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This paper presents a survey of recent research in cooperative control of multivehicle
systems, using a common mathematical framework to allow different methods to be
described in a unified way. The survey has three primary parts: an overview of current

applications of cooperative control, a summary of some of the key technical approaches
that have been explored, and a description of some possible future directions for re-
search. Specific technical areas that are discussed include formation control, cooperative
tasking, spatiotemporal planning, and consensus. [DOI: 10.1115/1.2766721]

1 Introduction

Research on control of multivehicle systems performing coop-
erative tasks dates back to the late 1980s, initially beginning in the
field of mobile robotics (see [1] for a more detailed history).
Aided by the development of inexpensive and reliable wireless
communications systems, research in this area increased substan-
tially in the 1990s. California’s Partners for Advanced Transit and
Highways (PATH) project [2] demonstrated multiple automobiles
driving together in “platoons,” and this was quickly followed by
other highway automation projects [3,4]. In the late 1990s and
early 2000s, cooperative control of multiple aircraft, especially
unmanned aerial vehicles (UAVs), became a highly active re-
search area in the United States [5], spurring further advances.
Over the last decade this research area has blossomed, with many
new systems being proposed in application areas ranging from
military battle systems to mobile sensor networks to commercial
highway and air transportation systems. Some of the specific chal-
lenges of cooperative control of multivehicle systems include un-
certainty caused by inter-vehicle communications and distributed
operation, system complexity due to the problem size and cou-
pling between tasks, and scaleability to a potentially large collec-
tion of vehicles.

The purpose of this paper is to provide a survey of some of the
recent research in cooperative control of multivehicle systems. We
focus on research in the last two decades, with some historical
notes on work before this period. To help focus the topics that are
surveyed, we focus exclusively on control of multivehicle systems
that are working together to complete a shared task. Several other
surveys of the literature in cooperative control are available that
complement the current paper [1].

It will be helpful in the sequel to have a clear notion of some
terms that will define the object of the survey, in particular, a
concise definition of “cooperative,” which has been used in many
different ways by the broad research communities interested in
this topic. For the purposes of this survey, we will consider a
vehicle to be a dynamical system whose position is given by its
location in three-dimensional space. We will consider a collection
of N vehicles that are performing a shared task, where the task
depends on the relationship between the locations of the indi-
vidual vehicles. The vehicles are able to communicate with each
other in carrying out the task, with the individual vehicles able to
communicate with some subset of the other vehicles.

We assume that the dynamics of the ith vehicle can be written
as
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where x' is the state of the ith vehicle, u' is the input that controls
the vehicle’s state, and f7 is a smooth vector field representing its
dynamics. We assume that the location of the vehicle is given by
the output y' € SE(3), where SE(3) is the set of rigid-body con-
figurations (position and orientation). More general formulations
allowing position and velocity as part of the location description
are possible as well, but will be omitted for simplicity. We let x
=(x',...,x") represent the complete state for a collection of N
vehicles.

In addition to the location of the vehicle, we will also assume
that each vehicle has a discrete state o/, which we define as the
role of the vehicle. The role of the vehicle will be represented as
an element of a discrete set .4 whose definition will depend on the
specific cooperative control problem under consideration. As in-
dicated by the terminology, we will generally consider the role
variable o to represent the portion of the vehicle’s overall state
that encodes its current actions and its relationship with the over-
all task being performed. We will assume that the role of a vehicle
can change at any time and will write a change of role as

a' =r(x,a)

where «' indicates the new value of . We let a=(a',...,a")
represent the roles of the collection of N vehicles and write a/(7)
for the role of vehicle i at time 7.

We assume that the vehicles are able to communicate with
some set of other vehicles and represent the set of possible com-
munication channels by a graph G. The nodes of the graph repre-
sent the individual vehicles, and a directed edge between two
nodes represents the ability of a vehicle to receive information
from another vehicle. We write A'(G) to represent the neighbors
of vehicle i, that is, the set of vehicles that vehicle i is able to
obtain information from (either by explicit communication or by
sensing the position of the other vehicle). In general, N can de-
pend on the locations and roles of the vehicles, in which case we
will write AV/(x, @). The number of neighbors of the ith vehicle is
given by the number of elements of N7, written |\

Given a collection of vehicles with state x and roles «, we will
define a task in terms of a performance function

T
J= J L(x,a,u)dt + V[x(T),a(T)]
(

)

where T is the horizon time over which the task should be accom-
plished, L represents the incremental cost of the task, and V rep-
resents the terminal cost of the task. As special cases, we can take
T=% to represent infinite horizon problems or take L=0 to repre-
sent tasks in which we are only interested in the final state. We
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may also have constraints on the states or inputs, although we
shall generally consider such constraints to be included in the cost
function (e.g., via Lagrange multipliers) for ease of presentation.

A strategy for a given task is an assignment of the inputs ' for
each vehicle and a selection of the roles of the vehicles. We will
assume that the inputs to the vehicles’ dynamics are given by
control laws of the form

u'=y(x,a)

where vy is a smooth function. For the choice of roles, we make
use of the notion of a guarded command language [6]: a program
is a set of commands of the form

{g(x,):ri(x, )}

where g’ is a guard that evaluates to either true or false and riisa
rule that defines how the role o' should be updated if the rule
evaluates to true. Thus, the role evolves according to the update
law

g(x, @) =true
unchanged otherwise

o e

This update is allowed to happen asynchronously, although in
practice it may be assigned by a central agent in the system, in
which case it may evolve in a more regular fashion. We write 3/
to represent the overall strategy (control law and guarded com-
mands) for the ith vehicle. 2=(3',...,2") is used to represent
the complete strategy for the system.

