largest immune organ in the human body. The intestinal immune barrier
includes intestinal-related lymphoid tissue (GALT), diffuse immune cells, and immune
factors [13]. Microorganisms colonized in the intestine are considered intestinal biological
barriers. Many laboratory and clinical studies have confirmed that the damaged intestinal
barrier may lead to overactive immune responses in the intestinal microenvironment or the
uncontrolled growth of microbial flora, leading to various diseases [14]. The effect of func-
tional oligosaccharides on intestinal barrier function and health is illustrated in Figure 1.
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 Figure 1. Schematic overview of the effects of functional oligosaccharides on intestinal barrier
function and health. AMPs: antimicrobial peptides.

Current treatment strategies for intestinal diseases include micro-ecological regulation
therapy [15], surgical treatment [16,17], and drug therapy [17,18]. In recent years, micro-
ecological agents including probiotics, prebiotics, and diet fibers have drawn more and
more attention to treating intestinal diseases. The International Association for Probiotics
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and Prebiotics (ISAPP) redefined prebiotics in 2016: the host microorganisms selectively
use them to make them healthy substrates [19,20]. Prebiotics are diverse and are divided
into carbohydrate sources and non-carbohydrate sources, with functional oligosaccha-
rides as the principal source. Functional oligosaccharides are carbohydrate oligomers
with branched or straight chains of 2–20 monosaccharide molecules linked through gly-
cosidic bonds. Here we mainly introduce the representative functional oligosaccharides:
isomaltooligosaccharide (IMO), fructooligosaccharides (FOS), xylooligosaccharides (XOS),
galactooligosaccharides (GOS), chitosan oligosaccharides (COS), and human milk oligosac-
charides (HMOs). The structure of the functional oligosaccharides is shown in Figure 2.
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Figure 2. Schematic diagram of the structure of common functional oligosaccharides.

Various studies have shown that functional oligosaccharides can ease intestinal injury
and treat intestinal diseases by maintaining and repairing intestinal barriers [21–23]. As of
April 2022, there were 112 registered clinical trials (data from ClinicalTrials.gov, accessed
on 1 June 2022) related to assessing beneficial effects of functional oligosaccharides on
human health, including 28 IBS-related studies and 33 IBD-related studies (Some details of
the studies are shown in Table 1).

It is well accepted that functional oligosaccharides such as raffinose oligosaccharide
(ROS) [24], FOS, and GOS [25] can affect specific groups of the microbial community in vitro
and in vivo to promote their growth and metabolic activity, thereby maintaining host gut
health benefits [26]. In addition, functional oligosaccharides are also considered to interact
directly with the host and exert local positive effects on inflammation and barrier function
by regulating immunity and intestinal epithelial cell signal transduction [27]. Functional
oligosaccharides have different effects on the host intestine due to their different monosac-
charide composition, degree of polymerization, and linkage types [28,29]. A number of
studies have been carried out regarding the activity of functional oligosaccharides affecting
intestinal barrier function. This review focuses on the latest research on functional oligosac-
charides and their effects on intestinal health, especially their interaction with intestinal
flora, immunity, and disease treatment.

ClinicalTrials.gov
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Table 1. Clinical study of common functional oligosaccharides in intestine-related diseases.

Functional
Oligosaccharides Study Title Year Conditions Interventions Actual

Enrollment

FOS Dietary Treatment of
Crohn’s Disease 2006–2021

Crohn’s disease,
inflammatory
bowel disease

drug: active
fructo-oligosaccharide

drug: placebo
fructo-oligosaccharide

73

scFOS

Effects of scFOS on
Stool Frequency in

People With
Functionnal
Constipation

2013–2018 functional
constipation

dietary supplement:
short-chain fructo-
oligosaccharides

dietary supplement:
maltodextrin

120

IMO
Prebiotic Effects of

Isomalto-
oligosaccharide

2015–2017 intestinal
microbiota,

dietary supplement:
isomalto-

oligosaccharide
54

GOS
GOS to Reduce

Symptom Severity in
IBS (EGIS)

2021–

irritable bowel
syndrome,

irritable bowel
syndrome—
constipation,

irritable bowel
syndrome—
diarrhoea,

irritable bowel
syndrome—mixed

dietary supplement:
galactooligosaccha-

rides (GOS)
dietary supplement:

maltodextrine

210

HMO

Human Milk
Oligosaccharides

(HMOs) for Irritable
Bowel Syndrome

(IBS) (HIBS)