Using these definitions, we can now provide a more formal
description of a cooperative control problem. We say that a task
can be additively decoupled (or just decoupled) if the cost func-
tion J can be written as

N
J=>
i=0

If a task is not decoupled, then we say that the task is cooperative,
by which we mean that the task performance depends on the joint
locations, roles, and inputs of the vehicles. (Note that we are
assuming here that all vehicles are trying to solve a common
objective and hence not considering adversarial tasks, for which a
more careful notation would be required.)

We say that a strategy is centralized if X' depends on the loca-
tion or role of any vehicle that is not a neighbor of i. A strategy is
decentralized if

T
f Li(xX, o ,ul)dt + VI (T), & (T))
0

u(x,e) =u'(x', o x7, ™)

{gix,@):ri(x, )} = {gj(x', & X7, &), & X7 )}

where we use the shorthand x™ and « to represent the location
and roles of vehicle i’s neighbors (hence, x7'
={u/1,...,x/m, where j, e N' and m;=|N"|.}. We will mainly be
interested in cooperative tasks that can be solved using a decen-
tralized strategy.

We note that the definitions used here are not the most general
possible and have ignored some subtleties regarding the formal
definition of the “solution” of a task (i.e., we assume existence
and uniqueness of solutions for a given strategy). These details are
important and can be found in the various papers referenced in
this survey. One alternative set of definitions for cooperative
agents can be found in the work of Parker [7], which makes use of
the notions of local/global goals and control.

With these definitions in hand, we now proceed to consider
some of the primary applications of cooperative control of multi-
vehicle systems, followed by some of the key technical results
that have been proposed in the last decade. We end the paper with
a partial listing of some of the open research directions that are
currently under exploration.
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Fig. 1 Battle space management scenario illustrating distrib-
uted command and control between heterogeneous air and
ground assets (courtesy of DARPA)

2 Applications Overview

In this section, we summarize some of the main applications for
cooperative control of multivehicle systems. This summary is
based on those applications of which the author is most aware
(including the results of a recent survey of future directions in
control, dynamics, and systems [8]), as well as a survey of the
literature (with emphasis on papers that are frequently referenced
by others). Although not comprehensive, the applications cited
here demonstrate some of the key features that must be addressed
in solving cooperative control problems.

2.1 Military Systems. Modern military systems are becoming
increasingly sophisticated, with a mixture of manned and un-
manned vehicles being used in complex battlefield environments,
such as the one depicted in Fig. 1. Traditional solutions involve a
centralized resource allocation (assignment of planes to targets),
followed by decentralized execution (each attack vehicle is re-
sponsible for a set of targets). More modern battlespace manage-
ment systems are considering the use of cooperative operation of
large collections of distributed vehicles, with location computa-
tion, global communication connections, and decentralized control
actions [8,9].

2.1.1 Formation Flight. One of the simplest cooperative con-
trol problems is that of formation flight: a set of aircraft fly in a
formation, specified by the relative locations of nearby aircraft.
This area has received considerable attention in the literature.
Some of the earliest work in this area is that of Parker [7], who
consider the design of control laws that use a combination of local
and global knowledge to maintain a formation.

NASA has experimented with formation flight as a method for
reducing drag on a collection of aircraft [10]. The key idea is to
locate the aircraft such that the tip vortices of one aircraft help
reduce the induced drag of the tailing aircraft. This task requires
precise alignment of an aircraft with the aircraft in front of it. To
date, demonstrations of this concept in engineering systems have
been restricted to small numbers of aircraft. Similar formations in
nature can involve many more individuals [11].

2.1.2 Cooperative Classification and Surveillance. Chandler
et al. [5] define the cooperative classification problem as “the task
of optimally and jointly using multiple vehicles’ sightings to
maximize the probability of correct target classification.” More
generally, we can define the cooperative surveillance problem as
that of using a collection of vehicles to maintain a centralized or
decentralized description of the state of a geographic area. This
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description might include the current state of features that are
spatially fixed (such as the number of people in a given location)
or information about entities that are moving in the region of
interest (e.g., locations of cars and planes in a given region).

The cooperative classification problem is one in which the per-
formance function involves the collection of maximal amounts of
relevant information. One typically assumes that the vehicles can
communicate over some range (possibly limited by line of site,
especially for ground-based vehicles) and information shared be-
tween the vehicles can be used by the vehicles in determining
their motion.

2.1.3 Cooperative Attack and Rendezvous. The rendezvous
problem involves bringing a collection of vehicles to a common
location at a common time. Depending on the application, the
rendezvous time may either be fixed ahead of time or determined
dynamically, based on when all vehicles reach the same area.
Military applications of rendezvous include minimizing exposure
to radar by allowing aircraft to fly individual paths that are locally
optimized [5].

2.1.4 Mixed Initiative Systems. A variant of the cooperative
control problem is the mixed initiative cooperative control prob-
lem, in which collections of autonomous vehicles and human op-
erators (on the ground or in vehicles) must collectively perform a
task or a mission. This class of problems adds the complexity of
providing situational awareness to the operators and allow varying
levels of control of the autonomous system.