2022–

irritable bowel
syndrome,

IBS—irritable
bowel syndrome

dietary supplement:
human milk

oligosaccharide mix
other: placebo

500

2. Effects of Functional Oligosaccharides on the Intestinal Barrier
2.1. Biological Barriers

Functional oligosaccharides can be selectively fermented into short-chain fatty acids
(SCFA) in the gut [30] to maintain intestinal function and health by controlling the growth
of pathogenic microorganisms, reducing pH, preventing peptide degradation, and the
formation of toxic compounds [31,32]. Functional oligosaccharides can be used directly by
the microbiota as a carbon source. Furthermore, some studies have found that functional
oligosaccharides such as inulin-derived FOS can also increase the colonization sites of pro-
biotics in the intestinal tract [33]. Our previous studies also found that COS promoted the
growth, metabolic activity, and metabolite concentration changes of probiotics represented
by Akkermansia muciniphila by affecting specific populations in microbial groups; reduced
the adhesion, invasion, and colonization of intestinal pathogens represented by Escherichia
coli; and inhibited the occurrence and development of enteritis, thereby maintaining intesti-
nal health [34,35].

There is a correspondence between functional oligosaccharides and probiotics. Func-
tional oligosaccharides exhibit a complex degree of polymerization and glycosidic bond-
ing [36,37], and probiotics utilize functional oligosaccharides with a diversity of transporter
proteins and glycosidic hydrolases [38,39]. Therefore, the growth promotion effects of func-
tional oligosaccharides on probiotics are species-specific. For example, butyrate-producing
strains showed different growth curves in the presence of FOS, GOS, and XOS [40,41].
The same kind of FOS, due to their different sources, have different effects on the growth
of probiotics. Studies have shown that inulin FOS have more noticeable effects on the
growth of Bifidobacterium than sucrose FOS. The molecular mechanism of the metabolism
of FOS, GOS, and milk-derived oligosaccharides by probiotics has also been studied, and
the unique intake mechanism for functional oligosaccharides plays an active role. A brief
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summary of the coincidence relationship between common functional oligosaccharides
and probiotics is shown in Table 2.

Table 2. Sources of common functional oligosaccharides and their mode of action with probiotics.

Functional
Oligosaccharide Source Composition Advantage Probiotics Transport Pathway References

GOS human milk,
cow’s milk

monosaccharide and
number: glucose 1,

galactose 2–5;
connection mode:

β-1,4, β-1,6

B. adolescentis, B. bifidum,
B. longum, B. infantis,
B. breve, B. animalis,

B. catenulatum;
L. reuteri, L. plantarum,

L. paracasei, L. agili,
L. fermentium,

L. acidophilus, L. salivarius,
L. casei, L. rhamnosus,

L. bulgaricus, L. delbrueckii,
Lactobacillus johnsonii,
Lactobacillus gasseri;

S. thermophilus

LacEF, LacA,
LacS, ABC, GPH,

LacL, LacM
[36,42–46]

FOS

fruits,
vegetables,

honey,
Jerusalem
artichoke,

cicory

monosaccharide and
number: glucose 1,

fructose 2–4;
connection mode:

α-1,2, β-1,2

B. adolescentis, B. longum,
B. breve, B. animalis,

B. infantis,
B. pseudolongum;

L. reuteri, L. acidophilus,
L. salivarius, L. plantarum,

L. fermentium, L. casei,
L. bulgaricus;

Clostridium, Streptococcus,
Coprococcus, Enterococcus

PTS, ABC,
MFS, LacS [43–49]

IMO

corn steep
liquor, honey,

sugar cane
juice

monosaccharide and
number: glucose 2–5;
connection mode: at

least 1 α-1,6

B. animalis, B. adolescentis,
B. bifidum, B. longum,
B. infantis, B. breve;

L. plantarum, L. rhamnosus,
L. paracasei, L. agilis,

L. acidophilus, L. reuteri,
L. lactic, L. delbrueckii,

L. casei;
S. lactic, S. thermophilus

ABC,
MalEFG-MsmK,
PTS, MFS, MIP

[50–52]

XOS birch, corncob,
straw, bamboo

monosaccharide and
number: xylose 2–7;

connection mode:
β-1,4

B. adolescentis, B. longum,
B. breve, B. animalis,

B. catenulatum,
B. pseudocatenulatum,

B. thermophilum;
L. plantarum, L. brevis,

L. rhamnosus,
L. fermentium,

L. acidophilus, L. salivarius,
L. casei, L. crispatus,

L. lactis, L. mucosae, L. sakei,
L. zeae, L. reuteri;

Enterococcus faecalis and
Enterococcus faecium

ABC, MFS [53–55]

COS
shrimp and
crab shell,

fungal cell wall

monosaccharide and
number: N-acetyl-D-

glucosamine 2–20;
connection mode:

β-1,4

B. bifidium;
L. brevis, L. casei,

L. acidophilus;
Akkermansia,

S. thermophilus

CsnEFG, SBP,
PTS, ABC [34,56–59]
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Table 2. Cont.

Functional
Oligosaccharide Source Composition Advantage Probiotics Transport Pathway References

HMO breast milk,
amniotic fluid

monosaccharide and
number: glucose,

N-acetyl-D-
glucosamine,

galactose, fucose,
N-acetylneuraminic

acid; connection
mode: α-1,2, α-1,3,
α-1,4, α-2,3, α-2,6

B. infantis, B. longum,
B. breve, B. bifidum;

L. acidophilus;
Bacteroides fragilis,

Bacteroides vulgatus,
Bacteroides thetaiotaomicron

ABC [60–63]

Based on previous and our own research on functional oligosaccharides affecting
proliferation and colonization of probiotics and considering the specificity and complexity
of the interaction between intestinal flora and functional oligosaccharides, it is critical
to further study the effects of functional oligosaccharides with different structures on
the changes in intestinal metabolites, bacterial gene expression, and potential molecular
mechanisms in maintaining intestinal barrier function.

2.2. Immune Barrier

Functional oligosaccharide plays a positive role in the intestinal immune barrier.
Indirectly, functional oligosaccharides can be fermented by probiotic to produce SCFA,
which regulate the activity of T cells, B cells, and dendritic cells [14,64]. For example, oral
administration of FOS increased the level of SCFA, including butyrate, which increased the
level of regulatory T cells in the mesenteric lymph nodes of mice [65,66]. In addition, some
functional oligosaccharides have also been found to directly act on intestinal-associated
immune cells and immune factors, providing beneficial effects on intestinal diseases such
as allergies or IBD [67,68]. Specifically, functional oligosaccharides can stimulate Toll-like
receptors and induce the differentiation of immune cells represented by T and B cells to
regulate intestinal immunity [67,68]. Functional oligosaccharides also regulate the secretion
of inflammatory factors represented by IFN-γ, IL-5, and IL-6 in the intestine and increase the
content of immunoglobulin represented by IgA, IgM, and IgG. For example, some studies
have found that FOS and GOS act as TLR4 agonists in intestinal epithelial cells; activating
the TLR4-NF-κB pathway; and reducing pro-inflammatory factors such as IL-12p35, IL-8,
and TNF-α [69]. FOS and arabinogalactan oligosaccharides regulate the immune-related
parameters in GALT, secondary lymphoid tissue, and peripheral circulation [70]. We
summarize the regulatory effects of different functional oligosaccharides on the intestinal
immune barrier in Figure 3 and Table 3.

Table 3. The mode of action of common functional oligosaccharides on the intestinal immune barrier.

Functional Oligosaccharides Immune Cells Immune Factors References

GOS NK cells, T cells, phagocytes

increase IgA, IgM, IL-8,
IL-10, IFN-γ;

decrease IL-6, IL-18,
IL-13, IL-33

[71]

FOS B cells, T cells,
macrophages, leukocytes

increase IgG, IgE, IFN-γ, IL-10;
decrease IL-5, IL-6 [72–75]

IMO T cells, phagocytes
increase lysozyme, IgE, IgG,

IgA, IgM, IL-2, IFN-γ;
decrease IL-5, IL-6, IL-13

[76–78]

XOS B cells, T cells,
NK cells, macrophages

increase IgG, IgA, IgM;
decrease TLR2 [79]
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Table 3. Cont.