2.2 Mobile Sensor Networks. A second area of application in
cooperative control is networks of sensors that can be positioned
so as to maximize the amount of information they are able to
gather. In this section we provide some examples of the types of
cooperative control applications that are being pursued in this
area.

2.2.1 Environmental Sampling. The Autonomous Ocean Sam-
pling Network (AOSN) [12] is an example of an environmental
sampling network. The network consists of a collection of robotic
vehicles that are used for “adaptive sampling,” in which the mo-
tion of the vehicles is based on the observations taken by the
vehicles. This approach allows the sensors to be positioned in the
areas in which they can do the most good, as a function of the data
already collected. Because of the distributed nature of the mea-
surements being taken, a cooperative control strategy is used to
control the motion of the vehicles. In tests done in the summer of
2006, ten gliders were controlled over four weeks to collect data

[13].

2.2.2 Distributed Aperture Observing. A related application
for cooperative control of multivehicle systems is distributed ap-
erture (or phased array) imaging. The proposed TechSat 21 project
was sponsored by the U.S. Air Force Research Laboratory
(AFRL) and was to have launched a collection of “microsatel-
lites” that would be used to form a “virtual” satellite with a single,
large aperture antenna (the project was canceled in 2003). Another
example of a distributed aperture observing system is the terres-
trial planet finder (TPF), being proposed by NASA. The TPF uses
optical interferometry to image distance stars and to detect slight
shifts in the stars positions that indicated the presence of planets
orbiting the stars [14].

2.3 Transportation Systems. Finally, the use of cooperative
control in transportation systems has received considerable atten-
tion over the last few decades.

2.3.1 Intelligent Highways. Several groups around the world
have begun to explore the use of distributed control for problems
related to intelligent highway and transportation systems. These
problems include increased interaction between individual ve-
hicles to provide safer operations (e.g., collision warning and
avoidance), as well as interaction between vehicles and the road-
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way infrastructure. These latter applications are particularly chal-
lenging since they begin to link heterogeneous vehicles through
communications systems that will experience varying bandwidths
and latency (time delays), depending on the local environment.
Providing safe, reliable, and comfortable operation for such sys-
tems is a major challenge that will have application in a variety of
consumer, industrial, and military products and systems.

A representative example of this class of applications is the
California Partners for Advanced Transit and Highways (PATH)
project [2]. In 1997, the PATH project developed and demon-
strated a system for allowing cars to be driven automatically down
a freeway at close spacing. By decreasing the spacing of cars, the
density of traffic on a highway can be increased without requiring
additional lanes. Additional work within the PATH project has
looked at a variety of other systems for better managing traffic
flow [2].

2.3.2  Air Traffic Control. Air traffic control is another area
where methods for cooperative control are being explored [15]. As
the density of air traffic continues to increase, congestion at major
airports and automated collision warning systems are becoming
increasingly common. Next-generation air traffic control systems
will likely move from a human-controlled, centralized structure
within a given region to a more distributed system with “free-
flight” technologies allowing aircraft to travel in direct paths
rather than staying in predefined air traffic control corridors.
Efforts are now being made to improve the current system by
developing cockpit “sensors,” such as augmented global
positioning system (GPS) and data links for aircraft-to-aircraft
communication.

2.4 Testbeds. A variety of testbeds have been developed to
explore cooperative control problems in laboratory settings. Per-
haps the most well known is RoboCup, a multivehicle game of
robot soccer. RoboCup was initially conceived as an attempt to
foster research in artificial intelligence, specifically that of mul-
tiple vehicles in a highly dynamic environment [16]. The Rob-
oCup competition is now held annually and has competitions in-
volving a variety of different physical and simulation platforms.
Most of the RoboCup competitions allow the use of centralized
computation, although some teams have made use of decentral-
ized strategies [17].

A related game, dubbed RoboFlag has been developed at Cor-
nell [18] and is loosely based on “Capture the Flag” and “Paint-
ball.” Two teams play the game, the red team and the blue team.
The red team’s objective is to infiltrate blue’s territory, grab the
blue flag, and bring it back to the red home zone. At the same
time, the blue team’s objective is to infiltrate red’s territory, grab
the red flag, and bring it back to the blue home zone. The game is
thus a mix of offense and defense: secure the opponent’s flag,
while at the same time prevent the opponent from securing your
flag. Sensing and communications are both limited to provide a
more realistic distributed computing environment. The game is
meant to provide an example of multivehicle, semi-autonomous
systems operating in dynamic, uncertain, and adversarial environ-
ments. Human operators can also be present in the system and can
be used either as high-level controllers or as low-level (remote)
“pilots.” A centralized control unit may be used to coordinate the
vehicles, but it must respect the communication constraints (band-
width and latency) of the system.

Several physical testbeds have also been developed, ranging
from wheeled robots, such as those used in RoboCup, to hover-
craft that provide some of the dynamics more typical of aircraft
[19,20], to small-scale aircraft [21,22] and helicopters [23,24].
These citations are far from complete but give an example of the
range of physical testbeds that have been developed.

3 Technology Overview

In this section, we provide a brief survey of some of the tech-
niques that have been developed for designing strategies for co-
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Fig. 2 Four-vehicle formation using distributed receding hori-
zon control [25]

operative control tasks. We make use of the mathematical notation
defined in the Introduction wherever possible. We focus primarily
on the problem formulation and the approach used in its solution,
leaving the details of the proofs of stability, convergence, and
optimality to the original papers.

3.1 Formation Control. Many of the applications above
have, as part of their solution, the ability to maintain the position
of a set of vehicles relative to each other or relative to a reference.
This problem is known as formation control and has received
considerable attention, both as a centralized and as a decentralized
problem.

3.1.1 Optimization-Based Approaches. One way to approach
the formation control problem is to formulate it as an optimization
problem. If we let Li(x’,x™) represent the individual formation
error between the ith vehicle and its neighbors, then we can es-
tablish a cost function

Lx,a,u) = >, L x) + |[ul]2

where the summation over the individual formation errors gives
the cumulative formation error [7] and the final term is a penalty
on the inputs (other forms could be used).

This problem can be solved in either a centralized manner or a
distributed manner. One distributed approach is the work of Dun-
bar and Murray [26], who considers cooperative control problems
using receding horizon optimal control. For a cost function whose
coupling reflects the communication constraints of the vehicles,
he generates distributed optimal control problems for each sub-
system and establishes that the distributed receding horizon imple-
mentation is asymptotically stabilizing. The communication re-
quirements between subsystems with coupling in the cost function
are that each subsystem obtain the previous optimal control tra-
jectory of those subsystems at each receding horizon update. The
key requirements for stability are that each distributed optimal
control not deviate too far from the previous optimal control and
that the receding horizon updates happen sufficiently fast.

Figure 2 shows a simulation of the results of Dunbar and Mur-
ray. The vehicles are flying in “fingertip formation,” with vehicles
2 and 3 maintaining position relative to vehicles 1 and 4 main-
taining position relative to vehicle 2. The control goal is to main-
tain formation around the black square, which is flying along a
trajectory that is not known to the individual aircraft. The local-
ized optimization for each vehicle uses a previous optimal path for
its neighbors while constraining its own path to stay near the
previous path that it communicated to others.
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3.1.2 Potential Field Solutions. Another approach to solving
the formation control problem is to consider the mechanical na-
ture of the systems and to shape the dynamics of the formation
using potential fields. In this case, the control law for the indi-
vidual vehicles has the form

W =VV(d,x x7)

where V is a potential function that depends on the mode of the
vehicle, o (typically, whether it is a leader or a follower).

A representative body of research in this area is the work of
Leonard and Fiorelli [27] and Ogren et al. [28] who use the con-
cept of “virtual leaders” that guide the motion of the other ve-
hicles. They consider two types of potential functions: an interac-
tion function V; and a potential generated by “leaders” V). Each
function generates a repulsive force if vehicles are very close to
each other, an attractive force if the vehicles are within some
interaction range but not too close or too far, and no force for
vehicles beyond a certain radius. Their resulting control law is of
the form

N
w==2 VVily' =) - 2 VVilly' =D + £

j#i kel

where L is the set of leaders, f,,i is a dissipative force based on the
velocity of the i vehicle, and local coordinates are used for y'
e SE(3). By appropriate choice of f,i, they are able to show
asymptotic stability of various schooling and flocking behaviors.

Other work on the use of potential fields includes that of Olfati-
Saber and Murray [29], who uses potential functions obtained
from structural constraints of a desired formation in a way that
leads to a collision-free, distributed, and bounded state feedback
law for each vehicle. Figure 3 demonstrates some of the results of
his algorithm for formation control.

3.1.3 String Stability. One issue that arises in formation con-
trol is that of “string stability,” in which disturbances grow as they
propagate through a system of vehicles [30]. One of the early
sources of research on this problem was in the control of vehicle
platoons, in which one wanted to ensure that small disturbances at
the beginning of a chain of vehicles did not get amplified as one
progressed down the chain.

For simplicity, we assume that the disturbances enter through
the initial states of the vehicles. String stability is defined in terms
of an infinite collection of vehicles and our goal is to find a con-
trol law for each of the vehicles so that given €>0 there exists a
6>0 such that

supl(0)]| < 6 < sup|lx'(-)].. < e

where the % norm is taken with respect to time. In particular, this
implies that the motion of each vehicle is bounded for all time.
More general norms can also be used, as described in [30].

Using this definition, one can show that a system is string stable
if the H., gain between any two neighbors is <1. If this is the
case, then disturbances are attenuated as they pass down the chain
of vehicles. Conversely, if the dynamics and control laws for each
vehicle are identical and if the gain of the transfer function is >1
at some frequency, then disturbances at that frequency can be
amplified as they propagate down the chain. These definitions can
be generalized to different topologies in which the neighbor sets
are more complicated than a single chain.

To help compensate for string instabilities, one can make use of
globally transmitted information that allows the vehicles to pre-
compensate for disturbances. In essence, one changes the topol-
ogy of the information flow from one in which each vehicle only
sees the vehicle in front of it, to one in which vehicles also have
global information about the position of the lead vehicle. Figure 4
shows the responses of a set of vehicles with different topologies
and different levels of global information. In this simulation, the
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Fig. 3 Formation stabilization using potential functions [29]:
(a) Stabilization of three vehicles in the plane, (b) time traces
for individual positions of the vehicles, (c) stabilization of a six
vehicle formation

lead vehicle responds to a step input at time #=15. The variable «
controls the amount of mixing between the purely local strategy
(a=0) and a purely centralized strategy (a=1).
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It is also possible to define the performance in ways that are
more structured than string stability, for example, asking whether
the distances between specified sets of vehicles have certain levels
of disturbance attenuation [32,33].