Functional Oligosaccharides Immune Cells Immune Factors References

COS macrophages

increase CCL20, IgA, MHCII,
TGF-131, pIgR;

decrease CCL15, CCL25,
ICL25, IL-1β, IL-4, IL-6, IL-8,

IL-13, TNF-α

[80–83]

HMO macrophages,
T cell

increase INF-γ, IL-10
decrease IL-4, IL-6, IL-8,
TNF-α, IL-1β, GM-CSF2,

IL-17C, PF4, CXCL1, CCL20

[84–89]Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
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2.3. Epithelial and Mucus Barrier

The human gastrointestinal tract has no relevant enzyme system to hydrolyze func-
tional oligosaccharides [90,91]. However, functional oligosaccharides exhibit excellent bene-
fits in the composition and maintenance of intestinal epithelium, either directly or indirectly.
It is well accepted that functional oligosaccharides are utilized by gut microbes [92,93]
to produce metabolites such as short-chain fatty acids (SCFA), which regulate host cell
growth, differentiation, apoptosis, and physiological functions in the intestine [94,95].
Moreover, recent evidence suggests that functional oligosaccharides such as COS, GOS,
and cello-oligosaccharides could directly affect the permeability and integrity of intestinal
epithelial cells by improving colonic epithelial cell transmembrane resistance and reducing
intestinal epithelial cell permeability to fluorescein isothiocyanate-glucan [96,97]. Studies
show that functional oligosaccharides could upregulate the expression of specific tight
junction proteins of epithelial cells [98]. The mechanism of functional oligosaccharides
regulating intestinal epithelial cell homeostasis has not been fully explored.

Functional oligosaccharides can also affect the production of mucin and antimicrobial
peptides by host cells [97,99]. For example, feeding 1 g/d of GOS to rats with severe pancre-
atitis can significantly improve their mucus defects [100]. This improvement effect is related
to the structure of functional oligosaccharides and the dose of the functional oligosaccha-
rides used. However, only a few studies considered exploring the protective effect of a
functional oligosaccharide dose on intestinal mucus barrier function. The study noted
that berberine promoted the proliferation of Akkermansia in a dose- and time-dependent
manner in mice, with 300 mg/kg of berberine showing a two-fold higher proliferation
rate than 200 mg/kg. The investigators also demonstrated that this proliferation works by
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promoting the secretion of mucins, especially mucin-2 [101]. The structure-function rela-
tionship and action mechanism of functional oligosaccharides need to be further analyzed
and evaluated.

3. Application of Functional Oligosaccharides in Intestinal Diseases
3.1. Colorectal Cancer

The colon environment, including imbalanced intestinal microflora and mutations in
the Wnt signaling pathway are the leading causes of CRC [102,103]. The current treatments
for CRC include chemotherapy, radiotherapy, and surgery, but most of them are accom-
panied by high-risk complications, and the success rate is limited. Therefore, new early
treatment strategies are needed [104]. The use of functional oligosaccharides in preventing
CRC may be promising. Studies show FOS and GOS can reduce the severity of colon
cancer in rats and mice induced by 1,2-dimethylhydrazine by reducing the number of colon
ACF [105–107]. Researchers have found that low-degree FOS are more effective in treating
early colon cancer in mice induced by DMH [108] and significantly reducing the risk of
colon cancer in animal models [109]. There are two aspects regarding the inhibitory effect of
functional oligosaccharides on colorectal cancer. First, functional oligosaccharides affect the
homeostasis of intestinal microflora by promoting the growth and colonization of intestinal
probiotics and upregulating production of metabolites such as SCFA, which inhibit the
proliferation and differentiation of colon tumor cells [104,110] and regulates exogenous
metabolic enzymes that stimulate the activation and metabolism of carcinogens [111,112].
Furthermore, functional oligosaccharides directly regulate the functions of intestinal GALT
and other immune cells, influence gene expression levels of cancer cells, and promote
cancer cell apoptosis [109].

The clinical data also show that functional oligosaccharides have a positive effect on
the immunological indexes of colon cancer and microbial flora abundance [113]. However,
some clinical data point out that functional oligosaccharides do not significantly reduce
the mortality of colorectal cancer in women after menopause [102,113]. There is no clear
explanation for the structure-activity relationship, dosage, and individual differences of
functional oligosaccharides, which may also be the main reason for restricting the clinical
trials of functional oligosaccharides in the treatment of colorectal cancer. Therefore, the clini-
cal treatment of CRC with functional oligosaccharides remains unconfirmed. Consequently,
research on new technologies such as combining probiotics and functional oligosaccharides
as targeted therapeutic agents for colon cancer based on host–guest chemistry is also an
aspect worth exploring [114].

3.2. Inflammatory Bowel Disease

IBD is a chronic nonspecific gastrointestinal inflammatory disease that destroys the
intestinal mucosal structure and floral balance, leading to abnormal systemic biochemical
indexes [115]. The etiology of inflammatory bowel disease is not clear, while comprehensive
factors such as intestinal flora, immunity, environment, and gene susceptibility might
be involved.