3.1.4  Swarms. Finally, although not strictly a formation con-
trol problem, there has been a great deal of interest in so-called
swarms of vehicles. Roughly speaking, a swarm is a large collec-
tion of vehicles that perform in a collective fashion, such as flying
together in a given direction. One early work in swarmlike behav-
ior was that of Reynolds, who developed a set of rules that he
used to generate realistic motion of vehicles for animation pur-
poses [34].

An innovative approach to understanding swarm behavior was
taken by Jadbabaie et al. [35], who described how to achieve
coordination of groups of mobile autonomous agents using
nearest-neighbor rules. The control law was quite simple, making
use of a simple heading model in which each agent updated its
heading according to the rule

i

1 ) . .
u:m(@([)+ D 010)-0(:))

jeNi)

where N(¢) is the set of vehicles that are within a radius r of
vehicle i at time . The first term is the average heading of the
neighbors of vehicle i, and hence, this control essentially tells
each vehicle to steer in the same direction as its neighbors.

Jadbabaie et al. [35] are able to demonstrate that with this con-
trol law, all vehicles will converge to a common heading. They
make use of an “eventual connectivity” assumption in which the
vehicles are connected together across intervals. In other words,
while it may never be the case that at a given instant of time the
graph describing the interconnectivity is complete (as long as,
over a suitable interval, all vehicles are able to share information),
the solution will converge to a common value.

Control laws for swarms often involve using attractive and re-
pulsive functions between nearby vehicles. In addition to the work
of Leonard et al. [13] already described above, another represen-
tative work in this regard is that of Olfati-Saber [36], who makes
of a control input consisting of three terms

W=fo+fa+f,

The first term f,==VV(y*,y™") is a gradient based term, where V
is a potential function. The second term f; is a damping term
based on the relative velocities of neighboring vehicles and has
the form a(q)(v'—v’). The final term f ’y is a navigational feedback
term that takes into account a group objective, such as moving to
a given rendezvous point. Figure 5 shows a sample maneuver in
which 150 agents squeeze through an opening without collision.

Substantial additional literature on stability analysis and motion
control of swarms exists in the literature; see Olfati-Saber [36] for
a recent survey.

3.2 Cooperative Tasking. A major element of cooperative
control is deciding on the tasks that different vehicles will perform
to satisfy the team objective. This essentially amounts to choosing
the role of the vehicles o'

3.2.1 MILP Formulations. Several groups have formulated
this problem as a mixed integer linear program (MILP) [37-39],
in which the integer variables correspond to the role o

The work of Richards et al. [38] considers the problem of de-
signing trajectories for a group of vehicles that collectively visit a
set of waypoints within a given set of time constraints. They mini-
mize a cost function of the form

SEPTEMBER 2007, Vol. 129 / 575

Downloaded 16 Apr 2010 to 131.215.220.165. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Topology 1,a=0.0 Topology 2, «=0.0 Topology 3, «=0.0

AL

0 10 20 30 0 10 20 30 0 10 20 30
Topology 1, a=0.2 Topology 2, a=0.2 Topology 3, ¢=0.2

0 10 20 30 0 10 20 30 0 10 20 30
Topology 1, a=0.5 Topology 3, a=0.5

0 [E—

\/

0 10 20 30 0 10 20 30 0 10 20 30

Fig. 4 String stability results for a five-vehicle formation [31]. Each column represents a dif-
ferent information topology, as shown in the diagram at the top of the column. The first row of
plots corresponds to the use of purely local information, whereas the second two rows allow

increasing amounts of global information.

N

T
J=T+p 2 (ﬂ’+p22 (lur ()] + u2<z>|>)
p=1 =0

where #’ is the time at which the pth vehicle completes its task
and 7 is the time at which the last vehicle completes its task. This
cost function thus trades off the input forces on the vehicles with
the time that the overall task is completed as well as the tasks of
the individual vehicles.

In the MILP formulation used by Richards et al. [38], the indi-
vidual assignments of waypoints to vehicles is handled by using
decision variables to constrain the problem such that each way-
point is visited exactly once by a vehicle. This constraint can be
written in the form

T N
2 2 Kpibi=1 for all waypoints i
=0 p=1

where K,; is the suitability of vehicle p to visit waypoint i and b;,,
is 1 if vehicle p visits waypoint i and time ¢ and zero otherwise.

Figure 6 shows an example of the allocation problem applied to
set of six vehicles. The scenario includes 12 waypoints that must
all be visited, along with a region of no-fly zones (obstacles). An
approximate method described in [38] is used to solve the prob-
lem in 27 s on a standard PC.

A similar approach has been developed independently by Earl
and D’Andrea [37], in which the MILP formulation is used to
solve a subproblem of the RoboFlag example in Sec. 2.4. Specifi-
cally, they solve the problem of guarding a defense zone from
attackers that are trying to enter it. They formulate the problem in
discrete time to be consistent with the MILP framework; for sim-
plicity we will use a single time discretization here and reuse ¢ as
the discrete time.
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The objective function is given by

T T
T=2, y(0)+p, |u(r)|
=0

=0

where y(r) is a binary variable that takes on the value 1 if and
only if one of the attackers is in the defense zone at time ¢. This
function must be minimized while also constraining the position
of the defending robots so that they avoid collisions with each
other and stay outside of the defense zone.

In addition to the dynamics of the vehicles, a complete descrip-
tion of the problem also requires that we define the dynamics of
the attacking robots. We do this using a discrete variable 8 for
each attacker that describes whether an attacker is active or inac-
tive. An attacker is active initially and becomes inactive if it either
enters the defense region or is “intercepted” by a defending robot
(modeled by a defending robot getting within a certain distance of
the attacking robot). We assume that if an attacking robot is ac-
tive, it moves toward the defense zone in a straight line.

Note that in both of these formulations, the assignment is
handled implicitly: the problem does not explicitly assign a given
defender to specific attacker but rather relies on the optimization
to choose motions of the group of defenders such that no attackers
enter the defense region.

3.2.2  Assignment Protocols. Another approach to the coopera-
tive tasking problem has been to develop protocols that are used
to decide on who is assigned to what task. By “protocol” we mean
a set of rules that are used to determine the individual roles (as-
signments) of each vehicle. One seeks to prove that this protocol
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Fig. 5 A squeezing maneuver using flocking algorithms of Olfati-Saber [36]

results in all tasks being assigned to a vehicle, even in the pres-
ence of changing environmental conditions or failures.

One of the early approaches to distributed task allocation was
the ALLIANCE software architecture developed by Parker [40]. The
approach made use of behavior sets that were activated under
certain conditions. Each behavior could itself inhibit other behav-
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iors, so that it was possible for a single behavior set to control the
motion of the robot.

The activation of a behavior set is controlled through “motiva-
tional behaviors.” Each motivation behavior responds to some set
of inputs, including external sensors, interrobot communications,
inhibitory feedback from other behaviors, and internal motiva-
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Fig. 6 Resource allocation using mixed integer linear pro-
graming [38]

tions. The two internal motivations, robot impatience and robot
acquiescence, allow the robot to progress when other robots fail to
complete a task or when the robot itself fails to accomplish a task.
These motivational behaviors can be viewed in the context of the
guarded command framework discussed in Sec. 1.

A related approach has been taken by Klavins [41], who con-
structed a language for describing and verifying protocols for co-
operative control. The computation and control language (CCL)
uses the guarded command formalism to specify sets of actions
for a collection of robots. Figure 7 gives an example of how a
distributed area denial task can be solved in CCL. In this example,
drawn from the RoboFlag game, six defensive robots are trying to
protect a defense zone for an incoming set of robots, which de-
scend vertically at a fixed speed. The defending robots must move
underneath the incoming robots but are not allowed to run into
each other. The defenders are randomly assigned incoming robots
and are allowed to talk to their neighbors and switch assignments
under a given protocol. A protocol was developed in [41] that is
able to provably solve this problem, including ensuring that no
two robots collide and all defensive robots eventually end up as-
signed to an incoming robot with no crossing of assignments.
Extensions to this approach for observability and controllability
have also been developed [42,43].

3.2.3 Other Approaches. Other approaches to the multi-
vehicle task assignment problem include the use of genetic algo-
rithms [44] and tree search [45].

3.3 Spatiotemporal Planning. A broad collection of techno-
logical developments can be described under the heading of “spa-
tiotemporal planning,” in which the paths of the robots and their
locations with respect to time are to be specified and controlled. In
this section, we consider two typical spatiotemporal planning
problems: rendezvous and coverage.

3.3.1 Rendezvous. The rendezvous problem is a specific coop-
erative task in which one wants to have a number of individual
vehicles meet at a common point at a common time. The key
element in the rendezvous problem is that all agents should arrive
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at the same time, so that if one vehicle is delayed the other ve-
hicles should adjust their trajectories so that they do not arrive
early.

Bhattacharya et al. [46] and Tiwari et al. [47] formulated the
rendezvous problem by defining a rendezvous region R around
the rendezvous point (taken as the origin) and letting p be the ratio
of the maximum and minimum distances of the vehicles at the
time that one of them enters the rendezvous point. Letting 6 be the
radius of the rendezvous region and ¢, the time at which the first
vehicle enters the region, they define p as

~ max(|pe(z,)]))
- 5

The goal can then be defined as finding control laws such that
from all initial conditions,

pspdessl

The case of “perfect” rendezvous corresponds to p=1, in which
case all vehicles must reach the rendezvous region at precisely the
same time.

This problem can be solved using a Lyapunov-based approach
that uses feedback to create an invariant cone in the phase space
[46,47]. To achieve rendezvous, these vehicles must reach x=0 at
approximately the same time, without either of the individual ve-
hicles coming near x=0 before that time. This creates a set of
forbidden regions in the phase space. By proper choice of control
law, it is possible to render certain cones as invariant. The result-
ing trajectories satisfy the rendezvous problem. The feedback in
this case is centralized, requiring each vehicle to communicate its
position to nearby vehicles.

3.3.2 Coverage. The coverage control problem refers to the
use of a collection of vehicles to provide sensor coverage for a
given geographic area. It is thus one approach to the cooperative
surveillance problem. Given a set of N vehicles, we wish to allo-
cate each vehicle to a region in which it is responsible for provid-
ing sensor information. The centralized version of this problem is
referred to as the locational optimization problem, and there is a
large literature describing different approaches (see [48] for a sur-
vey). We focus here on the decentralized solution proposed by
Cortes et al. [48].