The DSS-induced mouse colitis model is one of the widely recognized models for
studying the pathogenesis of IBD and evaluating potential therapeutic methods [116].
Growing evidence supports the potential of functional oligosaccharides to treat inflamma-
tory diseases, including colitis. FOS and GOS in vitro affect immunity by binding to TLR
on monocytes, macrophages, and intestinal epithelial cells and regulating cytokine pro-
duction and immune cell maturation [69,117–120]. In addition, animal models and clinical
studies have shown that functional oligosaccharides reduce the intestinal inflammatory
response and IBD symptoms [121,122]. A clinical study focused on enteritis after abdominal
radiotherapy (RT) found that FOS supplementation in patients’ daily diet can stimulate
the proliferation of Lactobacilus and Bifidobacterium, thereby repairing intestinal mucosal
damage during RT and preventing the occurrence and development of IBD [123]. Our
previous studies have found that COS treatment upregulates the expression of occludin in
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the proximal colon of diabetic mice [34], alleviates DSS-induced mucosal defects in IBD,
and protects the intestinal mucosal barrier function of ulcerative colitis mice [97].

Future studies need to understand how functional oligosaccharides regulate the
disease-related signaling pathways, drive different cellular processes and regulate in-
testinal functions, and conduct the mechanism of functional oligosaccharides as a drug
adjuvant or substitute in the treatment of IBD.

3.3. Irritable Bowel Syndrome

IBS is a chronic disease affected by stress and eating habits. It is characterized by
abdominal pain, mucosal and immune functions, and changes in the intestinal microbial
structure. Dietary patterns, the intestinal microbial structure, inflammatory response,
and other factors can aggravate the symptoms of irritable bowel syndrome. Dietary
interventions are recommended to control the disease due to the efficacy and tolerance of
common drug treatments.

Evidence shows that the ecological imbalance of intestinal and mucosal colon microflora
in IBS is usually characterized by the reduction of the Bifidobacterium species [124–127]. Some
studies have found that supplementing probiotics to regulate intestinal microflora are
effective in treating IBS [128,129]. Some clinical studies have also found that low-dose
functional oligosaccharides, such as FOS, can alleviate the symptoms of IBS patients
through increasing the concentration of SCFA [130]. In contrast, a low FODMAP diet
has gradually become the standard method for the treatment of IBS worldwide. This
method can alleviate the clinical symptoms of IBS patients by limiting the daily intake of
short-chain fermentable carbohydrates (low fermentable oligosaccharides, disaccharides,
monosaccharides, and polyols (FODMAP)). Studies have consistently proven the clinical
efficacy of a low FODMAP diet in patients with IBS [130]. In fact, the low FODMAP
diet has clinical efficacy, but it reduces the abundance of intestinal Bifidobacterium, which
is not conducive to the thorough treatment of IBS patients. In view of the pathogenic
factors and pathogenesis of IBS and the complexity and diversity of individual microbial
communities, we need to consider these two interventions for further research and consider
individualized diagnoses according to clinical symptoms.

4. Application Prospect of Functional Oligosaccharides in the Intestinal Tract

Glycans generally have complex monosaccharide composition, glycosidic bond type
and degree of polymerization, and their structural complexity is much higher than that of
proteins and nucleic acids. In the past decade, glycoscience, with the support of govern-
ments, has made a lot of progress, and it has revealed the role of glycans in inflammatory
responses and immune system regulation, cardiovascular diseases, intestinal diseases,
and cancers. A variety of functional oligosaccharides have shown kinds of activities in
intestinal barrier protection and repair and have demonstrated the great promise of glycans
in intestinal disease treatment. However, the structure-activity relationship and molecular
mechanism have not been fully elucidated. Glycan-based products used in related research
are often a mixture of glycans with slightly different structural characters and subject to
variations in different preparation methods and raw material sources. Recent studies have
shown that small changes in the structure of glycans have significant effects on their activi-
ties, so the accurate analysis and preparation of glycan products is the key to clarify their
structure-activity relationships and develop functional glycan products, for example, struc-
tural analysis and pharmacokinetic study of glycans by liquid chromatography-tandem
mass spectrometry (LC-MS/MS) [131]. On the other hand, based on the different activities
of different sugar chains, the combination of several different glycans have received more
attention and applications [64,132,133]. In the face of the complex microbial and host
environment in the intestinal tract, products containing multiple different glycans will
play a greater role. However, there is a lack of in-depth research on the compounding
mechanism and synergistic effect of multiple glycan recipes.
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