The approach taken by Cortes et al. [48] is to partition a region
Q into a set of polytopes W={W', ..., WM} that cover Q. Each
polytope is assigned to a specific vehicle to each region and we let
f:R,—R, represent the sensing performance of a vehicle based
on its distance from a given point, with f small representing good
performance. We then form the coverage control problem as
choosing the locations of each vehicle such that we minimize

n
L= | flla-yDeadg (1)
i=1 Jwi
where ¢(q) is a distribution density function that represents the
importance of a given area.
It can be shown that if the location of the vehicles are fixed,
then the optimal decomposition of the space Q is a Voronoi de-
composition where

Wi={q e Ollg-yl=llg=yI.vj#i
This decomposition corresponds to each vehicle being responsible
for the points that are closest to it. This decomposition also intro-
duces a natural graph of neighbors, with two vehicles being neigh-
bors if their Voronoi partitions share an edge.

If we let Cy: represent the centroids of the Voronoi partition,
then it turns out that the control law

u'=— k(yi - Cyi)

converges asymptotically to a set of critical points for the cost
function and hence provides (locally) optimal coverage. A key
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Fig. 8 Coverage control applied to a polygonal region with
Gaussian density function around the point in the upper right
[48]

element of this approach is that the only communication required
is with the nearest neighbors of the vehicle (since this is what is
needed to determine the Voronoi decomposition). Figure 8 illus-
trates the coverage algorithm applied to a region with ¢(g) being

580 / Vol. 129, SEPTEMBER 2007

a Gaussian around the point in the upper right portion of the
region.

The above formulation assumes that the collection of vehicles
that is available is sufficient to cover the entire region of interest.
A slightly different problem occurs when there is not enough sen-
sor range to simultaneous view all portions of the environment
that are of interest. In this case, one must selectively cover differ-
ent regions of space and change those regions over time (so that
no region goes unviewed forever). Several groups have consid-
ered this problem [49-51].

3.4 Consensus Algorithms. As a final technology in coopera-
tive control, we briefly describe the problem of “consensus.” The
consensus problem is to have a group of vehicles (or more general
agents) reach a common assessment or decision based on distrib-
uted information and a communications protocols. Many of the
decentralized problems listed above, especially those involving
assignment, can be thought of as special cases of consensus.

The consensus problem has been formulated as a coordinated
control problem by Fax and Murray [52] and Olfati-Saber and
Murray [53]. A particularly simple solution to the consensus prob-
lem is to let the behavior of each agent be governed by the first-
order differential equation

I

x=- |N,12(x—xf)

where x’ € R is the internal state of the agent. For this system, one
can show that if the information flow is bidirectional (if agent i is
a neighbor of agent j, then j is a neighbor of i), then the states of
the individual vehicles asymptotically converge to the average of
the initial state values for any connected graph G.

If G is not bidirectional (so that there are asymmetries in the
information available to each agent), then the interaction above
does not necessarily lead to average consensus. We define a graph
to be balanced if the in-degree and out-degree of all nodes are
equal. In the case of balanced graphs, one can once again show
that any connected graph solves the average consensus problem
using the interaction rules above [53]. Furthermore, even if the
connections are changing as a function of time, it can be shown
that the average consensus is still reached.

When the behavior of the individual agents is more compli-
cated, we can still pose the problem in a similar manner. Suppose
that each agent’s dynamics are governed by

i=Ax'+ Bu'

y'=Cx ()

Fax and Murray [52] considers a control law in which each sys-
tem attempts to stabilize itself relative to its neighbors. This is
accomplished by constructing an error for each system that is a
weighted combination of the relative outputs of the neighbors

e'= 2 aij(yj_yi) (3)

je./\/i

where «;; 1s the relative weight. For 31mp11c1ty, we consider uni-
1= , where |\ is the number
of neighbors of node i. The results are easﬂy extended to the more
general case.

Given the error (3), we apply a compensator that attempts to
stabilize the overall system. For simplicity, we assume here that
the stabilizer is given by a constant gain

u' = Ke' (4)

with K e R™*™ representing the compensation (gain) matrix. In
practice, one can use a dynamic compensator to improve perfor-
mance, but for analysis purposes, we can just assume these dy-
namics are included in the system dynamics (2).
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The interconnectedness of the system, represented by the neigh-
bor sets N;, can be studied using tools from graph theory. In
particular, for the case of uniform weighting of the errors, it turns
out that the combined error vector e € RV can be written as

e=(L®IDx (5)

where ® represents the Kronecker product and L is the weighted
Laplacian associated with the (directed) graph that models the
neighbors of each node. The weighted Laplacian is a standard
object in graph theory and can be defined as

L=D"'(D-A)

where D is a diagonal matrix whose entries are the out-degree of
each node and A is the adjacency matrix for the graph (see [52]
for more detail). Using this framework, Fax and Murray [52]
showed the following:

THEOREM 1. A local controller K stabilizes the formation dy-
namics in Eq. (2) with error (5) and gain K if and only if it
stabilizes the set of N systems given by

X=Ax+B-\; (Ky)

(6)

where {\;} are the eigenvalues of the weighted graph Laplacian L.

This theorem has a very natural interpretation in terms of the
Nyquist plot of dynamical system. In the standard Nyquist crite-
rion, one checks for stability of a feedback system by plotting the
open-loop frequency response of the system in the complex plane
and checking for net encirclements of the —1 point. The conditions
in Theorem 1 correspond to replacing the —1 point with —1/\; for

y=Cx

each eigenvalue \; of L. This interpretation is illustrated in Fig. 9.
The results can easily be extended to consider weightings that are
nonuniform.

Theorem 1 illustrates how the dynamics of the system, as rep-
resented by Eq. (2), interacts with the information flow of the
system, as represented by the graph Laplacian. In particular, we
see that it is the eigenvalues of the Laplacian that are critical for
determining stability of the overall system. Additional results in
this framework allow tuning of the information flow (considered
as both sensed and communicated signals) to improve the tran-
sient response of the system [53]. Extensions in a stochastic set-
ting [53,54] allow analysis of interconnected systems whose dy-
namics are not identical and where the graph topology changes
over time.

4 Future Directions

Although there has been substantial work in cooperative control
over the past decade, there are still many open problems that
remain to be solved. In this section, we provide a brief review of
some of the future opportunities in cooperative control. The topics
listed here are not intended to be exhaustive, but rather to be
indicative of the classes of problems that remain open. Many of
these are drawn from the recent report on future directions in
control, dynamics, and systems [8].

4.1 Integrated Control, Communications, and Computer
Science. By its very nature, cooperative control involves the inte-
gration of communications, and (distributed) computing systems
with feedback control. In many applications, the traditional sepa-
ration of computing, communications, and control is no longer
valid and new methods that integrate advances from the different
disciplines are needed. Recent research in hybrid systems, in
which continuous and logical domains are integrated, is a step in
the right direction, but these techniques often ignore issues asso-
ciated with distributed computing and communication channels.
Theories that define fundamental limits, such as real-time compu-
tational complexity and performance limits of feedback systems
with rate limited channels, are needed.
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resentation of the interconnected system is shown and on the
right, the corresponding Nyquist test is shown. The addition of
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values of L from the positions marked by circles to those
marked by crosses.
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4.2 Verification and Validation. Prescribed safety and reli-
ability is a significant challenge for current mission-critical sys-
tems. Requirements, design, and test coverage and their quantifi-
cations all significantly impact overall system quality, but
software test coverage is especially significant to development
costs. For certain current systems, verification and validation
(V&V) can comprise over 50% of total development costs. This
percentage will be even higher using current V&V strategies on
emerging autonomous systems. Although traditional certification
practices have historically produced sufficiently safe and reliable
systems, they will not be cost effective for next-generation au-
tonomous systems due to inherent size and complexity increases
from added functionality.

New methods in high confidence software combined with ad-
vances in systems engineering and the use of feedback for active
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management of uncertainty provide new possibilities for funda-
mental research aimed at addressing these issues. These methods
move beyond formal methods in computer science to incorporate
dynamics and feedback as part of the system specification.

4.3 Higher Levels of Decision Making. The research sur-
veyed in this paper has focused on cooperative control problems
that can be formulated as optimization problems over some cost
function. Many autonomous systems must make decisions for
which an underlying set of continuous and discrete variables may
not provide an appropriate level of abstraction for decision mak-
ing. Cooperative systems that must reason about the complex in-
teractions between the group’s dynamics and the environment in
which they operate may require different levels of representation
of their task and their dynamics. Techniques from artificial intel-
ligence that allow identification of strategies and tactics that can
be coded as lower-level optimization-based problems are needed.

4.4 Networked Control Systems. Modern control theory is
largely based on the abstraction that information (“signals™) are
transmitted along perfect communication channels and that com-
putation is either instantaneous (continuous time) or periodic (dis-
crete time). This abstraction has served the field well for 50 years
and has led to many success stories in a wide variety of
applications.

Future applications of control will be much more information
rich than those of the past and will involve networked communi-
cations, distributed computing, and higher levels of logic and de-
cision making, as described above. New theory, algorithms, and
demonstrations must be developed in which the basic input/output
signals are data packets that may arrive at variable times, not
necessarily in order, and sometimes not at all. Networks between
sensors, actuation, and computation must be taken into account,
and algorithms must address the trade-off between accuracy and
computation time. Progress will require significantly more inter-
action among information theory, computer science, and control
than ever before.

An emerging architecture for networked control systems is
shown in Fig. 10. This architecture separates the traditional ele-
ments of sensing, estimation, control, and actuation for a given
system across a network and also allows sharing of information
between systems. Careful decisions need to be made on how the
individual components in this architecture are implemented and
how the communications across the networked elements is man-
aged. This architecture can be used to model either a single sys-
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tem (using either half of the diagram) or multiple systems that
interact through the network.

The opportunity for networked control systems is the ability to
quickly add functionality to systems by incorporating new sensors
and algorithms into an existing system. For cooperative control
systems, the ability to make use of a “virtual sensor” located on
another vehicle without having to redesign the control system
from scratch is an example of the types of functionality one would
like to achieve. Similarly, new software modules that add func-
tionality should provide “plug-and-play” compatibility so that
they can be integrated into systems quickly and reliably. This
“network-centric” approach to control will require substantially
better frameworks for implementing complex, distributed control
systems than currently exist today.

5 Conclusions

In this survey, we have described some of the driving applica-
tions of cooperative control, surveyed some of the relevant tech-
nology that has been developed over the past decade, and pro-
vided some possible directions for future study. Given the large
and growing literature in this area, many interesting results have
not been included in an attempt to capture some of the key areas
of interest.

What is clear is that many of the basic problems of cooperative
control have been explored and a wealth of results is available
demonstrating the potential of such systems. To transition these
research results to applications will require additional effort in the
integration of control, communications, and computer science; de-
cision making at higher levels of abstraction; verification and vali-
dation of distributed embedded systems; and an extensible archi-
tecture for networked control systems implementation.
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